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Light front treatment of nuclei: Formalism and simple applications

Gerald A. Miller*
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

and National Institute for Nuclear Theory, Box 35150, University of Washington, Seattle, Washington 98195-1550
~Received 12 June 1997!

A relativistic light front treatment of nuclei is developed by performing light front quantization for a chiral
Lagrangian. The energy momentum tensor and the appropriate Hamiltonian are obtained. Three illustrations of
the formalism are made.~i! Pion-nucleon scattering at tree level is shown to reproduce soft pion theorems.~ii !
The one boson exchange treatment of nucleon-nucleon scattering is developed and shown~by comparison with
previous results of the equal time formulation! to lead to a reasonable description of nucleon-nucleon phase
shifts. ~iii ! The mean-field approximation is applied to infinite nuclear matter and the plus momentum distri-
butions of that system are studied. The mesons are found to carry a significant fraction of the plus momentum,
but are inaccessible to experiments.@S0556-2813~97!05511-8#

PACS number~s!: 13.75.Cs, 11.80.2m, 21.65.1f, 13.75.Gx
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I. INTRODUCTION

The need for a relativistic methodology that is broad
applicable to nuclear physics has never been more appa
One of our most important sets of problems involves und
standing the transition between the~baryon and meson! and
the ~quark and gluon! degrees of freedom. Using a relativi
tic formulation of the hadronic degrees of freedom is nec
sary to avoid a misinterpretation of a kinematic effect a
signal for the transition.

The goal of understanding future high-momentum stud
of nuclear targets using exclusive, nearly exclusive, or inc
sive processes can only be met through using relativi
techniques. The light front approach of Dirac@1# in which
the time variable is taken ast1z and the spatial variables ar
t2z,x,y @2,3# is one of the promising approaches becau
the momentum canonically conjugate tot2z, p1[p01p3,
is directly related to the observables.

It is worthwhile to begin with a qualitative explanation o
the utility of these light cone variables and this light fro
approach in a qualitative fashion. Consider lepton-nucl
deep inelastic scattering as a first example. The obse
structure function depends on the Bjorken variablexB j ,
which in the parton model is the ratio of the quark pl
momentum to that of the target. If one regards the nucleu
a collection of nucleons,xB j5p1/k1, wherek1 is the plus
momentum of a nucleon bound in the nucleus. Thus a m
direct relationship between the necessary nuclear theory
experiment occurs by using a theory in whichk1 is one of
the canonical variables. Sincek1 is conjugate to a spatia
variable x2[t2z, it is natural to quantize the dynamica
variables at the equal light cone time variable ofx1[t1z.
To use such a formalism is to use light front quantizat
since the other three spatial coordinates (x2,x') are on a
plane perpendicular to a lightlike vector@4#. This use of light
front quantization requires a new derivation of the nucl
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wave function because previous work used the equal t
formalism.

Are these light cone variables useful only in nuclear de
inelastic scattering? Let us answer this by examining the
gin of such coordinates. The four momentum of the incid
virtual photon q can be said to have the componen
q5(n,0,0,2n2Q2/2n), with q252Q2 and n,Q2 very
large but Q2/n finite ~the Bjorken limit!. Then
xB j[Q2/2k•q5Q2/k1q2. The condition that the reaction b
elastic scattering from the quarks is that (p1q)25p2 or
2p•q5Q25p1q2. Thus xB j5p1/k1 results from having
only one large momentum in the problem, which can
taken in the negativez direction, so that minus component
enhanced. More generally, one expects to be able to use
cone coordinates (p1,p2,p') whenever there is such a larg
momentum in the problem as in any high-energy scatter
process. Diverse applications are shown in the text by Ch
and Wu @5#. Examples of most relevance include hig
energy projectile nuclear scattering and high-moment
transfer quasielastic reactions involving nuclear targets.

Light front techniques have previously been applied
systems of two hadrons. The two main approaches have b
the relativistic quantum mechanics of directly interacti
particles @6–9# and relativistic field theory@2,10,11#. We
choose here to employ specific Lagrangians that embody
ral and other symmetries and thus use field theory.

The light front quantization procedure necessary to tr
nucleon interactions with scalar and vector mesons was
rived by Soper@12# and by Yan and collaborators@13,14#.
Here we combine the previous formalisms to obtain a lig
front treatment of a Lagrangian that contains pions, vec
and scalar mesons and respects the constraints of chiral
metry.

Here is an outline. The bulk of the formalism is present
in Sec. II. First, a chiral Lagrangian that includes pions, s
lar mesons, and neutral vector mesons is presented. The
equations are derived and the quantization procedure for
free and interacting fields are quantized at the zero of li
cone timex1. The energy momentum tensor, the light fro
Hamiltonian P2, and plus-momentum operatorP1 are de-
rived. The necessary contact interactions involving the
i-
2789 © 1997 The American Physical Society
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2790 56GERALD A. MILLER
change of instantaneous fermions and vector bosons are
tained. The principal purpose of the present work is
develop a technique that could have wide application
nuclear physics. Thus we study and check the present
malism by applying it to three different examples,pN and
NN scattering and a mean-field treatment of infinite nucl
matter, of relevance to nuclear physics. Dealing success
with each of these subjects is a prerequisite for mak
progress.

Section III shows how light front field theory leads to
chiral treatment of low-energy pion-nucleon scatterin
which is consistent with the results of soft pion theorem
Then nucleon-nucleon scattering is handled in a manife
covariant manner, within the one-boson approximation,
Sec. IV. A discussion of the impact of chiral symmetry
the two-nucleon intermediate state contribution to the tw
pion exchange potential is also included. The mean-field
proximation is applied to infinite nuclear matter in Sec.
Glazek and Shakin@15# used a Lagrangian containing nucl
ons and scalar mesons to study infinite nuclear matter. H
vector mesons are included and the rotational-invariance
guments used in Sec. IV are used to derive the Glaz
Shakin k1 variable. The energy of nuclear matter is com
puted and shown to be the same as found in the equal
formalism. The unique feature of the present formalism
the ability to obtain the nuclear and mesonic plus-momen
distributions from the energy momentum tensor. We find t
that mesons can carry a significant fraction of the nucl
plus momentum, but have support only at 0 plus moment
Some of the results for nuclear matter have been prese
elsewhere@16#; here the calculation is performed in two di
ferent ways and explained in more detail. Section VI su
marizes the results, presents a critique, and discusses
sible future applications. The Appendix contains a summ
of notation and some useful equations.

II. LIGHT FRONT QUANTIZATION

A. Lagrangian and field equations

We use a nonlinear chiral model in which the nucle
constituents are nucleonsc ~or c8), pionsp scalar mesons
f @17#, and vector mesonsVm. The LagrangianL is given by

L5
1

2
~]mf]mf2ms

2f2!2
1

4
VmnVmn1

mv
2

2
VmVm

1
1

4
f 2Tr~]mU]mU†!1

1

4
mp

2 f 2Tr~U1U†22!

1 c̄8FgmS i

2
]Jm2gvVmD2MU2gsfGc8, ~2.1!

where the bare masses of the nucleon, scalar, and ve
mesons are given byM ,ms , mv , and Vmn5]mVn2]nVm.
The unitary matrixU can be chosen from among three form
Ui :

U1[eig5t•p/ f , U2[
11 ig5t•p/2f

12 ig5t•p/2f
,

U35A12p2/ f 21 ig5t•p/ f , ~2.2!
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which correspond to different definitions of the fields.
The pion-nucleon coupling here is chosen as that of lin

representations of chiral symmetry used by Gursey@18#, with
the Lagrangian approximately (mpÞ0) invariant under the
chiral transformation

c8→eig5t•ac8,

U→e2 ig5t•aUe2 ig5t•a. ~2.3!

One may transform the fermion fields by takingU1/2c8 as
the nucleon field. One then gets Lagrangians of the nonlin
representation, as explained by Weinberg@19#. In this case
the early soft pion theorems are manifest in the Lagrang
and the linear pion-fermion coupling is of the pseudovec
type. However, the use of light front theory requires that o
find an easy way to solve the constraint equation that g
erns the fermion field. We shall show that the constraint c
be handled in a simple fashion by using the linear repres
tation. Moreover, we shall see that the early soft pion th
rems are indeed manifest from the form of the light fro
Hamiltonian.

The constantM / f plays the role of the bare pion-nucleo
coupling constant. Iff is chosen to be the pion decay co
stant, the Goldberger-Trieman relation yields the result t
the axial vector coupling constantgA51, which would be a
problem for the Lagrangian, unless loop effects can make
the needed 25% effect. Corrections of that size are typica
order (M / f )3 effects found in the cloudy bag model@20# for
many observables, includinggA .

There are no explicitD ’s in the above Lagrangian. Thos
will be handled elsewhere. For the moment we note t
treating the higher-order effects of the pion-nucleon inher
in this Lagrangian is likely to lead to a resonance in the~3,3!
channel of pion nucleon scattering. Such effects can be
cluded in the two-pion exchange contribution to nucleo
nucleon scattering. However, such an approach seems c
bersome.

The choice of using an explicitD instead of the iterated
p-N interaction is analogous to our use of a scalar me
even though the effects ofp-p interactions, which could
lead to similar effects, are included in the Lagrangian. W
follow many authors~see the review@21#! and include a
scalar meson to simplify calculations. In this treatme
which follows that of Refs.@22,23#, the scalar mesonf is
not a chiral partner of the pion, the chiral transformation
that of Eq.~2.3!.

The present Lagrangian may be thought of as a lo
energy effective theory for nuclei under normal condition
A more sophisticated Lagrangian is reviewed in@23# and
used in@22#; the present one is used to show that light fro
techniques can be applied to hadronic theories relevant
nuclear physics. This hadronic model, when evaluated
mean-field approximation, gives@21# at least a qualitatively
good description of many~but not all! nuclear properties and
reactions. There are a variety of problems occurring wh
higher-order terms are included@23#. The aim here is to use
a reasonably sophisticated Lagrangian to study the eff
that one might obtain by using a light front formulation.

We could also have used the linears model. The light
front quantization for that model can be accomplished us
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56 2791LIGHT FRONT TREATMENT OF NUCLEI: FORMALISM . . .
a simple generalization of the work of Refs.@12# and @13#
and is not shown here. According to the review@23#, the use
of such a Lagrangian precludes a successful descriptio
nuclei at the mean-field level.

The next step is to examine the field equations. The
evant Dirac equation for the nucleons is

g•~ i ]2gvV!c85~MU1gsf!c8. ~2.4!

The field equations for the mesons are

]mVmn1mv
2Vn5gvc̄8gnc8, ~2.5!

]m]mf1ms
2f52gsc̄8c8, ~2.6!

]m]mp i1mp
2 f sin~p/ f !

p i

p
1]mFp i

p
]mpS 12

f 2

p2sin2
p

f D G
52mc̄8

]U

]p i
c8, ~2.7!

wherep5(( jp j
2)1/2.

The next step is obtain the light front Hamiltonian (P2)
as a sum of a free, noninteracting and a set of terms con
ing all of the interactions. This is accomplished by using
energy momentum tensor as

Pm5
1

2E dx2d2x'T1m~x150,x2,x'!. ~2.8!

The usual relations determineT1m, with

Tmn52gmnL1(
r

]L
]~]mf r !

]nf r , ~2.9!

in which the degrees of freedom are labeled byf r .

B. Free meson fields

It is worthwhile to consider the limit in which the inter
actions between the fields are removed. This will allow us
define the free HamiltonianP0

2 and to display the necessa
commutation relations. The energy momentum tensors of
noninteracting fields are defined as asT0

mn(f), T0
mn(V),

and T0
mn(p). The fermion fields are quantized in Sec. II C

Then the use of Eq.~2.9! leads to the result

T0
mn~f!5]mf]nf2

gmn

2
@]sf]sf2ms

2f2#, ~2.10!

with

T12~f!5
1

2
¹'f•¹'f1

1

2
ms

2f2. ~2.11!

The scalar field can be expressed in terms of creation
destruction operators

f~x!5E d2k'dk1u~k1!

~2p!3/2A2k1
@a~k!e2 ik•x1a†~k!eik•x#,

~2.12!
of

l-

in-
e

o

e

nd

where k•x5 1
2 (k2x11k1x2)2k'•x' , with k25k'

2 1ms
2/

k1, andk[(k1,k'). Theu function restrictsk1 to positive
values. The commutation relations are

@a~k!,a†~k8!#5d~k'2k'8 !d~k12k81!, ~2.13!

with @a(k),a(k8)#50. It is useful to define

d~2,1 !~k2k8![d~k'2k'8 !d~k12k81!, ~2.14!

which will be used throughout this paper.
The derivatives appearing in the quantityT12 are evalu-

ated and then one setsx1 to 0 to obtain the result

P0
2~f!5E d2k'dk1u~k1!a†~k!a~k!

k'
2 1ms

2

k1 ,

~2.15!

which has the interpretation of an operator that counts
light front energyk25(k'

2 1ms
2)/k1 of all of the particles.

The pion field is treated in a similar manner, with the res

p~x!5E d2k'dk1u~k1!

~2p!3/2A2k1
@a~k!e2 ik•x1a†~k!eik•x#

~2.16!

and

P0
2~p!5E d2k'dk1u~k1!a†~k!•a~k!

k'
2 1mp

2

k1 ,

~2.17!

with commutation relations analogous to that of Eq.~2.13!.
The energy momentum tensor for the free vector me

field is obtained directly from the defining relation~2.9! as

T0
mn~V!5Vam]nVa1gmnF1

4
VabVab2

mv
2

2
VaVaG .

~2.18!

It is desirable to obtain the symmetric energy moment
tensor. This is done by using]nVa5]aVn1Vna, subtracting
a total divergence and using the free field equations. T
result is

T0
mn~V!5VamVnbgba1mv

2VmVn1gmnF1

4
VabVab

2
mv

2

2
VaVaG . ~2.19!

The component relevant for the light front Hamiltonian c
be shown to be

T0
12~V!5

1

2
Va1]2Va2Va1]aV11

mv
2

2
VkVk.

~2.20!

The expression for the vector meson field operator is
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Vm~x!5E d2k'dk1u~k1!

~2p!3/2A2k1 (
v51,3

em~k,v!@a~k,v!e2 ik•x

1a†~k,v!eik•x#, ~2.21!

where the polarization vectors are the usual ones:

kmem~k,v!50, em~k,v!em~k,v8!52dvv8,

(
v51,3

em~k,v!en~k,v!52S gmn2
kmkn

mv
2 D . ~2.22!

Once again the four momenta are on shell w
k25(k'

2 1mv
2)/k1. The light front commutation relations

@a~k,v!,a†~k8,v8!#5dvv8d
~2,1 !~k2k8!, ~2.23!

with the others vanishing, lead to commutation relatio
among the field operators that are the same as in Ref.@14#.
The expression forP0

2(V) can now be obtained from Eqs
~2.20! and ~2.21! as

P0
2~V!5 (

v51,3
E d2k'dk1u~k1!

k'
2 1mv

2

k1
a†~k,v!a~k,v!.

~2.24!

C. Interacting fields

This subject is complicated by the presence of mass
vector meson fields. Various difficulties were handled
Soper@12# and Yan@14#. The key features that we use a
summarized here. In particular, the fieldsV1,V1 i are chosen
as the three independent fields, with the others expressib
terms of these. We shall need only one of these relations
in which the plus component of Eq.~2.5! can be used to
obtain

V215
2

]1 @gvJ12mv
2V12] iV

i 1#. ~2.25!

with

Jm[c̄8gmc8, ~2.26!

and the inverse of]1 is defined in Refs.@12–14#. A more
recent discussion is given by Harindrinath and Zhang@24#
and the essentials are presented here in the Appendix.

We turn to the case of spin-1/2 fermions. Although d
scribed by four-component spinors, these fields have o
two independent degrees of freedom. The light front form
ism allows a convenient separation of dependent and in
pendent variables via the projection operatorsL6[g0g6/2
@12#, with c68 [L6c68 . The independent fermion degree
freedom is chosen to bec18 . The properties of the projectio
operators are discussed in the Appendix. One gets
coupled equations forc68 by multiplying Eq. ~2.4! by L1

andL2 :
s

e
y

in
ps

-
ly
l-
e-

o

~ i ]22gvV2!c18 5@a'•~p'2gvV'!1b~MU1gsf!#c28 ,

~ i ]12gvV1!c28 5@a'•~p'2gvV'!1b~MU1gsf!#c18 .
~2.27!

The relation betweenc28 andc18 is very complicated unless
one sets the plus component of the vector field to zero@2#.
This is a matter of a choice of gauge for QED and QCD, b
the nonzero mass of the vector meson prevents such a ch
here. Instead, one simplifies the equation forc28 by @12,14#
transforming the fermion field according to

c85e2 igvL~x!c, ~2.28!

with

]1L5V1. ~2.29!

This transformation leads to the result

~ i ]22gvV̄2!c15@a'•~p'2gvV̄'!1b~MU1gsf!#c2 ,
~2.30a!

i ]1c25@a'•~p'2gvV̄'!1b~MU1gsf!#c1 ,
~2.30b!

where

]1V̄m5]1Vm2]mV15V1m. ~2.31!

Note that all of the previously obtained fermionic sourc
of meson fields are unchanged by the transformation~2.28!:

c̄c5 c̄8c8,

c̄Uc5 c̄8Uc8, ~2.32!

c̄gmc5 c̄8gmc8.

The eigenmode expansion forV̄m is needed to compute
the interaction between nucleons. Equations~2.21! and
~2.31! can be used to obtain

V̄m~x!5E d2k'dk1u~k1!

~2p!3/2A2k1 (
v51,3

ē m~k,v!@a~k,v!e2 ik•x

1a†~k,v!eik•x#, ~2.33!

where the polarization vectorsē m(k,v) are given by@14#

ē m~k,v!5em~k,v!2
km

k1 e1~k,v!, ~2.34!

with the properties

km ē m~k,v!52
mv

2

k1e1~k,v!,

ē m~k,v! ē m~k,v8!52dvv81
mv

2

~k1!2
2 ē 1~k,v! ē 1~k,v8!,
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(
v51,3

ē m~k,v! ē n~k,v!52S gmn2g1m
kn

k12g1n
km

k1D .

~2.35!

The path towards the light front Hamiltonian proceeds
the energy momentum tensor, which is given by

Tmn52gmnL1VamVnbgba1mv
2VmVn

1
1

2
c̄8@gm~ i ]n2gvVn!1gn~ i ]m2gvVm!#c8

1]mf]nf1]mp•]np

1p•]np
p•]mp

p2 S 12
f 2

p2sin2
p

f D . ~2.36!

The use of the fermion field equation allows one to obt
the light front Hamiltonian density

T125¹'f•¹'f1mf
2 f21

1

4
~V12!21

1

2
VklVkl1mv

2VkVk

1~¹'p!21
~ 1

2 ¹'p2!2

p2 S 12
f 2

p2sin2
p

f D1mp
2 f 2sin2

p

f

12c1
† ~ i 1

2 ]J22gvV̄2!c1 . ~2.37!

It is now worthwhile to discuss a subtle feature regard
chiral symmetry in light front formalisms. Chiral invarianc
is defined as invariance under the transformation defined
Eq. ~2.3! if the equal time formalism is used. Now the ind
pendent fermion variable isc1 and c2 is a functional of
this. Thus chiral invariance is the invariance under the tra
formation

c1→eig5t•ac1 , ~2.38!

which is not the same as Eq.~2.3! because Eq.~2.38! pro-
duces a change inc2 that is different than using
c2→eig5t•ac2 @25,26#. The T12 ~or equivalently the light
front Hamiltonian! of Eq. ~2.37! is invariant under the trans
formation ~2.38! if the pion mass is neglected so the usu
chiral properties are obtained in these light front dynamic

Expression~2.37! is useful for situations, such as in th
mean-field approximation case for infinite nuclear matter
amined below, for which a simple expression forc1 is
known. This is not always the case, so it is worthwhile to u
the Dirac equation to expressT12 in an alternate form

T125¹'f•¹'f1mf
2 f21

1

4
~V12!21

1

2
VklVkl1mv

2VkVk

1~¹'p!21
~ 1

2 ¹'p2!2

p2 S 12
f 2

p2sin2
p

f D1mp
2 f 2sin2

p

f

1 c̄ @g'•~p'2gvV̄'!1~MU1gsf!#c. ~2.39!
n

g

by

s-

l
.

-

e

It is convenient to considerc2 as a sum of terms, onej2

whose relation withc1 is free of interactions@12#, the other
h2 containing the interactions. That is, rewrite Eq.~2.30b!
as @24#

j25
1

p1 ~a'•p'1bM !c1 ,

h25
1

p1 $2a'•gvV̄'1b@M ~U21!1gsf#%c1 .

~2.40!

Furthermore, definej1(x)[c1(x), so that

c~x!5j~x!1h2~x!, ~2.41!

wherej(x)[j2(x)1j1(x). The purpose of the above de
composition is to separate the dependent and indepen
parts ofc and to allow one to expandj in terms of eigen-
states of momentum.

One may make a similar treatment for the vector mes
fields. The operatorV12, determined by Eq.~2.25!, is rel-
evant for the Hamiltonian. Part of this operator is determin
by a constraint equation. To see this examine Eq.~2.25! and
make a definition

V125v121v12, ~2.42!

where

v125
22

]1 J1. ~2.43!

Next use Eqs.~2.41! and~2.42! to rewrite the Hamiltonian as
a sum of a free and interacting terms. The sum of the
term of Eq.~2.39! and the terms involvingv12 is the den-
sity of the interaction HamiltonianPI

2 plus the free fermion
term P0

2(N). Use Eqs.~2.41! and ~2.42! in the expression
~2.39! for T12 along with the field equations and integratio
by parts to find

P0
2~N!5

1

2E d2x'dx2 j̄ ~g'•p1M !j ~2.44!

and

PI
25v11v21v3 , ~2.45!

with

v15E d2x'dx2 j̄ @gvg• V̄1M ~U21!1gsf#j,

~2.46!

v25E d2x'dx2 j̄ @2gvg• V̄1M ~U21!1gsf#
g1

2p1

3@2gvg• V̄1M ~U21!1gsf#j, ~2.47!

and
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2794 56GERALD A. MILLER
v35
gv

2

32E d2x'dx2E dy1
2 j̄ ~x' ,y1

2!g1j~x' ,y1
2!

3e~x22y1
2!E dy2

2e~x22y2
2!

3 j̄ ~x' ,y2
2!g1j~x' ,y2

2!. ~2.48!

The termv1 accounts for the emission or absorption o
single vector or scalar meson, as well as the emission
absorption of any number of pions through the opera
U21. The termv2 includes contact terms in which there
propagation of an instantaneous fermion. The termv3 ac-
counts for the propagation of an instantaneous vector me

We may now quantize the fermion fields using

j~x!5E d2k'dk1u~k1!

~2p!3/2A2k1 (
l51,2

@u~k,l!e2 ik•xb~k,l!

1v~k,l!e1 ik•xd†~k,l!#, ~2.49!

where again the momenta are on shell,k25(k'
2 1M2)/k1,

and the anticommutation relations are given by

$b~k,l!,b†~k8,l8!%5$d~k,l!,d†~k8,l8!%

5dl,l8d
~2,1 !~k2k8!,

$b~k,l!,b~k8,l8!%5$d~k,l!,d~k,l8!%50. ~2.50!

The properties of the Dirac spinors are described in the
pendix. The termP0

2(N) of Eq. ~2.44! can now be expresse
as

P0
2~N!5E d2k'dk1u~k1!

k'
2 1M2

k1 (
l

@b†~k,l!b~k,l!

1d†~k,l!d~k,l!#. ~2.51!

The component that is related to the plus momentum
T11. The necessary expression is given by

T115VikVik1mv
2V1V11 c̄g1i ]1c1]1f]1f

1]1p•]1p1p•]1p
p•]1p

p2 S 12
f 2

p2sin2
p

f D .

~2.52!

III. CHIRAL SYMMETRY AND PION-NUCLEON
SCATTERING

We begin by showing that if one starts with a nonline
representation of chiral symmetry, the requirement of so
ing the constraint equation for the minus component of
fermion field leads one to a Lagrangian of the Gursey-ty
linear representation. The focus is on chiral properties
pion-nucleon scattering, so we dispense with the vector
nonchiralf meson fields for this section, and it is sufficie
to examine only the following fermion-pion term of a no
linear representation@27#:
or
r

n.

-

is

r
-
e
e
d
d

LNp5N̄H gmi ]m2M1
1

11~p/2f !2F 1

2 f
gmg5t•]mp

2S 1

2 f D
2

gmt•p3]mpG J N. ~3.1!

Next obtain the fermion field equation and make the us
decompositionN6[L6N, with

~ i ]22O2!N15@a'•~p'2O'!1bM #N2 ,

~ i ]12O1!N25@a'•~p'2O'!1bM #N1 , ~3.2!

where the operatorOm has been defined as

Om[
21

11~p/2f !2F 1

2 f
g5t•]mp2S 1

2 f D
2

t•p3]mpG .
~3.3!

We wish to remove theO1 term from the left-hand side o
the equation forN2 . This can be done by defining a unitar
operatorF and fermion fieldx such that

N5Fx, ~3.4!

with

i ]1F5O1F. ~3.5!

The identity@18#

U2
1/2]mU2

21/25 iOm, ~3.6!

whereU2 is given in Eq.~2.2!, helps a good deal. Its use i
Eq. ~3.5!, combined with the condition]m(U2U2

21)50,
leads to the result

F5U2
1/2, ~3.7!

so that using Eqs.~3.7! and ~3.4! in Eq. ~3.2! yields

i ]2x15@a'•p'1bMU2#x2 ,

i ]1x25@a'•p'1bMU2#x1 . ~3.8!

This is of the desired form in which no interactions appe
on the left-hand side of the equation forx2 . Thus the use of
light front quantization mandates that the pion-nucleon int
actions be of the form of Eq.~2.1!.

The first test for any chiral formalism is to reproduce t
early soft pion theorems@28#. Here we concentrate on low
energy pion-nucleon scattering because of its relation to
nucleon-nucleon force. We work to second order in 1/f in
this first application. In this case, each of theUi takes the
same form

U511 ig5

t•p

f
2

1

2 f 2 p2. ~3.9!

This expression is to be used in the potentialsv1 andv2
of Eqs.~2.46! and~2.47!. The second-order scattering grap
are of three types and are shown as timex1-ordered pertur-
bation theory diagrams in Fig. 1. The kinematics are su
that p(q)N(k)→p(q8)N(k8), with Pi5q1k and
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Pf5q81k8. The iteration ofv1 to second order yields th
direct and crossed graphs of Fig. 1~a!. In this formalismv1 is
proportional to the matrix element ofg5 betweenu spinors,
so it is proportional to the momentum of the absorbed
emitted pion. Thus the terms of Fig. 1~a! vanish near thresh
old. The terms of Fig. 1~b! are generated by theūg5v terms
of v1. Using the various field expansions in the express
~2.46! for v1 leads to the result that plus momentum is co
served and the plus momentum of every particle is gre
than zero. This means that the first of Fig. 1~b! vanishes
identically and the second vanishes for values of the ini
pion plus momentum that are less than twice the nucl
mass. The net result is that only the instantaneous term ov2
and thep2 term of v1 @shown in Fig. 1~c!# remain to be
evaluated.

Proceeding more formally, we evaluate theS matrix given
by

S5T1expS 2
i

2E2`

`

dx1P̂I
2~x1! D , ~3.10!

whereT1 is thex1- ~light front time! ordering operator and
P̂I

2 is the interaction representation light front Hamiltonia
Then

~S21! f i522p id~Pi
22Pf

2!^ f uT~Pi
2!u i &, ~3.11!

with

T~Pi
2!5PI

21PI
2

1

Pi
22P0

2 T~Pi
2! ~3.12!

The evaluation proceeds by using the field expansions in
expressions forv1 and v2. Integrating overd2x'dx1 and
evaluating the result between the relevant initial and fi

FIG. 1. x1-ordered graphs for low-energy pion-nucleon scatt

ing. ~a! Second-order effects of theūg5u termv1. ~b! Second-order

effects of theūg5v and v̄ g5u terms ofv1. ~c! Effects of the in-
stantaneous fermion propagation terms ofv2 and of thep2 term of
v1. The termsv i are defined in Eqs.~2.46!–~2.48!.
r

n
-
er

l
n

.

e

l

pion-nucleon states leads to the result that each contribu
to theS matrix is proportional to a common factor

d~2,' !~Pi2Pf !

2~2p!3Ak81k1q81q1
,

which combines with the result of the required integrati
over the light cone time (x1) to provide the necessary mo
mentum conservation and flux factors. The remaining fac
of each term is its contribution to the invariant amplitudeM.
The result is

M5t it f

M2

f 2

ū~k8!g1u~k!

2~k11q1!
1t ft i

M2

f 2

ū~k8!g1u~k!

2~k12q1!

2d i f

M

f 2 ū~k8!u~k!, ~3.13!

where the three terms here correspond to the three term
Fig. 1~c!. The role of cancellations in the reduction of th
term proportional tod i f is already apparent. To understan
the threshold physics takek815k15M andq815q15mp .
Then one finds

M5d i f

2mp
2

f 2 12i e f intn

mpM

f 2 ~3.14!

to leading order inmp /M . The weak nature of thed i f term
and the presence of the second Weinberg-Tomazowa ter
the hallmark of chiral symmetry@28#. The same results could
be obtained using the linears model, withs exchange play-
ing the role of thep2 term of Eq.~3.9!.

FIG. 2. x1-ordered graphs for one-boson exchange contri
tions to nucleon-nucleon scattering. The numbers 1–4 represen
momentum, spin and charge states of the nucleons. Herek1

1.k3
1 .

~a! Meson propagation terms and~b! instantaneous vector meso
exchange ofv3 @Eq. ~2.48!#.

-
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2796 56GERALD A. MILLER
IV. NUCLEON-NUCLEON SCATTERING VIA ONE-
BOSON EXCHANGE POTENTIALS

The ultimate aim is to derive the nuclear wave functi
including correlation effects. The first step is to understa
nucleon-nucleon scattering using our light front formalis
We start with the one-boson exchange approximation,
cuss the light front wave equation, and show that this pro
dure gives the same scattering amplitude as the usual pr
dure of computing the one-boson exchange contribution
the invariant amplitudes and using the Blankenbeckler-Su
reduction of the Bethe-Salpeter equation@29,30#. This usual
procedure is covariant, so that our construction shows
the light front wave procedure respects rotational invarian
This invariance is the result of Frankfurt and Strikman@10#
and others. The present treatment explicitly includes the
fects of nucleon spin and the nucleon-nucleon interaction
be derived from an underlying chiral Lagrangian.

The starting point is theS matrix of Eqs. ~3.10! and
~3.11!. Here the initial statei consists of nucleons with quan
tum numbers labeled by 1 and 2 and the statef consists of
nucleons 3 and 4. To be definite, we take the plus momen
of nucleon 1 to be greater than that of nucleon 3 and
momentum transferq to be

q[k12k3 , ~4.1!

so thatq1.0.
The lowest-order contributions to the invariant amplitu

are represented by the light front time-ordered graphs sh
in Fig. 2. The graphs of Fig. 2~a! represent terms of the form
v1@1/(Pi

22P0
2)#v1 and that of Fig. 2~b! accounts for the

instantaneous massive vector boson exchange term ov3.
These terms may be evaluated by using the field expans
and doing the relevant integrals over thed2x'dx2 coordi-
nate space. Each term has a common factor of

4M2d~2,' !~Pi2Pf !

2Ak1
1k2

1k3
1k4

1
,

where the factor 4M2 in the numerator is compensated b
dividing the invariant amplitude by 4M2.

It is simplest to consider the effects of scalarf and pseu-
doscalarp exchanges at the same time. The scattering
plitudes^3,4uK(f,p)u1,2& take the form

^3,4uK~f,p!u1,2&5
ū~4!Gu~2! ū~3!Gu~1!

4M2~2p!3k1~k1
22k3

22k2!
,

~4.2!
d
.
s-
e-
ce-
to
ar

at
e.

f-
n

m
e

n

ns

-

where the notation is thatu( i ) is the spinor for a nucleon o
quantum numbersi andG is of the form eithergs or igg5.
The momentum of the exchanged meson isk and it is nec-
essary to realize that

k15q1, k'5q' , ~4.3!

but

k25
k'

2 1m2

k1 Þq2, ~4.4!

wherem is the mass of the exchanged scalar meson or p
The factor 1/k1 arises from the denominators of the fie
expansions and (k1

22k3
22k2) is the result of evaluating the

light front energy denominatorPi
22P0

2 . Define the energy
denominator of Eq.~4.2! to beD so that

D5k1~k1
22k3

22k2!5~k1
12k3

1!~k1
22k3

2!2k1k2.
~4.5!

Using Eqs.~4.3! and ~4.4! immediately yields

D5q22m2, ~4.6!

so the amplitudeK takes the form

^3,4uK~f,p!u1,2&5
ū~4!Gu~2! ū~3!Gu~1!

4M2~2p!3~q22m2!
. ~4.7!

This is the usual@29–31# expression for a one-boson ex
change potential if no form factor effects are included. No
that the Klein-Gordon propagator is obtained using only
single time-ordered graph. The calculation with the eq
time formulation requires the summation of two tim
ordered graphs.

The derivation of the contribution of vector meson e
change proceeds by adding the terms of Figs. 2~a! and 2~b!.
The term of Fig. 2~a! can immediately be seen to be

^3,4uK2a~V!u1,2&5gv
2 ū~4!gmu~2! ū~3!gnu~1!

4M2~2p!3~q22mv
2!

3F2gmn1g1m
kn

k11g1n
km

k1G .
~4.8!

The factor in square brackets arises from the polariza
sum; recall Eq.~2.35!. It is worthwhile to define the contri-
bution of the second and third terms in square brack
which result from the difference betweenV̄m andVm fields,
as ^3,4uKbaru1,2&, with
^3,4uKbaru1,2&5gv
2 ū~4!g1u~2! ū~3!g•ku~1!1 ū~4!g•ku~2! ū~3!g1u~1!

4M2~2p!3q1~q22mv
2!

. ~4.9!
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Next use the relationsū (3)gqu(1)5 ū (4)gqu(2)50 and
the equality of the plus and perpendicular components ok
with those ofq to obtain the results

ū~3!g•ku~1!5
1

2
ū~3!g1u~1!~k22q2!,

ū~4!g•ku~2!5
1

2
ū~4!g1u~2!~k22q2!. ~4.10!

But k22q25(q'
2 1mv

2)/q12q252(q22mv
2)/k1, which

leads to a compact rewriting of Eq.~4.9! as

^3,4uKbaru1,2&52gv
2 ū~4!g1u~2! ū~3!g1u~1!

4M2~2p!3~k1!2
.

~4.11!

The term of Fig. 2~b! is obtained by using the field expansio
in the equation forv3 ~2.48!, integrating over coordinate
space and removing the common factor. The result is

^3,4uK2b~V!u1,2&5gv
2 ū~4!g1u~2! ū~3!g1u~1!

4M2~2p!3~k1!2
,

~4.12!

which exactly cancels the term̂3,4uKbaru1,2&. The net result
is that the amplitude for vector meson exchan
^3,4uK(V)u1,2&5^3,4uK2a(V)1K2bu1,2& takes the familiar
form

^3,4uK~V!u1,2&52gv
2 ū~4!gmu~2! ū~3!gmu~1!

4M2~2p!3~q22mv
2!

.

~4.13!

The sum of the amplitudes arising from each of the in
vidual one-boson exchange terms

^3,4uKu1,2&5^3,4uK~f!1K~p!1K~V!u1,2&, ~4.14!

gives the invariant amplitude to second order in each of
coupling constants. These amplitudes are strong, so com
ing the nucleon-nucleon scattering amplitude and ph
shifts requires including higher-order terms. One may
clude a sum that gives unitarity by including all iterations
the scattering operatorK through intermediate two-nucleo
states:

M5K1K
P2N

Pi
22P0

2
M, ~4.15!

wherePi
2 is the negative momentum in the initial state a

P2N projects onto two-nucleon intermediate states. More
plicitly, Eq. ~4.15! is given by

^3,4uMu1,2&5^3,4uKu1,2&1 (
l5 ,l6

E ^3,4uKu5,6&

3
2M2

p5
1p6

1

d2p5'dp5
1

Pi
22~p5

21p6
2!1 i e

^5,6uMu1,2&

~4.16!
e

-

e
ut-
e
-
f

-

after removing the common factor and accounting for
momentum-conservingd functions. One realizes that this i
of the form of the Weinberg equation@32# by expressing the
plus-momentum variable in terms of a light front momentu
fraction a such that

p5
15aPi

1 ~4.17!

and using the relative and total momentum variables

p'[~12a!p5'2ap6' ,

Pi'5p5'1p6' . ~4.18!

Then

^3,4uMu1,2&5^3,4uKu1,2&1E (
l5 ,l6

^3,4uKu5,6&

3
2M2

a~12a!

d2p'da

Pi
22

p'
2 1M2

a~12a!
1 i e

^5,6uMu1,2&,

~4.19!

wherePi
2 is square of the total initial four-momentum, oth

erwise known as the invariant energys, and
(p'

2 1M2)/a(12a) is the corresponding quantity for the in
termediate state. Because the kernalK is itself an invariant
amplitude, the procedure of solving this equation to det
mine observables is manifestly covariant.

Equation ~4.19! can in turn be reexpressed as t
Blankenbecler-Sugar~BbS! equation@33# by using the vari-
able transformation@34#

a5
E~p!1p3

2E~p!
, ~4.20!

with E(p)[Ap•p1M2. The result is

^3,4uMu1,2&5^3,4uKu1,2&1E (
l5 ,l6

^3,4uKu5,6&

3
M

E~p!

d3p

pi
22p2

M
1 i e

^5,6uMu1,2&,

~4.21!

which is the desired equation. The three-dimensional pro
gator is exactly that of the BbS equation; there is on
difference. Our one boson exchange potentials depend on
square of the four-momentumq2 transferred when a meso
is absorbed or emitted by a nucleon. Thus the energy dif
ence between the initial and final on-shell nucleons is
cluded andq0Þ0. The derivation of the BS equation from
the Bethe-Salpeter equation specifies thatq050 is used in
the meson propagator. IncludingqÞ0 instead ofq050 in-
creases the range of the potential. Such an effect can
hidden in phenomenological potentials by changing the pi
nucleon coupling constant or form factor. One can eas
convert Eq.~4.21! into the Lippman-Schwinger equation o
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2798 56GERALD A. MILLER
nonrelativistic scattering theory by removing the fac
M /E(p) with a simple transformation@35#.

A. Comparison with realistic one-boson exchange potentials

The present results are that one can use the light f
technique to derive nucleon-nucleon potentials in the o
boson exchange approximation and use these in an appr
ate wave equation. Therefore, our procedure is directly c
parable to the one used in constructing the realistic B
one-boson exchange potentials~OBEPs! @29# used in mo-
mentum space. Those potentials also have a close conne
with an underlying Lagrangian. Our purpose here is to ar
that the present procedure can yield potentials essent
identical to the Bonn OBEP potentials and therefore wo
lead to a good description of theNN data.

The Bonn one-boson exchange potentials@29# employ six
different mesonsp, h, v, r, s, and the~isovector scalar! d
meson. The present techniques can be used to handle
these mesons and their couplings, with the possible ex
tion of the tensorsmnqn part of ther-nucleon interaction.

The presence of such a tensor interaction makes it d
cult ~or impossible! to write the equation forc2 as
c251/p1

•••c1 . This is relevant because the standa
value of the ratio of the tensor to vectorr-nucleon coupling
f r /gr is 6.1, based upon Ref.@36# and subsequent paper
Reproducing the observed values of«1 and P-wave phase
shifts requires a large valuef r /gr ; see Ref.@37#. However,
the Lagrangian compensates for its lack of ar-N interaction
with tensor coupling by generating such a term via ver
correction diagrams~which are the origin of the anomalou
magnetic moment of the electron in QED!. Such diagrams
probably do not generate the phenomenologically requ
values of the coupling constants, but all that is needed he
that terms of the correct form be produced. This is beca
the standard procedure is to choose the values of the
pling constants so as to yield a good description of theNN
scattering data. Indeed, the potentialsA, B, and C are de-
fined by the parameters that account for the mesonic mas
coupling constants, and form factors. Thus we end up w
the same procedure that is used in the Bonn one-boson
change potentials.

This brings us to the treatment of divergent terms in o
procedure. The definition of any effective Lagrangian
quires the specification of such a procedure. For the pres
it is sufficient to say that we introduce form factorsFa(q2)
that reduce the strength of thea meson-nucleon coupling fo
large values of2q2. This is also the procedure of Ref
@29,30#.

The net result is that the one-boson exchange treatme
the nucleon-nucleon potential and theT matrix resulting
from its use in the BS equation is essentially the same as
one-boson exchange procedure of Refs.@29,30#. Thus our
light front treatment is guaranteed to be consistent w
nucleon-nucleon scattering data measured in the standar
ergy range. Such a similarity also has been obtained u
relativistic Hamiltonian dynamics@9#.

B. Nucleonic contribution to the two-pion exchange potential

The dominant contribution to the two-pion exchange p
tential arises from contributions to intermediate states
r
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include one or twoD ’s @29#, and a treatment of such effec
based on chiral symmetry has been provided by van Ko
and collaborators@38#. Including the effects ofD ’s is beyond
the scope of the present work, but we are able to discuss
two-pion exchange contribution@of order (M / f )4# to the
nucleon-nucleon potential. The property that a sum of lig
cone time-ordered diagrams equals a single Feynman g
can be used to simplify the calculation. The relevant Fe
man graphs are displayed in Fig. 3; the terms originat
from the linearg5tp coupling@Figs. 3~a! and 3~b!#, from the
quadraticp2-N coupling@Fig. 3~c!#, and from a combination
of the linear and quadratic interactions@Fig. 3~d!# are indi-
cated. The line through the two-nucleon intermediate stat
Fig. 3~a! is meant to indicate that the contribution arisin
from iterating the one-pion exchange interaction is remov
This has been a standard procedure since the work of
@35# and will not be discussed further.

The sum of the terms of Figs. 3~a! and 3~b! is equal to the
Partovi-Lomon two-pion exchange potential, as they us
the pseudoscalar pion-nucleon interaction. This interac
certainly simplifies the calculation; in particular the diagram
of Figs. 3~a!, 3~b!, and 3~d!, are convergent~whereas they
would be strongly divergent if pseudovector coupling we
to be used!. One can use such a pseudoscalar coupling,
include the effects of chiral symmetry, provided one a
includes the effects of thep2-N coupling shown in Fig. 3~c!
and the combined effects of the linear and quadratic inte
tions @Fig. 3~d!#. The quadratic interaction term cancels t
large pair terms in pion-nucleon scattering and should a
play a significant role here in reducing the size of the co
puted potential. Thus we expect that the Partovi-Lomon
tential contains too large an attraction.

Next turn to the procedure used in constructing the f
Bonn potential@29#. This potential is constructed by ignorin
all theZ graphs and including the effects of the two-nucle
intermediate states that arise from the crossed graph@Fig.

FIG. 3. Feynman graphs for the two-pion exchange poten
~a! uncrossed box diagram~the horizontal line represents the su
traction of the contribution arising from the iterated one pion e
change potential!, ~b! crossed box diagram,~c! second-order effect
of the p2 term of v1 @Eq. ~2.46!#, and~d! terms with onep2 term.
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3~b!# as well as the parts of Fig. 3~a! arising from time-
ordered terms in which two pions exist at the same time.
such contributions to the two-pion exchange poten
~TPEP! the linear pseudoscalar and pseudovector inte
tions are evaluated between on-shell positive-energy nuc
spinors and are therefore equivalent. The resulting contr
tion to the TPEP is small, but is comparable to that of
iterated one-pion exchange potential. The neglect of thZ
graphs goes a long way towards including the effects of c
ral symmetry. However, terms involving the Weinber
Tomazowa interaction at one or two vertices are ignor
The computation of the graphs of Fig. 3 would include su
effects implicitly as well as that of pair suppression. Thu
detailed comparison would be useful. However, the sm
nature of the effects that we discuss now indicates that
dominance of the TPEP by effects of intermediateD ’s will
remain unchallenged.

V. MEAN-FIELD APPROXIMATION

The nucleon-nucleon interaction of the preceding sec
can be used as the basis for a light front Brueckner theor
nuclei. We study the mean-field approximation for infin
nuclear matter as a first step. The nuclear mean-field mo
the shell model, occupies pre-eminence in understand
nuclear structure. We need to see if our formalism can
scribe this physics.

In the mean-field approximation@21#, the coupling con-
stants are considered strong and the fermion density la
Then the meson fields can be approximated as classical
sources of the meson fields are replaced by their expecta
values. In this case, the nucleon mode functions will be pl
waves and the nuclear matter ground state can be assum
be a normal Fermi gas, of Fermi momentumkF , and of large
volumeV in its rest frame. We consider the case that ther
an equal number of protons and neutrons.

First we examine the mesonic field equations~2.5!–~2.7!.
The baryon source of the pion field is a pseudoscalar op
tor, so its expectation value vanishes in the ground st
Thus this mean-field approximation leads to the result t
p i→0. The other meson fields are constants, independen
space and time, given by

f52
gs

ms
2 ^ c̄c& ~5.1!

Vm5
gv

mv
2 ^ c̄gmc&5d0,m

gvrB

mv
2 , ~5.2!

where the angular brackets denote expectation values o
nuclear ground state in its rest frame and the baryon den
is

rB52kF
3/3p2. ~5.3!

This result thatVm is a constant, along with Eqs.~2.31! and
~5.2!, can be used to determineV̄m. In particular,V̄150 by
construction. Furthermore, the conditions thatVi50 and
] iV15] iV050 tell us thatV̄i50. Finally,]2V150, so that
]1V̄25]1V0, so the net result is that the only nonvanishi
component ofV̄m is V̄25V0.
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With this mean-field approximation, the fermionic fie
equations~2.30b! can be rewritten as

~ i ]22gvV̄2!c15@a'•p'1b~M1gsf!#c2 ,

i ]1c25@a'•p'1b~M1gsf!#c1 . ~5.4!

Now f and V̄2 are constants so we expect the mode fu
tions for the field expansion ofc to be of the plane-wave
form ;eik•x and can be obtained from Eq.~5.4! as @39#

~ i ]22gvV̄2!c15
k'

2 1~M1gsf!2

k1
c1 . ~5.5!

The light front eigenenergy (i ]2[k2) is the sum of a ki-
netic energy term in which the mass is shifted by the pr
ence of the scalar field and an energy arising from the ve
field. Comparing this equation with the one for free nuc
ons, k25(k'

2 1M2)/k1, shows that the nucleons have
massM1gsf and move in plane-wave states. The nucle
field operator is constructed using the solutions of Eq.~5.5!
as the plane-wave basis states. This means that the nu
matter ground state, defined by operators that create and
stroy baryons in eigenstates of Eq.~5.5!, is the correct wave
function and that Eqs.~5.2! and ~5.5! represent the solution
of the approximate field equations and the diagonalization
the Hamiltonian.

One question remains. We are going to fill up a Fermi s
but kF is the magnitude of a three-vector. How is this thre
vector defined? This was answered in the paper of Gla
and Shakin@15#, who showed that rotational invariance
manifest if one uses the definition

k15A~M1gsf!21k•k1k3, ~5.6!

which implicitly definesk3. Using Eq.~5.6! allows one to
maintain the equivalence between energies computed in
light front and equal time formulations of scalar field the
ries @40#. A similar equation has been used to restore ma
fest rotational invariance in light front QED@41#. We shall
show that this same expression also restores rotationa
variance in this mean-field problem when vector mesons
included.

Equation~5.6! has the correct form in the limit of nonin
teracting nucleons and therefore seems natural@42#. We at-
tempt a heuristic derivation of this equation using the
quirement that manifest rotational invariance be restor
The starting point is the observation that Eq.~4.20!, with its
definition of a as the plus-momentum fraction carried by
nucleon, restores manifest rotational invariance in the tw
nucleon system. Let us consider the mean-field approxi
tion as involving an interaction between a nucleon and a v
heavy particle containingA21 nucleons~with A→`). Then
the variableaA , which is the fraction of the nuclear plu
momentum carried by a nucleon, is given by

aA5
Ak•k1~M1gsf!21k3

Ak•k1MA21
2 1Ak•k1~M1gsf!2

~5.7!

and is a suitable generalization of the variablea. The
nucleon mass is taken to beM1gsf because it is this mas



f t

V

is
io
.

-
s

t

im

el.
sent
ent

y

d
e

ar-

ol-

e-

f
of

2800 56GERALD A. MILLER
that appears in the nucleon field equations. The mass o
(A21)-body system is dominated by the mass of theA21
nucleons mass@the binding energy per particle is 16 Me
([eB) compared to 940 MeV#, so that we may write

aA5
Ak•k1~M1gsf!21k3

MA
@11eB /MA1kF

2/2

3~M1gsf!MA#

5
Ak•k1~M1gsf!21k3

MA
, ~5.8!

in which the last line results from the limitA→`. The key
feature is that the variableaA is defined as a momentum
fraction, so that

aAMA5k1. ~5.9!

Comparing Eqs.~5.8! and ~5.9! leads to Eq.~5.6!.
The computation of the energy and plus-momentum d

tribution proceeds from taking the appropriate expectat
values of the energy momentum tensorTmn discussed in Sec
II and

Pm5
1

2E d2x'dx2^T1m&. ~5.10!

We are concerned with the light front energyP2 and mo-
mentumP1. The relevant components ofTmn are presented
in Eqs.~2.37! and ~2.52!. Within the mean-field approxima
tion ~MFA!, the derivatives of the meson fields are zero
that one finds

TMFA
12 5ms

2f212c1
† ~ i ]22gvV̄2!c1 ,

TMFA
11 5mv

2V0
212c1

† i ]1c1 . ~5.11!

Taking the nuclear matter expectation value ofTMFA
12 and

TMFA
11 and performing the spatial integral of Eq.~5.10! leads

to the result

P2

V
5ms

2f21
4

~2p!3E
F
d2k'dk1

k'
2 1~M1gsf!2

k1
,

~5.12!

P1

V
5mv

2V0
21

4

~2p!3E
F
d2k'dk1k1. ~5.13!

The subscriptF denotes thatukW u,kF with k3 defined by
relation ~5.6!.

Equations~5.12! and ~5.13! along with the expression
~5.6! for k1 allow an evaluation ofP2 andP1. This shall be
done in two different ways. In the first method we evalua

the energy of theA-nucleon systemEA5 1
2 (P11P2) @15#,

which turns out to be the same as in the usual equal t
treatment@21#. This can be seen by summing Eqs.~5.12! and
~5.13! to obtain

EA

V
5

1

2
ms

2f21
1

2
mv

2V0
2

he

-
n

o

e

e

1
4

~2p!3

1

2EF
d2k'dk1S k'

2 1~M1gsf!2

k1
1k1D .

~5.14!

Then replace the integration overk1 by one overk3, using
Eq. ~5.6! so that

dk1→
k1

A~M1gsf!21k•k
dk35

k1

E~k!
dk3, ~5.15!

where

E~k![Ak•k1~M1gsf!2. ~5.16!

Then Eq.~5.14! takes the form

EA

V
5

1

2
ms

2f21
1

2
mv

2V0
21

4

~2p!3E
F
d3ku~kF2k!E~k!,

~5.17!

which is the expression familiar from the Walecka mod
This confluence of energies is a nice check on the pre
result because a manifestly covariant solution of the pres
problem, with the usual energy, has been obtained@43#.

We consider the system to be at a fixed large volumeV,
so thatEA /A depends onf andkF . The ground-state energ
is determined by minimizingEA /A with respect to those two
parameters. Setting]EA /]f @44# to zero reproduces the fiel
equation~5.1! for f, as is also the case in the equal tim
formalism. The next step is to minimize the energy per p
ticle EA /A5EA /rBV at fixed volume with respect tokF .
~One may also minimize the energy with respect to the v
ume @15#.! Start this calculation by using

]

]kF
S EA

rB
D50 ~5.18!

to obtain

]E

]kF
53

E

kF
. ~5.19!

Using Eq.~5.17! followed by Eqs.~5.1! and~5.2! leads to the
result

4

~2p!3

4p

3
kf

3EF5
ms

2

2
f22

mv
2

2
V0

21
4

~2p!3E
F
d3k

3u~kF2k!E~k!, ~5.20!

whereEF[E(kF). This is a transcendental equation that d
termineskF , so that the calculation ofEA is complete.

It is useful to note that the relationP15P2 ~which must
hold for a system in its rest frame! also emerges as a result o
this minimization. To see this rewrite the left-hand side
Eq. ~5.20! as

4

~2p!3

4p

3
kf

3EF5
4

~2p!3E d3ku~kF2k!S E~k!1
k•k

3E~k! D .

~5.21!
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Using this in Eq.~5.20! leads to

ms
2

2
f22

mv
2

2
V0

25
4

~2p!3E d3ku~kF2k!
k•k

3E~k!
,

~5.22!

which is just the relation that one obtains by settingP15P2

with the versions of Eqs.~5.12! and ~5.13! obtained by re-
placing the variablek1 by k3.

Another way to obtain the energy of the ground state is
minimize the value ofP2/A subject to the constraint tha
P25P1 or to minimize the quantityE with

E[
P2

A
2lS P2

A
2

P1

A D , ~5.23!

where l is a Lagrange multiplier. Setting]E/]f to zero
leads to@44#

]P2

]f
~12l!1l

]P1

]f
50. ~5.24!

However, the field equation~5.1! for f can be restated as

]P2

]f
52

]P1

]f
. ~5.25!

Combining Eqs.~5.24! and ~5.25! leads to the result that

l5
1

2
, ~5.26!

so that the minimization ofE with respect tokF is the same
as minimizingEA /A with respect tokF . This ends the dis-
cussion of how the expressions forP6 are used to determin
the energy of the system.

Solving the field equations and minimizing the ener
density determines the properties of nuclear matter once
meson-nucleon coupling constants and masses are ch
One can now discuss the properties of the resulting sys
Of course the necessary calculations have been done
ago. In particular, the parameters

gv
2M2/mv

25195.9 ~5.27!

and

gs
2M2/ms

25267.1 ~5.28!

have been chosen@45# so as to give the binding energy p
particle of nuclear matter as 15.75 MeV withkF51.42
Fm21. In this case, solving the equation forf gives
M1gsf50.56M .

A. Nucleon and meson plus momentum
and deep inelastic scattering

The light front formalism embodies the use ofk1 as a
canonical variable that allows us to study the nucleonic
mesonic contributions to the nuclear plus momentum. T
study of the plus-momentum content is motivated by
desire to obtain a better understanding of lepton-nucl
deep inelastic scattering. The European Muon Collabora
o

he
en.

m.
ng

d
e
e
s
n

effect @46# that the structure function of a bound nucleo
differs from that of a free one, showed a principal effect th
the plus momentum carried by the valence quarks is less
a bound nucleon than for a free one. Many different intere
ing interpretations and related experiments@47# were stimu-
lated by these experiments. However, a correct interpreta
requires that the role of conventional effects, such as nuc
binding, be assessed and understood.

Our formalism employs the plus component of the m
mentum so that its use in assessing the nucleon’s~and there-
fore the valence quark’s! plus momentum is necessary. W
therefore examine the plus-plus component of the ene
momentum tensor Eq.~5.13! to determine how much mo
mentum is carried by nucleons and how much by meso
Rewrite Eq.~5.13! as a sum of mesonicm and nucleonicN
terms

P1

A
5

Pm
1

A
1

PN
1

A
, ~5.29!

with

Pm
1

A
5

mv
2V0

2

rB
~5.30!

and

PN
1

A
5

4

rB~2p!3E
F
d2k'dk1k1. ~5.31!

The parameters of Eqs.~5.27! and ~5.28! leads to

P1

A
5M215.75 MeV ~5.32!

and the use of Eq.~5.27! in Eq. ~5.30! gives

Pm
1

A
5329 MeV, ~5.33!

while performing the integral involved in Eq.~5.31! leads to

PN
1

A
5594 MeV. ~5.34!

The result is that 65% of the nuclear plus momentum m
be carried by the nucleons and the remainder of 35% is
ried by the mesons.

How do these numbers relate to experiments? To ans
we need to recall that the nuclear structure functionF2A can
be obtained from the light front distribution functionf (y)
~which gives the probability for a nucleon to have a plu
momentum fractiony) and the nucleon structure functio
F2N using the relation@48#

F2A~x!

A
5E dy f~y!F2N~x/y!, ~5.35!

wherey is theA times the fraction of the nuclear plus mo
mentum carried by the nucleon andx is the Bjorken variable
computed using the nuclear mass divided byA(M̄ ):
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x5Q2/2M̄n. This formula is the expression of the convol
tion model in which one means to assess, viaf (y), only the
influence of nuclear binding. Other effects such as
nuclear modification of the nucleon structure function~if
F2N is obtained from deep inelastic scattering on the f
nucleon! and any influence of the final-state interaction b
tween the debris of the struck nucleon and the resid
nucleus@49# are neglected.

Our formalism enables us to calculate the functionf (y)
from the integrand of Eq.~5.13!. Since the integral gives th
total plus momentum carried by nucleons, the integrand
multiplies the factork1 can be interpreted as the necess
probability distribution. Thus

PN
1/A5E dk1k1 f ~k1!, ~5.36!

f ~k1!5E
F
d2k' . ~5.37!

The function f (y) can be obtained by replacingk1 by the
dimensionless variable y using y[k1/M̄ with
M̄[M215.75 MeV. Then using Eq.~5.37! leads to the re-
sult

f ~y!5
3

4

M̄3

kF
3

u~y12y!u~y2y2!F kF
2

M̄2
2S EF

M̄
2yD 2G ,

~5.38!

where y6[(EF6kF)/M̄ and EF[AkF
21(M1gsf)2.

Knowing the following integrals is useful:

E dy f~y!51, ~5.39!

E dyy f~y!50.65, ~5.40!

with the 0.65 representing the earlier 65% result.
We may now assess the implications of the statement

nucleons carry only 65% of the nuclear plus momentu
This number is to be compared with the value obtained
Frankfurt and Strikman@11#. They used data forF2A and
F2N along with Eq.~5.35! to determine the average value
y required by experiments with the result that

E dyy fexpt~y!50.95. ~5.41!

This means that nucleons carrying 95% of the nuclear p
momentum~a 5% depletion effect! is sufficient to explain the
10–15 % depletion effect observed for the Fe nucleus.
35% depletion seems to be rather large, but one must rem
ber that it results from nuclear matter. A result that compa
more closely with experiment could be obtained in a vers
of the present model for which the value ofM1gsf is
closer toM . However, determining specific features of t
present model is not the goal of the present work. Instead
wish to demonstrate that the light front formalism can
e

e
-
al

at
y

at
.
y

s
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s
n

e

used to obtain a nuclear wave function expressed in term
the plus-momentum variable that is closely related to exp
ment.

Indeed, we can verify that the ability to obtain the nuc
onic plus-momentum is the feature that requires the use
light front front formalism instead of an equal time forma
ism. To do this compare the 0.65 fraction with the result o
relativistic calculation using the equal time formalism@50#.
In this calculation, which uses Eq.~2.1! and for which the
scalar and vector fields are the same as here, the plus
mentum of a nucleon was chosen as the sum of the D
eigenenergy andk3:

kET
1 [EDirac1k35A~M1gsf!21k21gvV01k3.

~5.42!

Using this leads to an average nucleon plus-momentum f
tion ^y&ET5(EF1gvV0)/M̄ , which when evaluated with ou
parameters forkF ,f and V̄2, leads tô y&ET51.00! The big
difference between our result and the earlier equal time re
@compare Eqs.~5.6! and ~5.42!# arises from our use of the
plus momentum as a canonical momentum variable and
consequent use ofT1m to construct the light front momen
tum and energy density. In particular, the first line of E
~5.42! is only a reasonable guess.

We note also that the baryon number distributionf B(y)
~number of baryons pery, normalized to unity! can be de-
termined from the expectation value ofc†c. The result is

f B~y!5
3

8

M̄3

kF
3

u~y12y!u~y2y2!H S 11
EF

2

M̄2y2D
3F kF

2

M̄2
2S EF

M̄
2yD 2G2

1

2y2F kF
4

M̄4
2S EF

M̄
2yD 4J .

~5.43!

Some phenomenological models treat the two distributi
f (y) and f B(y) as identical. The distributions have the sam
normalization, but they are different as shown by Eqs.~5.38!
and ~5.43!.

Consider that the average value ofy equal to 0.65 repre-
sents a very strong binding effect on lepton-nucleus d
inelastic scattering. One might think that the mesons, wh
cause this binding, would also have huge effects on d
inelastic scattering. It is therefore certainly necessary to
termine the momentum distributions of the mesons. The m
sons contribute 0.35 of the total nuclear plus momentum,
we need to know how this is distributed over different ind
vidual values. The paramount feature is thatf and Vm are
the same constants for any and all values of the spatial
ordinatesx2,x' ~and alsox1). This means that the relate
momentum distribution can only be proportional to ad func-
tion setting both the plus and perpendicular components
the momentum to zero. This result is attributed to the me
field approximation for infinite nuclear matter, in which th
meson fields are treated as classical quantitates. Thus
finite plus momentum can be thought of as coming from
infinite number of quanta, each carrying an infinitesim
amount of plus momentum. A plus momentum of 0 can o
be accessed experimentally atxB j50, which requires an in-



a
e

ta
p

el
en
d
in
d
o

um
ew
us
in
n
he

h
io
t
b

f

nt
f

r o
ug
he
er

at
e
u
e
p
u

le
si
s

ei
a

n-
d

,
ry

io
tin

t
o

for
t of
va-
pli-
te

dis-
ility
ism
nt
ted

a
al
g-

se
his
sed
t in
ted

fi-
nifi-
ero
-
eri-

me-
ite

on-
rrier

I
ir
S.
n,

ri-

.
t

56 2803LIGHT FRONT TREATMENT OF NUCLEI: FORMALISM . . .
finite amount of energy. Thus, in the mean-field approxim
tion, the scalar and vector mesons cannot contribute to d
inelastic scattering. The usual term for a field that is cons
over space is a zero mode and the present Lagrangian
vides a simple example. For finite nuclei, in the mean-fi
approximation, the mesons would carry a very small mom
tum of scale given by the inverse of the nuclear radius, un
the mean-field approximation. If fluctuations were to be
cluded, the relevant momentum scale would be of the or
of the inverse of the average distance between nucle
~about 2 Fm!.

We can understand the significance of the presence
components of a wave function that carry plus moment
but do not participate in deep inelastic processes by revi
ing a bit of history. The nuclear binding effect is that the pl
momentum of a bound nucleon is reduced by the bind
energy and so is that of its confined quarks. Conservatio
momentum implies that if nucleons lose momentum, ot
constituents such as nuclear pions@51# must gain momen-
tum. This partitioning of the total plus momentum among t
various constituents is called the momentum sum rule. P
are quark-antiquark pairs so that a specific enhancemen
the nuclear antiquark momentum distribution, mandated
momentum conservation, is a testable@52# consequence o
this idea. A nuclear Drell-Yan experiment@53#, in which a
quark from a beam proton annihilates with a nuclear a
quark to form am1m2 pair, was performed. No influence o
nuclear pion enhancement was seen, leading Bertschet al.
@54# to question the idea that the pion is a dominant carrie
the nuclear force. In the present situation, we have a h
depletion effect of 35%, but with no consequence for eit
the nuclear deep inelastic scattering or Drell-Yan exp
ments.

We hasten to add that the Lagrangian of Eq.~2.1! and its
evaluation in the mean-field approximation for nuclear m
ter have been used to provide a simple but semirealistic
ample. It would be premature to compare the present res
with data before obtaining light front dynamics for a mod
in which the correlational corrections to the mean-field a
proximation are included and that treats finite nuclei. Th
the specific numerical results of the present work are far
relevant than the central feature that the mesons respon
for nuclear binding need not be accessible in deep inela
scattering.

However, the present model may be regarded as b
one of a class of models in which the mean field plays
important role@55#. For such models nuclei would have co
stituents that contribute to the momentum sum rule but
not contribute to deep inelastic scattering. In particular
model can have a large binding effect, nucleons can car
significantly less fraction ofP1 than unity, and it is not
necessary to include the influence of mesons that could
ruled out in a Drell-Yan experiment.

VI. SUMMARY AND DISCUSSION

The present paper shows how the light front quantizat
of a chiral Lagrangian can be accomplished. The resul
formalism can be applied to many problems of interest
nuclear physics. In particular, pion-nucleon, nucleon-nucle
scattering, and infinite nuclear matter~in the mean-field ap-
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proximation! are presented here. Soft pion-theorems
pion-nucleon scattering are reproduced. The treatmen
nucleon-nucleon scattering is shown to be manifestly co
riant in the one-boson exchange approximation. The im
cations of chiral symmetry for the two-nucleon intermedia
state contribution to the two-pion exchange potential are
cussed. The present results mainly constitute a feasib
study, in that the emphasis here is on checking the formal
by reproducing known results. But this light front treatme
does allow the effects of chiral symmetry to be incorpora
within a relativistic formalism and therefore should have
broad applicability in the future. One remaining technic
problem is to provide a light front quantization of a Lagran
ian for spin-3/2 particles.

The special feature of the light front formalism is its u
of the plus momentum as one of the canonical variables. T
enables a close contact with the experimental variables u
to analyze deep inelastic scattering and any experimen
which there is one large momentum. This feature is exploi
here in the derivation~within the mean-field approximation!
of the nucleonic and mesonic distribution functions for in
nite nuclear matter. The mesons are shown to carry a sig
cant fraction of the nuclear plus momentum, but only a z
plus momentum~a zero mode!, and therefore do not partici
pate in nuclear deep inelastic scattering or Drell-Yan exp
ments.

The ultimate validity of the above~perhaps startling!
statement depends on whether or not the dominance of
sonic zero modes survives calculations performed for fin
nuclei and calculations that include the effects of nucle
nucleon correlations. There seems to be no technical ba
precluding such calculations.
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APPENDIX: NOTATION, CONVENTIONS,
AND USEFUL RELATIONS

This appendix is patterned after the review of Harind
nath @3#. The light front variables are defined by

x15x01x3, x25x02x3, ~A1!

so the four-vectorxm is denoted

xm5~x1,x2,x'!. ~A2!

With this notation the scalar product is denoted by

x•y5
1

2
x1y21

1

2
x2y12x'

•y'. ~A3!

The metric tensorgmn with m5(1,2,1,2) is obtained from
the usual one by using Eq.~A1! ~i.e., g0m5g0m1g3m). Then
g125g2152, gi j 521, with the other elements vanishing
The term gmn is obtained from the condition tha
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gabgbg5dag . Its elements are the same as those ofgmn

except forg215g1251/2. Thus

x25
1

2
x1, x15

1

2
x2, ~A4!

and the partial derivatives are similarly given by

]152]252
]

]x2
]252]152

]

]x1 . ~A5!

The step function is defined asu(x)51 for x.0 and
u(x)50 for x<0. The antisymmetric step function is give
by

e~x!5u~x!2u~2x!, ~A6!

with

]e

]x
52d~x!. ~A7!

In this notation,uxu5xe(x). The above few definitions allow
us to express the inverse operators appearing in the te
terms of integrals:

1

]1 f ~x2!5
1

4E dy2e~x22y2! f ~y2!, ~A8!

S 1

]1D 2

f ~x2!5
1

8E dy2ux22y2u f ~y2!. ~A9!

The Bjorken-Drell@56# convention forg matrices is used
and

g6[g06g3. ~A10!

The relations

g6g650, g1g2g154g1, g2g1g254g2

~A11!

can be used to simplify various computations.
The Hermitian projection operatorsL6 are given by

L65
1

4
g7g65

1

2
g0g65

1

2
~ I 6a3! ~A12!

and obey the relations
ar
.

M

.

in

~L6!25L6 , g'L6 5L6g', ~A13!

g0L65L7g0 a'L65L7a', ~A14!

g5L65L6g5 g752L6g05g7L7 , ~A15!

g iL75
1

2
g i6 i

1

2
e i j g jg5, ~A16!

and

a jg iL15
i

2
e i j g1g5. ~A17!

The light front Dirac spinors are given by

ul~k!5A 2

k1@ML21~k11a'
•k'!L1#xl , ~A18!

where

x↑
†5~1,0,0,0!, x↓

†5~0,1,0,0!. ~A19!

The antiparticle spinors are given byvl(k)5C@ ūl(k)#T,
whereC5 ig2g0 is the charge conjugation operator, so th

vl~k!5A 2

k1@ML21~k11a'
•k'!L1#hl , ~A20!

with

h↑
†5~0,0,0,1!, h↓

†5~0,0,21,0!. ~A21!

Other useful relations are

ū~k,l!u~k,l8!52Mdl,l8, v̄ ~k,l!v~k,l8!522Mdl,l8,
~A22!

ū~k,l!gmu~k,l8!52pmdl,l8,

v̄ ~k,l!gmvk,l8)522pmdl,l8. ~A23!

The text uses Dirac spinors obeying

(
l

u~k,l! ū~k,l!5gk1m,(
l

v~k,l! v̄ ~k,l!5gk2m.

~A24!

Note that in the above three equationskm is an on-shell four-
vector withk25(k'

2 1M2)/k1 andk5(k1,k').
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