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N-d scattering above the deuteron breakup threshold
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The complex Kohn variational principle and the~correlated! hyperspherical harmonics technique are applied
to studyN-d scattering above the deuteron breakup threshold. The configuration with three outgoing nucleons
is explicitly taken into account by solving a set of differential equations with outgoing boundary conditions. A
convenient procedure is used to obtain the correct boundary conditions at values of the hyperradius of'100
fm. The inclusion of the Coulomb potential is straightforward and does not give additional difficulties. Nu-
merical results have been obtained for a simples-wave central potential. They are in nice agreement with the
benchmarks produced by different groups using the Faddeev technique. Comparisons are also done with
experimental elasticN-d cross section at several energies.@S0556-2813~97!00812-1#

PACS number~s!: 25.10.1s, 03.65.Nk, 13.75.Cs, 25.55.Ci
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One of the main objectives in nuclear physics is know
edge of the nuclear interaction. In practice, the two-nucle
scattering data are used to determine the on-shell nucl
nucleon (NN) interaction. The off-shell properties of nucle
potentials and many-body force contributions must be tes
in systems withA.2. As a consequence, much work has
be devoted to the understanding of the three-nucleon bo
and scattering states. The Faddeev theory has been e
sively applied to this problem and, in particular, to the stu
of the n-d scattering under and above the deuteron brea
threshold. The corresponding Faddeev equations in mom
tum space were originally solved by Kloet and Tjon@1# for a
central s-wave potential. At present, different numeric
techniques are available to solve the Faddeev equation
configuration and momentum space. In Refs.@2,3# bench-
mark calculations forn-d scattering were given as referen
for new techniques. Realistic potentials have been use
calculate then-d scattering cross section at different energ
@4#. For thep-d channel many accurate experimental data
available, but the Faddeev approach to this process beco
difficult due to the Coulomb repulsion@5–7#. Such a diffi-
culty is not present in the variational technique developed
Ref. @8# for the N-d scattering below the deuteron break
threshold. The extension of this above the deuteron brea
threshold is the object of the present paper. In particular,
asymptotic conditions to describe three outgoing nucleon
then-n-p andp-p-n states are explicitly taken into accoun

In the following the important aspects of the approach
briefly outlined and various results obtained for a sim
s-wave central potential are reported. More details on
adopted procedures and results for realistic potentials wil
presented in a forthcoming paper@9#.

Following Ref. @8#, the wave function of the system i
written as a sum of two terms:

C5CC1CA . ~1!

TheCA term is a solution of the Schro¨dinger equation in the
asymptotic region where the incident nucleon and the d
teron are well apart. TheCC term must guarantee an acc
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rate description of the system when the three nucleons
close to each other; moreover, for large interparticle sep
tions it has to describe the breakup configurations.CC is
written as a sum of channel contributions, labeled by
angular-spin-isospin quantum number. The associated t
dimensional spatial amplitudes are expanded in terms of
pair correlated hyperspherical harmonic~PHH! basis@10#.

The wave function corresponding to an asymptotic st
(2S11)LJ has the form

CLSJ5 (
i 51,3 FCC~xi ,yi !1VLSJ

in ~xi ,yi !

2 (
L8S8

JSLL8
SS8VL8S8J

out
~xi ,yi !G , ~2!

where the summation is extended over the three differ
choices of the Jacobi coordinates (x,y). L is the relative
angular momentum between the incident nucleon and
deuteron,S is the spin obtained by coupling the spinj 51 of
the deuteron with spin 1/2 of the third nucleon, andJ is the

total angular momentum of the system.JSLL8
SS8 are the

collision-matrix (S-matrix! elements describing the 2→2
elastic scattering. The functionVLSJ

l is the ingoing (l[ in!
or the outgoing (l[out! solution of the two-bodyN-d
Schrödinger equation in the asymptotic region. These so
tions contain suitable regularizing factors at small distanc
The explicit form ofCC is

CC~xi ,yi !5(
a

fa~xi ,yi !Ya~ jk,i !, ~3!

Ya~ jk,i !5$@Yl a
~ x̂i !YLa

~ ŷi !#La
@sa

jksa
i #Sa

%JJz
@ ta

jkta
i #TTz

,
~4!
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fa~xi ,yi !5r l a1La f a~xi !F(
k

uk
a~r!~2!Pk

l a ,La~f i !G ,
~5!

where the hyperspherical variablesr25xi
21yi

2 and
cosfi5xi /r have been introduced. The pair correlation fun
tions f a are solutions of a two-body Schro¨dinger-like equa-
tion @10# and are included to accelerate the convergence
the expansion. At small interparticle distances they take
account the correlations introduced by the strong repuls
of theNN potential and go smoothly to unity as the interpa
ticle distance increases. The indexa in the sum runs over al
the channels compatible with the total angular momentumJ
value, and the antisymmetrization and parity conditions.
numerical applications the sum is truncated after includ
all the important channels. The quantities to be determine
the wave function specified by Eqs.~2!–~5! are the hyperra-
dial functionsuk

a(r) and the collision matrix elements. The
will be calculated by means of the Kohn variational pri
ciple.

Below the deuteron breakup the elastic collision matrix
unitary and the problem can be also formulated in terms
the reactance matrix, as done in@8#. Above the deuteron
breakup the complex form of the Kohn variational princip
@11# is better suited to describe three outgoing particles
this case, theS-matrix and the hyperradial functions are d
termined through the stationary value of the functional

@JSLL
SS#5JSLL

SS1 i ^CLSJ* uH2EuCLSJ&. ~6!

Let us first point out the main points of the procedu
After performing the variation with respect to the hyperrad
functions, the following set of coupled equations is obtain

(
a8,k8

FAk,k8
a,a8~r!

d2

dr2 1Bk,k8
a,a8~r!

d

dr
1Ck,k8

a,a8~r!

1
m

\2 E Nk,k8
a,a8~r!Guk8

a8~r!5Dak
l ~r!. ~7!

Details of the explicit form of the coefficientsA, B, C, and
N and the inhomogeneous termD can be found in Refs
@8,10#. For each asymptotic state(2S11)LJ two different in-
homogeneous terms can be constructed in corresponden
the asymptoticVLSJ

l functions withl[ in or out. Two dif-
ferent sets of hyperradial functions are then obtained by s
ing the system of equations~7! for the two choices ofl. In
the subsequent step the two sets are combined to minim
the functional @JSLL

SS# with respect to variations of the
S-matrix elements. This is the first order solution; the seco
order estimate is calculated by replacing the first order s
tion in Eq. ~6!.

Appropriate asymptotic conditions must be imposed
the hyperradial functionsuk

a(r) to completely determine the
problem. Whenr→`, they should vanish below the deu
teron breakup threshold, whereas, for positive total energE,
they should be proportional to exp(iAEr). However, this be-
havior is reached only for very large values of the hyper
dius @12#, and, in addition, the presence of the Coulomb p
tential modifies the free outgoing wave also at infini
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Therefore, it is convenient to use the asymptotic behavio
the coefficientsA, B, C, N, andD, entering Eq.~7!, to obtain
the solutions at large but finiter. Neglecting terms going to
zero faster thanr23, the asymptotic expression for the set
differential equations can be cast in the form

(
a8,k8

F da,a8dk,k8S d2

dr2 2
L~L11!

r2
1Q2D 2

2 Q xk,k8
a,a8

r

1
hk,k8

a,a8

r3 GUa8k8~r!50. ~8!

The x term originates from the Coulomb potential matr
elements and it shows the expected 1/r behavior. The kinetic
energy operator and the nuclear potential contribute both
the h term. The final form~8! is obtained after orthonomal
izing the PHH states atr5`. In the above equation
Q25mE/\2, L5l a1La12k13/2, andUak(r) are linear
combinations of the functionsr l a1La25/2uk

a(r). The total
number of coupled equations in Eqs.~7! and ~8! is Neq,
corresponding to all the considered values ofa andk.

For n-d scattering thex term is zero and, if the coupling
termh is neglected, the outgoing solutions of Eq.~8! are the
Hankel functionsH (1)(Qr). In order to take into account th
coupling terms,Neq different solutions of Eq.~8! of the kind

Wak
~a0k0!

~r!5 (
a08 ,k08

(
n50,1,2, . . .

G
ak
~a08k08!

~n!

rn

3~e2 ix ln2Qr!
a

08 ,a0

k08 ,k0 eiQr, ~9!

where x is the matrix entering Eq.~8!, are obtained by
choosingGak

(a0 ,k0)(n50)5daa0
dkk0

. Then.0 coefficientsG
are determined by recurrence relations obtained from Eq.~8!,
as done, for example, in Ref.@13#.

The solutions of Eq.~7! are then matched to specific su
perpositions of the functionsWak

(a0k0)(r) by imposing the
continuity of the logarithmic derivative at a given valu
r5r0. The value of the matching radiusr0 is not relevant,
provided that the asymptotic form~8! is reached, which is
rather well verified forr0.80 fm. With such a condition, it
has been numerically tested that the solutions are insens
to variation ofr0, even in the presence of Coulomb potent
terms. Forr→`, such solutions evolve as

Uak~r!→2 (
a0k0

~e2 ix log2Qr!a,a0

k,k0 Sa0k0
eiQr, ~10!

corresponding to the correct asymptotic behavior of th
outgoing particles interacting via long-range Coulomb pot
tials @6#. From the above equation, it results that theSak
parameters are just the inelasticS-matrix elements describ
ing the 2→3 breakup process. In then-d case, the hyperra
dial functions asymptotically reduce toUak(r)→2Sake

iQr.
TheNN interaction model considered in the present pa

is thes-wave potential of Malfliet and Tjon~MT! @14#, with
the parameter values given in Ref.@3#. Correspondingly, for
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n-d scattering, the functionCC(x,y) defined in Eqs.~3!–~5!
includes onlyl a50 channels. Therefore, the total numb

of channels for the states with total spinS5 1
2 (S5 3

2 ) is
simply 2 ~1!. On the other hand, the Coulomb potential
active in all the waves, and so, in thep-d case, also channel
with angular momental a larger than zero have been in
cluded. For central potentials the elastic part of the collis
matrix does not depend onJ and, moreover,S5S8 and
L5L8. Thus, JSLL

SS has been expressed in the usual fo
2S11hLexp(2i2S11dL).

The number of hyperspherical states, i.e., of hyperra
functions, included in each channel has been increased
the convergence is reached. Typically, eight hyperra
functions per channel are enough for a four-digit accurac
the phase shift parameters. The rate of convergence fo
s-wave phase-shifts2d0 and 4d0 and inelasticity parameter
2h0 and 4h0 as a function of the numberNa of considered
states~equations! per channela is shown in Table I at
EN514.1 MeV. A similar trend is found atEN542 MeV and
the corresponding converged results are shown in Table
For n-d scattering a direct comparison with the benchm
results@3# can be done, showing a very good agreement.
phase shift and inelasticity parameters have been also c
lated forp-d scattering. Convergence patterns similar to
n-d case are obtained, as can be seen in Table I. Hence
p-d results are expected to have the same accuracy as thn-
d ones. It can be observed that there is a constant differe
of about 3° between thep-d andn-d s-wave phase shifts a
the energy values considered. A similar difference was
tained by other authors@5,6#, using semirealistic potentials

To compare with experimental results, the elastic cr
section has been calculated for several energy valuesEN of
the incident nucleon. Since the nuclear potential here con
ered is only s-wave active, the differential cross sectio
starts deviating from the experimental points aboveEN520
MeV @1#. For lowerEN values, partial waves up toL58 give
sizable contributions and have been included. The calcul
n-d elastic cross section is presented in Fig. 1 at neut

TABLE I. Real parts of thes-wave phase shift2S11d0 ~in de-
grees! and inelasticity parameter2S11h0 for the doublet and quarte
spin states are given as a function of the numberNa of hyperspheri-
cal functions considered per channel. The incident nucleon en
is EN514.1 MeV.

Na
2d0

2h0
4d0

4h0

n-d

2 97.96 0.5093 67.01 0.9933
4 105.47 0.4652 68.88 0.9788
6 105.51 0.4650 68.94 0.9784
8 105.50 0.4649 68.95 0.9782

p-d

2 101.16 0.5430 70.92 0.9905
4 108.41 0.4989 72.53 0.9801
6 108.44 0.4986 72.59 0.9797
8 108.43 0.4985 72.60 0.9795
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energiesEn53, 9, and 18 MeV, together with the exper
mental data of Ref.@15#. The p-d elastic cross section is
given in Fig. 2 at proton energiesEp53, 6, 9, and 18 MeV,
in conjunction with the high precision data of Ref.@16#. De-
spite its simple form, the MT~I–III ! potential reproduces the
experimental cross sections in a reasonable way. As sh
in Ref. @4#, the differences found between the theoretical a
experimentaln-d cross sections are reduced considera
when more realisticNN interactions are used. The same ha
pens in thep-d case atEp53 MeV @17#, and a similar be-
havior is also expected for higher energies.

The calculation of the breakup cross section is easily p
formed once the coefficientsSak given in Eq. ~10! are

FIG. 1. Elasticn-d cross section at neutron energiesEn53, 9,
and 18 MeV. The experimental data are from Ref.@15#

gy

TABLE II. Results obtained for the real parts of thes-wave
phase shift 2S11d0 ~in degrees! and the inelasticity paramete
2S11h0 are given at the specified incident nucleon energies. For
n-d process, the benchmarks results of Ref.@3# are reported for the
sake of comparison.

n-d at En514.1 MeV

2d0
2h0

4d0
4h0

Present 105.50 0.4649 68.95 0.9782
Los Alamos 105.48 0.4648 68.95 0.9782
Bochum 105.50 0.4649 68.96 0.9782

n-d at En542.0 MeV

Present 41.33 0.5026 37.71 0.9034
Los Alamos 41.34 0.5024 37.71 0.9035
Bochum 41.37 0.5022 37.71 0.9033

p-d at Ep514.1 MeV

Present 108.43 0.4985 72.60 0.9795

p-d at Ep542.0 MeV

Present 43.65 0.5058 39.94 0.9047
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2990 56A. KIEVSKY, M. VIVIANI, AND S. ROSATI
known. TheS-matrix unitarity imposes the following rela
tion between the elastic and inelastic parameters:

u2S11hLu21(
ak

uSaku251. ~11!

In all the cases we have considered, this relation is w
verified numerically with a precision of 1025. An example of
n-d and p-d breakup cross sections, for the space star c
figuration, is reported in Fig. 3. For the sake of comparis
the n-d breakup cross section calculated by means of
Faddeev technique@3,18# is reported, as well. All the cros
sections reported are calculated by including the contribu
of s waves only. From inspection of Fig. 3, it can be notic
that there is good agreement between the results of the
n-d calculations. In fact, the present estimation is found
differ by 1% at most from the benchmark result of Ref.@3#.
This difference should be further reduced by increasing
number of PHH states included in the expansion.

The p-d cross section shown in Fig. 3 is found to b
larger than that of the correspondingn-d scattering, in con-
trast to the experimental data where the inverse situatio
observed@19,20#. In Ref. @21#, where the interaction use
was a Yamaguchi separable potential and the Coulomb e
was treated with some approximation, thep-d space star
cross section was found to be slightly smaller than then-d
one. However, then-d breakup cross section shown in Fig.
of the present paper is about 5 times smaller than the exp
mental value. For the simple potential used here there
some cancellations in the construction of the breakup c
section in this particular configuration. These cancellatio
are found to be less effective when the Coulomb potentia
included. It should also be observed that the contribution
the L.0 waves were not included in the cross section p
sented in Fig. 3. In conclusion, the interesting problem is
investigate the effect of the Coulomb potential in the case
realistic interactions. In this respect, in Ref.@4#, the n-d
space star cross section was calculated using the B
nucleon-nucleon potential, which resulted in being sligh
smaller than the experimentaln-d value.

FIG. 2. Elasticp-d cross section at proton energiesEp53, 6, 9,
and 18 MeV. The experimental data are from Ref.@16#
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The inelasticity parameter2S11hL goes to one asL in-
creases, as, for example, has been found in Refs.@1,4# for n-
d scattering. For instance, at En514.1 MeV,
(122S11hL),1023 already forL>4. A similar behavior
has been found for thep-d case. The contributions to bot
elastic and inelastic cross sections of channels withl a.0,
included in thep-d case, have been found to be nearly ne
ligible.

We conclude with a few remarks. First of all, the Koh
variational principle has been successfully applied to tr
scattering processes above the deuteron breakup thres
The complex form of the principle is well suited to take in
account the boundary conditions for the three outgo
nucleons and to obtain the second order estimate of
S-matrix. The expansion of the wave function in the PH
basis allows for lowering the number of hyperspherical sta
to be included. The problem reduces to the solution of a
of second-order inhomogenous differential equations w
outgoing boundary conditions. Forp-d scattering the equa
tions are coupled even in the asymptotic region due to
Coulomb potential. However, a simple technique can be u
to calculate the proper boundary conditions for the wa
function at values of the hyperradiusr'100 fm. The results
obtained for the complexs-waven-d phase-shift parameter
are in complete agreement with the benchmark calculati
of Ref. @3#. The elastic cross sections have been compa
with the experimental data. For both processes,n-d andp-d,
an overall good agreement has been observed. The di
ences found may be ascribed, in large part, to the ra
simple potential used.

The extension of the method to realisticNN interactions
will be the subject of a subsequent paper.

FIG. 3. Laboratory breakup cross section forn-d andp-d scat-
tering atEN514.1 MeV versus the arc lengthS, for the configura-
tion where two neutrons or two protons are detected at an
u1551.02°,u2551.02°, andw5120°. For the sake of compariso
with the calculation of Ref.@3#, only the contributions froms waves
have been included. The solid~dot-dashed! curve corresponds ton-
d (p-d) scattering. The dashed curve shows then-d results of Refs.
@3,18#.
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