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Gauging the spectator equations

A. N. Kvinikhidze* and B. Blankleider
Department of Physics, The Flinders University of South Australia, Bedford Park, SA 5042, Australia

~Received 30 June 1997!

We show how to derive relativistic, unitary, gauge-invariant, and charge-conserving three-dimensional scat-
tering equations for a system of hadrons interacting with an electromagnetic field. In the method proposed, the
spectator equations describing the strong interactions of the hadrons are gauged using our recently introduced
gauging of equations method. A key ingredient in our model is the on-mass-shell particle propagator. We
discuss how to gauge this on-mass-shell propagator so that both the Ward-Takahashi and Ward identities are
satisfied. We then demonstrate our gauging procedure by deriving the gauge-invariant three-dimensional ex-
pression for the deuteron photodisintegration amplitude within the spectator approach.
@S0556-2813~97!00512-8#

PACS number~s!: 21.45.1v, 24.10.Jv, 25.20.2x, 25.30.Bf
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I. INTRODUCTION

Recently we have shown how to describe the interac
of an electromagnetic probe with a hadronic system
scribed by four-dimensional integral equations@1#. Our
method is based on the idea of gauging the integral equat
themselves and, in this way, incorporates the electromagn
interaction into the hadronic description without the need
any perturbation expansion. As a result, the external pho
becomes attached to all possible places in every contribu
Feynman diagram of the theory, so that gauge invariance
charge conservation are implemented in the theoretically
rect fashion. In Ref.@1# we applied the gauging of equation
method to the four-dimensional three-nucleon proble
thereby obtaining gauge-invariant expressions for the e
tromagnetic currents of all possible transitions betwe
three-nucleon states induced by an external electromag
field. The power of the method was particularly evident
the formulation of the three-body bound-state current wh
a previously overlooked overcounting problem was solv
automatically by the natural appearance of a subtrac
term.

Combined with the integral equations describing t
strong interactions, the gauging of equations method p
vides a consistent unified description of hadronic syste
and their interactions with an external electromagnetic fie
Since the starting point of Ref.@1# was relativistic quantum
field theory, at this stage such a unified description is inh
ently four dimensional. In view of the technical difficulty i
solving four-dimensional equations, the question natura
arises if there is a way to do a three-dimensional reductio
the unified description so that covariance, unitarity, gau
invariance, and charge conservation are all preserved.
paper is devoted to answering this question.

In the strong interaction sector, three-dimensional red
tions of the Bethe-Salpeter~BS! equation have been deve
oped over a number of years@2–5# and now provide a pow-
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erful approach for practical calculations in quantum fie
theory. All these reductions preserve covariance and un
ity, and in this respect give rise to the question of whi
reduction is to be preferred@6–8#. In Ref. @5#, Gross showed
that his reduction scheme has the important property of g
ing a three-dimensional two-body equation that approac
the correct one-body equation in the limit when one of t
masses becomes very large. We find that the Gross redu
scheme is also appealing in that it easily lends itself to
gauging of equations method.

In the Gross approach, also called the ‘‘spectator
proach,’’ three-dimensional equations are derived by restr
ing some of the intermediate-state particles~typically the
spectator particles! in the BS equation to their mass she
Equivalently, the Feynman propagatorsd of these particles
in the BS equation are replaced by the quantitiesd contain-
ing a positive energy on-mass-shelld function:

d~p!5
iL~p!

p22m21 i e
→d~p!52pL~p!d1~p22m2!, ~1!

whereL(p)51 or p” 1m for scalar and spinor particles, re
spectively. We shall calld(p) the ‘‘on-mass-shell particle
propagator.’’ Thus, in the two-body case, the propaga
G0(P,p)5d1(P2p)d2(p) in the BS equation

T~P;k8,k!5K~P;k8,k!

1E d4p

~2p!4
K~P;k8,p!G0~P,p!T~P;p,k!

~2!

is replaced byG0(P,p)5d1(P2p)d2(p):
y
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G0~P,p!5H 2pd1~P2p!d1~p22m2
2! for scalar particle 2,

2pd1~P2p!d1~p22m2
2!~p” 1m2! for spinor particle 2.

~3!
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This replacement turns the BS equation into the fo
dimensional equation

T~P;k8,k!5K~P;k8,k!

1E d4p

~2p!4
K~P;k8,p!G0~P,p!T~P;p,k!,

~4!

which after a trivial integration overp0 becomes the three
dimensional ‘‘spectator equation’’ for thet matrix @in this
sense, we shall also refer to four-dimensional equations
Eq. ~4! as being ‘‘three dimensional’’#. The significance of
expressing the three-dimensional spectator equation in
four-dimensional form of Eq.~4! is that we can then apply
our gauging of equations method directly to Eq.~4! in just
the same way as was done for the BS case in Ref.@1#.

Yet an immediate problem arises. As the gauging of
equation involves the gauging of all terms in the equati
we are faced with having to gauge the on-mass-shell o
body propagatord(p) in Eq. ~4!. The resulting gauged on
mass-shell one-body propagatordm(p8,p) needs to satisfy
both the Ward-Takahashi identity and the Ward identity
the overall gauging procedure is to yield results that
gauge invariant and that obey charge conservation~as we
shall see later, it is possible for a gauged on-mass-s
propagator to satisfy the Ward-Takahashi identity but not
Ward identity!. How to gauged(p) so that both these iden
tities are satisfied is therefore the key question that need
be answered before a unified three-dimensional descrip
can be given. The major part of this paper is devoted
answering this question. With this achieved, we then go
and demonstrate the gauging procedure by deriving
gauge-invariant three-dimensional expression for deute
photodisintegration within the spectator approach. Appli
tion to the three-dimensional three-nucleon problem is gi
in a separate work@9#. Clearly, the gauging method we pro
pose is directly applicable to any system of hadrons
which the strong interaction spectator equations can be w
ten down.

It is also important to realize that although we concentr
our efforts in this paper on the electromagnetic interact
for which gauge invariance~or current conservation! is a
major issue, the gauging of equations method itself is tot
independent of the type of external field involved. Thus
procedure for obtaining three-dimensional equations for tr
sition currents outlined in this paper is valid ‘‘as is’’ for th
case of other interactions~e.g., weak! when the external field
is that of aW or other gauge boson. Only gauged inputs li
the nucleon vertex functionGm would need to be changed.

II. GAUGED ON-MASS-SHELL PROPAGATOR

To discuss the gauging of the one-body on-mass-s
propagatord(p), it is sufficient to consider a bound two
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body system and its interaction with an external electrom
netic field. In the BS approach, two-body scattering is d
scribed by Eq.~2! and the two-body bound state is describ
by the equation

FP~k!5E d4p

~2p!4
K~P;k,p!G0~P,p!FP~p!, ~5!

whereFP is the bound-state vertex function. Interaction wi
an external electromagnetic field is then described by
bound-state current@10#

^P8uJm~0!uP&

5E d4p

~2p!4
F̄P8~p8!d1~P2p!d2

m~p8,p!FP~p!

1E d4p

~2p!4
F̄P8~P2p!d1

m~p8,p!d2~P2p!FP~P2p!

1E d4k

~2p!4

d4p

~2p!4
F̄P8~k!d1~P82k!

3d2~k!Km~P8,k;P,p!d1~P2p!d2~p!FP~p!, ~6!

whereq5P82P5p82p is the four-momentum of the in
coming photon,Km is the interaction current, and

di
m~p8,p!5di~p8!G i

m~p8,p!di~p! ~7!

is the gauged Feynman propagator for particlei , with
G i

m(p8,p) being the particle’s electromagnetic vertex fun
tion. Equation~6! is illustrated in Fig. 1. A simple way to
derive Eq.~6! is to gauge the BS equation for the two-bod
Green function@1#. As di is the propagator of a particle
without dressing, consistency requires thatG i

m(p8,p) be the
bare electromagnetic vertex, i.e., for a scalar or spinor p
ticle of chargeei , G i

m(p8,p)5ei(p81p)m or eig
m, respec-

tively. The case where dressing is included does not ad
the essential discussion of this paper and is therefore
egated to the Appendix.

The three-dimensional reduction of Eqs.~5! and ~6! by
putting particle 2 on mass shell was discussed by Gross

FIG. 1. The two-body bound-state current^P8uJm(0)uP& as
given by Eq.~6!.
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56 2965GAUGING THE SPECTATOR EQUATIONS
Riska ~GR! @11#. Replacingd2 by d2 in Eq. ~5! gives the
bound-state spectator equation

FP~k!5E d4p

~2p!4
K~P;k,p!G0~P,p!FP~p!. ~8!

In Eq. ~6!, d2 can be replaced byd2 in the second and third
terms on the right-hand side~RHS! of the equation~second
and third terms of Fig. 1!, thus reducing the four-dimensiona
integrations to three-dimensional ones, and at the same
reducing the BS bound-state vertex functions to the quas
tential ones. Unfortunately it is impossible to do th
same replacement for both propagators ofd2

m(p8,p)
5d2(p8)G2

m(p8,p)d2(p) in the first term on the RHS of Eq
~6! ~first term of Fig. 1!, as at the very least this would mak
the bound-state current diverge at zero momentum tran
To avoid this problem, GR replaced the first term by a s
of two terms corresponding to particle 2 being on mass s
to the right and to the left of the photon. That is, their p
scription is equivalent to the gauge-invariant replacemen

dm~p8,p!→d8m~p8,p!5d~p8!Gm~p8,p!d~p!

1d~p8!Gm~p8,p!d~p!. ~9!

Although this prescription has been used in a number
calculations@12–14#, we shall see below that it leads to th
breaking of charge conservation. For this reason, here
propose a different gauge-invariant replacement

dm~p8,p!→dm~p8,p!

5 i
d~p8!Gm~p8,p!L~p!2L~p8!Gm~p8,p!d~p!

p22p82
,

~10!

which does lead to charge conservation. Equation~10! can
also be written in the form

dm~p8,p!52p iL~p8!Gm~p8,p!L~p!

3
d1~p822m2!2d1~p22m2!

p22p82
, ~11!

showing thatdm(p8,p) is explicitly regular atp22p8250.
Using this replacement, together with that of Eq.~1!, the
bound-state current of Eq.~6! is reduced to the three
dimensional expression

^P8uJm~0!uP&

5E d4p

~2p!4
F̄P8~p8!d1~P2p!d2

m~p8,p!FP~p!

1E d4p

~2p!4
F̄P8~P2p!d1

m~p8,p!d2~P2p!FP~P2p!

1E d4k

~2p!4

d4p

~2p!4
F̄P8~k!d1~P82k!

3d2~k!Km~P8,k;P,p!d1~P2p!d2~p!FP~p!. ~12!

Just as Eq.~6! can be derived by gauging the BS equation
the two-body Green function@1#, one can similarly show tha
e
o-

er.
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Eq. ~12! results from the gauging of the spectator equat
for the two-body Green function, withdm(p8,p) being the
result of gaugingd(p). Thus Eq.~10! @or Eq. ~11!# consti-
tutes our answer to the question of how to gauge the
mass-shell particle propagator.

III. PROPERTIES OF THE GAUGED ON-MASS-SHELL
PROPAGATOR

A. Gauge invariance

In order to prove that the bound-state current of Eq.~12!
satisfies current conservation, all we need to do is follow
corresponding proof for the bound-state current of Eq.~6! in
the original four-dimensional BS approach of Ref.@1#. In-
deed, to keep the correspondence with the four-dimensio
BS approach, we will use Eq.~1! for the propagatord(p)
and Eq.~10! for the gauged propagatordm(p8,p), but we
will not get rid of the relative energy integration in Eq.~12!
~with the help of thed functions contained ind and dm).
Thus our derivation will look identical to the one in th
four-dimensional BS approach, except that particle 2 w
have the propagatord(p) instead of the usual oned(p).

Following this strategy, there is no need to repeat
proof of current conservation here, except to note that a n
essary ingredient in the proof of the BS case is the Wa
Takahashi identity for the propagatord(p). Thus to prove
current conservation for the three-dimensional expressio
Eq. ~12!, it is sufficient to show that the on-mass-shell prop
gatord(p) likewise satisfies the Ward-Takahashi identity

~pm8 2pm!dm~p8,p!5 ie@d~p!2d~p8!#. ~13!

To prove Eq.~13!, all that is required is a simple evaluatio
of dm(p8,p) as given by Eq.~10!. In the case of a spino
particle,Gm5egm, and one part of Eq.~10! gives

~pm8 2pm!d~p8!Gm~p8,p!L~p!

52p ied1~p822m2!~p” 81m!~p” 82p” !~p” 1m!

52p ied1~p822m2!@~p822m2!~p” 1m!

2~p” 81m!~p22m2!#

52 ied~p8!~p22p82!. ~14!

Similarly the other part of Eq.~10! gives

~pm8 2pm!L~p8!Gm~p8,p!d~p!52 ied~p!~p22p82!.
~15!

The Ward-Takahashi identity of Eq.~13! follows immedi-
ately. In the case of a scalar particle the algebra showing
~13! is even simpler.

B. Charge conservation

Although current conservation, according Noether’s the
rem, implies charge conservation, in the currently used
minology ‘‘charge conservation’’ means that the express
for the bound-state electromagnetic current of Eq.~6! should
give the charge of the composite system at zero momen
transfer if one uses the relativistic normalization conditi
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for the bound-state vertex function@15,16#. Here we shall
show that this is the case also for the three-dimensional
pression of Eq.~12! if one uses our choice for the gauge
on-mass-shell propagator, Eq.~10!.

It is convenient at this stage to introduce a symbolic n
tation for some of our equations. For example, we write
bound-state BS equation, Eq.~5!, symbolically as

FP5KG0FP , ~16!

where G05d1d2, and the corresponding equation for th
bound-state current, Eq.~6!, as

j m~P8,P!5^P8uJm~0!uP&5F̄P8~G0
m1G0KmG0!FP .

~17!

Here we have also used the fact that the gauged two-par
propagator is given by@1#

G0
m5~d1d2!m5d1

md21d1d2
m . ~18!

The spectator version of the above three equations is
tained by making the replacementG0→G0 ~which implies
that d2→d2). Below we shall occasionally use such sym
bolic notation without further explanation.

To prove charge conservation for the three-dimensio
spectator approach, we use the philosophy outlined ab
namely, we follow the proof of the four-dimensional BS ca
only replacing the Feynman propagator of particle 2 by
on-mass-shell version. The proof of the BS case relies on
fact that the Feynman propagatord(p) satisfies the Ward
identity

dm~p,p!52 ie
]d~p!

]pm
. ~19!
th
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Similarly, because the interaction currentKm is an input to
the expression of Eq.~17!, it too must be constructed to
satisfy the Ward identity, which in the two-particle ca
reads

Km~P,k;P,p!52 i Fe2

]K~P,k,p!

]km
1

]K~P,k,p!

]pm
e2

1~e11e2!
]K~P,k,p!

]Pm
G . ~20!

Combining the last two equations with the relativistic no
malization condition for the bound-state vertex function,

2 i F̄PS ]G0

]Pm
1G0

]K

]Pm
G0DFP52Pm , ~21!

one then obtains the charge conservation condition

^PuJm~0!uP&5F̄P~G0
m1G0KmG0!FP52QPm , ~22!

whereQ is the total charge of the two-body system.
To show charge conservation in the three-dimensio

case, we see that it is sufficient to prove the Ward identity
our on-mass-shell propagator:

dm~p,p!52 ie
]d~p!

]pm
. ~23!

The rest of the proof is the same as above, but withG0
everywhere replacingG0.

We shall prove Eq.~23! for the spinor particle case b
again using a direct evaluation of our expression
dm(p,p):
dm~p,p!522p iL~p!gmL~p!
]d1~p22m2!

]p2

522p ie~p” 1m!gm~p” 1m!
]d1~p22m2!

]p2
522p ie@2pm~p” 1m!2gm~p22m2!#

]d1~p22m2!

]p2

522p ieF ~p” 1m!
]d1~p22m2!

]pm
2gm

]~p22m2!d1~p22m2!

]p2
1gm

]~p22m2!

]p2
d1~p22m2!G

522p ieF ~p” 1m!
]d1~p22m2!

]pm
1gmd1~p22m2!G522p ie

]~p” 1m!d1~p22m2!

]pm
52 ie

]d~p!

]pm
.

tion
It should be emphasised that we did not try to obtain
Ward identity of Eq.~23! from the Ward-Takahashi~WT!
identity of Eq.~13! as there is an ambiguity in extracting th
value ofdm(p,p) in this way. Indeed a good example of th
ambiguity is the GR expression for the gauged on-mass-s
propagator, Eq.~9!, which satisfies the WT identity of Eq
~13! as well, but does not satisfy the Ward identity of E
~23! since it differs from Eq.~10! by the term
e

ell

.

dm~p8,p!2d8m~p8,p!

52d~p8!Gm~p8,p!d~p!

524p2L~p8!Gm~p8,p!L~p!

3d1~p822m2!d1~p22m2!, ~24!

which does not vanish at zero momentum transfer. Equa
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~24! is derived by paying careful attention to thei e terms
present in the one-particle propagators ind8m(p8,p) and us-
ing the fact that, forq2,4m2,

d2~p822m2!d1~p22m2!5d1~p822m2!d2~p22m2!50.

This means that the use of Eq.~9! does not lead to charg
conservation~in contrast to what is claimed in Ref.@16#!.
The ambiguity of extractingdm from the WT identity can be
seen explicitly from the fact that

qm@dm~p8,p!2d8m~p8,p!#

524p2~pm8 2pm!L~p8!Gm~p8,p!L~p!

3d1~p822m2!d1~p22m2!

524p2~p” 81m!~p” 82p” !~p” 1m!d1~p822m2!

3d1~p22m2!50,

while

dm~p,p!2d8m~p,p!Þ0.
m

C. Comparison of the two prescriptions

In the previous discussion of charge conservation
found a significant difference between our prescription
the gauged on-mass-shell propagator and the one of G
the point q50. Here we would like to compare the tw
prescriptions also forqÞ0.

The first thing to note is that there is no difference b
tween the two prescriptions forq2.0 as well as forq250
~but qÞ0), since the product of the twod functions in Eq.
~24! will always be zero under these conditions. Thus o
prescription will not change the results of Ref.@14# where
pion photoproduction off a nucleon was calculated using
GR prescription. On the other hand, forq2,0, which in-
cludes the case of electron scattering, the contribution of
~24! is not zero. We would therefore like to investigate th
difference between the two prescriptions when applied to
two-body bound-state current in the case whereq2,0. Writ-
ing the bound-state current symbolically as in Eq.~17!, the
difference in using the two prescriptions in Eq.~17! is clearly
given by

D j m~P8,P!5F̄P8~G80
m2G0

m!FP . ~25!

Using Eq.~24!, numerically we have that
D j m~P8,P!5E d4p

~2p!4
F̄P8~p8!d1~P2p!d2~p8!G2

m~p8,p!d2~p!FP~p!

5E d3p

~2p!2

1

2Ap21m2
F̄P8~p8!d1~P2p!L2~p8!d1~p822m2!G2

m~p8,p!L2~p!FP~p!

5E d3p

~2p!2

1

2Ap21m2
C̄P8~p8!d1~p822m2!G2

m~p8,p!d1
21~P2p!CP~p!, ~26!
-
ed

of

q.
this
-

where we have introduced the wave functionCP(p) defined
by

CP~p!5d1~P2p!L2~p!FP~p!up05Ap21m2 . ~27!

For the scalar particle case in the Breit reference fra
whereq050 andP852P5q/2, we have that

D j m~P8,P!52 i E d3p

~2p!2

1

2Ap21m2
C̄P8~p1q!

3G2
m~p8,p!CP~p!uqu21d~2pz1uqu!

3S M22Aq214M2Ap21m21
q2

2 D ,

~28!

where we have chosen thez axis alongq to write

d~2p•q1q2!5uqu21d~2pz1uqu!, ~29!
e

which is valid forqÞ0. From Eq.~28! it is clearly seen that
D j m(P8,P) diverges asq→0.

To estimate the significance ofD j m(P8,P) at values ofq
away from zero, we may compare Eq.~28! with the second
term on the RHS of Eq.~12!, which describes the contribu
tion to the bound-state current of the particle 1 gaug
~Feynman! propagator:

E d3p

~2p!2

1

2Ap21m2
C̄P8~p!G1

m~P82p,P2p!CP~p!.

~30!

It can be seen that these two contributions are roughly
comparable size.

IV. DERIVATION

Having established the validity of our expression of E
~10! for the gauged on-mass-shell particle propagator, in
section we would like present two ‘‘derivations’’ of this ex
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pression that can give a better insight into the origin of t
particular form.

A. Connection with the four-dimensional approach

Here we show that our gauged on-mass-shell part
propagator corresponds to the contribution of the posi
energy propagator poles of the corresponding term in
four-dimensional BS expression for the bound-state curr

The relevant term is the first term on the RHS of Eq.~6!:
th

e

n

n

n
a

s

le
e
e
t.

A5E d4p

~2p!4
F̄P8~p8!d1~P2p!d2~p8!

3G2
m~p8,p!d2~p!FP~p!.

Ignoring all poles in the complexp0 plane except those con
tained in the twod2 propagators, we may close thep0 inte-
gration contour in the bottom half plane to obtain that
A52E d4p

~2p!4

F̄P8~p8!d1~P2p!L2~p8!G2
m~p8,p!L2~p!FP~p!

@~p01q0!22v821 i e#~p0
22v21 i e!

'2p i E d4p

~2p!4
F̄P8~p8!d1~P2p!L2~p8!F d2

1~p822m2!

p22m26 i e
1

d2
1~p22m2!

p822m27 i e
GG2

m~p8,p!L2~p!FP~p!

5E d4p

~2p!4
F̄P8~p8!d1~P2p!@d2~p8!G2

m~p8,p!d2~p!1d2
2~p8!G2

m~p8,p!d2~p!#FP~p!, ~31!

5E d4p

~2p!4
F̄P8~p8!d1~P2p!@d2~p8!G2

m~p8,p!d2
2~p!1d2~p8!G2

m~p8,p!d2~p!#FP~p!, ~32!
opa-
where it is important to notice that

d2~p!5
iL~p!

p22m22 i e
5d~p!22pL~p!d~p22m2!

~33!

differs from the Feynman propagatord(p) in the sign of the
i e term. We can use either of the forms Eq.~31! or Eq. ~32!
to extract the gauged on-mass-shell propagator since
both give the same result. We can choose, for example,

dm~p8,p!5d~p8!Gm~p8,p!d~p!1d2~p8!Gm~p8,p!d~p!
~34!

5 i
d~p8!Gm~p8,p!L~p!2L~p8!Gm~p8,p!d~p!

p22p821 i e
.

~35!

Noticing that the latter expression is regular atp22p8250,
it becomes clear that thei e term may be dropped from th
denominator, in this way giving our expression of Eq.~10!.

Note that Eq.~34! is particularly useful for a compariso
with the prescription of GR given by Eq.~9!. The difference
lies in the sign of thei e term in d2(p8). As shown above,
this difference is crucial for charge conservation.

B. Derivation by minimal substitution

It is well known that gauging a momentum-depende
quantity by minimal substitutionpm→pm1eAm(x) guaran-
tees not only gauge invariance but charge conservatio
well. For this reason it would be interesting to see if we c
ey

t

as
n

derive our form fordm(p8,p) by implementing the minimal
substitution procedure in the on-mass-shell propagatord(p).
The way that this can be done is by expressingd(p) in terms
of the difference of Feynman propagators:

D~p![d~p!2d2~p!5
iL~p!

p22m21 i e
2

iL~p!

p22m22 i e

52pL~p!d~p22m2!. ~36!

Thus d(p)5u(p0)D(p). Now by implementing minimal
substitution in Eq.~36! we will clearly obtain that

Dm~p8,p!5d~p8!Gm~p8,p!d~p!2d2~p8!Gm~p8,p!d2~p!

5@d~p8!2d2~p8!#Gm~p8,p!d~p!

1d2~p8!Gm~p8,p!@d~p!2d2~p!#

5D~p8!Gm~p8,p!d~p!1d2~p8!Gm~p8,p!D~p!.

~37!

If we now drop the negative energyd functions in theD ’s,
we derive the expression for the gauged on-mass-shell pr
gator,

dm~p8,p!5d~p8!Gm~p8,p!d~p!1d2~p8!Gm~p8,p!d~p!,
~38!

which is the same result as Eq.~34!.
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V. APPLICATION TO DEUTERON
PHOTODISINTEGRATION

With the gauged on-mass-shell propagator specified,
now have all that is needed to derive gauge-invariant th
dimensional expressions within the spectator approach
any system of hadrons interacting with an external elec
magnetic field. Here we would like to demonstrate our ga
ing procedure by calculating the amplitude for deuteron p
todisintegration.

As the hadronic system of interest here consists of
identical nucleons, some of the previous expressions g
for the distinguishable particle case need to be slightly mo
fied. In particular, the bound-state spectator equation
identical nucleons is given by (F[FP)

F5
1

2
KG0F, ~39!

where the kernelK is the sum of all possible irreducibl
diagrams for identical particles and is therefore antisymm
ric under the exchange of nucleon labels.

In the four-dimensional approach of Ref.@1#, thed→NN
transition currentj 0

m is given by

j 0
m5G0

21@G0F#m5Fm1G0
21G0

mF, ~40!

where Fm is the gauged vertex function to be discuss
shortly. The last equality in Eq.~40! was obtained by using
the rule for gauging products@1#. To turn this BS expression
into a three-dimensional one using the spectator approach
we need to do is replace the BS version ofF by the one that
satisfies the spectator equation, Eq.~39!. But we do not re-
placeG0 by G0 in Eq. ~40! as this would introduce an un
physicald-function behavior into the photoproduction amp
tude. To obtain an expression forFm we gauge Eq.~39!,

Fm5
1

2
~KmG0F1KG0

mF1KG0Fm!, ~41!

which may be solved forFm, giving

Fm5
1

2S 12
1

2
KG0D 21

~KmG0F1KG0
mF!. ~42!

To simplify this expression we use the equations for
two-nucleont matrix T. In the spectator approximation the
are given by

T5K1
1

2
KG0T5K1

1

2
TG0K, ~43!

from which the relation

S 12
1

2
KG0D 21

511
1

2
TG0 ~44!

follows. Using this in Eq.~42! we obtain that

Fm5
1

2S 11
1

2
TG0DKmG0F1

1

2
TG0

mF, ~45!

where
e
e-
or
-
-
-

o
n

i-
r

t-

d

all

e

G0
m5~d1d2!m5d1

md21d1d2
m . ~46!

The d→NN transition current is therefore given by

j 0
m5FG1

md11G2
md21

1

2S 11
1

2
Td1d2DKmd1d2

1
1

2
T~d1d2

m1d1
md2!GF, ~47!

where we have used Eq.~7!. This expression can be used
calculate the deuteron photodisintegration amplitude by c
tracting Eq.~47! with the photon polarization vector«m .

An interesting aspect of Eq.~47! is the appearance of th
Feynman propagatord2 in the second term on the RHS
while in all other parts of the equation@including the equa-
tion for T, Eq. ~43!# the on-mass-shell propagatord2 is used.
This is, of course, a consequence of us having usedG0 in-
stead ofG0 in Eq. ~40!. Usingd2 here is reasonable since it
not inconsistent with the spectator approach, and it avo
the unphysical behavior of amplitudes that would result ifd2
were used instead. On the other hand, it is not entirely c
if this singular use ofd2 will affect the gauge invariance o
the electromagnetic transition currentj 0

m . We shall therefore
show explicitly that the expression forj 0

m given by Eq.~40!
does indeed satisfy gauge invariance despite the use ofG0 in
this equation.

Equation ~40! is a symbolic equation whose numeric
form simplifies down to

j 0
m~k1 ,k2 ;P!

5FP
m~k1 ,k2!1d21~k1!dm~k1 ,k12q!FP~k12q,k2!

1d21~k2!dm~k2 ,k22q!FP~k1 ,k22q!, ~48!

where we show the momenta of both particles explicitly, a
it is understood thatk11k25P1q whereq is the momen-
tum of the incoming photon. By construction, the input qua
tities Km, dm, anddm satisfy the WT identities

2 iqmKm~p18p28 ;p1p2!5e1K~p182q,p28 ;p1p2!

2K~p18p28 ;p11q,p2!e1

1e2K~p18 ,p282q;p1p2!

2K~p18p28 ;p1 ,p21q!e2 , ~49!

2 iqmdm~p8,p!5ed~p!2d~p8!e, ~50!

2 iqmdm~p8,p!5ed~p!2d~p8!e, ~51!

respectively. In Eq.~49! we again use a notation where th
momentum of each particle is shown explicitly and whe
p181p285p11p21q. In Eqs.~50! and~51! we similarly have
that p85p1q. Using these relations it is easy to show th
the WT identity forFm is given by

2 iqmFP
m~k1 ,k2!5e1FP~k12q,k2!1e2FP~k1 ,k22q!,

~52!
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wherek11k25P1q. Then using the WT identities fordm

andFm in calculating the divergence of Eq.~48!, we obtain
that

qm j 0
m~k1 ,k2 ;P!5 ie1d21~k1!d~k12q!FP~k12q,k2!

1 ie2d21~k2!d~k22q!FP~k1 ,k22q!,

~53!

which is zero for on-mass-shell nucleons (k1
25k2

25m2).

VI. SUMMARY

In this work we have shown how to construct thre
dimensional integral equations that describe a system of
rons and their interaction with an external electromagn
field. The equations are relativistic~covariant!, unitary,
gauge invariant, and conserve charge. Our method is b
upon a recent work where we show how four-dimensio
integral equations of quantum field theory can be gauged
that an external photon is coupled to all possible places in
underlying strong interaction perturbation graphs, witho
the need to do a perturbation expansion@1#.

The starting point of our construction is a set of fou
dimensional integral equations of relativistic quantum fie
theory describing the system of hadrons in questions.
example, for the two-nucleon system below pion product
threshold the starting point would be the Bethe-Salpe
equation, while above pion production threshold the eq
tions of Ref. @17# would be appropriate. We do not gaug
these equations at this stage, but instead convert them t
spectator equations of Gross@5# by the introduction of the
‘‘on-mass-shell propagator’’ d. The modified four-
dimensional equations are then gauged just in the same
as was done for the four-dimensional equation of fi
theory.

The three-dimensional reduction then rests on the c
struction of a gauged on-mass-shell propagatordm. A dm that
satisfies both the Ward-Takahashi and Ward identities is n
essary for the gauge invariance and charge conservatio
the final equations. We have shown how such a gauged
mass-shell propagator can be constructed and compare
results with what was proposed in the literature@11#. With
dm specified, we then demonstrated our gauging proced
by constructing the amplitude for deuteron photodisinteg
tion within the spectator approach.

Our gauging procedure can be easily applied to m
complicated systems. For example, in Ref.@9# we have used
it to derive gauge-invariant three-dimensional expressi
for the gauged three-nucleon system. It also does not dep
on the nature of the external gauge field. Thus it can equ
well be used to describe the weak interactions of hadro
systems.
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APPENDIX

In the above discussion our particles were assumed t
structureless. Here we show one way to include electrom
netic form factors that preserves gauge invariance and ch
conservation. Our approach is close in spirit to the one u
by Gross and Riska@11#.
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As before, the three-dimensional reduction is effected
the replacement

d~p!5
iL~p!

p22m21 i e
→d~p!52pL~p!d1~p22m2!,

~A1!

but where now~for spinor particles! L(p)Þp” 1m because
of dressing included ind(p). Nevertheless, the on-mass-sh
particle propagatord(p) is not affected by dressing excep
for an overall renormalization constantZ:

d~p!52pL~p!d1~p22m2!52pZ~p” 1m!d1~p22m2!.
~A2!

The latter result follows from the spectral decomposition
the dressed Feynman propagator

d~p!5
Z~p” 1m!

p22m21 i e
1R~p!, ~A3!

whereR(p) is a function that is regular atp25m2. Although
the on-mass-shell particle propagator of Eq.~A2! cannot
have dressing in the usual sense, one can nevertheless
duce an electromagnetic form factor into the gauged
mass-shell propagator through the definition

dm~p8,p!5 i
d~p8!Gm~p8,p!L~p!2L~p8!Gm~p8,p!d~p!

p22p82

~A4!

or in the explicitly regular form

dm~p8,p!52p iL~p8!Gm~p8,p!L~p!

3
d1~p822m2!2d1~p22m2!

p22p82
, ~A5!

where now the electromagnetic vertex functionGm(p8,p)
Þegm, but does satisfy the Ward-Takahashi identity

~p82p!mGm~p8,p!5 ie@d21~p8!2d21~p!#. ~A6!

On the mass shellGm takes on the usual form

Gm~p8,p!up825p25m25eFF1~q2!gm1 i
smn

2m
qnF2~q2!G .

~A7!

Thus we have at the same time a structureless on-mass-
propagator, Eq.~A2!, together with a gauged on-mass-sh
propagator that does have structure, Eq.~A5!. We will now
show that together they nevertheless satisfy the WT iden
This means that the structure described by Eq.~A5! does not
contribute to the WT identity.

1. Gauge invariance

As in the structureless case, to prove gauge invarianc
the theory it is sufficient to show that the on-mass-sh
propagatord satisfies the WT identity. We show this by ex
plicitly evaluatingdm; however, as an explicit form forGm is
no longer available, we make use of Eq.~A6! instead:
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~p82p!mdm~p8,p!522peL~p8!@d21~p8!2d21~p!#L~p!
d1~p822m2!2d1~p22m2!

p22p82

52peL~p8!Fd21~p8!L~p!
d1~p22m2!

m22p82
1d21~p!L~p!

d1~p822m2!

p22m2 G
52p ie@L~p!d1~p22m2!2L~p8!d1~p822m2!#5 ie@d~p!2d~p8!#, ~A8!
to

an
q
by

ion
s at
where we used that

d21~p8!d1~p822m2!5d21~p!d1~p22m2!50.
~A9!

2. Charge conservation

To prove charge conservation, it is again sufficient
show that the on-mass-sell propagatord satisfies the Ward
identity. As in the structureless case, the Ward identity c
not be deduced unambiguously from the WT identity of E
~A8! and, therefore, must be shown explicitly. This we do
using Eq.~A5! in the limit of zero momentum transfer:

dm~p,p!522p iL~p!Gm~p,p!L~p!
]d1~p22m2!

]p2
.

~A10!

To evaluateGm(p,p) we use its Ward identity,

Gm~p,p!5 ie
]d21~p!

]pm
. ~A11!

Then

1

2pe
dm~p,p!5L~p!

]d21~p!

]pm
L~p!

]d1~p22m2!

]p2

5
]

]p2FL~p!
]d21~p!

]pm
L~p!d1~p22m2!G

2
]

]p2FL~p!
]d21~p!

]pm
L~p!Gd1~p22m2!.

~A12!

Now

L~p!
]d21~p!

]pm
L~p!

5L~p!F]d21~p!L~p!

]pm
2d21~p!

]L~p!

]pm
G

-
.

52 i FL~p!
]~p22m2!

]pm
2~p22m2!

]L~p!

]pm
G

52 i F2pmL~p!2~p22m2!
]L~p!

]pm
G , ~A13!

so that

L~p!
]d21~p!

]pm
L~p!d1~p22m2!

522ipmL~p!d1~p22m2!. ~A14!

This last relation is similar to the bound-state normalizat
condition and can also be deduced by taking the residue
p25m2 in the identity

d~p!d21~p!d~p!5d~p!.

Substituting the last two results into Eq.~A12!, we obtain

i

2pe
dm~p,p!5

]

]p2
@2pmL~p!d1~p22m2!#2

]

]p2

3F2pmL~p!2~p22m2!
]L~p!

]pm
G

3d1~p22m2!

52pm
]

]p2
@L~p!d1~p22m2!#, ~A15!

where we used that

~p22m2!
]

]p2F]L~p!

]pm
Gd1~p22m2!50,

with all other terms canceling. We thus find that

dm~p,p!522ipme
]d~p!

]p2
52 ie

]d~p!

]pm
, ~A16!

as required.
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