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Gauging the three-nucleon spectator equation

A. N. Kvinikhidze* and B. Blankleider
Department of Physics, The Flinders University of South Australia, Bedford Park, SA 5042, Australia

~Received 24 June 1997!

We derive relativistic three-dimensional integral equations describing the interaction of the three-nucleon
system with an external electromagnetic field. Our equations are unitary, gauge invariant, and they conserve
charge. This has been achieved by applying the recently introduced gauging of equations method to the
three-nucleon spectator equations where spectator nucleons are always on mass shell. As a result, the external
photon is attached to all possible places in the strong interaction model, so that current and charge conservation
are implemented in the theoretically correct fashion. Explicit expressions are given for the three-nucleon
bound-state electromagnetic current, as well as the transition currents for the scattering processesg3He
→NNN, Nd→gNd, and g3He→Nd. As a result, a unified covariant three-dimensional description of the
NNN-gNNN system is achieved.@S0556-2813~97!01012-1#

PACS number~s!: 21.45.1v, 24.10.Jv, 25.20.2x, 25.30.2c
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I. INTRODUCTION

The difficulty of solving four-dimensional scatterin
equations has led to a number of three-dimensional reduc
schemes that preserve the covariance and unitarity of
original equations@1–5#. Here we shall be concerned wit
one of these schemes, that introduced by Gross@4#, where
some of the particles, typically the spectator particles of
given process, are restricted to be on their mass shell.
resultant three-dimensional equations are called the ‘‘spe
tor equations.’’ In the three-particle system, for example,
spectator particle is well defined~it is the one flying past two
interacting particles!, and putting it on mass shell in ever
intermediate state results in the three-body spectator e
tions. The Gross approach has been used recently in suc
ful relativistic calculations of nucleon-nucleon scattering@6#,
elastic electron-deuteron scattering@7#, pion photoproduction
from the nucleon@8#, and the triton binding energy@9#. The
quantities used or obtained from these calculations, suc
the three-nucleon bound-state wave function, one- and t
body interaction currents, etc., form just what would
needed to calculate the electromagnetic properties of
three-nucleon system. Unfortunately, the expressions ne
to calculate such electromagnetic properties are not prese
available.

The purpose of this paper is therefore to derive, within
framework of the spectator approach, gauge-invariant
pressions for the various electromagnetic transition curre
of the three-nucleon system. In particular, we give expr
sions for the three-nucleon bound-state current from wh
the triton or 3He electromagnetic form factors follow d
rectly. We also derive expressions for the scattering p
cessesg3He→NNN, Nd→gNd, and g3He→Nd ~here, as
in the rest of the paper, we use3He as the generic symbol fo
a three-nucleon bound state!.

The main tool of the derivation is the method of gaugi
equations introduced by us recently for four-dimensio
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equations@10# and for three-dimensional equations with
the spectator approach@11#. This method results in electro
magnetic amplitudes where the external photon is effectiv
coupled to every part of every strong interaction diagram
the model. Current and charge conservation are there
implemented in the theoretically correct fashion. For t
spectator approach, the gauging of equations method has
especially important features. First, it avoids the difficulty
choosing the spectator particles in approaches where the
ton is first coupled to hadrons at the level of fou
dimensional quantum field theory. Once the hadronic sp
tator equations are specified, the gauging of equati
method attaches photons in an automatic way, without
need for any new spectator particles to be introduced. S
ond, when applied to four-dimensional three-nucleon eq
tions, the gauging of equations method has enabled u
avoid double counting of diagrams overlooked in previo
works @10#. This means that in the present case of the sp
tator approach such overcounting is likewise automatica
avoided by the use of the gauging of equations method.

A key ingredient in our final expressions isdm, the gauged
on-mass-shell propagator for the nucleon. Knowledge of
explicit form for dm that satisfies both the Ward-Takahas
identity and the Ward identity is essential for the gaug
invariance and charge-conservation properties of the th
nucleon electromagnetic currents presented in this pa
Such adm that satisfies both these identities has been p
sented in Refs.@11# and@12#. Thus we have brought togethe
all the expressions necessary for a covariant, unitary, ga
invariant, and charge conserving three-dimensional calc
tion of the electromagnetic properties of the three-nucle
system.

II. GAUGING THE THREE-NUCLEON BOUND-STATE
EQUATION

A. Spectator equation

In this presentation we work within the framework of th
spectator equations for three identical particles in the abse
of three-body forces@4#. In this formalism two of the three

y
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2974 56A. N. KVINIKHIDZE AND B. BLANKLEIDER
particles are restricted to their mass shell by the follow
replacement of the usual Feynman propagatord(p):

d~p!5
iL~p!

p22m21 i e
→ d~p!52pL~p!d1~p22m2!,

~1!

whereL(p)51 or p” 1m for scalar and spinor particles, re
spectively, andd1(p22m2) is the positive energy on-mass
shell d function. We refer tod(p) as the ‘‘on-mass-shel
particle propagator.’’

In the four-dimensional formalism of quantum fie
theory, we may write the three-body bound-state equatio
symbolic form as@9#

F152t1DP12F1 , ~2!

whereF1 is the Faddeev component of the bound-state v
tex function ~from now on simply called ‘‘the bound-stat
vertex function’’! describing the contribution to the boun
state from all processes where the~23! pair interacts last,t1
is the off-shell scattering amplitude of the~23! pair, D
5d2d3 is the propagator of the~23! pair, andP12 is the
operator interchanging particles 1 and 2. Note that ourt1 is
fully antisymmetric whileF1 is antisymmetric only unde
the interchange of its second and third particle labels.1 Be-
cause of these symmetries, one can equally well useP13 in
Eq. ~2! instead ofP12 without changing the value ofF1.
Once theP12 form is chosen as in Eq.~2!, the bound-state
‘‘spectator equation’’ is obtained from Eq.~2! by putting
particle 2 on the mass shell in intermediate state, i.e., by
replacementd2→d2 in D:

F152t1d2d3P12F1 . ~3!

The explicit numerical form of Eq.~3! is given in the Ap-
pendix; see Eq.~A1!. Had we chosen theP13 form of the
bound-state equation, the spectator equation would ins
be defined by putting particle 3 on mass shell; however,
solution obtained would be identical to that obtained fro
Eq. ~3!. We illustrate Eq.~3! in Fig. 1. Of course to get a
closed three-dimensional equation forF1 it is necessary to
also put the external particles 1 and 2 on mass shell in
~3!.

It is useful to point out that the spectator equation is
the only possible three-dimensional equation that follo
from Eq.~2! by putting two particles on mass shell~in three-

1Equation~2! differs by a factor22 from the corresponding equa
tion in Ref. @9# due to the use of different conventions fort andd.

FIG. 1. Illustration of Eq.~3! for the bound-state vertex functio
F1. The on-mass-shell particle is indicated by a cross.
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body intermediate states!. However, it is the best one. Indee
we can investigate all the possibilities by iterating Eq.~2!
once,

F15t1d2d3P12t1d2d3P12F15t1d3P12t1P12d1d2d3F1 ,
~4!

thereby obtaining an equation forF1 with the connected
kernel t1d3P12t1P125t1d3t2. Equation~4! shows that there
are only three possibilities to restrict two of the three int
mediate state particles to their mass shells:

~a! F15t1d3t2d1d2d3F1 , ~5!

~b! F15t1d3t2d1d2d3F1 , ~6!

~c! F15t1d3t2d1d2d3F1. ~7!

Equation~5! is just the first iteration of the spectator equ
tion ~3!. After setting the external particles 1 and 2 on ma
shell, the two-bodyt matrices in Eq.~5! have two legs on
shell and two legs off shell, and therefore depend on o
parameter, the off-mass-shell energy, just like two-bodt
matrices in quantum mechanics. Equations~6! and ~7!, on
the other hand, are not iterations of any form similar to E
~3! with a kernel linear int1. Moreover, after setting two o
the external particles on mass shell to get closed equati
the kernelst1d3t2 in Eqs. ~6! and ~7! suffer a major draw-
back in that one of thet matricest1 or t2 has three legs tha
are off mass shell. These observation can be seen expli
in the illustrations of Eqs.~5!–~7! given in Fig. 2.

B. Gauging the spectator equation

The question of how to couple an external electrom
netic field to a system of hadrons described by fo
dimensional integral equations, and still retain gauge inv
ance, has now been solved. On the two-particle level
problem was first solved by Gross and Riska@13# who
showed that the one-body current combined with the gau
interaction kernel of the two-body Bethe-Salpeter equat
gives a gauge-invariant two-body current. Similar progre
was made by van Antwerpen and Afnan@14# who showed
how to construct a gauge-invariant current for the relativis
pN system where pion absorption can take place. More
cently, we have introduced a general method where any
tem described by integral equation can be gauged@10#. The
method involves the idea of gauging the integral equati
themselves, and results in an electromagnetic current w
the photon is coupled to all possible places in all possi
strong interaction Feynman graphs of the model. We h
applied the gauging of equations method to the relativis
three-nucleon system, thereby solving an overcounting pr
lem that had previously been overlooked@10#. In this section
we would like to apply our method to gauge the bound-st
spectator equation~3! in order to obtain a relativistic gauge
invariant three-dimensional description of the three-nucle
bound-state current.

In our procedure, we do not use the on-mass-shelld func-
tion to eliminate the zeroth component of the spectator in
nal momentum in Eq.~3! until after the gauging of the equa
tion is done. Instead we follow the method outlined in R
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FIG. 2. All the possible three-nucleon bound-state equations with two particles on mass shell.~a! The spectator equation as given in E
~5!. ~b! The bound-state equation given in Eq.~6!. ~c! The bound-state equation given in Eq.~7!.
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by
@11# and treat Eq.~3! as an eight-dimensional Bethe-Salpe
equation where some of the propagators are represente
on-mass-shelld functions. This enables us to apply o
method of gauging in just the same way as was done for
eight-dimensional case of Eq.~2! @10#. Gauging Eq.~3! in
this way, it immediately follows that

F1
m52t1d2d3P12F1

m2~ t1
md2d31t1d2

md31t1d2d3
m!P12F1 .

~8!

It is clear from the form of this equation that the quantityF1
m

corresponds to that part of the3He→NNN electromagnetic
transition current where the~23! pair was last to interact an
where no photons are attached to the external constit
legs ~a rigorous proof of this statement was given for t
case of four-dimensional quantum field theory in Ref.@10#!.
In this respect we note that the bound-state vertex compo
F1 is a purely nonperturbative object and as such canno
represented as a sum of diagrams; nevertheless,F1

m can be
formally considered asF1 with photons attached everywhe
‘‘inside.’’ Note that Eq. ~8! is an integral equation forF1

m

with F1 being an input. Another input is the gauged Fey
man propagatord3

m . For particlei 51, 2, or 3, the gauged
Feynman propagatordi

m is defined by

di
m~p8,p!5di~p8!G i

m~p8,p!di~p!, ~9!

where G i
m(p8,p) is the particle’s electromagnetic verte

function. For a structureless nucleon of chargeei ,
G i

m(p8,p)5eig i
m . A further input in Eq. ~8! is d2

m , the
gauged on-mass-shell propagator of particle 2. As show
Ref. @11#, taking the explicit form

dm~p8,p!52p iL~p8!Gm~p8,p!L~p!

3
d1~p822m2!2d1~p22m2!

p22p82
, ~10!

for the gauged on-mass-shell propagatordm, ensures curren
and charge conservation of our final results. This is a con
quence of the fact that thedm of Eq. ~10! satisfies both the
Ward-Takahashi identity
r
by

e

nt

nt
be

-

in

e-

~pm8 2pm!dm~p8,p!5 ie@d~p!2d~p8!# ~11!

and the Ward identity

dm~p,p!52 ie
]d~p!

]pm
, ~12!

and that Eq.~8! gives an expression forF1
m which has pho-

tons coupled everywhere.
We may formally solve Eq.~8! to obtain

F1
m52~11t1d2d3P12!

21

3~ t1
md2d31t1d2

md31t1d2d3
m!P12F1 . ~13!

The factor (11t1d2d3P12)
21 in this equation clearly de-

scribes the final stateNNN→NNN process. Defining

X5~11t1d2d3P12!
21, ~14!

it follows that X satisfies the two equations

X512t1d2d3P12X, X512Xt1d2d3P12. ~15!

As expected, these are three-nucleon scattering equa
whose kernel is identical to that of the bound-state equa
~3!. We illustrate the first three iterations of these equatio
in Fig. 3. It is evident thatX consists of all possible
NNN→NNN diagrams where the~13! nucleon pair is first
to interact and the~23! pair is last to interact.

C. Three-body bound-state current

We recall thatF1
m describes the3He→NNN electromag-

netic transition current where the~23! nucleon pair is last to
interact and where no photons are attached to the final s
nucleon legs. As such, it contains all the information tha
necessary to specify the three-nucleon bound state inte
tion current j m. Indeed, we shall use the expression forF1

m

given in Eq.~13! to extract j m. The key observation abou
Eq. ~13! is that the final state interaction termX5(1
1t1d2d3P12)

21 has a pole atK25M2 whereK is the total
four-momentum andM is the mass of the three-nucleo
bound state. This follows from the fact that the equations
X andF1 have the same kernel and that the solution forF1
exists. The three-body bound state current then follows
taking the residue of Eq.~13! at this pole.
l is
FIG. 3. Illustration of the first three iterations of the equations forX, Eqs.~15!. That it is the spectator particle that is on mass shel
clearly visible.
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FIG. 4. The three-nucleon bound-state current in the spectator model as given by Eq.~25!. Particle labels correspond to those used in E
~32!.
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We write the pole structure ofX as

X~K;p1p2 ,q1q2!; i
F1

K~p1p2!C̄2
K~q1q2!

K22M2
as K2→M2,

~16!

which defines the quantityC̄2. In order to determineC̄2, we
take residues of Eqs.~15! at the three-nucleon bound-sta
pole, thereby obtaining the equations

F152t1d2d3P12F1 , C̄252C̄2t1d2d3P12. ~17!

The first of these is the bound-state equation forF1, which,
of course, is the reason that Eq.~16! was written with aF1
factor. The second equation can be written as

C̄252C̄2P12t2d1d3 , ~18!

which has the same form as the equation for the sec
Faddeev component of the bound-state wave function
four-dimensional quantum field theory@10#, hence our
choice of notation forC̄2. However, in contrast to the four
dimensional quantum field theory case, theC̄2 of Eq. ~18!
contains explicit on-mass-shell propagators. This can alre
be seen from Eq.~18! where thed1 that is present on the
right-hand side~RHS! contains ad function that is not inte-

grated over. But the full structure ofC̄2 becomes clear only
after we iterate Eq.~18! once, obtaining

C̄25C̄2P12t2d1d3P12t2d1d35C̄2P12t2d3t1P12d1d2d3 .
~19!

This reveals an explicit factord1d2d3 with two on-mass-
shell propagators, followed by the connected termt2d3t1.

ThusC̄2 has a structure of the form

C̄252F̄1P12d1d2d3 , ~20!

where

F̄152C̄2P12t2d3t1 ~21!

has no propagators on its three external legs. Multiplying

~18! on the right by2P12t2d3t1, we find thatF̄1 satisfies the
equation

F̄152F̄1P12d2d3t1 . ~22!

This is the conjugate equation to Eq.~3!, hence our choice o

notation forF̄1 in Eq. ~20!. With F̄1 andC̄2 determined by
Eqs. ~20! and ~22!, the residue of Eq.~16! is completely
specified.
d
in

dy

.

Thus, in the vicinity of the three-body bound-state po
(K2→M2), F1

m behaves as

F1
m;2 i

F1F̄1P12d1d2d3

K22M2

3~ t1
md2d31t1d2

md31t1d2d3
m!P12F1 . ~23!

The three-nucleon bound-state current in quantum fi
theory is given by the matrix element^KuJm(0)uQ& of the
electromagnetic current operatorJm between momentum
eigenstatesuK& and uQ&. In the spectator approximation
can be determined by taking the residue of Eq.~23! at the
three-nucleon bound-state pole on the left:

^KuJm~0!uQ&[ j m~K,Q!5F̄1
KP12d1d2d3~ t1

md2d31t1d2
md3

1t1d2d3
m!P12F1

Q . ~24!

Here K and Q are the total four-momenta of the final an
initial bound states, respectively, withK25Q25M2 and K
5Q1q whereq is the four-momentum of the incoming pho
ton. One can eliminatet1 from this expression by using Eq
~22!, in this way obtaining

j m~K,Q!5F̄1
KP12d1d2d3t1

md2d3P12F1
Q

2F̄1
Kd1~d2

md31d2d3
m!P12F1

Q . ~25!

This expression is illustrated in Fig. 4. Note that the last t
terms do not give the full one-body contribution to th
bound-state current as a further contribution comes from
gauged propagators insidet1

m .
To find t1

m , we first need to specify the spectator equ
tions for t1:

t15v11
1

2
v1d2d3t1 ; t15v11

1

2
t1d2d3v1 . ~26!

By gauging these equations one can expresst1
m in terms of

the interaction currentv1
m as

t1
m5

1

2
t1~d2

md31d2d3
m!t1

1S 11
1

2
t1d2d3D v1

mS 11
1

2
d2d3t1D . ~27!

Note that ourv1 is the sum of all possible irreducible dia
grams for the scattering of two identical particles, and th
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56 2977GAUGING THE THREE-NUCLEON SPECTATOR EQUATION
fore P23v15v1P2352v1. That is why we do not need to us
the symmetrized propagator1

2 (d2d31d2d3) in Eq. ~26! in
order to satisfy the Pauli exclusion principle.

Although Eq.~25! may be the most practical equation f
numerical calculations, with the help of Eq.~27! we can also
eliminatet1

m in favor of the interaction currentv1
m :

j m~K,Q!5F̄1
Kd1~d2

md31d2d3
m!S 1

2
2P12DF1

Q

1F̄1
KS P122

1

2D d2d3d1v1
md2d3S P122

1

2DF1
Q .

~28!

It is interesting to compare Eq.~28! with the corresponding
expression obtained by using the same gauging metho
the case of four-dimensional quantum field theory@10#:

j m~K,Q!5F̄1
Kd1~d2

md31d2d3
m!S 1

2
2P12DF1

Q

1F̄1
KS P122

1

2Dd2d3d1v1
md2d3S P122

1

2DF1
Q .

~29!
in

This comparison makes clear the prescriptiond1→d1,
d2→d2, d1

m→d1
m , d2

m→d2
m that one should use to obtain th

three-body bound-state electromagnetic current in the th
dimensional spectator approach, Eq.~28!, from the corre-
sponding four-dimensional expression of Eq.~29!.

In the impulse approximation where the interaction c
rent v1

m is neglected, we have that

j m~K,Q!5F̄1
Kd1~d2

md31d2d3
m!S 1

2
2P12DF1

Q . ~30!

This, of course, is the full one-body contribution to th
bound-state current. Because of propagatord1 in this expres-
sion, particle 1 is on mass shell~of course, to the right of
operatorP12 this on-mass-shell particle becomes particle!.
The first term on the RHS of Eq.~30! also contains the
gauged propagatord2

m , and therefore, according to Eq.~10!,
particle 2 can be off mass shell either to the left or to t
right of the photon. Thus to calculate this first term, o

needs to knowF̄1
K andF1

Q where only one external particl
is on mass shell. These can always be determined from
spectator bound-state vertex functions where two partic
are on mass shell by using Eqs.~3! and ~22! Choosing the
momenta of particles 1 and 2 as independent variables,
may write Eq.~30! in the explicit numerical form
e invari-
nd-state
j m~K,Q!5E d4p1

~2p4!

d4p2

~2p!4
F̄1

K~ p̄1 ,p21q!d~p1!dm~p21q,p2!d~Q2p12p2!S 1

2
2P12DF1

Q~ p̄1 ,p2!

1E d4p1

~2p!4

d4p2

~2p!4
F̄1

K~ p̄1 , p̄2!d~p1!d~p2!dm~K2p12p2 ,Q2p12p2!S 1

2
2P12DF1

Q~ p̄1 , p̄2!, ~31!

where the momenta which are on mass shell are labeled with an overbar.

D. Gauge invariance

As the gauging of equations method effectively couples photons everywhere in the strong interaction model, gaug
ance is guaranteed. Nevertheless, here we would like to check this explicitly on our derived expression for the bou
current of Eq.~25!.

Writing this equation out in full numerical form we have that

j m~K,Q!5E d4p1

~2p!4

d4p2

~2p!4

d4p28

~2p!4
F̄1

K~p28p1p38!d~p1!d~p28!d~p38!tm~p28p38 ,p2p3!d~p2!d~p3!F1
Q~p2p1p3!

2E d4p1

~2p!4

d4p2

~2p!4
F̄1

K~p1p28p3!d~p1!dm~p28 ,p2!d~p3!F1
Q~p2p1p3!

2E d4p1

~2p!4

d4p2

~2p!4
F̄1

K~p1p2p38!d~p1!d~p2!dm~p38 ,p3!F1
Q~p2p1p3!, ~32!
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where p35Q2p12p2, p385K2p12p28 , and it is under-
stood thatp281p385p21p31q in the first integral,p285p2

1q in the second integral, andp385p31q in the third. Here
we have followed the notation of Ref.@10# and displayed the
momentum of each particle explicitly. Each of the gaug
inputs in Eq.~32! satisfies a Ward-Takahashi identity~WTI!.
In the notation of Eq.~32!, the WTI for tm takes the form

qmtm~p28p38 ,p2p3!

5 i @e2t~p282q,p38 ;p2p3!2t~p28p38 ;p21q,p3!e2#

1 i @e3t~p28 ,p382q;p2p3!2t~p28p38 ;p2 ,p31q!e3#,

~33!

while for dm anddm the WTI’s are

qmdm~p28 ,p2!5 ie2@d~p2!2d~p28!#, ~34!

qmdm~p38 ,p3!5 ie3@d~p3!2d~p38!#. ~35!

In the present case of three nucleons, the chargesei ( i
51,2,3) are given byei5

1
2 @11t3

( i )#ep wheret3 is the Pauli
matrix for the third component of isospin, andep is the
charge of the proton.

In order to prove gauge invariance of the bound-state c
rent, we follow the same procedure as we used for the
tinguishable particle case@10#, and evaluate the quantit
qm j m by using the above WTI’s in Eq.~32!. However, unlike
in the distinguishable particle case, subtle use of ident
particle symmetry also needs to be made before the fi
expression is reduced to zero. Although this is straightf
ward, working with lengthy numerical expression like that
Eq. ~32! tends to obscure the presentation. For this reas
here we would prefer to avoid the use of explicit numeri
-

or
ll

se
pe

fo
d

r-
s-

al
al
r-
f
n,
l

forms and instead to keep all our equations at the symb
level. In order to write the WTI’s of Eqs.~33!–~35! in sym-
bolic form, we introduce the quantitiesêi whose numerical
form is defined by

êi~p18p28p38 ,p1p2p3!

5 iei~2p!12d4~pi82pi2q!d4~pj82pj !d
4~pk82pk!, ~36!

where i jk are cyclic permutations of 123. Then the abo
WTI’s can be written symbolically in terms of commutato
as

qmt1
m5@ ê2 ,t1#1@ ê3 ,t1#, qmd2

m5@ ê2 ,d2#,

qmd3
m5@ ê3 ,d3#. ~37!

Using these, the divergence of the three-nucleon bound-s
current is given by

qm j m5F̄1
KP12d1d2d3~@ ê2 ,t1#1@ ê3 ,t1# !d2d3P12F1

Q

2F̄1
Kd1~@ ê2 ,d2#d31d2@ ê3 ,d3# !P12F1

Q . ~38!

Using the bound-state equations~3! and ~22!, and the fact
that @ ê3 ,d2#5@ ê3 ,P12#50, Eq.~38! reduces immediately to

qm j m52F̄1
KP12d1d2d3ê2F1

Q1F̄1
Kd1d2ê2d3P12F1

Q .
~39!

Since@ ê2 ,P12#Þ0, it is not immediately obvious that the las
two terms cancel. To show that this is indeed the case,
make use of the fact that

@ ê2 ,P12t1P12#5@ ê2 ,t2#50. ~40!

Then using the bound-state equation in the last term of
~39! we obtain that
F̄1
Kd1d2ê2d3P12F1

Q52F̄1
Kd1d2ê2d3P12t1d2d3P12F1

Q52F̄1
Kd1d3d2ê2P12t1P12d1d3F1

Q

52F̄1
Kd1d3P12t1P12d2ê2d1d3F1

Q52F̄1
KP12d2d3t1P12d2ê2d1d3F1

Q

5F̄1
KP12d2ê2d1d3F1

Q5F̄1
KP12d1d2d3ê2F1

Q . ~41!
ator
Using this result in Eq.~39! we obtain the current conserva
tion relation

qm j m50. ~42!

E. Normalization condition

The method for obtaining the normalization condition f
bound-state wave functions in quantum field theory typica
involves the taking of residues of Green functions ort ma-
trices at the bound-state pole, and is similar to what is u
in quantum mechanics when the potentials are energy de
dent. Here we apply the same idea, but to the quantityX, in
order to determine the specific normalization condition
y

d
n-

r

the three-body bound-state vertex function in the spect
approach. Our starting point is the following identity forX:

X~11t1d2d3P12!X5X. ~43!

Using the pole behavior ofX given by Eq.~16!, we see that
in the vicinity of the three-body bound-state pole, Eq.~43!
reduces to

i
C̄2

Q~11t1d2d3P12!F1
Q

Q22M2
51 ~44!

or

i C̄2
Q ]~11t1d2d3P12!

]Q2
F1

QU
Q25M2

51. ~45!
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With the understanding thatQ25M2, and using Eq.~20!,
this may also be written as

2 i F̄1
QP12d1d2d3

]~ t1d2d3P12!

]Q2
F1

Q51 ~46!

or

2 i F̄1
QP12d1d2d3

]t1

]Q2
d2d3P12F1

Q

1 i F̄1
Qd1

]~d2d3!

]Q2
P12F1

Q51. ~47!
s
re
o
q
ow
e
b

This form of the normalization condition is especially co
venient as it is expressed in terms of the two-bodyt matrix t1
rather than the potentialv1 which results, for example, whe
the full Green function is used in an identity, similar to E
~43!, but involving two-body potentials@10#.

It is sometimes convenient to express the normalizat
condition as a four-vector relation by using the replacem

]

]Qm
→2Qm

]

]Q2

in the above equations. That this replacement is valid can
easily justified by appealing to Lorentz invariance. In th
way Eq.~47!, written out in full numerical form, becomes
E d4k1

~2p!4

d4k2

~2p!4

d4p2

~2p!4
F̄1

QP12~k1 ,k2!d~k1!d~k2!d~k3!
]t~Q2k1 ,k2 ,p2!

]Qm
d~p2!d~p3!P12F1

Q~k1 ,p2!

2E d4k1

~2p!4

d4k2

~2p!4
F̄1

Q~k1 ,k2!d~k1!d~k2!
]d~k3!

]Qm
P12F1

Q~k1 ,k2!52iQm, ~48!
te.

een
,

l
r the

in
m
, as
wherek35Q2k12k2 andp35Q2k12p2.

F. Charge conservation

In its usual meaning, charge conservation is a con
quence of current conservation. As we have proved cur
conservation above, charge is naturally conserved in
model. On the other hand, that the conserved charge is e
to the total charge of the physical system does not foll
automatically from current conservation, and therefore ne
to be checked separately. In particular, what needs to
checked is that

j m~Q,Q!52eQm, ~49!
e-
nt
ur
ual

ds
e

wheree is the physical charge of the three-body bound sta
We follow current terminology and also refer to Eq.~49! as
a statement of ‘‘charge conservation’’~in the sense that ife
is indeed the physical charge, then no charge has b
‘‘lost’’ in the model!. For an exact solution of field theory
Eq. ~49! follows from the fact thatuQ& in Eq. ~24! is an
eigenstate of the charge operator with eigenvaluee. In this
subsection we show that Eq.~49! also holds in our mode
where the gauging of equations method has been used fo
spectator approach.

The bound-state current was given in its explicit form
Eq. ~32!. We can rewrite this expression for zero momentu
transfer, and using only independent momentum variables
j m~Q,Q!5E d4k1

~2p!4

d4k2

~2p!4

d4p2

~2p!4
F̄1

QP12~k1 ,k2!d~k1!d~k2!d~k3!tm~Q2k1 ,Q2k1 ;k2 ,p2!d~p2!d~p3!P12F1
Q~k1 ,p2!

2E d4k1

~2p!4

d4k2

~2p!4
F̄1

Q~k1 ,k2!d~k1!dm~k2 ,k2!d~k3!P12F1
Q~k1 ,k2!

2E d4k1

~2p!4

d4k2

~2p!4
F̄1

Q~k1 ,k2!d~k1!d~k2!dm~k3 ,k3!P12F1
Q~k1 ,k2!, ~50!

wherek35Q2k12k2, p35Q2k12p2, andtm is expressed in terms of the total momenta in the~23! system,Q2k1 in both
the initial and final states, and the momenta of particle 2,p2 andk2 for initial and final states, respectively.

Both the gauged Feynman propagatordm and the gauged on-mass-shell particle propagatordm satisfy the Ward identity
@12#:

idm~k3 ,k3!5e3

]d~k3!

]k3m
, ~51!

idm~k2 ,k2!5e2

]d~k2!

]k2m
. ~52!
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The interaction currentvm is an input to our model and therefore satisfies the two-particle Ward identity by constructio
turn, it can easily be shown that thetm, as given by Eq.~27!, must also satisfy the two-particle Ward identity. For t
momentum variables of Eq.~50!, this identity reads

i t m~Q2k1 ,Q2k1 ;k2 ,p2!5e2

]t~Q2k1 ,k2 ,p2!

]k2m
1

]t~Q2k1 ,k2 ,p2!

]p2m
e21~e31e2!

]t~Q2k1 ,k2 ,p2!

]Qm
. ~53!

Substituting Eq.~53! into Eq.~50!, we may then use the bound-state equations forF1
Q andF̄1

Q to simplify the terms containing
]t/]k2m and]t/]p2m . Writing Eq. ~51! as

idm~k3 ,k3!5~e31e2!
]d~k3!

]k3m
2e2

]d~k3!

]k3m
5~e31e2!

]d~k3!

]Qm
1e2

]d~k3!

]k2m
, ~54!

we may then use it together with Eq.~52! in Eq. ~50! to obtain

i j m~Q,Q!5E d4k1

~2p!4

d4k2

~2p!4

d4p2

~2p!4
F̄1

QP12~k1 ,k2!d~k1!d~k2!d~k3!~e31e2!
]t~Q2k1 ,k2 ,p2!

]Qm
d~p2!d~p3!P12F1

Q~k1 ,p2!

2E d4k1

~2p!4

d4k2

~2p!4
F̄1

Q~k1 ,k2!d~k1!d~k2!~e31e2!
]d~k3!

]Qm
P12F1

Q~k1 ,k2!

2E d4k1

~2p!4

d4k2

~2p!4
F̄1

QP12~k1 ,k2!d~k1!d~k2!d~k3!e2

]F1
Q~k1 ,k2!

]k2m

2E d4k1

~2p!4

d4k2

~2p!4

]F̄1
Q~k1 ,k2!

]k2m
e2d~k1!d~k2!d~k3!P12F1

Q~k1 ,k2!

2E d4k1

~2p!4

d4k2

~2p!4
F̄1

Q~k1 ,k2!d~k1!e2

]d~k2!

]k2m
d~k3!P12F1

Q~k1 ,k2!

2E d4k1

~2p!4

d4k2

~2p!4
F̄1

Q~k1 ,k2!d~k1!d~k2!e2

]d~k3!

]k2m
P12F1

Q~k1 ,k2!. ~55!

Using integration by parts, we can write the last three terms of this equation as

E d4k1

~2p!4

d4k2

~2p!4
F̄1

Q~k1 ,k2!d~k1!d~k2!e2d~k3!
]P12F1

Q~k1 ,k2!

]k2m
.

Equation~50! can then be written as

i j m~Q,Q!5E d4k1

~2p!4

d4k2

~2p!4

d4p2

~2p!4
F̄1

QP12~k1 ,k2!d~k1!d~k2!d~k3!~e31e21e1!
]t~Q2k1 ,k2 ,p2!

]Qm
d~p2!d~p3!P12F1

Q~k1 ,p2!

2E d4k1

~2p!4

d4k2

~2p!4
F̄1

Q~k1 ,k2!d~k1!d~k2!~e31e21e1!
]d~k3!

]Qm
P12F1

Q~k1 ,k2!

1E d4k1

~2p!4

d4k2

~2p!4

d4p2

~2p!4
F̄1

QP12~k1 ,k2!d~k1!d~k2!d~k3!e1

]t~Q2k1 ,k2 ,p2!

]k1m
d~p2!d~p3!P12F1

Q~k1 ,p2!

2E d4k1

~2p!4

d4k2

~2p!4
F̄1

Q~k1 ,k2!d~k1!d~k2!e1

]d~k3!

]k1m
P12F1

Q~k1 ,k2!

2E d4k1

~2p!4

d4k2

~2p!4
F̄1

QP12~k1 ,k2!d~k1!d~k2!d~k3!e2

]F1
Q~k1 ,k2!

]k2m

1E d4k1

~2p!4

d4k2

~2p!4
F̄1

Q~k1 ,k2!d~k1!d~k2!d~k3!e2

]P12F1
Q~k1 ,k2!

]k2m
, ~56!
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where the charge in the first two terms has been increased to the total charge of the system and where we used th
]t(Q2k1 ,k2 ,p2)/]Qm52]t(Q2k1 ,k2 ,p2)/]k1mand ]d(k3)/]Qm52]d(k3)/]k1m . Since the bound-state vertex functio
F1

Q is an eigenstate of the total chargee11e21e3 with eigenvaluee, a comparison with the normalization condition, Eq.~48!,
shows that the first two terms of the above equation give the sought after charge conservation relation. Thus all we
show now is that the last four terms of Eq.~56! cancel each other. To this end we eliminatet in the third term on the RHS o
Eq. ~56! by using integration by parts, and then making use of the bound state equations forF1

Q andF̄1
Q . In this way we get

E d4k1

~2p!4

d4k2

~2p!4

d4p2

~2p!4
F̄1

QP12~k1 ,k2!d~k1!d~k2!d~k3!e1

]t~Q2k1 ,k2 ,p2!

]k1m
d~p2!d~p3!P12F1

Q~k1 ,p2!

5E d4k1

~2p!4

d4k2

~2p!4

] F̄1
QP12~k1 ,k2!d~k1!d~k2!d~k3!

]k1m
e1FQ~k1 ,k2!

1E d4k1

~2p!4

d4p2

~2p!4
F̄1

Q~k1 ,p2!d~k1!d~p2!e1

]d~p3!P12FQ~k1 ,p2!

]k1m
, ~57!

wherep2 andp3 in the last equation can now be replaced byk2 andk3, respectively. That the last two terms of Eq.~57! cancel
the last three terms of Eq.~56! can then be seen by using the identities

E d4k1

~2p!4

d4k2

~2p!4
F̄1

Q~k1 ,k2!d~k1!d~k2!e1

]d~k3!P12F1
Q~k1 ,k2!

]k1m

2E d4k1

~2p!4

d4k2

~2p!4
F̄1

Q~k1 ,k2!d~k1!d~k2!e1

]d~k3!

]k1m
P12F1

Q~k1 ,k2!

2E d4k1

~2p!4

d4k2

~2p!4
F̄1

QP12~k1 ,k2!d~k1!d~k2!d~k3!e2

]F1
Q~k1 ,k2!

]k2m
50, ~58!

and

E d4k1

~2p!4

d4k2

~2p!4

] F̄1
QP12~k1 ,k2!d~k1!d~k2!d~k3!

]k1m
e1F1

Q~k1 ,k2!

1E d4k1

~2p!4

d4k2

~2p!4
F̄1

Q~k1 ,k2!d~k1!d~k2!d~k3!e2

]P12F1
Q~k1 ,k2!

]k2m

5E d4k1

~2p!4

d4k2

~2p!4

] F̄1
QP12~k1 ,k2!d~k1!d~k2!d~k3!e1F1

Q~k1 ,k2!

]k1m
50. ~59!
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Thus we have shown Eq.~49!, which proves charge conse
vation for our gauged three-nucleon spectator model.

III. GAUGING THE THREE-NUCLEON SCATTERING
EQUATIONS

A. g3He ˜NNN

Photodisintegration of the three-nucleon bound state
three free nucleons is described by the electromagnetic3He
→NNN transition currentj 0

m consisting of all possible dia
grams for this process~‘‘photodisintegration’’ here means
disintegration due to either an on-mass-shell or an off-ma
shell photon, and so the case of electrodisintegration is
cluded!. By comparison, the gauged vertex functionF1

m con-
sists of all possible diagrams for photodisintegration wh
nucleons 2 and 3 are the last to interact and where no p
to

s-
n-

e
o-

tons are attached to the outgoing nucleons. As we alre
have an equation forF1

m , Eq. ~13!, all that is necessary to
obtain j 0

m is to add the missing terms inF1
m . Indeed, we can

immediately write down that

j 0
m5PcS F1

m1(
i 51

3

G i
mdiF1D , ~60!

where Pc is the operator which sums over all the cycl
permutations of the three particle labels. The role ofPc is to
include diagrams where nucleons other than 2 and 3 are
to interact. The termPc( iG i

mdiF1 consists of all possible
diagrams where photons are attached to the final state e
nal legs.

Denoting the three-particle Feynman propagator byG0,
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G05d1d2d3 , ~61!

then

G0
21G0

m5G0
21~d1

md2d31d1d2
md31d1d2d3

m!5(
i 51

3

G i
mdi ,

~62!

and Eq.~60! can also be written as

j 0
m5PcG0

21@G0F1#m5Pc~G0
21G0

mF11F1
m!, ~63!

indicating that j 0
m can be obtained directly by gauging th

quantity G0F1. This is just what one might expect sinc
G0F1 corresponds to all possible diagrams for the3He
→NNN process where nucleons~23! are the last to interact
In this respect, it is interesting to note that although3He
→NNN is not a possible physical process, it can nevert
less be gauged to yield a physical electromagnetic proces
is also worth pointing out that although we gauge on-ma
shell propagators when they correspond to internal lin
only Feynman propagators are used in the gauging of
external lines in Eq.~63!. This is not inconsistent with the
spectator approach, it preserves gauge invariance@11#, and it
avoids the introduction of on-mass-shelld-function-like sin-
gularities into the physical photodisintegration amplitude.

B. Nd˜gNd

We can obtain the amplitude for the processNd→gNd
by gauging the scattering amplitude forNd→Nd. Thus our
first task is to derive an expression for this amplitude.

From Eq. ~13! it is clear that the quantityX5(1
1t1d2d3P12)

21 describes all possible perturbation grap
for the processNNN→NNN where the~13! pair is the first
and the~23! pair is the last to interact~see also Fig. 3!. By
taking appropriate residues ofX we can therefore obtain an
scattering amplitude involving three nucleons, including
one forNd elastic scattering. This we now proceed to do

As seen explicitly in Fig. 3, the second iteration of eith
of the Eqs.~15! yields a connected graph. We can thus wr

X5~11t1d2d3P12!
21512t1d2d3P121Xc , ~64!

where

Xc5~11t1d2d3P12!
21t1d2d3P12t1d2d3P12 ~65!

is the connected part ofX. Using the fact that

t1d2d3P12t1d2d3P125t1d3P12t1P12d1d2d3 ~66!

and

~11t1d2d3P12!
21t15t1~11d2d3P12t1!21, ~67!

we may write

X5~11t1d2d3P12!
21512t1d2d3P121TcP12d1d2d3 ,

~68!

where

Tc5t1~11d2d3P12t1!21d3P12t1 ~69!
-
. It
s-
s,
e

e

r

is the connected part of the scattering amplitude
NNN→NNN where the~23! pair is both the first and last to
interact. It is easy to see that the corresponding Bet
Salpeter amplitude is given by

Tc
BS5t1~11d2d3P12t1!21d3P12t1 , ~70!

showing explicitly that the spectator equation expression
Eq. ~69! can be obtained from the Bethe-Salpeter express
of Eq. ~70! by replacing the spectator particle’s propagato
by the on-mass-shell propagator in each term of the per
bation series forTc

BS.
The two-nucleont matrix t1 contains the deuteron bound

state pole. In the vicinity of this pole we have that

t1~P;p2 ,k2!; i
f23~p2!f̄23~k2!

P22Md
2

5 i
f23f̄23

P22Md
2

, ~71!

whereP is the deuteron four-momentum,Md is the deuteron
mass, andf23 is the deuteron vertex function for nucleons
and 3. The scattering amplitudeTdd for Nd→Nd is then
obtained from Eq.~69! by taking left and right residues at th
deuteron pole:

Tdd5f̄23~11d2d3P12t1!21d3P12f23. ~72!

The electromagneticNd→Nd transition currentj dd
m that

describes the processNd→gNd can now be obtained as i
the four-dimensional case@10# by gaugingd1Tddd1. Defin-
ing

Y5~11d2d3P12t1!21, ~73!

we therefore have that

j dd
m 5d1

21~f̄23d1Yd3P12d1f23!
md1

21

5~f̄23Yd3P12f23!
m1f̄23G1

md1Yd3P12f23

1f̄23Yd3d2G2
mP12f23, ~74!

where the first term on the RHS is given by

~f̄23Yd3P12f23!
m5f̄23

m Yd3P12f231f̄23Y
md3P12f23

1f̄23Yd3
mP12f231f̄23Yd3P12f23

m .

~75!

The gauged vertex functionsf23
m andf̄23

m can be obtained by
gauging the two-body bound-state equations

f235
1

2
v1d2d3f23, f̄235

1

2
f̄23d2d3v1 . ~76!

Using the equations fort1, Eqs.~26!, one easily obtains tha

f23
m 5

1

2S 11
1

2
t1d2d3D ~v1d2d3!mf23,

f̄23
m 5

1

2
f̄23~d2d3v1!mS 11

1

2
d2d3t1D . ~77!
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To obtain an expression forYm, we first note thatY satisfies
the equations

Y512d2d3P12t1Y, Y512Yd2d3P12t1 . ~78!

Gauging either of these equations then gives

Ym52Y~d2d3P12t1!mY

52Y~d2
md3P12t11d2d3

mP12t11d2d3P12t1
m!Y. ~79!

In this way the transition currentj dd
m is completely deter-

mined in terms of one- and two-body input quantities. No
that our expression forj dd

m is in terms of the quantityY rather
than theX introduced earlier. Yet it turns out that once th
integrals over the fourth components are taken in the exp
sion for j dd

m , then it is seen that the use ofX or Y in Eq. ~74!
is completely equivalent. This is discussed in the Appen
where we show how our four-dimensional expressions of
spectator approach are reduced to three-dimensional fo
suitable for numerical calculations.

C. g3He ˜Nd

To find the 3He→Nd electromagnetic transition curren
j d
m , it would be natural to simply take the left residue of t

3He→NNN electromagnetic transition currentj 0
m , given in

Eq. ~60!, at the two-body bound-state pole of nucleons 2 a
3. Although this is straightforward, one can obtain exac
the same result in an even simpler way by gauging the s
tering amplitudeTd for the off-shell process3He→Nd. The
expression forTd is easily found from the bound-state equ
tion for F1 in Eq. ~3! by taking the left residue at the two
body bound-state pole:

Td52f̄23d2d3P12F1 . ~80!

To make sure that one includes the case where photons
attached to the free nucleon in the finalNd state~particle 1!,
it is sufficient to gauged1Td and then multiply from the left
by the inverse propagatord1

21 at the end. Thus the electro
magnetic transition currentj d

m which describes the physica
processg3He→Nd is given by

j d
m52d1

21~d1f̄23d2d3P12F1!m

52~G1
md1f̄23d2d31f̄23

m d2d31f̄23d2
md31f̄23d2d3

m!

3P12F12f̄23d2d3P12F1
m , ~81!

where all quantities have been specified above.

IV. SUMMARY

We have derived relativistic three-dimensional integ
equations describing the interaction of the three-nucleon
tem with an external electromagnetic field. In particular,
have presented expressions for the three-nucleon bound-
electromagnetic current, as well as for the transition curre
describing the scattering processesg3He→NNN, Nd
→gNd, andg3He→Nd. Our equations are gauge invaria
and conserve charge. More importantly, gauge invaria
and charge conservation are achieved in the theoretically
e

s-
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ms

d

t-

are
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ate
ts

e
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rect fashion; namely, by the attachment of photons to
possible places within the strong interaction model of
three nucleons.

The achievement of these results was made possible
the recent development of the gauging of equations met
@10#. Previously this method was used to generate a fo
dimensional gauge-invariant description of the three-nucl
system and its electromagnetic currents. Here we applied
same method to what in principle is an even more challe
ing problem, namely, the gauging of the spectator equati
for the three-nucleon system@4#. The extra difficulty in this
case comes from the question of how to choose the spec
particles once the gauging of the four-dimensional equati
is done. We solved this problem by~i! working in terms of
Faddeev components and~ii ! by introducing the idea of an
on-mass-shell nucleon propagatord in order to express the
three-nucleon spectator equations in a four-dimensional f
@11#. Once in this form, the spectator equations were th
gauged directly, in this way allowing the gauging meth
itself to determine the spectator particles in the final gau
equations.

An important ingredient in our gauged equations is t
gauged on-mass-shell propagatordm. The question of how to
construct a form fordm that satisfies both the Ward
Takahashi identity and the Ward identity was previously a
swered in Refs.@11# and @12#. As both d and dm contain
on-mass-shelld functions, our gauged four-dimension
equations can be reduced to a three-dimensional form.
details of this reduction were presented in the Appendix.
a result, we have brought together all the theoretical res
that are necessary for a practical calculation of the elec
magnetic processes of the three-nucleon system.
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APPENDIX

In the main part of this paper, all our results have be
expressed in terms of four-dimensional integrals despite
presence ofd functions which could allow us to reduce th
integrals to three-dimensional ones. This has been done
cifically so that we can follow the gauging procedure intr
duced in Ref.@10# for four-dimensional integral equations
Our final results, however, are three dimensional, and i
the purpose of this appendix to write out some of the o
tained expressions in a purely three-dimensional form.

We begin with the bound-state equation of Eq.~3!. This
symbolic equation represents the four-dimensional integ
equation

F1
Q~p1 ,p2!52E d4k2

~2p!4
t~Q2p1 ;p2 ,k2!

3d~k2!d~Q2p12k2!P12F1
Q~p1 ,k2!.

~A1!

Because of the presence of the on-mass-shell propag
d(k2), the integral overdk2

0 may be done trivially. Setting
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the momentap1 andp2 to be on mass shell, we then obta
the three-dimensional equation

F1
Q~ p̄1 , p̄2!52E d3k2

~2p!3
t~Q2 p̄1 ; p̄2 , k̄ 2!

L~ k̄ 2!

2vk2

3d~Q2 p̄12 k̄ 2!P12F1
Q~ p̄1 , k̄ 2!, ~A2!

where vk5Ak21m2 and k̄ 5(vk ,k). Although this equa-
tion is three dimensional, the quantities involved still reta
their Dirac spinor structure. Thus, for example,F1

Q( p̄1 , p̄2)
consists of a direct product of three Dirac spinors, one
each nucleon, whilet(Q2 p̄1 ; p̄2 , k̄ 2) is a 16316 matrix.
For the on-mass-shell nucleons we may eliminate the D
spinor structure by appropriate multiplication by the Dir
spinorsu or ū . We therefore define

F̃1
Q~p1a1 ,p2a2!5 ū~p1 ,a1! ū~p2 ,a2!F1

Q~ p̄1 , p̄2!
~A3!

and

t̃ ~Q2 p̄1 ;p2a2 ;k2b2!

5 ū~p2 ,a2!t~Q2 p̄1 ; p̄2 , k̄ 2!u~k2 ,b2!. ~A4!

Since

L~ p̄ !5p” 1m52m(
a

u~p,a! ū~p,a!, ~A5!

where the normalization of the Dirac spinors is given
ū (p,a)u(p,b)5dab , Eq. ~A2! can be transformed to th
equation

F̃1
Q~p1a1 ,p2a2!

52(
b2

E d3k2

~2p!3

m

vk2

t̃ ~Q2 p̄1 ;p2a2 ,k2b2!

3 d̃~Q,p1 ,k2!P12F̃1
Q~p1a1 ,k2b2!, ~A6!

where

d̃~Q,p1 ,k2!5d~Q2 p̄12 k̄ 2!, ~A7!

with the integral being taken over the Lorentz-invaria
phase space volume@d3k2 /(2p)3#m/vk2

. We shall write
this three-dimensional equation in symbolic form as

F̃1
Q52 t̃ 1d̃3P12F̃1

Q . ~A8!

Note that Eq.~A8! can be considered as an operator expr
sion in three-dimensional momentum space and is writte
terms of quantities with a tilde to distinguish it from Eq.~3!
which is a symbolic equation in four-dimensional mome
tum space.

Similarly, the first scattering equation of Eqs.~15! is a
symbolic expression for a four-dimensional integral equat
which, after the trivial integration overdk2

0, gives
r

c

t

-
in

-

n

X~Q;p1p2 ;q1q2!5~2p!8d4~p12q1!d4~p22q2!

2E d3k2

~2p!3
t~Q2p1 ;p2 , k̄ 2!

L~ k̄ 2!

2vk2

3d~Q2p12 k̄ 2!P12X~Q;p1 k̄ 2 ,q1q2!.

~A9!

Putting p1 and p2 on mass shell in this equation, it can b
noticed that the inhomogeneous term becomes

~2p!8d4~ p̄12q1!d4~ p̄22q2!

5~2p!8d3~p12q2!d3~p22q2!d~ q̄1
02q1

0!d~ q̄2
02q2

0!.

~A10!

This in turn implies that

X~Q; p̄1 p̄2 ;q1q2!

5X8~Q; p̄1 p̄2 ; q̄1 q̄2!
m

vq1

m

vq2

~2p!2

3d~ q̄1
02q1

0!d~ q̄2
02q2

0!, ~A11!

where X8(Q; p̄1 p̄2 ; q̄1 q̄2) satisfies the three-dimension
equation

X8~Q; p̄1 p̄2 ; q̄1 q̄2!

5~2p!6
vq1

m

vq2

m
d3~p12q1!d3~p22q2!

2E d3k2

~2p!3
t~Q2 p̄1 ; p̄2 , k̄ 2!

L~ k̄ 2!

2vk2

3d~Q2 p̄12 k̄ 2!P12X8~Q; p̄1 k̄ 2 , q̄1 q̄2!. ~A12!

Note that Eq.~A11! provides the key result that has enabl
us to eliminate the zero-componentd functions from the in-
homogeneous term.

We now eliminate the Dirac spinor structure of on-ma
shell particles by defining

X̃~Q;p1a1 ,p2a2 ;q1b1 ,q2b2!

5 ū~p1 ,a1! ū~p2 ,a2!X8~Q; p̄1 p̄2 , q̄1 q̄2!

3u~q1 ,b1!u~q2 ,b2!. ~A13!

In this way Eq. ~A12! gets transformed into a three
dimensional equation, similar to Eq.~A6!:

X̃~Q;p1a1 ,p2a2 ;q1b1 ,q2b2!

5da1b1
da2b2

~2p!6
vq1

m

vq2

m
d3~p12q1!d3~p22q2!

2(
g2

E d3k2

~2p!3

m

vk2

t̃ ~Q2 p̄1 ;p2a2 ,k2g2!

3 d̃~Q,p1 ,k2!P12X̃~Q;p1a1 ,k2g2 ;q1b1 ,q2b2!.

~A14!
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Since the momentum phase space integration volume
cludes a factor (2p)23m/v, the inhomogeneous term in th
equation acts like a unit operator in momentum space. T
we can write this equation in symbolic form as

X̃512 t̃ 1d̃3P12X̃. ~A15!

It then follows thatX̃5(11 t̃ 1d̃3P12)
21 and therefore

X̃512X̃ t̃ 1d̃3P12. ~A16!

Alternatively, one can show Eq.~A16! by starting from the
numerical form of the four-dimensional equationX51
2Xt1d2d3, setting the final momentap1 and p2 to be on
mass shell, and using Eq.~A11! as before. This time, how
ever, one also needs to use the relation

ū~p1 ,a1! ū~p2 ,a2!X8~Q; p̄1 p̄2 , q̄1 q̄2!

5 (
b1b2

X̃~Q;p1a1 ,p2a2 ;q1b1 ,q2b2!

3 ū~q1 ,b1! ū~q2 ,b2!, ~A17!

which can be proved by using Eqs.~A12! and~A14! to show
that each side of Eq.~A17! satisfies the same integral equ
tion.

Note that the bound-state and scattering equations of
~A8! and ~A15! have the same kernel and can therefore
calculated using similar numerical codes. It would theref
be convenient to express the amplitude forNd scattering,
Tdd , in terms of X̃ rather than leaving it in terms ofY in
which it is given in Eq.~72!. To this end we first writeY in
terms ofX by using the definitions of Eq.~14! and Eq.~73!:

Y512d2d3P12Xt1 . ~A18!

Then theNd amplitude is given by

Tdd5f̄23Yd3P12f23 ~A19!

5f̄23~12d2d3P12Xt1!d3P12f23. ~A20!

As particle 1 in the final state is on mass shell, we see
both particles 1 and 2 to the left ofX in the latter equation
are on mass shell. We can therefore use Eqs.~A11! and
~A17! in Eq. ~A20! to write the physicalNd scattering am-
plitude T̃dd5 ū1Tddu1 in the three-dimensional form

T̃dd5 f̃̄23~12 d̃3P12X̃ t̃ 1! d̃3P12f̃23, ~A21!

wheref̃235 ū2f23, and f̃̄235f̄23u2. Writing this equation
as

T̃dd5 f̃̄23d̃3P12~12X̃ t̃ 1d̃3P12!f̃23, ~A22!

we may then use Eq.~A16! to obtain that

T̃dd5 f̃̄23d̃3P12X̃f̃23. ~A23!

We now show how the physical transition currentj̃ dd
m

5 ū1 j dd
m u1 can be similarly expressed in terms of thre
n-

us

s.
e
e

at

-

dimensional expressions involvingX̃. In terms ofY, the ex-
pression forj dd

m was given in Eq.~74! which we can write in
the form

j dd
m 5f̄23Yd3P12~G3

md3f231f23
m !1f̄23

m Yd3P12f23

2f̄23Yd3P12~G3
md3t11t1

m!d1Yd3P12f23

2f̄23Yd3P12t1d1
mYd3P12f231f̄23G1

md1Yd3P12f23

1f̄23Yd3P12d1G1
mf23. ~A24!

EveryY in this equation comes in the combinationYd3P12,
just as in Eq.~A19! for Tdd . In each of the first three term
on the RHS of Eq.~A24! ~upper line!, everyY has the first
particle on its left and the second particle on its right
stricted to be on mass shell. Thus we may proceed as for
~A19! and replace our expressions by three-dimensional o
whereYd3P12 is replaced byd̃3P12X̃. For example, the first
term becomes

ū1f̄23Yd3P12~G3
md3f231f23

m !u1

5 f̃̄23d̃3P12X̃~G3
m d̃3f̃231f̃23

m !. ~A25!

On the other hand, in the last three terms of Eq.~A24! every
Y has either an off-mass-shell first particle on its left or
off-mass-shell second particle on its right. For example,
the last term of Eq.~A24! particle 2 to the right ofY is off
mass shell. Proceeding nevertheless as before, we have

ū1f̄23Yd3P12d1G1
mf23u1

5 ū1f̄23~12d2d3P12Xt1!d3P12d1G1
mf23u1

5f̄23d3P12d1G1
mu1f̃232 f̃̄23d3P12X̃t1

Ld3P12d1G1
mf̃23,

~A26!

where again we have used Eqs.~A11! and ~A17! to reduce
the integrals to three dimensions. In the last equation,t1 has
only its left particle 2 on mass shell, hence the notationt1

L .
Thus, although Eq.~A26! is three dimensional and express
in terms ofX̃, it cannot be simplified further with the help o
Eq. ~A16!. What can be done, however, is to use the sec
of the equations fort1, Eqs. ~26!, in order to expresst1

L in

terms of t̃ 1 andv1
L ; indeed, it is easily seen thatt1

L is given
by the three-dimensional equation

t1
L5v1

L1
1

2
t̃ 1d̃3v1

L . ~A27!

With the help of Eq.~A16!, this enables one to reexpress E
~A26! in terms ofv1

L .
A similar three-dimensional reduction holds for the se

ond last term in Eq.~A24!. The first term in the last line of
Eq. ~A24! contains the gauged on-mass-shell propagatord1

m .
As seen from Eq.~9!, d1

m has one of its legs on mass she
while the other is off mass shell. Thus one of the ter
Yd3P12 in the fourth term of Eq.~A24! can be simplified by
using Eq.~A16!, while the other one cannot.
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