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Gauging the three-nucleon spectator equation
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We derive relativistic three-dimensional integral equations describing the interaction of the three-nucleon
system with an external electromagnetic field. Our equations are unitary, gauge invariant, and they conserve
charge. This has been achieved by applying the recently introduced gauging of equations method to the
three-nucleon spectator equations where spectator nucleons are always on mass shell. As a result, the external
photon is attached to all possible places in the strong interaction model, so that current and charge conservation
are implemented in the theoretically correct fashion. Explicit expressions are given for the three-nucleon
bound-state electromagnetic current, as well as the transition currents for the scattering preéesses
—NNN, Nd— yNd, and y*He—Nd. As a result, a unified covariant three-dimensional description of the
NNN-yNNN system is achievedS0556-28187)01012-1

PACS numbds): 21.45+v, 24.10.Jv, 25.26:X%, 25.30—c

I. INTRODUCTION equations[10] and for three-dimensional equations within
the spectator approadiil]. This method results in electro-
The difficulty of solving four-dimensional scattering magnetic amplitudes where the external photon is effectively
equations has led to a number of three-dimensional reductiopoupled to every part of every strong interaction diagram in
schemes that preserve the covariance and unitarity of thiée model. Current and charge conservation are therefore
original equation§1-5]. Here we shall be concerned with implemented in the theoretically correct fashion. For the
one of these schemes, that introduced by Gfd$swhere spectator approach, the gauging of equations method has two
some of the particles, typically the spectator particles of theespecially important features. First, it avoids the difficulty of
given process, are restricted to be on their mass shell. Thghoosing the spectator particles in approaches where the pho-
resultant three-dimensional equations are called the “spectdon is first coupled to hadrons at the level of four-
tor equations.” In the three-particle system, for example, thedimensional quantum field theory. Once the hadronic spec-
spectator particle is well defindit is the one flying past two tator equations are specified, the gauging of equations
interacting particles and putting it on mass shell in every method attaches photons in an automatic way, without the
intermediate state results in the three-body spectator equaeed for any new spectator particles to be introduced. Sec-
tions. The Gross approach has been used recently in succes$d, when applied to four-dimensional three-nucleon equa-
ful relativistic calculations of nucleon-nucleon scatterjgy  tions, the gauging of equations method has enabled us to
elastic electron-deuteron scatter{d, pion photoproduction avoid double counting of diagrams overlooked in previous
from the nucleori8], and the triton binding enerd®]. The  works[10]. This means that in the present case of the spec-
quantities used or obtained from these calculations, such dstor approach such overcounting is likewise automatically
the three-nucleon bound-state wave function, one- and twaavoided by the use of the gauging of equations method.
body interaction currents, etc., form just what would be A key ingredientin our final expressionsds, the gauged
needed to calculate the electromagnetic properties of then-mass-shell propagator for the nucleon. Knowledge of an
three-nucleon system. Unfortunately, the expressions needexplicit form for 6# that satisfies both the Ward-Takahashi
to calculate such electromagnetic properties are not presentigentity and the Ward identity is essential for the gauge-
available. invariance and charge-conservation properties of the three-
The purpose of this paper is therefore to derive, within thenucleon electromagnetic currents presented in this paper.
framework of the spectator approach, gauge-invariant exSuch ad* that satisfies both these identities has been pre-
pressions for the various electromagnetic transition currentsented in Ref4.11] and[12]. Thus we have brought together
of the three-nucleon system. In particular, we give expresall the expressions necessary for a covariant, unitary, gauge
sions for the three-nucleon bound-state current from whiclinvariant, and charge conserving three-dimensional calcula-
the triton or 3He electromagnetic form factors follow di- tion of the electromagnetic properties of the three-nucleon
rectly. We also derive expressions for the scattering prosystem.
cessesy®’He—NNN, Nd— yNd, and y*He—Nd (here, as
in the rest of the paper, we usele as the generic symbol for
a three-nucleon bound state Il. GAUGING THE THREE-NUCLEON BOUND-STATE
The main tool of the derivation is the method of gauging EQUATION
equations introduced by us recently for four-dimensional )
A. Spectator equation
In this presentation we work within the framework of the
*On leave from the Mathematical Institute of Georgian Academyspectator equations for three identical particles in the absence
of Sciences, Thilisi, Georgia. of three-body force$4]. In this formalism two of the three
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body intermediate stateHowever, it is the best one. Indeed

2!
! ! we can investigate all the possibilities by iterating E2).
2 - — 2 once,
3 3
3I

@1 =1,d,d35P5t;d,d3P 1,01 =t1d3P 5t P10, dd3 P,

4
FIG. 1. lllustration of Eq(3) for the bound-state vertex function @
®,. The on-mass-shell particle is indicated by a cross. thereby obtaining an equation fab, with the connected
kernelt,d;Pq,t;P,=1,dst,. Equation(4) shows that there
particles are restricted to their mass shell by the followingare only three possibilities to restrict two of the three inter-

replacement of the usual Feynman propagd{q): mediate state particles to their mass shells:
iA(p) NP @ ®;=t1d3ty0,0,d3Py, ®
d(p):m — 8(p)=2mwA(p)s” (p°—m9),
p € (1) (b) q)1:t1d3t251d253q)1, (6)
(© ®y=tydstpd; 5,059, 0

whereA(p)=1 or p+m for scalar and spinor particles, re-
spectively, and™ (p>—m?) is the positive energy on-mass-
shell 6 function. We refer tod(p) as the “on-mass-shell

particle propagator.” , ~shell, the two-bodyt matrices in Eq(5) have two legs on
In the four-dimensional formalism of quantum field ghe)| and two legs off shell, and therefore depend on one
theory, we may write the three-body bound-state equation IBarameter, the off-mass-shell energy, just like two-body
symbolic form ad9] matrices in quantum mechanics. Equatidfs and (7), on
the other hand, are not iterations of any form similar to Eq.
®1=—1t,DP1;P,, (2)  (3) with a kernel linear irt;. Moreover, after setting two of
the external particles on mass shell to get closed equations,
where®, is the Faddeev component of the bound-state verthe kernelst;dst, in Eqgs.(6) and (7) suffer a major draw-
tex function (from now on simply called “the bound-state back in that one of thé matricest; or t, has three legs that
vertex function™) describing the contribution to the bound are off mass shell. These observation can be seen explicitly
state from all processes where ##&3) pair interacts lastt; in the illustrations of Eqs(5)—(7) given in Fig. 2.
is the off-shell scattering amplitude of th@3) pair, D
=d,ds is the propagator of th¢23) pair, andPy; is the B. Gauging the spectator equation
operator interchanging particles 1 and 2. Note thattgus
fully antisymmetric whiled, is antisymmetric only under
the interchange of its second and third particle labée-
cause of these symmetries, one can equally wellRisgn
Eq. (2) instead ofP,, without changing the value ob;.
Once theP,, form is chosen as in Eq2), the bound-state
“spectator equation” is obtained from Ed@2) by putting
particle 2 on the mass shell in intermediate state, i.e., by th
replacement,— &, in D:

Equation(5) is just the first iteration of the spectator equa-
tion (3). After setting the external particles 1 and 2 on mass

The question of how to couple an external electromag-
netic field to a system of hadrons described by four-
dimensional integral equations, and still retain gauge invari-
ance, has now been solved. On the two-particle level the
problem was first solved by Gross and RiskE3] who
showed that the one-body current combined with the gauged
glteraction kernel of the two-body Bethe-Salpeter equation
gives a gauge-invariant two-body current. Similar progress
was made by van Antwerpen and Afngt4] who showed
how to construct a gauge-invariant current for the relativistic
7N system where pion absorption can take place. More re-
cently, we have introduced a general method where any sys-
The explicit numerical form of Eq(3) is given in the Ap-  tem described by integral equation can be gad€dl The
pendix; see Eq(Al). Had we chosen th®,; form of the  method involves the idea of gauging the integral equations
bound-state equation, the spectator equation would insteatlemselves, and results in an electromagnetic current where
be defined by putting particle 3 on mass shell; however, théhe photon is coupled to all possible places in all possible
solution obtained would be identical to that obtained fromstrong interaction Feynman graphs of the model. We have
Eq. (3). We illustrate Eq.(3) in Fig. 1. Of course to get a applied the gauging of equations method to the relativistic
closed three-dimensional equation #r, it is necessary to three-nucleon system, thereby solving an overcounting prob-
also put the external particles 1 and 2 on mass shell in Edem that had previously been overlooKdd]. In this section
3. we would like to apply our method to gauge the bound-state

It is useful to point out that the spectator equation is notspectator equatio(8) in order to obtain a relativistic gauge-
the only possible three-dimensional equation that followsnvariant three-dimensional description of the three-nucleon
from Eq.(2) by putting two particles on mass shéh three-  bound-state current.

In our procedure, we do not use the on-mass-shélinc-
tion to eliminate the zeroth component of the spectator inter-
‘Equation(2) differs by a factor— 2 from the corresponding equa- nal momentum in Eq(3) until after the gauging of the equa-
tion in Ref.[9] due to the use of different conventions toandd. tion is done. Instead we follow the method outlined in Ref.

D= —1,5,d3P1,P;. )
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FIG. 2. All the possible three-nucleon bound-state equations with two particles on masgasfdle spectator equation as given in Eq.
(5). (b) The bound-state equation given in E§). (c) The bound-state equation given in E@).

[11] apd treat Eq(3) as an eight-dimensional Bethe-Salpeter (P, —p,) 8 (p'.p)=ie[(p)—&(p")] (1D
equation where some of the propagators are represented by _ _
on-mass-shells functions. This enables us to apply our and the Ward identity

method of gauging in just the same way as was done for the 38(p)
eight-dimensional case of E¢R) [10]. Gauging Eq.(3) in S*(p,p)=—ie , (12
this way, it immediately follows that 9Py

and that Eq(8) gives an expression feb{ which has pho-

Df = —1,6,d3P 1,01 — (1] 5,d3+ 1, 65d3+1,6,d5) P15 . tons coupled everywhere.

®) We may formally solve Eq(8) to obtain
It is clear from the form of this equation that the quantity D =—(1+1t,5,d3P1p 1
corresponds to that part of thide —NNN electromagnetic u " u
transition current where th@3) pair was last to interact and X (11 0,d3 11853 +1,5,d5) PPy (13)

where no photons are attached to the external constitueR,q tactor (1,6,d5P1) "t in this equation clearly de-
legs (a rigorou_s propf of this statement was given for thegeribes the final stat NN— NNN process. Defining
case of four-dimensional quantum field theory in Ré&f]).

In this respect we note that the bound-state vertex component X=(1+1,8,d53P1,) 1, 14
®, is a purely nonperturbative object and as such cannot be - .
represented as a sum of diagrams; neverthefe$scan be it follows that X satisfies the two equations

formally considered a; with photons attached everywhere X=1-1;0,03PoX, X=1-Xt;5,d3P1,. (19
“inside.” Note that Eq.(8) is an integral equation fo®{’
with @, being an input. Another input is the gauged Feyn-
man propagatod4 . For particlei=1, 2, or 3, the gauged
Feynman propagatat! is defined by

As expected, these are three-nucleon scattering equations
whose kernel is identical to that of the bound-state equation
(3). We illustrate the first three iterations of these equations
in Fig. 3. It is evident thatX consists of all possible

_ , , NNN—NNN diagrams where thé€l3) nucleon pair is first
d(p",p)=di(p")I'¥(p’,p)di(p), © to interact and thé€23) pair is last to interact.

where I'(p’,p) is the particle’s electromagnetic vertex C. Three-body bound-state current

?S(CSI,O;') :I:e?;y 2 AS:‘Lurf[:rt]l;eliizsm r:: C:;g'}s)o}cs C;Larﬁ’e We recgl! thatb# describes théHe —NNN eI(.ec.tromag-
géuge’d on—rlnals.s—shell propagator of par.ticle 5 As,shown ine’ﬂc transition current where tH23) nucleon pair is last to
Ref. [11], taking the explicit form ) thteract and where no p_hotons_are attach_ed to th_e final st_ate
: ’ nucleon legs. As such, it contains all the information that is
necessary to specify the three-nucleon bound state interac-

o(p",p)=2mA(p)I*(p",P)A(P) tion currentj“. Indeed, we shall use the expression dof
5t (p'2—m?)— 5" (p?—m?) given in Eq.(lB) to extr.actj“. The_key ob§ervation about

X ST ., (10 Eq. (13) is that the final state interaction term{=(1

pe—p’ +1,68,d3P1,) ~* has a pole ak?=M? whereK is the total

four-momentum andV is the mass of the three-nucleon
for the gauged on-mass-shell propagator ensures current bound state. This follows from the fact that the equations for
and charge conservation of our final results. This is a consex and®, have the same kernel and that the solutiondigr
qguence of the fact that thé* of Eq. (10) satisfies both the exists. The three-body bound state current then follows by
Ward-Takahashi identity taking the residue of Eq13) at this pole.

il 1 1 1 T 1
z'iéz Z'Tj; ;Cj: iZ 2'@: ;Cf ;Cj iz
3 3 3 3 3 3

FIG. 3. lllustration of the first three iterations of the equationsXpiEqgs.(15). That it is the spectator particle that is on mass shell is
clearly visible.
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FIG. 4. The three-nucleon bound-state current in the spectator model as given(@p)ERarticle labels correspond to those used in Eq.
(32.

We write the pole structure of as Thus, in the vicinity of the three-body bound-state pole
K — (K2—M?), ®# behaves as
_ P1(p1P2)¥3(0102) 5 o
X(K;p1P2,0102) ~i Ve K—M7, _
Ke—M
“w . ¢):I.q)ll:)125152d3
(16) P~ —i ——————

K2_ M 2
which defines the quantity_'z. In order to determineiz, we
take residues of Eq415) at the three-nucleon bound-state
pole, thereby obtaining the equations The three-nucleon bound-state current in quantum field
__ e T theory is given by the matrix elemexK|J*“(0)|Q) of the

D1=~110,05P1a0s, Wo=—Wal10dsPr. (17) electromagnetic current operatdf* between momentum
The first of these is the bound-state equationdqy which, ~ €igenstatesk) and |Q). In the spectator approximation it
of course, is the reason that H46) was written with ab,  can be determined by taking the residue of E2p) at the
factor. The second equation can be written as three-nucleon bound-state pole on the left:

X (1] 9203+ 1105 d3+115,d5) PP . (23

V2= = WaPide0ds, 18 (K|3(0)|Q)=#(K,Q) = BFP 1,0, 5,d5(th 8,5+ 1, 85d
which has the same form as the equation for the second © Q

Faddeev component of the bound-state wave function in T118205) PPy 249
four-dimensional quantum field theor{10], hence our HereK andQ are the total four-momenta of the final and
choice of notation fo,. However, in contrast to the four- initial bound states, respectively, with>=Q%=M? andK
dimensional quantum field theory case, tffe of Eq. (18)  =Q+q whereq is the four-momentum of the incoming pho-
contains explicit on-mass-shell propagators. This can alreadi@n. One can eliminaté, from this expression by using Eq.
be seen from Eq(18) where thes; that is present on the (22), in this way obtaining

right-hand sidgRHS) contains ad function that is not inte-

grated over. But the full structure df, becomes clear only j“(K,Q)=®TP126162d3t§‘52d3P12®?
after we iterate Eq(18) once, obtaining _
_ _ — K8 (85ds+ 5,d4) P, DL, (25)
W= W,P 1ot 61d3P 15t 6103= W5 Pyt od3t P26 65ds. _ o o
(190  This expression is illustrated in Fig. 4. Note that the last two
terms do not give the full one-body contribution to the

This reveals an explicit factod; 6,d; with two on-mass-  poyund-state current as a further contribution comes from the
shell propagators, followed by the connected tenust;. gauged propagators insid.

Thus ¥, has a structure of the form To find t{, we first need to specify the spectator equa-
— — tions fort;:
\1,2: - (D1P125152d3, (20)

1 1
where t1:U1+ 501§2d3t1; t1:U1+ §t152d3l}1. (26)

Oy = —W,P5todaty (21) . . _
By gauging these equations one can expt§si terms of
has no propagators on its three external Ieg_s. Multiplying Edthe interaction current¥ as
(18) on the right by— Pt,dst, we find thatd, satisfies the
equation 1
- t’f=§t1(5’2‘d3+62d’3‘)t1
Oy =—D;P125,dat; . (22

This is the conjugate equation to E8), hence our choice of

notation for®; in Eq. (20). With ®; and¥, determined by
Egs. (20) and (22), the residue of Eq(16) is completely Note that ourv, is the sum of all possible irreducible dia-
specified. grams for the scattering of two identical particles, and there

1 1
+{ 1+ Etlﬁzdg)l)f 1+§52d3t1) (27)
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fore Py 1=v1P2= —v;. That is why we do not need to use This comparison makes clear the prescriptida— &y,

the symmetrized propagatdi(5,ds+d,d5) in Eq. (26) in d,— 85, df— &Y, d5— &% that one should use to obtain the

order to satisfy the Pauli exclusion principle. three-body bound-state electromagnetic current in the three-
Although Eq.(25) may be the most practical equation for dimensional spectator approach, Eg8), from the corre-

numerical calculations, with the help of E@7) we can also ~ Sponding four-dimensional expression of £29).
eliminatet# in favor of the interaction current: In the impulse approximation where the interaction cur-
rentvf is neglected, we have that

1
j(K,Q)=®K5,(8kdg+ 5,d% >—P )@ : — 1
I QU= P 02ds 02s)] 3 = Pz 1 JM(K,@:@T&l((S;dﬁazd*;)(E—Plz ®9. (30
— 1 1 . . S
+ K| Py 5) 52d35101f52d3(p12_ E)q)?' This, of course, is the full one-body contribution to the
bound-state current. Because of propagatoin this expres-

(28)  sion, particle 1 is on mass shetf course, to the right of

operatorP 4, this on-mass-shell particle becomes particle 2

It is interesting to compare E@28) with the corresponding The first term on the RHS of Eq30) also contains the
expression obtained by using the same gauging method ifauged propagata?®s , and therefore, according to E.0),

the case of four-dimensional quantum field the[t9]: particle 2 can be off mass shell either to the left or to the
1 right of the photon. Thus to calculate this first term, one
(K, Q)= dXd;(d&dy+ dyd )( Plz)tbQ needs to knowby and®{ where only one external particle

is on mass shell. These can always be determined from the
1 1 spectator bound-state vertex functions where two particles
Pio— §)d2d3dlu‘1‘d2d3< Pio— E)d)?. are on mass shell by using Eq8) and (22) Choosing the
momenta of particles 1 and 2 as independent variables, we
(299  may write Eq.(30) in the explicit numerical form

+ K

, d*p; d*p, 1 0 —
J“(K,Q)=f( - (2m)? O (p1,p2+a)8(py) 84(po+0,p2)d(Q—py— pz)(E—Plz)dh(pl,pz)

L[ 22 O e G B1152)6(p1) (P2 (K~ py—p2. QP p)( -P )cb (P1.p2). (3D
(277)4 (2 )4 l 1:M2 1 2 17 M2, 17 M2 12 1.M2

where the momenta which are on mass shell are labeled with an overbar.

D. Gauge invariance

As the gauging of equations method effectively couples photons everywhere in the strong interaction model, gauge invari-
ance is guaranteed. Nevertheless, here we would like to check this explicitly on our derived expression for the bound-state
current of Eq.(25).

Writing this equation out in full numerical form we have that

DY(p3p1p3) 8(p1) 8(P3)d(P3)t“(P5P3,P2P3) 8(P2)d(Ps) D R(Pop1Ps)

. d*p; d*p, d4p§
~K,Q)=
IHK.Q) f(277)4(277)4 (2m)*

B j d*p; d*p,
(2m)* (2m)*
_f d*p; d*p,
(2m)* (2m)*

DX(p1psP3) 8(p1) 8*(P5.P2)d(P3) PL(P2P1Ps)

~ DX (p1p,p3) (1) 8(p2) A (pj.pa) PR(P2P1Pa), (32
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where p;=Q—p;—P,, P3=K—p;—p;, and it is under- forms and instead to keep all our equations at the symbolic
stood thatp,+ ps=p,+ps+q in the first integral,p,=p, level. In order to write the WTI's of Egs{33)—(35) in sym-

+q in the second integral, ang,= ps;+q in the third. Here  bolic form, we introduce the quantitiess whose numerical
we have followed the notation of RdfL0] and displayed the form is defined by

momentum of each particle explicitly. Each of the gaugedy (77

inputs in Eq.(32) satisfies a Ward-Takahashi ident{ty/TI). 1(P1P2P3,P1P2Ps)

In the notation of Eq(32), the WTI for t* takes the form =ie;(2m)%5*(p{ —pi—a) 8*(p] — p;) 8*(Pr— P, (36)
dut“(P2P3,P2P3) whereijk are cyclic permutations of 123. Then the above
. , , . WTlI's can be written symbolically in terms of commutators
=i[ext(p2—0,P3:P2P3) —t(P2P3; P2+, P3)€;] as
+i[est(pz,P3—0;P2P3) —t(P2P3:P2,Pa+d)es], quti=[eti]+[es,t1], a,85=[e5,5],
(33 q#d§=[é3,d3]. (37)

while for 5 andd* the WTI's are Using these, the divergence of the three-nucleon bound-state

0,,8"(P3,P2) = i€ 8(p2) — (py)], (39 ~ currentis given by

) , , qMJ'M:(§1(|:’125152ds([12-‘2,tl]"‘[(;«'3,tl])fszds':’lzq)(l2
9.d“(p3,ps) =ies[d(ps) —d(ps)]. (39

In the present case of three nucleons, the chamge§
=1,2,3) are given bg,=3[1+ TS)]ep wherer; is the Pauli  Using the bound-state equatiof® and (22), and the fact
matrix for the third component of isospin, arg} is the  that[e;,s,]=[e3,P1,]=0, Eq.(38) reduces immediately to
charge of the proton. _ — A 0L TR . o

In order to prove gauge invariance of the bound-state cur-  duj*= — P1P 120165036, P+ D7 51 6,€,d3P 1P .
rent, we follow the same procedure as we used for the dis- (39
tinguishable particle casglQ], and evaluate the quantity . - o ) ) )
q,J* by using the above WTI's in Eq32). However, unlike Since[e,,P1,5]#0, itis not |mmed|at_ely obwous that the last
in the distinguishable particle case, subtle use of identicaWO terms cancel. To show that this is indeed the case, we
particle symmetry also needs to be made before the findnake use of the fact that
expression is reduced to zero. Although this is straightfor- [é2,P12t1P12]=[éz-tz]=0- (40)
ward, working with lengthy numerical expression like that of
Eqg. (32) tends to obscure the presentation. For this reasonfhen using the bound-state equation in the last term of Eq.
here we would prefer to avoid the use of explicit numerical(39) we obtain that

— D5y ([8;,8,]d5+ 55[85,d5]) P DL, (38)

DL 5, 5,6,03P 1,07 = — DL 8 5,6,d3P1 1 5,d3P1 D= — DX 5,d36,€,P 15t P128,d3 D
== af51d3P12t1P1252é251d3¢?: - <I71<P1252d3t1P1252é261d3(D(13

= DL P1,6,6,8,d30 L= DY P1,8; 5,058,0F . (41)

Using this result in Eq(39) we obtain the current conserva- the three-body bound-state vertex function in the spectator

tion relation approach. Our starting point is the following identity f&r
9ui*=0. (42 Using the pole behavior of given by Eq.(16), we see that
in the vicinity of the three-body bound-state pole, E4Q)
reduces to
E. Normalization condition o
Q Q
The method for obtaining the normalization condition for i\If2(1+t152d3P12)<I>l -1 (44)

bound-state wave functions in quantum field theory typically Q%-M?

involves the taking of residues of Green functionst ana-

trices at the bound-state pole, and is similar to what is use@'

in quantum mechanics when the potentials are energy depen- _ _Q,3(1+t152d3|319 o

dent. Here we apply the same idea, but to the quadtjtin V3 O =1. (45

2
order to determine the specific normalization condition for J9Q Q2=M2
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With the understanding tha?=M?2, and using Eq(20),  This form of the normalization condition is especially con-

this may also be written as venient as it is expressed in terms of the two-bbdyatrixt;
rather than the potential; which results, for example, when

5 d(t16,d3P15) Q_ the full Green function is used in an identity, similar to Eq.
~i®rP1561 5,05 9Q? Pr=1 (46) (43), but involving two-body potentialgl0].
It is sometimes convenient to express the normalization
or condition as a four-vector relation by using the replacement
o) aty Q L_QQ i
—i®r P125152d3_&Q2 9203P 1P 7 IQF " 5Q2
o 8,05) in the above equations. That this replacement is valid can be
+iq?l?51 273 plzqfl?zl_ (47 easily justified by appealing to Lorentz invariance. In this
Q2 way Eq.(47), written out in full numerical form, becomes

at(Q—Ky,kz,p2)

d'ky d%, d'p, — o
f DFP oKy ,ky) 8(ky) 6(ky)d(ks) d(p2)d(p3)P12P1(Ky,p2)

(2m* (2m)* (2m)* IQu
d*k; d*k, — ad(ks)
- — DKy ,kp) 8(Ky) 8(Kp)—=— PP R(kq k) =2iQH, 48)
f (277)4 (271_)4 l( 1 2) ( l) ( 2) C?QM 12 ]_( 1 2) Q (
|
wherek;=Q—k;—k, andp;=Q—k;—p,. wheree is the physical charge of the three-body bound state.

We follow current terminology and also refer to E¢9) as

F. Charge conservation a statement of “charge conservatioiiih the sense that ¢

In its usual meaning, charge conservation is a consei;s‘ in:jc_aed the physical charge, then no charge has been
quence of current conservation. As we have proved currentSt” in the model). For an exact solution of field theory,
conservation above, charge is naturally conserved in oufd: (49) follows from the fact thafQ) in Eq. (24) is an
model. On the other hand, that the conserved charge is equ@igenstate of the charge operator with eigenvaluén this

to the total charge of the physical system does not followsubsection we show that E¢49) also holds in our model
automatically from current conservation, and therefore need¢here the gauging of equations method has been used for the

to be checked separately. In particular, what needs to bePectator approach.

checked is that The bound-state current was given in its explicit form in
Eq. (32). We can rewrite this expression for zero momentum
i*(Q,Q)=2eQ", (49  transfer, and using only independent momentum variables, as
|
. d4k1 d4k2 d4p2 o) Q
J“(Q,Q):f (2m) (2m)° (2 )4¢1 P1a(K1,Kz) 8(ky) (Kz)d(ka)t*(Q—ky,Q—ky Kz, Pp2) 8(P2)d(P3) P12P 1 (K, P2)
o T o

d'ky %, — .
| my® (2t E ke 8(ke) 8 (ka ko) (a) Prs®3 (ks )

d'; d*k; — .
_f (2 —(277)4(1’1(k1,k2)5(k1)5(k2)dﬂ(k3,k3)P12(I)1(kl,kz), (50

wherek;=Q—k;—ky, p3=Q—Kk;—p,, andt* is expressed in terms of the total momenta in (2® system,Q—k; in both
the initial and final states, and the momenta of particlp2andk, for initial and final states, respectively.
Both the gauged Feynman propagadldr and the gauged on-mass-shell particle propagétosatisfy the Ward identity
[12]:
: ad(k3)
|dﬂ(k3,k3):e3—, (51)
9Kz,

o _9d(ky)
15%(ka ko) =€ — —. (52
2u
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The interaction current* is an input to our model and therefore satisfies the two-particle Ward identity by construction. In
turn, it can easily be shown that thé&, as given by Eq(27), must also satisfy the two-particle Ward identity. For the
momentum variables of Eq50), this identity reads

at(Q—Kky,kz,p2) +ﬂt(Q—k1,k2,p2)e egte LI(Q—Ky,ka,p2)
Kz, P2, 2T Ams T IQ, '

it“(Q—k1,Q—Ky:kz,p2)=¢€; (53

Substituting Eq(53) into Eq.(50), we may then use the bound-state equauon@@rand to simplify the terms containing
atl dk,, anddt/dp,, . Writing Eq. (51) as

5d(k3) dd(ks) dd(kg) ad(ks)

—€ ey e;t+e,) aQ, +e, Fra (54

1d* (ks ka) =(e3+€,)—

we may then use it together with E(h2) in Eq. (50) to obtain

. d*k, d%, d*p, — O m
”M(Q'Q):f (2”;“ (277)24 <2w>24 PPk k) k) 5<kz>d<ks><es+ez>% 5(p2)d(ps) P10y, po)
d*, d%, P ad(ks)
_f (2,”.)4 (2,“_)4 (kl,kz)5(k1)5(k2)(e3+e2) QM plzq) (kl kz)
d4k1 d4k2 0 5¢’(f(k1,k2)
_J (2m)* (277_)4 (O, Plz(kl,kg)é(kl)é(kz)d(k3)eZT

fd4k1 d*k, 5‘5?“(1,'(2)

2m)* (2m)* Kz €,6(kq) 6(kp)d(ks) P12q)(1?(klvk2)

d*k; d% 5(K,)
_J (217_)14 (277)24 Q(kl,kz)ts(kl)ez Kz 2 d(k3)P12(1>(1?(k1'k2)

d*k, d%k, — ( ky)
_ J ot 2m Dk ) 80y) 8 g Pk ). o5

Using integration by parts, we can write the last three terms of this equation as

d*k;  d*k, — PP (Ky ko)
Q e e
f 2m)° (2m)* @7 (ky,ka) d(ky) (kz)exd(ka) s, :
Equation(50) can then be written as
.. d4kl d4k2 d4p2 _Q o"t(Q_klII(vaZ) Q
ij*(Q,Q)= 2m)? (2m* (2m)* 2 Plz(klrkZ)5(k1)5(k2)d(k3)(93+e2+e1)—aQM 8(P2)d(p3)P12P1(K1,P2)

d*k, d*, — ks
f -2 ()Plzcb Qky ky)

2yt (2 LKAV e €at e g T

at(Q_k11k21p2)

d*k, d*, d*
+f 1 2 P2

DLP Ky kz) 3(y) 8(kz)d(ks)ey 8(P2)d(ps) P12 (Ky,P2)

(2m)* (2m)°* (2m)° 7,
- f ((Z':)Z ((Z':)Z @(kl,kga(kl)a(kz)el%ﬁ) P10 2(ky ko)
f (247':)14 (24'()4471 Paaks ko) 8(ky) S(kp)d(ks) e %
+ j (21()14 (21()24 gf(kl,kz)é(kl)a(kz)d(kS)ez%;hM, -
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where the charge in the first two terms has been increased to the total charge of the system and where we used the fact that
at(Q K1,K2,P2)/9Q, = — dt(Q—Ky,Kz,p2)/ Ky ,and ad(ks)/9Q, = —ad(k3)/<9k1M Since the bound-state vertex function

(Dl is an eigenstate of the total charget e, + e; with eigenvalues, a comparison with the normalization condition, E4),

shows that the first two terms of the above equation give the sought after charge conservation relation. Thus all we need to
show now is that the last four terms of E§6) cancel each other. To this end we elimintia the third term on the RHS of

Eq. (56) by using integration by parts, and then making use of the bound state equatich$ tmda?. In this way we get
f d*k; d', d'p, — t(Q—ky,kz,p2)

om 2m (2 DRP15(ky ,kp) 8(kq) (ko) d(kz)e; T&(m)d(pg)mz@?(kl,pz)

_ f (d“kl d'e_0 ORPidlka ko) tky) dkp)d(ke) dotks ko

2m)* (2m)* IRy
d*k; d*p, — 3d(p3)P12P (K1, p2)
+f (2m)° W @7 (Ky,p2)8(ky) d(p2)ey oKy, , (57)

wherep, andps in the last equation can now be replacedkgyandks, respectively. That the last two terms of E§7) cancel
the last three terms of E@56) can then be seen by using the identities

d%; d%, — 9d(kg) PP R(ky ky)
®K, ,K,) 8(Ky) S(K,)e
f (271_)4 (277_)4 l( 1 2) ( l) ( 2) 1 aklﬂ
d*k; d%k, ad(Kks)
— DR(Ky k) 8(Kkq) 8(Ky)e PLDR(k,,k
f(ZW)4(2W)4 (ks ko) k) Bk e = PP (ks ko)
d*k, dk, — IDR(ky ko)
— P 5(Kq,Ky) S(Kq) (K,)d(Ky)€)————— =0, 58
f(27r)4(277)4 TP1a(ky,Kp) 6(kq) 6(kp)d(ks)e, K, (58
and
d%k;  d*k, 9 DRP,(Kq,K,)S(Kq)S(K,)d(k
f 1 2 T P1a(Ky,Kp) 6(Kq) 6(Ko)d( 3)e1q)?(k1’k2)
(2m)* (2m)* K1y,
d%,; d*%, — 5'P12(D(1?(k1,k2)
+ ®K,,k,) 8(ky) 8(k,)d(ks) ) —————
f(27)4 (211_)4 1( 1 2) ( 1) ( 2) ( 3) 2 ﬁkzﬂ
_ f d'ky dk, 9 PPk ko) O(k) S(Ko)d(ka)er DR (ks ko) 50
(2m)* (2m)* 3K,y

Thus we have shown E@49), which proves charge conser- tons are attached to the outgoing nucleons. As we already

vation for our gauged three-nucleon spectator model. have an equation fo4, Eq. (13), all that is necessary to
obtainj# is to add the missing terms i . Indeed, we can
Ill. GAUGING THE THREE-NUCLEON SCATTERING immediately write down that
EQUATIONS 3
A. ¥He —NNN jA=Pg| DL+ D F{‘diq)l), (60)
i=1

Photodisintegration of the three-nucleon bound state into
three free nucleons is described by the electromagrieti
—NNN transition curreni consisting of all possible dia- where P is the operator which sums over all the cyclic
grams for this proces§‘photodisintegration” here means permutations of the three particle labels. The roldgis to
disintegration due to either an on-mass-shell or an off-masdnclude diagrams where nucleons other than 2 and 3 are last
shell photon, and so the case of electrodisintegration is into interact. The ternP X;I'#d;®, consists of all possible
cluded. By comparison, the gauged vertex functidf con-  diagrams where photons are attached to the final state exter-
sists of all possible diagrams for photodisintegration wherenal legs.
nucleons 2 and 3 are the last to interact and where no pho- Denoting the three-particle Feynman propagatoGy
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Gozdldzdg, (61)

then
3
Gy 'Gh =Gy M(did,ds+d;dds+didydf) = X THd;,
=1
(62)

and Eq.(60) can also be written as

j6=PcGo [Go®1]*=P(G, 'GP, +@f), (63
indicating thatjf can be obtained directly by gauging the
guantity Go®4. This is just what one might expect since
Go®, corresponds to all possible diagrams for tRee
—NNN process where nucleoit®3) are the last to interact.
In this respect, it is interesting to note that althoutjie
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is the connected part of the scattering amplitude for
NNN—NNN where the(23) pair is both the first and last to
interact. It is easy to see that the corresponding Bethe-
Salpeter amplitude is given by
TS=t4(1+dy03Pt1) " td3Pysty, (70

showing explicitly that the spectator equation expression of
Eqg. (69 can be obtained from the Bethe-Salpeter expression
of Eq. (70) by replacing the spectator particle’s propagators
by the on-mass-shell propagator in each term of the pertur-
bation series foff &°.

The two-nucleont matrix t; contains the deuteron bound-
state pole. In the vicinity of this pole we have that

2d(P2) Pas(K2)
(Pipa )i

i ¢23@3

(7D
P2—Mj]

—NNN is not a possible physical process, it can neverthe-

less be gauged to yield a physical electromagnetic process. ffherep is the deuteron four-momenturiil , is the deuteron
is also worth pointing out that although we gauge on-mass

shell propagators when they correspond to internal line

only Feynman propagators are used in the gauging of thS

external lines in EQq(63). This is not inconsistent with the
spectator approach, it preserves gauge invarightk and it
avoids the introduction of on-mass-shéfunction-like sin-
gularities into the physical photodisintegration amplitude.

B. Nd—yNd

We can obtain the amplitude for the procé¢d— yNd
by gauging the scattering amplitude fdid— Nd. Thus our
first task is to derive an expression for this amplitude.

From Eg. (13) it is clear that the quantityX=(1

+t,6,d5P1,) ! describes all possible perturbation graphs

for the procesfNNN— NNN where the(13) pair is the first
and the(23) pair is the last to interadisee also Fig. 3 By
taking appropriate residues ¥fwe can therefore obtain any

scattering amplitude involving three nucleons, including the

one forNd elastic scattering. This we now proceed to do.

As seen explicitly in Fig. 3, the second iteration of either
of the Eqgs.(15) yields a connected graph. We can thus write

X=(1+110,03P1) 1=1-1,5,d3P1p+X., (64
where

Xo=(1+118,d3P15) ~'t18,d3P 1ot 5,d3P1,  (65)
is the connected part of. Using the fact that

t102d3P15t1 8203P1,=t1d3P 11 P12616,d3  (66)
and

(1+118,d3P1p) "'ty =t1(1+ 8,d3Pit) %, (67)

we may write

X=(1+t152d3P12)71= 1_t152d3P12+ TCP125152d3,
(68)

where

Te=t1(1+ 8,d3Pat;) " 1d3P ooty (69

S,

mass, andp,3 is the deuteron vertex function for nucleons 2
and 3. The scattering amplitudg;y for Nd—Nd is then
btained from EQq(69) by taking left and right residues at the
deuteron pole:
Tga= baa(1+ 8,03P15t1) ~1d3P1ahss. (72

The electromagneti®ld— Nd transition curreng’, that
describes the procedéd— yNd can now be obtained as in
the four-dimensional cagd 0] by gaugingd;T44d;. Defin-
ing

Y=(1+ 8,d3Poty) 7, (73
we therefore have that
j5d:dil(@3d1Yd3P12d1¢23)“dIl
=(23Y aP1oh20)“+ gl 401 Y GsP1pchrg
+ hoaY Gyl TSP 1pcbos, (74)

where the first term on the RHS is given by

(23Y 0sP12h20) " = hsY daP1ahoa+ oY d3P1ohs

+ s P15t $oaY s P1odhs.
(79

The gauged vertex functions); and¢72‘3 can be obtained by
gauging the two-body bound-state equations

1 N
¢23:§l)152d3¢23, Poz= §¢2352d301- (76)

Using the equations fdr;, Egs.(26), one easily obtains that

u _1
¢23_§

1
1+ §t152d3) (v10,03)" o3,

(77

1
1+ Py 52d3t1) .

- 1—
Pha= §¢23( O,d3v 1) 5
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To obtain an expression fof#, we first note thal' satisfies rect fashion; namely, by the attachment of photons to all

the equations possible places within the strong interaction model of the
three nucleons.
Y=1-0,d3P1pt,Y, Y=1-Y5dsPysty. (78 The achievement of these results was made possible by

the recent development of the gauging of equations method
[10]. Previously this method was used to generate a four-
YE=—Y(8,dsPysts) Y dimensional gauge-invariant description of the three-nucleon
system and its electromagnetic currents. Here we applied the
=—=Y(85d3P sty + 8,04 P oty + 8-,d3Pootf)Y. (79  same method to what in principle is an even more challeng-
ing problem, namely, the gauging of the spectator equations
In this way the transition currenjty, is completely deter- for the three-nucleon systefd]. The extra difficulty in this
mined in terms of one- and two-body input quantities. Notecase comes from the question of how to choose the spectator
that our expression fgi, is in terms of the quantity rather  particles once the gauging of the four-dimensional equations
than theX introduced earlier. Yet it turns out that once the is done. We solved this problem lti) working in terms of
integrals over the fourth components are taken in the expres=addeev components arid) by introducing the idea of an
sion forj4y, then it is seen that the use Xfor Y in Eq.(74) ~ on-mass-shell nucleon propaga@®in order to express the
is completely equivalent. This is discussed in the AppendiXhree-nucleon spectator equations in a four-dimensional form
where we show how our four-dimensional expressions of thé11]. Once in this form, the spectator equations were then
spectator approach are reduced to three-dimensional forngauged directly, in this way allowing the gauging method

Gauging either of these equations then gives

suitable for numerical calculations. itself to determine the spectator particles in the final gauged
equations.
C. ¥He —Nd An important ingredient in our gauged equations is the

i i . gauged on-mass-shell propaga#t The question of how to

To find the 3He —Nd electromagnetic transition current construct a form ford* that satisfies both the Ward-
jg it would be natural to simply take the left residue of the Takahashi identity and the Ward identity was previously an-
3He —NNN electromagnetic transition curreff, givenin  swered in Refs[11] and[12]. As both § and 8* contain
Eq. (60), at the two-body bound-state pole of nucleons 2 anthn-mass-shells functions, our gauged four-dimensional
3. Although this is straightforward, one can obtain exactlyequations can be reduced to a three-dimensional form. The
the same result in an even simpler way by gauging the scatfetails of this reduction were presented in the Appendix. As
tering amplitudeT 4 for the off-shell procesSHe —Nd. The  a result, we have brought together all the theoretical results
expression foiT 4 is easily found from the bound-state equa-that are necessary for a practical calculation of the electro-
tion for @, in Eq. (3) by taking the left residue at the two- magnetic processes of the three-nucleon system.
body bound-state pole:
Tm = Faad,0aP oD 0 ACKNOWLEDGMENTS
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attached to the free nucleon in the fitdl state(particle 1,

it is sufficient to gaugeilei?nd then multiply from the left APPENDIX
by the inverse propagatal; - at the end. Thus the electro-
magnetic transition currerjtf which describes the physical ~ In the main part of this paper, all our results have been
processy®He —Nd is given by expressed in terms of four-dimensional integrals despite the
presence ob functions which could allow us to reduce the
ju= —dfl(d1@35zdsplz®1)“ integrals to three-dimensional ones. This has been done spe-
. . o L cifically so that we can follow the gauging procedure intro-
= — (I'fd 236,03+ Ph30,d3+ 3853+ ¢ho36,d5) duced in Ref[10] for four-dimensional integral equations.
L Our final results, however, are three dimensional, and it is
X PP 1= ¢hp38,d3P 1, DY, (81)  the purpose of this appendix to write out some of the ob-
tained expressions in a purely three-dimensional form.
where all quantities have been specified above. We begin with the bound-state equation of E8). This
symbolic equation represents the four-dimensional integral
IV. SUMMARY equation

We have derived relativistic three-dimensional integral

4
equations describing the interaction of the three-nucleon sys- @?(pl,pz): — f

ka

t(Q—p1;P2,Kz)

tem with an external electromagnetic field. In particular, we (2m)*

have presented expressions for the three-nucleon bound-state Q
electromagnetic current, as well as for the transition currents X 3(ka)d(Q=Pp1—ka) P12 (P ko).
describing the scattering processesHe—NNN, Nd (A1)

— yNd, and y®*He—Nd. Our equations are gauge invariant
and conserve charge. More importantly, gauge invarianc8ecause of the presence of the on-mass-shell propagator
and charge conservation are achieved in the theoretically cob(k,), the integral oved kg may be done trivially. Setting
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the momentg; andp, to be on mass shell, we then obtain X(Q:p,p,;q:0,)=(27)88* p1—qy) 8*(p,—a>)
the three-dimensional equation

PR f il t(Q—p1;p k_)A(k_Z)
- d3k, — — — A(kyp) - 3R T P1:P2,X2) 5
‘I’?(pllpz):_f (277)3t(Q_p1§p2,k2) 20, (2) B _wkz
o o Xd(Q—p1— K2)P12X(Q;p1K2,0102).
Xd(Q—p1— k)P @P(p1.ky), (A2) (A9)

where w,= Vk?+m? and k= (wy k). Although this equa- Puttingp, and p, on mass shell in this equation, it can be
tion is three dimensional, the quantities involved still retainnoticed that the inhomogeneous term becomes

their Dirac spinor structure. Thus, for exampe(p1,p2) 8d— —
consists of a direct product of three Dirac spinors, one fof 2™ 5%(p1=041)5*(P2~ a2)

each nucleon, while(Q—p;;p,.k,) is a 16x16 matrix. =(2m)88%(p1— ) 8%(P—2) 8(q9—q2) (a9 —q3).
For the on-mass-shell nucleons we may eliminate the Dirac (A10)
spinor structure by appropriate multiplication by the Dirac

spinorsu or u. We therefore define This in turn implies that

5?(p1al Paa)=U(py,a;)u(p; ,az)q)?(E,E) X(Q:P1P2;0102)

(A3) . m m )
=X"(Q;p1P2;d192) — —(2m)
and @Wq, @q,
~ N —~0_ A0 ~0_ 0
t(Q—p1;p22:kap2) X &A1~ d1) 802~ d2), (ALD)
=U—(pz,az)t(Q—E;E,k_z)U(kzyﬂz)- (A4)  Wwhere X'(Q;p1p2;d:10d,) satisfies the three-dimensional
equation
since X'(QiP1P2:0102)
—_ — w w
=p+m= d; “q
A(p)=p+m 2m§ u(p,aju(p,a), (AS) =(2m)8 Fl?zas(m_%)ﬁ(pz_%)
where the normalization of the Dirac spinors is given by d3k, L A(k_z)
u(p,a)u(p,B)=68,s, Eq. (A2) can be transformed to the —j 3HQ=p1;p2, K)o —
equati (2m) 2wy
quation 2
- Xd(Q—p1—Ko)P1X (Q:p1K»,0105). Al12
DP(pras,paar) (Q=p1—k2)P12X'(Q;p1k2,0102) (A12)
43K Note that Eq(A11) provides the key result that has enabled
=— j 2 ﬂT(Q—E;pzaz,kzﬁz) us to eliminate the zero-componesfunctions from the in-
B ) (2m)3 wk, homogeneous term.
_ - We now eliminate the Dirac spinor structure of on-mass-
Xd(Q,p1,ka)P1 DL (pras KaBy), (A6)  shell particles by defining
where X(Q;pia1,P2a2;0181,92652)
~ —_— v :_ L] u( L] X, 1 L]
4(Q.p1.ky) =d(Q—P1— ko), (A7) u(pr,a)u(pz2,@2) X (Q;P1P2,010>2)
Xu(as,B1)u(0z,B2). (A13)

with the integral being taken over the Lorentz-invariant
phase space volumgad3k2/(27r)3]m/wk2. We shall write In this way Eg. (A12) gets transformed into a three-

this three-dimensional equation in symbolic form as dimensional equation, similar to E¢A6):
~ ~— ~ ?(Q;plalvaQZ;qlﬁlquBZ)
q)?: - t ld3P12(I)lQ. (AS)
. 6 o P,
Note that Eq(A8) can be considered as an operator expres- = S, 9ays,(27)° = Wﬁ(m—%) 8%(p2—qz)
sion in three-dimensional momentum space and is written in
terms of quantities with a tilde to distinguish it from Bg) d3k- m
Lo . L ) X 2 ~ —
which is a symbolic equation in four-dimensional momen- —2 —1t(Q—p1;p2a2,Ks7v2)
t 72 (27T)3 Wy
um space. 2
Similarly, the first scattering equation of Eqd5) is a ~ > . )
symbolic expression for a four-dimensional integral equation X d(Q.P1.K2) P12X(Q;paaa K2 72:0181.0282).

which, after the trivial integration ovetkd, gives (A14)
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Since the momentum phase space integration volume in4imensional expressions involvifg. In terms ofY, the ex-

cludes a factor (2) ~°m/w, the inhomogeneous term in this pression forj %, was given in Eq(74) which we can write in
equation acts like a unit operator in momentum space. Thuge form

we can write this equation in symbolic form as
jgd: ¢23Y d3P12(F'L3Ld3¢23+ ¢l2LS) + ¢l2L3Y d3P12¢23
— oY dP1o(Thdsty +15) 8 Y daP1ohog
— h23Y GgP 1t 84Y P 1ot doal 4d1Y 5P 1o

+ BoaY dgP 10y T4 hog. (A24)

X=1—"1t,d3PX. (A15)
It then follows thatX=(1+t,dsP;,) " and therefore
X: 1_Y'f’l‘a’3plz. (A16)

Alternatively, one can show EqA16) by starting from the
numerical form of the four-dimensional equatioh=1  EveryY in this equation comes in the combinati¥miP;,,

— Xt,8,d3, setting the final momenta; and p, to be on jyst as in Eq(A19) for Ty4. In each of the first three terms
mass shell, and using EGA11) as before. This time, how- on the RHS of Eq(A24) (upper ling, everyY has the first

ever, one also needs to use the relation particle on its left and the second particle on its right re-
— — X (O DD a0 stricted to be on mass shell. Thus we may proceed as for Eq.
U(p1,@1) U(P2,a2)X"(Q;P1P2.0192) (A19) and replace our expressions by three-dimensional ones
- whereY d;P, is replaced byd;P;,X. For example, the first
:,82[:3 X(Q;p1a1,P2a2;0181,9282) term becomes

1P2

X U(qy,B1)u(dz,B2), (A17)  UrdhosY 5P 1T hdsdbost dhus
which can be proved by using Eq#12) and(A14) to show :E3’53p12’)'((r§a‘3'523+ ’9{553)_ (A25)
that each side of EJA17) satisfies the same integral equa-
tion. On the other hand, in the last three terms of &{4) every

Note that the bound-state and scattering equations of Eqy. has either an off-mass-shell first particle on its left or an
(A8) and (A15) have the same kernel and can therefore beff-mass-shell second particle on its right. For example, in
calculated using similar numerical codes. It would thereforethe last term of Eq(A24) particle 2 to the right ofY is off
be convenient to express the amplitude fod scattering, mass shell. Proceeding nevertheless as before, we have that
Ta4q, in terms ofX rather than leaving it in terms of in o
which it is given in Eq.(72). To this end we first writéf in  U1¢o3Y 03P 10T Y hoquy
terms ofX by using the definitions of Eq14) and Eq.(73): N
= U123 1= 8,d3P1Xt1)d3P 1501 T4 dasuy
Y=1- 52d3P12Xt1 . (A18) _ - — - -

= odsP 101 T4 Uy Gz hoglaP Xt daP 01 4 o,

Then theNd amplitude is given by (A26)

Tao= d2a¥ GsP 1223 (A19) where again we have used E@A11) and (Al17) to reduce

T the integrals to three dimensions. In the last equatiphas

= d2d 17 0505P1X11) d3P12¢ 2. (A20) only its gIJeft particle 2 on mass shell, hence thg notpatfpn
As particle 1 in the final state is on mass shell, we see thathus, although EqAZ26) is three dimensional and expressed
both particles 1 and 2 to the left of in the latter equation in terms ofX, it cannot be simplified further with the help of
are on mass shell. We can therefore use E441) and Eqg.(A16). What can be done, however, is to use the second
(Al17) irl Eq. (A20) to write the physicaNd scattering am-  of the equations fot;, Egs.(26), in order to express$; in
plitude Tyq= U1 Tgqu; in the three-dimensional form terms of t ; andv; indeed, it is easily seen the is given
by the three-dimensional equation

Taa= a1 d3P1 X T 1) d3P1obos, (A21)
- = — L_ L, 7T 9F.L
where dos= Uodos, and dos= dsu,. Writing this equation ti=vit 5tidguy. (A27)
as
o With the help of Eq(A16), this enables one to reexpress Eq.
Tdd: ¢23d3P12(1_Xt 1d3P12) ¢23, (A22) (A26) in terms Oka .
_ A similar three-dimensional reduction holds for the sec-
we may then use EqA16) to obtain that ond last term in Eq(A24). The first term in the last line of
= Eqg. (A24) contains the gauged on-mass-shell propagéfor
Taa= $23d3P 12X 3. (A23)  As seen from Eq(9), 8 has one of its legs on mass shell

_ - - while the other is off mass shell. Thus one of the terms
‘We now show how the physical transition currejfy v d,P,, in the fourth term of Eq(A24) can be simplified by
=u,j44u, can be similarly expressed in terms of three-using Eq.(A16), while the other one cannot.
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