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Gauging the spectator equations
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We show how to derive relativistic, unitary, gauge-invariant, and charge-conserving three-dimensional scat-
tering equations for a system of hadrons interacting with an electromagnetic field. In the method proposed, the
spectator equations describing the strong interactions of the hadrons are gauged using our recently introduced
gauging of equations method. A key ingredient in our model is the on-mass-shell particle propagator. We
discuss how to gauge this on-mass-shell propagator so that both the Ward-Takahashi and Ward identities are
satisfied. We then demonstrate our gauging procedure by deriving the gauge-invariant three-dimensional ex-
pression for the deuteron photodisintegration amplitude within the spectator approach.
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[. INTRODUCTION erful approach for practical calculations in quantum field
theory. All these reductions preserve covariance and unitar-
Recently we have shown how to describe the interactiority, and in this respect give rise to the question of which
of an electromagnetic probe with a hadronic system dereduction is to be preferrdé—8]. In Ref.[5], Gross showed
scribed by four-dimensional integral equatiofs]. Our  that his reduction scheme has the important property of giv-
method is based on the idea of gauging the integral equationigag a three-dimensional two-body equation that approaches
themselves and, in this way, incorporates the electromagnettde correct one-body equation in the limit when one of the
interaction into the hadronic description without the need formasses becomes very large. We find that the Gross reduction
any perturbation expansion. As a result, the external photogcheme is also appealing in that it easily lends itself to our
becomes attached to all possible places in every contributingauging of equations method.
Feynman diagram of the theory, so that gauge invariance and |n the Gross approach, also called the “spectator ap-
charge conservation are implemented in the theoretically cofroach,” three-dimensional equations are derived by restrict-
rect fashion. In Ref{1] we applied the gauging of equations jng some of the intermediate-state particlégpically the
method to the four-dimensional three-nucleon problemgpectator particlgsin the BS equation to their mass shell.
thereby obtaining gauge-invariant expressions for the elecgquivalently, the Feynman propagatatf these particles

tromagnetic currents_ of all possible transitions betweer]_n the BS equation are replaced by the quantiiesntain-
three-nucleon states induced by an external electromagnetigy 5 positive energy on-mass-shélfunction:

field. The power of the method was particularly evident in
the formulation of the three-body bound-state current where
a previously overlooked overcounting problem was solved
automatically by the natural appearance of a subtraction iA(p)
term. = 7
Combined with the integral equations describing the dip) p?—m?+ie
strong interactions, the gauging of equations method pro-
vides a consistent unified description of hadronic systems
and their interactions with an external electromagnetic fieldwhere A (p)=1 or p+m for scalar and spinor particles, re-
Since the starting point of Ref1] was relativistic quantum spectively. We shall calls(p) the “on-mass-shell particle
field theory, at this stage such a unified description is inherpropagator.” Thus, in the two-body case, the propagator
ently four dimensional. In view of the technical difficulty in G,(P,p)=d;(P— p)d,(p) in the BS equation
solving four-dimensional equations, the question naturally
arises if there is a way to do a three-dimensional reduction of
the unified description so that covariance, unitarity, gauge
invariance, and charge conservation are all preserved. This T(p:k’ k)=K(P:k’,k)
paper is devoted to answering this question.
In the strong interaction sector, three-dimensional reduc- d*p
tions of the Bethe-SalpetéBS) equation have been devel- f
oped over a number of yeal2—5] and now provide a pow-

—38(p)=2mA(p)s*t(p*—m?), (1)

@

*On leave from the Mathematical Institute of Georgian Academy
of Sciences, Thilisi, Georgia. is replaced byGy(P,p)=d(P—p)d:(p):
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2md,(P—p) &t (p2—m)) for scalar particle 2,

Go(P,p)= )

27d(P—p) &t (p?— m%)(p+ m,)  for spinor particle 2.

This replacement turns the BS equation into the fourbody system and its interaction with an external electromag-

dimensional equation netic field. In the BS approach, two-body scattering is de-
scribed by Eq(2) and the two-body bound state is described
T(P;k" k) =K(P;k’,k) by the equation
+f TP Pk p)Gu(PpIT(PipK) d*p
(amy P PG(P.RIT(PipK), @oi)- | S iK(PKPICHPPIPAR), )

4)

hich af ivial i . b he th where® is the bound-state vertex function. Interaction with
which after a“tr|VIa Integration 0\,/’e|oo ecomes the three- 5, axternal electromagnetic field is then described by the
dimensional “spectator equation” for the matrix [in this bound-state currertL0]

sense, we shall also refer to four-dimensional equations like

Eq. (4) as being “three dimensional’ The significance of

expressing the three-dimensional spectator equation in the®'[3#(0)|P)

four-dimensional form of Eq(4) is that we can then apply d*p

our gauging of equations method directly to Ed) in just :f D (n’ AR

the same way as was done for the BS case in [R&f. (27)4®P'(p Jdu(P=p)d2(p".P)Pe(P)
Yet an immediate problem arises. As the gauging of an

equation involves the gauging of all terms in the equation, d*p

we are faced with having to gauge the on-mass-shell one- +j (2m)

body propagatos(p) in Eq. (4). The resulting gauged on-

mass-shell one-body propagatét(p’,p) needs to satisfy f d*k  d4p —

Dp/(P—p)d(p’,p)da(P—p)Pp(P—p)

both the Ward-Takahashi identity and the Ward identity if 7 2Ppr (K)d1(P'—k)
the overall gauging procedure is to yield results that are (2m)" (2m)
gauge invariant and that obey charge conservatamwe wp! - _

shall see later, it is possible for a gauged on-mass-shell X do(KIKA(P K P,p)di(P=p)d2(p)Pe(p),  (6)
propagator_to satisfy the Ward-Takahashi identity but_not th‘?/vhereq= P'—P=p’—p is the four-momentum of the in-
Ward identity. How to gauges(p) so that both these iden-  ,ming photonk is the interaction current, and

tities are satisfied is therefore the key question that needs to
be answered before a unified three-dimensional description

can be given. The major part of this paper is devoted to di(p’,p)=di(p")I'{(p",p)di(p) )
answering this question. With this achieved, we then go on

and demonstrate the gauging procedure by deriving théé the gauged Feynman propagator for particlewith
gauge-invariant three-dimensional expression for deuteroh(p’,p) being the particle’s electromagnetic vertex func-
photodisintegration within the spectator approach. Application. Equation(6) is illustrated in Fig. 1. A simple way to
tion to the three-dimensional three-nucleon problem is giverglerive Eq.(6) is to gauge the BS equation for the two-body
in a separate worf9]. Clearly, the gauging method we pro- Green function[1]. As d; is the propagator of a particle
pose is directly applicable to any system of hadrons fowithout dressing, consistency requires th&{(p’,p) be the
which the strong interaction spectator equations can be writbare electromagnetic vertex, i.e., for a scalar or spinor par-
ten down. ticle of chargee;, I'(p’,p)=¢€;(p’ +p)* or e y*, respec-

It is also important to realize that although we concentratejvely. The case where dressing is included does not add to
our efforts in this paper on the electromagnetic interactiorthe essential discussion of this paper and is therefore rel-
for which gauge invariancgor current conservationis a  egated to the Appendix.
major issue, the gauging of equations method itself is totally The three-dimensional reduction of Ed§) and (6) by

independent of the type of external field involved. Thus theputting particle 2 on mass shell was discussed by Gross and
procedure for obtaining three-dimensional equations for tran-

sition currents outlined in this paper is valid “as is” for the

case of other interactior(g.g., weakwhen the external field P-p P P-p % P-p
is that of aW or other gauge boson. Only gauged inputs like N . ) I

the nucleon vertex functioh* would need to be changed.

PSP P-p k P
II. GAUGED ON-MASS-SHELL PROPAGATOR

To discuss the gauging of the one-body on-mass-shell FIG. 1. The two-body bound-state curre(®’|J*“(0)|P) as
propagators(p), it is sufficient to consider a bound two- given by Eq.(6).
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Riska (GR) [11]. Replacingd, by &, in Eq. (5) gives the Eg. (12) results from the gauging of the spectator equation
bound-state spectator equation for the two-body Green function, with*(p’,p) being the
result of gaugings(p). Thus Eq.(10) [or Eg. (11)] consti-
) tutes our answer to the question of how to gauge the on-
K(P:k,P)Go(P.p)Pp(p). ® mass-shell particle propagator.

d*p
)

q)P(k):j(z

4

In Eq. (6), d, can be replaced by, in the second and third ; pROPERTIES OF THE GAUGED ON-MASS-SHELL
terms on the right-hand sid®RkHS) of the equation(second PROPAGATOR

and third terms of Fig. } thus reducing the four-dimensional
integrations to three-dimensional ones, and at the same time A. Gauge invariance
reducing the BS bound-state vertex functions to the quasipo-
tential ones. Unfortunately it is impossible to do the

ia;n?p,;?[ﬂ?g??)e dnt( p;Oirn tkr)lgtt‘]irstptrgfn?goarfot;]se F?a(sp c;pr)Eq corresponding proof for the bound-state current of @Bgin
=0y 2(P,P)d> . i _di - -
(6) (first term of Fig. 3, as at the very least this would makenge original four-dimensional BS approach of REf]. In

In order to prove that the bound-state current of 8Q)
satisfies current conservation, all we need to do is follow the

the bound-state current diverge at zero momentum transfe eed, to keep the correspondence with the four-dimensional

To avoid this problem, GR replaced the first term by a su Sdapproachf, wehwill use qul) for the pro,pagatt())ré(p)
of two terms corresponding to particle 2 being on mass sheff" Eq.(lO)l or the gauge propage}to?“(p !p),. ut we
to the right and to the left of the photon. That is, their pre-Will notget rid of the relative energy integration in E42)

scription is equivalent to the gauge-invariant replacement (With the help of thes functions contained inj and ).
Thus our derivation will look identical to the one in the

d“(p’,p)—&"“(p",p)=46(p")I'*(p’,p)d(p) four-dimensional BS approach, except that particle 2 will
/ , have the propagata¥(p) instead of the usual ond(p).
o
Td(pT(p",p)é(p).  (9) Following this strategy, there is no need to repeat the
Although this prescription has been used in a number oproof of current conservation here, except to note that a nec-
calculationg12—-14), we shall see below that it leads to the essary ingredient in the proof of the BS case is the Ward-
breaking of charge conservation. For this reason, here w&akahashi identity for the propagatd(p). Thus to prove
propose a different gauge-invariant replacement current conservation for the three-dimensional expression of
d“(p’.p)— S4(p’.p) Eq. (12), it is sufficient to show that the on-mass-shell propa-
PP PP gator 6(p) likewise satisfies the Ward-Takahashi identity
_,9(p)"(p",p)A(p) ~ A(p")I"(p",p) 5(p)

p2—p'2 ’ (P.— P 8*(p’,p)=ie[s(p)—a(p")]. (13

(100  To prove Eq.(13), all that is required is a simple evaluation
of 8*(p’,p) as given by Eq(10). In the case of a spinor
particle,I'*=ey*, and one part of Eq.10) gives

which does lead to charge conservation. Equatith) can
also be written in the form

" (p",p)=2mi A(PIT*(P",P)A(P) (P, —P,) 8P )T*(p' ,P)A(P)

(A mm?) — 87 (p?-m?) =2mies (p'2—m?)(p’ +m)(p’ —p)(p+m)

RN , (1D
PP =2miest(p'2=m’)[(p'*—m?)(p+m)
showing thats*(p’,p) is explicitly regular atp?—p’?=0. Y 2_ 2
Using this replacement, together with that of Ed), the (B’ +m)(p~—m%)]
bound-state current of Eq6) is reduced to the three- =—ied(p")(p?—p’'?). (14)
dimensional expression
Similarly the other part of Eq10) gives
(P’[3%(0)[P) , , , , 22
4 (P,=P)A(PHTH#(P’,p)o(p)=—ied(p)(p —p )-(
p e ’ ! 15)
=f 2Pp/(p")d1(P—p)85(p",p)Pp(p)
(27) The Ward-Takahashi identity of E¢13) follows immedi-
dip ately. In the case of a scalar particle the algebra showing Eq.
+f 2P (PPIL(P P)&(P=p)@p(P—p) (131 even smpler
a
dk g B. Charge conservation
+f 2 —p4<I>p,(k)dl(P’ —k) Although current conservation, according Noether’s theo-
(2m)" (2m) rem, implies charge conservation, in the currently used ter-

% 8,(KIKA(P' k:P.p)d1(P—p)8.(p)® (12 minology “charge conservation” means that the expression
2(kOKAC PId1(P=P)&(P)Pe(p).  (12) for the bound-state electromagnetic current of @&g.should
Just as Eq(6) can be derived by gauging the BS equation forgive the charge of the composite system at zero momentum
the two-body Green functiofl], one can similarly show that transfer if one uses the relativistic normalization condition
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for the bound-state vertex functidi5,16. Here we shall  Similarly, because the interaction curréft is an input to
show that this is the case also for the three-dimensional exhe expression of Eq(l7), it too must be constructed to
pression of Eq(12) if one uses our choice for the gauged satisfy the Ward identity, which in the two-particle case
on-mass-shell propagator, E4.0). reads

It is convenient at this stage to introduce a symbolic no-
tation for some of our equations. For example, we write the KH(P,k;P,p)=—i

IK(P,k,p) N IK(P,k,p)
e
bound-state BS equation, Ecp), symbolically as

K, ap,, 2

€

Dp=KGdp, (16) +(el+ez)z9K(P,k,p)
P,

. (20)

where Gy=d;d,, and the corresponding equation for the

bound-state current, E¢6), as Combining the last two equations with the relativistic nor-
— malization condition for the bound-state vertex function,
j“(P",P)=(P’|3*(0)|P)=®p/(Gh+ GoKH Gq) Pp.
17 — [ Gy IK
—i®p| —=—+Gy—=Gg
Here we have also used the fact that the gauged two-particle Py Py
propagator is given bj1]

®p=2P,,, (22)

one then obtains the charge conservation condition

GH=(ddy)*=did,+d,d%. (18 _

(P[J#(0)| Py = Dp(Gh + GoK Go) Pp=2QP,, (22)

The spectator version of the above three equations is ob-

tained by making the replaceme®— Gy (which implies  whereQ is the total charge of the two-body system.

that d,— &,). Below we shall occasionally use such sym- To show charge conservation in the three-dimensional

bolic notation without further explanation. case, we see that it is sufficient to prove the Ward identity for
To prove charge conservation for the three-dimensionabur on-mass-shell propagator:

spectator approach, we use the philosophy outlined above;

namely, we follow the proof of the four-dimensional BS case . d8(p)

only replacing the Feynman propagator of particle 2 by our &(p,p)=—ie ., (23

on-mass-shell version. The proof of the BS case relies on the #

fact that the Feynman propagatd(p) satisfies the Ward The rest of the proof is the same as above, but wigh

identity everywhere replacin,.

We shall prove Eq(23) for the spinor particle case by

d#(p,p):_ieﬁd(p). (19 again using a direct evaluation of our expression for
Py o“(p.p):
. 96" (p*—m?)
5"(p.|0)=—27TIA(FJ)7”‘/\(D)(9—p2
a6t (p?—m? a6t (p?—m?
——amie(prm)yr(prm) o) o e apa(ptm) - p(p2— ) DT
Jp? Jp?
98" (p>—m?)  a(p?’—m*) 8T (pP—m?)  o(p>—m’)
=—2mie| (p+m —yk + yH 5T (p?—m?
mie| (p+m) P, Y pee Y pee (p )
98" (p?—m? (p+m)st(p?—m? 96
=—2mie (p+m)—(p )+y#5+(p2—m2) =—2mie (Prmo(p ) ie (p).
Py Py Py

It should be emphasised that we did not try to obtain thes#(p’,p)—&"*(p’,p)

Ward identity of Eq.(23) from the Ward-TakahashHiwT)

identity of Eq.(13) as there is an ambiguity in extracting the = —3&(p")I'*(p’,p) 8(p)
value of 8#(p,p) in this way. Indeed a good example of this _ 2 , ,
ambiguity is the GR expression for the gauged on-mass-shell —4m A(pOTE(P",P)A(P)
propagator, Eq(9), which satisfies the WT identity of Eq. X 8H(p'?2—m?) 6T (p?>—m?), (24)

(13) as well, but does not satisfy the Ward identity of Eq.

(23) since it differs from Eq(10) by the term which does not vanish at zero momentum transfer. Equation
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(24) is derived by paying careful attention to the terms
present in the one-particle propagatorssirf(p’,p) and us-
ing the fact that, fog><4m?,

&~ (p'?=m?) 8" (p?—m?) =57 (p'?=m?) & (p?~m?)=0.

This means that the use of E(@) does not lead to charge
conservation(in contrast to what is claimed in Ref16]).
The ambiguity of extracting* from the WT identity can be
seen explicitly from the fact that

qul0*(p",p) = 8"*(p",p)]
=—47%(p,— P AP )T*(p’,p)A(p)
X 8" (p'2=m?) 8" (p?~m?)
= — 472" +m)(p' — B)(p+m) 5" (p'2—m?
X 8% (p?—m?)=0,

)

while
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C. Comparison of the two prescriptions

In the previous discussion of charge conservation we
found a significant difference between our prescription for
the gauged on-mass-shell propagator and the one of GR at
the pointg=0. Here we would like to compare the two
prescriptions also foq+#0.

The first thing to note is that there is no difference be-
tween the two prescriptions faf*>0 as well as forg>=0
(but g#0), since the product of the twé functions in Eq.
(24) will always be zero under these conditions. Thus our
prescription will not change the results of Rgt4] where
pion photoproduction off a nucleon was calculated using the
GR prescription. On the other hand, fqf<0, which in-
cludes the case of electron scattering, the contribution of Eq.
(24) is not zero. We would therefore like to investigate this
difference between the two prescriptions when applied to the
two-body bound-state current in the case whgre 0. Writ-
ing the bound-state current symbolically as in ELjy), the
difference in using the two prescriptions in E7) is clearly
given by

AjH(P',P)=Dp/(G'E— G D (25
o*(p,p)— 8" *(p,p)#0. Using Eq.(24), numerically we have that
Aj#(P',P)= f <I>pr(p )d1(P—p)&2(p" )T5(p",p) 52(p)Dp(p)
:f dgp - Dp/(p')di(P—p)A(p) 8" (p'2—mAT4(p’,p)Ax(P)Pp(p)
(2m)2 2\Jp?+m? 22
f o = Ve (p') 8" (p'2—mA)T4(p’ ,p)d; L(P—p)¥p(p) (26)
(2m)2 2\p?+m? e 2 P

where we have introduced the wave functp(p) defined
by

Pp(p)=di(P—p)A(p)Pp(p)|po- pzrme-  (27)

For the scalar particle case in the Breit reference fram
whereqy=0 andP’=—-P=q/2, we have that
AjHMP',P) J &’p ! Ve, (p+Q)
f =—I ’
: (2m)2 24prme PP

XT4(p',p)¥p(p)|al " *8(2p,+|al)
2

VOP+4M2p?+ m? + % ,

x| M2—

(28)
where we have chosen thlzeaxis alongq to write
?)=lal~*a(2p,+|al),

o(2p-q+q (29

which is valid forq# 0. From Eq.(28) it is clearly seen that
Aj*(P’,P) diverges ag—0.

To estimate the significance afj#(P’,P) at values ofg
away from zero, we may compare E@8) with the second
term on the RHS of Eq(12), which describes the contribu-
tion to the bound-state current of the particle 1 gauged

?Feynmam propagator:
f o /—z—z‘l’ (PTL(P'=p,P—p)¥p(p).
(2m)2 2Vp2rm p(P p,F=p)¥p(p

(30

It can be seen that these two contributions are roughly of
comparable size.

IV. DERIVATION

Having established the validity of our expression of Eq.
(10) for the gauged on-mass-shell particle propagator, in this
section we would like present two “derivations” of this ex-
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pression that can give a better insight into the origin of this d*p —
particular form. A=f ®p/(p’)d1(P—p)da(p”)
(2m)*
A. Connection with the four-dimensional approach XT#(p’,p)da(p)Pp(p).

Here we show that our gauged on-mass-shell particle
propagator corresponds to the contribution of the positive
energy propagator poles of the corresponding term in thégnoring all poles in the compleg, plane except those con-
four-dimensional BS expression for the bound-state currentiained in the twod, propagators, we may close tipg inte-
The relevant term is the first term on the RHS of Ei): gration contour in the bottom half plane to obtain that

Al —f d'p Pp:(p')di(P—pP)A2(PTE(P P)A2(P)Pp(P)

2m*  [(po+ o)’ —w'*+iel(pg—w’+ie)
. d4p - 5+(p/2_m2) 5+(p2_m2)
~2mf @p:(p')d1(P—P)A(p')| 55— +—5————|T4(p".p)Ao(p) Pp(p)
) p‘—m°tie p'“—m°Fie
d4p Y ! ! ! - ’ ’
=J (277)4‘1>pr(p )d1(P=p)[82(p")T4(p",p)d2(p)+d; (p")T5(p".P) 82(P) 1P p(P), (31
d4p Y ! ! ! - ’ ’
=f (277)4%'([) )d1(P=p)[32(p")T5(p",p)d; (p)+d2(p")I5(p’,p) S2(P) P p(P), (32
|
where it is important to notice that derive our form fors*(p’,p) by implementing the minimal
substitution procedure in the on-mass-shell propagétpy.
B iA(p) _— The way that this can be done is by expressig) in terms
d™(p)= mzd(p)—erA(p)b‘(p —m°) of the difference of Feynman propagators:
33 . .
&3 Aoymdip)d- (e AP IAD)
differs from the Feynman propagatd¢p) in the sign of the P)=ap P p’—m?+ie p?>-m’—ie
i e term. We can use either of the forms Eg1) or Eq.(32) y
to extract the gauged on-mass-shell propagator since they =2mwA(p)S(p*—m"). (36)

both give the same result. We can choose, for example,

Lo ey , ., , Thus 8(p)=6(pg)A(p). Now by implementing minimal
o(p".p)=4&(p")I*(p",p)d(p)+d"(p")I"(p ,p)5(p)(34) substitution in Eq(36) we will clearly obtain that

. S(p")I'*(p’,p)A(p)—A(p")T*(p’,p)&(p) A¥(p",p)=d(p")T*(p",p)d(p)—d~(p")I'*(p’,p)d " (p)
p?—p'?+ie ' =[d(p’)—d~(p")IT*(p’,p)d(p)

(39
e p? +d~(p")I*(p’,p)[d(p)—d~(p)]

Noticing that the latter expression is regulampat-p’'<=0, , , _, ,
it becomes clear that the term may be dropped from the =A(p)I*(p’,p)d(p) +d"(p")I*(p".p)A(P).
denominator, in this way giving our expression of EfQ). (37

Note that Eq.(34) is particularly useful for a comparison
with the prescription of GR given by E@9). The difference
lies in the sign of thee term ind™(p’). As shown above,
this difference is crucial for charge conservation.

If we now drop the negative energyfunctions in theA’s,
we derive the expression for the gauged on-mass-shell propa-
gator,

B. Derivation by minimal substitution

L ’ — ! ) ! - ' y ’
It is well known that gauging a momentum-dependent oH(p’,p)=o(p )T (p",p)d(p) +d" (p")I™(p ,p)5(%,8)

guantity by minimal substitutiop*— p*+eA*(x) guaran-
tees not only gauge invariance but charge conservation as
well. For this reason it would be interesting to see if we carwhich is the same result as E@4).
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V. APPLICATION TO DEUTERON Gh=(d18,)*=d45,+d, 8. (46)
PHOTODISINTEGRATION

With the gauged on-mass-shell propagator specified, wadhe d—NN transition current is therefore given by
now have all that is needed to derive gauge-invariant three-
dimensional expressions within the spectator approach for
any system of hadrons interacting with an external electro-
magnetic field. Here we would like to demonstrate our gaug-
ing procedure by calculating the amplitude for deuteron pho- n ET(d S+ dE 5,)
todisintegration. 2 P2 MLt

As the hadronic system of interest here consists of two
identical nucleons, some of the previous expressions givewhere we have used E(J). This expression can be used to
for the distinguishable particle case need to be slightly modi€alculate the deuteron photodisintegration amplitude by con-
fied. In particular, the bound-state spectator equation fotracting Eq.(47) with the photon polarization vectar, .
identical nucleons is given byl(=®p) An interesting aspect of Eq447) is the appearance of the
Feynman propagatod, in the second term on the RHS,
while in all other parts of the equatidincluding the equa-
tion for T, Eq. (43)] the on-mass-shell propagatéy is used.

) o ) This is, of course, a consequence of us having usgdn-
where the kerneK is the sum of all possible irreducible stead ofg, in Eq. (40). Usingd, here is reasonable since it is
diagrams for identical particles and is therefore antisymmetnot inconsistent with the spectator approach, and it avoids

o=

1 1
1—‘le+ng2+ E 1+ Eleéz) KMdléz

P, (47)

1
o= EKQ@@, (39)

ric under the exchange of nucleon labels. the unphysical behavior of amplitudes that would resudif
In the four-dimensional approach of R¢t], thed—NN  \ere used instead. On the other hand, it is not entirely clear
transition currenj is given by if this singular use ofl, will affect the gauge invariance of

. _ _ the electromagnetic transition currgit. We shall therefore
J7- 1 Pe=PH lou

J6=Co 1G] =PF+G, "Co @, (40 show explicitly that the expression fp§ given by Eq.(40)
where ®* is the gauged vertex function to be discusseddoes indeed satisfy gauge invariance despite the us of
shortly. The last equality in E40) was obtained by using this equation. _ _ _
the rule for gauging producfd]. To turn this BS expression  Equation(40) is a symbolic equation whose numerical
into a three-dimensional one using the spectator approach, 4fm simplifies down to

we need to do is replace the BS versiorfloby the one that

satisfies the spectator equation, E80). But we do not re- 16(K1.K2:P)

place Gy by G, in Eq. (40) as this would introduce an un- _ i 1 u _ _
physicals-function behavior into the photoproduction ampli- Pp(ky ka) +d " (ky)d (ks k1= q) Pp(ki =G kz)

tude. To obtain an expression fér* we gauge Eq(39), +d71(ky)d#(Ky ko — @) P p(Ky Ko —q), (48)
(I)MZE(K,U-goq) +KGED +KGydH), (41) yvhere we show the momenta of both partigles explicitly, and
2 it is understood thak; +k,=P+q whereq is the momen-
: o tum of the incoming photon. By construction, the input quan-
which may be solved fo@*, giving tities K#, d*, and 6* satisfy the WT identities
1 1 -t _
<I>“=§( 1- 5K90> (K*Go® +KGg®). (42 —i9,K*(p1p2:P1P2) =€1K(p;—d,p2;P1P2)

—K [APN AN + ,
To simplify this expression we use the equations for the (P1P2;P1+0.P2)es

two-nucleont matrix T. In the spectator approximation they +e,K(p1,ps—a;p1p2)
are given by -
L L —K(p1p2;P1,P2+0)€2, (49)
T=K+ zKG T=K+ -TGoK, (43 . ) '
277 27 ~iq,d“(p’,p)=ed(p)—d(p')e, (50)
from which the relation —iq,5(p’,p)=ed(p)—(p')e, (51)
_1 1
(1— EK%) =1+ ETQO (44 respectively. In Eq(49) we again use a notation where the
momentum of each particle is shown explicitly and where
follows. Using this in Eq(42) we obtain that P1tP,=p1tpP2+g. In Egs.(50) and(51) we similarly have
thatp’ =p+q. Using these relations it is easy to show that
1 1 1 the WT identity ford®# is given by
<I>“=§ 1+ ETQO K“g0<b+§Tg6‘<D, (45)

—iq,®p(Kky,ky)=€,Pp(k;—q,ky) +€,Pp(Ky k,—Q),
where (52
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wherek; +k,=P+q. Then using the WT identities fat* As before, the three-dimensional reduction is effected by
and®* in calculating the divergence of E18), we obtain  the replacement
that
» N ~ ~ iA(p) P
9,i6(ky,ky;P)=ie;d™ (k) d(k;—q)Pp(k;—q,k) d(p)=ma5(p)=2m\(p)5 (pe—m?),
- €
+ieyd (ko) d(ka— q) (ks ko~ ), (A1)
(53 but where now(for spinor particles A(p)+# p+m because
which is zero for on-mass-shell nuc|e0n§(: kg: mz)_ of dressing included Id(p) Nevertheless, the on-mass-shell
particle propagatob(p) is not affected by dressing except
VI. SUMMARY for an overall renormalization constant

In this work we have shown how to construct three- sp)=27A(p)st(p2—md)=27Z(p+m)st(p2—m?).
dimensional integral equations that describe a system of had- (A2)
rons and their interaction with an external electromagnetic
field. The equations are relativisticcovarianj, unitary,  The latter result follows from the spectral decomposition of
gauge invariant, and conserve charge. Our method is basele dressed Feynman propagator
upon a recent work where we show how four-dimensional
integral equations of quantum field theory can be gauged so Z(p+m)
that an external photon is coupled to all possible places in the d(p)=—5——=——*+R(p), (A3)
underlying strong interaction perturbation graphs, without pT—m tie

the need to do a perturbation expansith whereR(p) is a function that is regular g®=m?. Although

The starting point of our construction is a set of four- the on-mass-shell particle propagator of H42) cannot

dimensional integral equations of relativistic quantum field o .
theory describing the system of hadrons in questions. I:Oli)ave dressing in the usual sense, one can nevertheless intro-

example, for the two-nucleon system below pion productiorUCe an electromagnetic form factor into the gauged on-
threshold the starting point would be the Bethe-SalpeteMass-shell propagator through the definition
equation, while above pion production threshold the equa-

tions of Ref.[17] would be appropriate. We do not gauge su s o) S(p")I'™(p",p)A(p) — A(p")I'™*(p",p) 5(p)
these equations at this stage, but instead convert them to the ' p2—p’2
spectator equations of Gro§S] by the introduction of the (A4)

“on-mass-shell propagator” 6. The modified four-
dimensional equations are then gauged just in the same way in the explicitly regular form
as was done for the four-dimensional equation of field

theory. oH(p',p)=2miA(p")I'*(p’,p)A(p)

The three-dimensional reduction then rests on the con- P ) i )
struction of a gauged on-mass-shell propagatorA §* that % o (p'"—m)— 45" (p°—m) (AS)
satisfies both the Ward-Takahashi and Ward identities is nec- IOZ— p’2 ’

essary for the gauge invariance and charge conservation of
the final equations. We have shown how such a gauged ofvhere now the electromagnetic vertex functibt(p’,p)
mass-shell propagator can be constructed and compared o#ley*, but does satisfy the Ward-Takahashi identity
results with what was proposed in the literatfitd]. With
o* specified, we then demonstrated our gauging procedure (p’—p)ﬂl““(p’,p)=ie[dfl(p’)—dfl(p)]. (AB)
by constructing the amplitude for deuteron photodisintegra-
tion within the spectator approach. On the mass shell# takes on the usual form

Our gauging procedure can be easily applied to more
complicated systems. For example, in R€f. we have used , _ 2 ; 2
it to derive gauge-invariant three-dimensional expressions TH(p",p)lpra-pe-me=e| Fa(a%) y i 2m aF2(a7) |-
for the gauged three-nucleon system. It also does not depend (A7)
on the nature of the external gauge field. Thus it can equall )
well be used to describe the weak interactions of hadronié/rhus we have at the same time a structureless on-mass-shell
systems. propagator, Eq(A2), together with a gauged on-mass-shell

propagator that does have structure, &p). We will now
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APPENDIX 1. Gauge invariance

In the above discussion our particles were assumed to be AS in the structureless case, to prove gauge invariance of
structureless. Here we show one way to include electromaghe theory it is sufficient to show that the on-mass-shell
netic form factors that preserves gauge invariance and chargiopagators satisfies the WT identity. We show this by ex-
conservation. Our approach is close in spirit to the one useglicitly evaluatingé*; however, as an explicit form fdr* is
by Gross and Riskfl1]. no longer available, we make use of E(\6) instead:
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5 ( 12 __ 2) 5+(p m2)

(p'=p),8(p’,p)=—2meA(p")[d"*(p")—d~*(p)]A(pP) o2
+ + 12 _
) 8" (p?—m?) 8" (p?—m?)
=2meA(p)| dH(PIA(P) = +d HPIAP) —
=2mie[A(p)s* (p*~m?)—A(p') 8" (p'?—m?)]=ie[ 8(p)—d(p)], (A8)
|
where we used that _ d(p?—m?) IA(p)
_.[A(p)T_mz_mz)T}
dfl(p1)5+(p/2_m2):d71(p)5+(p2_mZ)ZOI M ( ) M
A9 . p
(A9 ~i| 20 (p) — (P (A13)
,u
2. Charge conservation
so that
To prove charge conservation, it is again sufficient to
show that the on-mass-sell propagatsatisfies the Ward ad~Y(p)
identity. As in the structureless case, the Ward identity cany\(p) P A(p)d*(p2—m?)
not be deduced unambiguously from the WT identity of Eq. Py
(A8) and, therefore, must be shown explicitly. This we do by = —2ip#A(p) &t (p2—m?). (A14)

using Eq.(A5) in the limit of zero momentum transfer:
This last relation is similar to the bound-state normalization
5t (p%—m?) condition and can also be deduced by taking the residues at
o (p,p)= —2wiA(p)F"(p,p)A(p)T. p2=m? in the identity
p

(A10) d(p)d~*(p)d(p)=d(p).

To evaluatd#(p,p) we use its Ward identity, o , i
Substituting the last two results into E@\12), we obtain

_ad*(p)
I'“(p,p)=ie . (Al11) i B " N e
~ -9 (PP)= —[2p A(p)&*(p?—m?)]-—;
Then
A
X 2p“A(p)—(p2—m2)m
1, A *(p)A 95" (p*—m?) 9Py
2me? (PPI=AMD) = AR 5 (b )
d ad~1 d
=—2[A(p) (p)A(p)rS*(pz—mz)} =2p*—[A(p)&™ (p*—m?)], (A15)
d ad~Y(p) P where we used that
a—pz[!\(p) n, A(p) 6" (pT—m°).
IN(P)| . B
(A12) (pz—mz)aIO2 7, 8" (p?~m?)=0,
Now
with all other terms canceling. We thus find that
A P
p p
P S*(p,p)=—2ipre—-— j(p):_ieﬁjép), (A16)
ad~(p)A dA p? ~
“A(p) (p) (p)_d_l(p) ()

P Py as required.
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