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N-d scattering above the deuteron breakup threshold

A. Kievsky! M. Viviani,! and S. Rosat?
1istituto Nazionale di Fisica Nucleare, Piazza Torricelli 2, 56100 Pisa, Italy
2Dipartimento di Fisica, Universita’ di Pisa, Piazza Torricelli 2, 56100 Pisa, Italy
(Received 28 May 1997

The complex Kohn variational principle and tteorrelated hyperspherical harmonics technique are applied
to studyN-d scattering above the deuteron breakup threshold. The configuration with three outgoing nucleons
is explicitly taken into account by solving a set of differential equations with outgoing boundary conditions. A
convenient procedure is used to obtain the correct boundary conditions at values of the hyperradi@$ of
fm. The inclusion of the Coulomb potential is straightforward and does not give additional difficulties. Nu-
merical results have been obtained for a simpleave central potential. They are in nice agreement with the
benchmarks produced by different groups using the Faddeev technique. Comparisons are also done with
experimental elasti®l-d cross section at several energig80556-281®7)00812-1

PACS numbgs): 25.10:+s, 03.65.Nk, 13.75.Cs, 25.55.Ci

One of the main objectives in nuclear physics is knowl-rate description of the system when the three nucleons are
edge of the nuclear interaction. In practice, the two-nucleortlose to each other; moreover, for large interparticle separa-
scattering data are used to determine the on-shell nucleottions it has to describe the breakup configuratiofs, is
nucleon (NN) interaction. The off-shell properties of nuclear written as a sum of channel contributions, labeled by the
potentials and many-body force contributions must be testedngular-spin-isospin quantum number. The associated two-
in systems withA>2. As a consequence, much work has todimensional spatial amplitudes are expanded in terms of the
be devoted to the understanding of the three-nucleon bounghir correlated hyperspherical harmoiRHH) basis[10].
and scattering states. The Faddeev theory has been exten-The wave function corresponding to an asymptotic state
sively applied to this problem and, in particular, to the study®S*Y)L, has the form
of the n-d scattering under and above the deuteron breakup
threshold. The corresponding Faddeev equations in momen-
tum space were originally solved by Kloet and Tjdd for a
central s-wave potential. At present, different numerical
technigues are available to solve the Faddeev equations in
configuration and momentum space. In Ré®.3] bench- S 388 yout }
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mark calculations fon-d scattering were given as reference Lrsa(XiYi)
for new techniques. Realistic potentials have been used to
calculate then-d scattering cross section at different energies

[4]._Forthep-d channel many accurate exp_erimental data arg nere the summation is extended over the three different
available, but the Faddeev approach to this process becomgﬁoices of the Jacobi coordinates,y). L is the relative

difficult due to the Coulomb repulsiof5-7]. Such a diffi- _angular momentum between the incident nucleon and the

culty is not present in the variational technique developed iny - : ; . "

: euteronS is the spin obtained by coupling the spis 1 of
Ref. [8] for the N-d scattering below the deuteron breakup ; . : -
threshold. The extension of this above the deuteron breakutge deuteron with spin 1/2 of the third nucleon, ahi the

s
threshold is the object of the present paper. In particular, thétal angular momentum of the systerﬁ'S.fL, are the
asymptotic conditions to describe three outgoing nucleons igollision-matrix (S-matrix) ellem)(\ants describing the-22
the n-n-p andp-p-n states are explicitly taken into account. €lastic scattering. The functiofl

L's

Lsjis the ingoing §=in)

In the following the important aspects of the approach arer the outgoing X=out) solution of the two-bodyN-d
briefly outlined and various results obtained for a simpleSchralinger equation in the asymptotic region. These solu-
s-wave central potential are reported. More details on thdions contain suitable regularizing factors at small distances.
adopted procedures and results for realistic potentials will bdhe explicit form of ¥ is
presented in a forthcoming papé].

Following Ref.[8], the wave function of the system is
written as a sum of two terms:

WX, Y =2 ba(Xi Vi) Valikii), 3)
V=Wt W,. (1) :

The ¥ , term is a solution of the Schadinger equation in the o . . i e
asymptotic region where the incident nucleon and the deu- Ya(iK.D)={[Y, (x)YL_ (yi)]a [Sk'S.]s tos[tatelrr,
teron are well apart. Th& - term must guarantee an accu- 4)
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oL v N (2pal Therefore, it is convenient to use the asymptotic behavior of
ba(Xi,Yi)=p " "ef (X)) ; Ug(p) P (i) |, the coefficient®, B, C, N, andD, entering Eq(7), to obtain
(5) the solutions at large but finite. Neglecting terms going to
zero faster thap ~3, the asymptotic expression for the set of
where the hyperspherical variablep?=x?+y? and differential equations can be cast in the form
cosp,=x;/p have been introduced. The pair correlation func-

tions f, are solutions of a two-body Schdimger-like equa- 2 a,a’
tion [10] and are included to accelerate the convergence of E 8o o Ok k,(d_z_ MJF 2| M
the expansion. At small interparticle distances they take into o'’ ' “\dp p? p
account the correlations introduced by the strong repulsion ,

of the NN potential and go smoothly to unity as the interpar- hfkar

ticle distance increases. The indexn the sum runs over all + 7 Uare(p)=0. ®)

the channels compatible with the total angular momenium

value, and the antisymmetrization and parity conditions. InThe ) term originates from the Coulomb potential matrix
numerical applications the sum is truncated after includingsiements and it shows the expecteg tiéhavior. The kinetic

all the important channels. The quantities to be determined ignergy operator and the nuclear potential contribute both to
the wave function specified by Eq@)—(5) are the hyperra-  the h term. The final form(8) is obtained after orthonomal-
dial functionsug(p) and the collision matrix elements. They izing the PHH states ap=o. In the above equation,
will be calculated by means of the Kohn variational prin- Q?=mE/#h?, L=/ ,+L,+2k+3/2, andU ,(p) are linear

ciple. _ o __ combinations of the functionp”«*ta=52u%(p). The total
Below the deuteron breakup the elastic collision matrix ispymper of coupled equations in E¢d) and (8) is N

unitary and the problem can be also formulated in terms Of:orresponding to all the considered valueswo&ndk.
the reactance matrix, as done [i8]. Above the deuteron For n-d scattering they term is zero and, if the coupling
breakup the complex form of the Kohn variational principle 1armh is neglected, the outgoing solutions of E§) are the

[11] is better suited to describe three outgoing particles. IrHankeI functiondHM(Qp). In order to take into account the

this case, th&-matrix and the hyperradial functions are de- coupling termsN.... different solutions of Ea(8) of the kind
termined through the stationary value of the functional Ping Neq a8)

eqr

(agkg)
ISSS|=ISSS+i(WE [H-E|W o). (6) agk P " (M
[ISee] ot i(¥sy [P sy Wiko 0)(1)): > n:O;2 T
Let us first point out the main points of the procedure. “odo T g

After performing the variation with respect to the hyperradial

i kKo i
functions, the following set of coupled equations is obtained: X (e 'X'”ZQ")QZ’;OG'QP, 9
vl d? v’ d v where y is the matrix entering Eq(8), are obtained by
%, Ak (p)d—p2+ Bk (p)@+ Cylr (p) choosingl“iio‘kf’)(n=0)= Saay ki, ThEN>0 coefficients

are determined by recurrence relations obtained fron(&g.
o N as done, for example, in RefL3].

Uy (P)=Dax(p)- @) The solutions of Eq(7) are then matched to specific su-
_ o o perpositions of the functionWiiOkO)(p) by imposing the
Details of the explicit form of the coefficienss, B, C, and  continuity of the logarithmic derivative at a given value
N and the inhomogeneous tert can be found in Refs. =,  The value of the matching radiys, is not relevant,
[8,10]. For each asymptotic staté>" VL, two different in-  provided that the asymptotic forit®) is reached, which is
homogeneous terms can be constructed in correspondenceri@her well verified forp,>80 fm. With such a condition, it
the asymptotid)} s, functions with\= in or out. Two dif-  has been numerically tested that the solutions are insensitive
ferent sets of hyperradial functions are then obtained by solvto variation ofp,, even in the presence of Coulomb potential
ing the system of equatior(g) for the two choices oh. In terms. Forp— o, such solutions evolve as
the subsequent step the two sets are combined to minimize
the functional [’S77] with respect to variations of the
S-matrix elements. This is the first order solution; the second
order estimate is calculated by replacing the first order solu-
tion in Eq. (6). corresponding to the correct asymptotic behavior of three

Appropriate asymptotic conditions must be imposed oroutgoing particles interacting via long-range Coulomb poten-
the hyperradial functionag(p) to completely determine the tials [6]. From the above equation, it results that tBg
problem. Whenp—«, they should vanish below the deu- parameters are just the inelasf§ematrix elements describ-
teron breakup threshold, whereas, for positive total enkrgy ing the 2—3 breakup process. In thed case, the hyperra-
they should be proportional to exglEp). However, this be-  dial functions asymptotically reduce td,,(p) — —S,e'r.
havior is reached only for very large values of the hyperra- TheNN interaction model considered in the present paper
dius[12], and, in addition, the presence of the Coulomb po-is thes-wave potential of Malfliet and TjokMT) [14], with
tential modifies the free outgoing wave also at infinity. the parameter values given in RE3]. Correspondingly, for

m aa
+ ﬁE Nk,'kr (P)

Uudp)—— 2, (e7os2n)ilo s |\ &% (10)
agkg '
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TABLE I. Real parts of thes-wave phase shiffS™15, (in de- TABLE Il. Results obtained for the real parts of tlsewave
gree$ and inelasticity paramet&r* ', for the doublet and quartet phase shift?5*1§, (in degrees and the inelasticity parameter
spin states are given as a function of the nunitheof hyperspheri- 25714, are given at the specified incident nucleon energies. For the
cal functions considered per channel. The incident nucleon energy-d process, the benchmarks results of R&f.are reported for the

is Ey=14.1 MeV. sake of comparison.
N, 280 20 480 “70 n-d atE,=14.1 MeV
n-d %89 %10 480 “m0
2 97.96 0.5093 67.01 0.9933 Present 105.50 0.4649 68.95 0.9782
4 105.47 0.4652 68.88 0.9788  Los Alamos 105.48 0.4648 68.95 0.9782
6 105.51 0.4650 68.94 0.9784 Bochum 105.50 0.4649 68.96 0.9782
8 105.50 0.4649 68.95 0.9782
n-d at E,=42.0 MeV
-d
P Present 4133 05026 3771  0.9034
2 101.16 0.5430 70.92 0.9905 Los Alamos 41.34 0.5024 37.71 0.9035
4 108.41 0.4989 72.53 0.9801 Bochum 41.37 0.5022 37.71 0.9033
6 108.44 0.4986 72.59 0.9797 4 alE — 141 Mev
8 108.43 0.4985 72.60 0.9795 p-dattp=1a.L Ve
Present 108.43 0.4985 72.60 0.9795
p-d atE,=42.0 MeV
n-d scattering, the functiod’ ~(x,y) defined in Eqs(3)—-(5)  Present 43.65 0.5058 39.94 0.9047

includes only/,=0 channels. Therefore, the total number

of channels for the states with total sp8 3 (S=32) is
simply 2 (1). On the other hand, the Coulomb potential is
active in all the waves, and so, in tphed case, also channels
with angular momenta’,, larger than zero have been in-
cluded. For central potentials the elastic part of the collisio
matrix does not depend od and, moreoverS=S' and

energiesE,=3, 9, and 18 MeV, together with the experi-

mental data of Ref[15]. The p-d elastic cross section is

ngiven in Fig. 2 at proton energids,=3, 6, 9, and 18 MeV,

In conjunction with the high precision data of REE6]. De-

L=L'. Thus, %SSS has been expressed in the usual formspite i'ts simple form, thelMTITIII) potential reproduces the

2541 P experimental cross sections in a reasonable way. As shown
7eXp(A™T4). in Ref.[4], the differences found between the theoretical and

The number of hyperspherical states, i.e., of hyperradia'l erimentaln-d cross sections are reduced considerabl
functions, included in each channel has been increased unﬁfp y

the convergence is reached. Typically, eight hyperradiaYvhen more realistitVN mte_ractlons are used. Th? same hap-
functions per channel are enough for a four-digit accuracy i;Féen'S n thep-d case a,=3 _MeV [17], and a similar be-
the phase shift parameters. The rate of convergence for t guior is also gxpected for higher energies. .
s-wave phase-shift§s, and 48, and inelasticity parameters The calculation of the breakup cross section is easily per-
2 and 43, as a function of the numbed,, of considered formed once the coefficient§,, given in Eq. (10) are
states (equationy per channela is shown in Table | at

En=14.1 MeV. A similar trend is found & =42 MeV and 500 T T T T T

the corresponding converged results are shown in Table I (@) 3
For n-d scattering a direct comparison with the benchmark

results[3] can be done, showing a very good agreement. Thez 400 | (a) En=3.0 MeV

phase shift and inelasticity parameters have been also calcig

lated for p-d scattering. Convergence patterns similar to theg

n-d case are obtained, as can be seen in Table I. Hence, ttg 300

p-d results are expected to have the same accuracy as the §

d ones. It can be observed that there is a constant differencg

of about 3° between thp-d andn-d s-wave phase shifts at

the energy values considered. A similar difference was ob-

tained by other authoi$,6], using semirealistic potentials.
To compare with experimental results, the elastic crossg 100

section has been calculated for several energy vahyeef

the incident nucleon. Since the nuclear potential here consid

ered is onlys-wave active, the differential cross section 0

starts deviating from the experimental points ab&yg= 20

MeV [1]. For lowerEy values, partial waves up to=8 give

sizable contributions and have been included. The calculated FIG. 1. Elasticn-d cross section at neutron energes=3, 9,

n-d elastic cross section is presented in Fig. 1 at neutroand 18 MeV. The experimental data are from Ré&g]

(b) En=9.0 MeV
(c) En=18.0 MeV

200
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d el

0 30 60 90 120 150 180
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FIG. 2. Elasticp-d cross section at proton energigs=3, 6, 9, FIG. 3. Laboratory breakup cross section fod andp-d scat-
and 18 MeV. The experimental data are from Réf] tering atEy=14.1 MeV versus the arc leng8 for the configura-

tion where two neutrons or two protons are detected at angles
known. TheS-matrix unitarity imposes the following rela- 6,=51.02°,0,=51.02°, andp=120°. For the sake of comparison
tion between the elastic and inelastic parameters: with the calculation of Ref.3], only the contributions frons waves
have been included. The solidot-dasheflcurve corresponds to-

d (p-d) scattering. The dashed curve showsnhe results of Refs.
|25+1WL|2+2|( |Sak|2:1' (11) [3,18].

In all the cases we have considered, this relation is well

verified numerically with a precision of 18. An example of The inelasticity paramete?S*1y, goes to one a in-

n-d and p-d breakup cross sections, for the space star CONgreases, as, for example, has been found in Ref4] for n-

figuration, is reported in Fig. 3. For the sake of comparisony scattering. For instance, atE,=14.1 MeV,
the n-d breakup cross section calculated by means of th?l—zs*lm)<10’3 already forL=4. A similar behavior

Faddeev techniqus, 18] is reported, as well. All the cross has been found for thp-d case. The contributions to both

sections reported are calculated by including the Conmbu“orélastic and inelastic cross sections of channels wigh-0,

of s waves only. From inspection of Fig. 3, it can be noticed. luded in theo-d h b found to b |
that there is good agreement between the results of the I%?bulee ep-d case, have been found to be nearly neg-

n-d calculations. In fact, the present estimation is found to W lude with a f ks. Fi fall th h
differ by 1% at most from the benchmark result of RéH. e conclude with a few remarks. First of all, the Kohn

This difference should be further reduced by increasing th@riational principle has been successfully applied to treat
number of PHH states included in the expansion. scattering processes above the deuteron breakup threshold.

The p-d cross section shown in Fig. 3 is found to be The complex form of the principle is well suited to take into
larger than that of the correspondingd scattering, in con- account the boundary conditions for the three outgoing
trast to the experimental data where the inverse situation igucleons and to obtain the second order estimate of the
observed[19,20. In Ref.[21], where the interaction used S-matrix. The expansion of the wave function in the PHH
was a Yamaguchi separable potential and the Coulomb effe&@asis allows for lowering the number of hyperspherical states
was treated with some approximation, thed space star to be included. The problem reduces to the solution of a set
cross section was found to be slightly smaller thannbd  of second-order inhomogenous differential equations with
one. However, the-d breakup cross section shown in Fig. 3 outgoing boundary conditions. F@-d scattering the equa-
of the present paper is about 5 times smaller than the experiions are coupled even in the asymptotic region due to the
mental value. For the simple potential used here there ar€oulomb potential. However, a simple technique can be used
some cancellations in the construction of the breakup cros® calculate the proper boundary conditions for the wave
section in this particular configuration. These cancellationgunction at values of the hyperradips=100 fm. The results
are found to be less effective when the Coulomb potential i®btained for the compleg-waven-d phase-shift parameters
included. It should also be observed that the contributions oére in complete agreement with the benchmark calculations
the L>0 waves were not included in the cross section preof Ref. [3]. The elastic cross sections have been compared
sented in Fig. 3. In conclusion, the interesting problem is tawith the experimental data. For both processed,andp-d,
investigate the effect of the Coulomb potential in the case oain overall good agreement has been observed. The differ-
realistic interactions. In this respect, in Ré¢#], the n-d ences found may be ascribed, in large part, to the rather
space star cross section was calculated using the Borsimple potential used.
nucleon-nucleon potential, which resulted in being slightly The extension of the method to realishiN interactions
smaller than the experimentatd value. will be the subject of a subsequent paper.
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