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Light front treatment of nuclei: Formalism and simple applications

Gerald A. Miller*
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309
and National Institute for Nuclear Theory, Box 35150, University of Washington, Seattle, Washington 98195-1550
(Received 12 June 1997

A relativistic light front treatment of nuclei is developed by performing light front quantization for a chiral
Lagrangian. The energy momentum tensor and the appropriate Hamiltonian are obtained. Three illustrations of
the formalism are madéi) Pion-nucleon scattering at tree level is shown to reproduce soft pion thedigms.

The one boson exchange treatment of nucleon-nucleon scattering is developed andoghoymparison with
previous results of the equal time formulatido lead to a reasonable description of nucleon-nucleon phase
shifts. (iii) The mean-field approximation is applied to infinite nuclear matter and the plus momentum distri-
butions of that system are studied. The mesons are found to carry a significant fraction of the plus momentum,
but are inaccessible to experimer{iS0556-281®7)05511-§

PACS numbdps): 13.75.Cs, 11.86-m, 21.65:+f, 13.75.Gx

I. INTRODUCTION wave function because previous work used the equal time
formalism.

The need for a relativistic methodology that is broadly Are these light cone variables useful only in nuclear deep
applicable to nuclear physics has never been more appareiitelastic scattering? Let us answer this by examining the ori-
One of our most important sets of problems involves undergin of such coordinates. The four momentum of the incident
standing the transition between ttgaryon and mesorand ~ Virtual photon g can be said to have the components
the (quark and gluondegrees of freedom. Using a relativis- 4= (»,0,0,- »—Q?%2v), with g*=-Q* and »,Q* very
tic formulation of the hadronic degrees of freedom is neceslarge but Q%wv finite (the Bjorken limiy. Then
sary to avoid a misinterpretation of a kinematic effect as aej=Q%/2k-q=Q%k*q". The condition that the reaction be
signal for the transition. elastic scattering from the quarks is thai+q)?=p? or

The goal of understanding future high-momentum studie<P- q=Q*=p’q . Thus xgj=p"/k" results from having
of nuclear targets using exclusive, nearly exclusive, or inclu©Nly one large momentum in the problem, which can be

sive processes can only be met through using relativistiéaken in the negative direction, so that minus component is

techniques. The light front approach of Dirt] in which enhanced. More generally, one expects to be able to use light

the time variable is taken as-z and the spatial variables are cone coordmatesp(*,p P1) Whgnever there is such a Iargg
momentum in the problem as in any high-energy scattering

: . 0. .3 eprocess. Diverse applications are shown in the text by Cheng
fche momentum canonically conjugatettoz, p*=p™+p*,  5h4 wy [5]. Examples of most relevance include high-
is directly related to the observables. _ energy projectile nuclear scattering and high-momentum
It is worthwhile to begin with a qualitative explanation of {anster quasielastic reactions involving nuclear targets.
the utility of these light cone variables and this light front Light front techniques have previously been applied to
approach in a qualitative fashion. Consider lepton-nucleugystems of two hadrons. The two main approaches have been
deep inelastic scattering as a first example. The observe@ie relativistic quantum mechanics of directly interacting
structure function depends on the Bjorken variablg, particles[6—9] and relativistic field theory[2,10,11. We
which in the parton model is the ratio of the quark pluschoose here to employ specific Lagrangians that embody chi-
momentum to that of the target. If one regards the nucleus asil and other symmetries and thus use field theory.
a collection of nucleonsgg;=p*/k*, wherek™ is the plus The light front quantization procedure necessary to treat
momentum of a nucleon bound in the nucleus. Thus a moraucleon interactions with scalar and vector mesons was de-
direct relationship between the necessary nuclear theory antled by Sopef{12] and by Yan and collaboratofd3,14.
experiment occurs by using a theory in whikh is one of Here we combine the previous formalisms to obtain a light
the canonical variables. Sinde™ is conjugate to a spatial front treatment of a Lagrangian that contains pions, vector,
variable x"=t—z, it is natural to quantize the dynamical and scalar mesons and respects the constraints of chiral sym-
variables at the equal light cone time variablexdf=t+ z. metry.
To use such a formalism is to use light front quantization Here is an outline. The bulk of the formalism is presented
since the other three spatial coordinates ,k,) are on a in Sec. Il. First, a chiral Lagrangian that includes pions, sca-
plane perpendicular to a lightlike vectat]. This use of light lar mesons, and neutral vector mesons is presented. The field
front quantization requires a new derivation of the nuclearquations are derived and the quantization procedure for the
free and interacting fields are quantized at the zero of light
cone timex*. The energy momentum tensor, the light front
*Permanent address: Department of Physics, Box 351560, UniHamiltonianP~, and plus-momentum operat®" are de-
versity of Washington, Seattle, WA 98195-1560. rived. The necessary contact interactions involving the ex-
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change of instantaneous fermions and vector bosons are owhich correspond to different definitions of the fields.
tained. The principal purpose of the present work is to The pion-nucleon coupling here is chosen as that of linear
develop a technique that could have wide application irrepresentations of chiral symmetry used by Gufds}, with
nuclear physics. Thus we study and check the present fothe Lagrangian approximatelyn(,#0) invariant under the
malism by applying it to three different examplesN and  chiral transformation

NN scattering and a mean-field treatment of infinite nuclear

matter, of relevance to nuclear physics. Dealing successfully ' —e 7Ty
with each of these subjects is a prerequisite for making
progress. U—e 75m3yg irsma (2.3

Section Il shows how light front field theory leads to a

chiral treatment of low-energy pion-nucleon scattering,one may transform the fermion fields by takibj2y’ as
which is consistent with the results of soft pion theorems.he nucleon field. One then gets Lagrangians of the nonlinear
Then nucleon-nucleon scattering is handled in a manifestlyepresentation, as explained by Weinbgtg]. In this case
covariant manner, within the one-boson approximation, inhe early soft pion theorems are manifest in the Lagrangian
Sec. IV. A discussion of the impact of chiral symmetry onand the linear pion-fermion coupling is of the pseudovector
the two-nucleon intermediate state contribution to the twotype. However, the use of light front theory requires that one
pion exchange potential is also included. The mean-field apfind an easy way to solve the constraint equation that gov-
proximation is applied to infinite nuclear matter in Sec. V. ems the fermion field. We shall show that the constraint can
Glazek and Shakifil5] used a Lagrangian containing nucle- pe handled in a simple fashion by using the linear represen-
ons and scalar mesons to study infinite nuclear matter. Hef@tion. Moreover, we shall see that the early soft pion theo-
vector mesons are included and the rotational-invariance afems are indeed manifest from the form of the light front
guments used in Sec. IV are used to derive the Glazekygmiltonian.

Shakink™ variable. The energy of nuclear matter is com-  The constanM/f plays the role of the bare pion-nucleon
puted and shown to be the same as found in the equal timgyypling constant. If is chosen to be the pion decay con-
formalism. The unique feature of the present formalism isstant, the Goldberger-Trieman relation yields the result that
the ability to obtain the nuclear and mesonic plus-momentunne axial vector coupling constagh =1, which would be a
distributions from the energy momentum tensor. We find thabroblem for the Lagrangian, unless loop effects can make up
that mesons can carry a significant fraction of the nucleafye needed 25% effect. Corrections of that size are typical of
plus momentum, but have support only at 0 plus momentumgqer (M/f)? effects found in the cloudy bag mode0] for
Some of the results for nuclear matter have been presentqaqany observables, includirg, .

elsewherd 16]; here the calculation is performed in two dif-  There are no explicia’s in the above Lagrangian. Those
ferent ways and explained in more detail. Section VI sumvi| pe handled elsewhere. For the moment we note that
marizes the results, presents a critique, and discusses pQfsating the higher-order effects of the pion-nucleon inherent
sible future applications. The Appendix contains a summaryy, this Lagrangian is likely to lead to a resonance in (3@

of notation and some useful equations. channel of pion nucleon scattering. Such effects can be in-
cluded in the two-pion exchange contribution to nucleon-
IIl. LIGHT FRONT QUANTIZATION nucleon scattering. However, such an approach seems cum-
bersome.

A L i d field i . . C .
agrangian and field equations The choice of using an explicik instead of the iterated

We use a nonlinear chiral model in which the nuclearsz-N interaction is analogous to our use of a scalar meson
constituents are nucleons (or ), pions o scalar mesons even though the effects of-m interactions, which could
¢ [17], and vector mesong”. The LagrangiarC is given by  |ead to similar effects, are included in the Lagrangian. We

1 1 2 follow many authors(see the review21]) and include a
L=2(0. dd*b—m2d2)— —VANY  + —L\my sca}lar meson to simplify calculations. In this treatment,
2( ppd" P msé’) 4 pr- 2 # which follows that of Refs[22,23, the scalar mesog is
1 1 not a chiral partner of the pion, the chiral transformation is

+ —f2Tr((9MU(9/‘UT)+ —mf,szr(U + UT_Z) that of Eq(23) .
4 4 The present Lagrangian may be thought of as a low-

energy effective theory for nuclei under normal conditions.
e (2.1 A more sophisticated Lagrangian is reviewed[28] and
used in[22]; the present one is used to show that light front
techniques can be applied to hadronic theories relevant for
where the bare masses of the nucleon, scalar, and vectfclear physics. This hadronic model, when evaluated in
mesons are given bjd,ms, m,, andV*"=d*V"—ad"V¥.  mean-field approximation, givd@1] at least a qualitatively
The unitary matriXJ can be chosen from among three forms good description of mangbut not al) nuclear properties and
Ui: reactions. There are a variety of problems occurring when
) higher-order terms are includ¢@3]. The aim here is to use
1+iysT alof a reasonably sophisticated Lagrangian to study the effects
1-iysr @l2f’ that one might obtain by using a light front formulation.
We could also have used the linearmodel. The light
Us=V1— 72/ f°+iysr mlf, (2.2 front quantization for that model can be accomplished using

+y ~MU—gs¢

i o
7#<§0M_ gvv,u.

UlEeiysf-ﬁ/f’ U2
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a simple generalization of the work of Refd2] and[13]  \wherek-x=21(k x*+k*x")—k, -x, , with k- =k?+m/
and is not shown here. According to the revig2@], the use k*, andk=(k* k). The 6 function restrictsk* to positive

of such a Lagrangian precludes a successful description Qf;j,es. The commutation relations are
nuclei at the mean-field level.

The next step is to examine the field equations. The rel- [a(k),aT(k")]=6(k, —k ) o(k* —k'™) (2.13
evant Dirac equation for the nucleons is ’ s '
v (id—g,V) ' = (MU +ged) (2.4) with [a(k),a(k’)]=0. It is useful to define
v S . "
The field equations for the mesons are 8@ (k—k")=0a(k, —k))s(k*=k'"),  (2.14
3, VE+ sz”ZQUW)’”lV, (2.5) which will be used throughout this paper.

The derivatives appearing in the quanfity ~ are evalu-
ated and then one set$ to O to obtain the result

3yt bt mid=—gsp' ¥, (2.6
m [ f2 Py (#)= | d%, dk*a(k*)a’(k) k)kiﬂng
8,00+ m2fsin( /)4 5, —I&"“W( 1- —zsinZ—H o(#)= | dkidkTok)a‘(kadk) ==,
T T T f
(2.15
= —mWTg//, (2.7 which has the interpretation of an operator that counts the
i light front energyk = (k? + m2)/k* of all of the particles.
whereTr:(qu-r-z)l’Z. The pion field is treated in a similar manner, with the result

The next step is obtain the light front HamiltoniaR 1)
as a sum of a free, noninteracting and a set of terms contain-
ing all of the interactions. This is accomplished by using the

[a(k)e—ik-x_l_aT(k)eik-X]

f d2k, dk* 6(k*)
(277)3/2 2k+

energy momentum tensor as (2.16
1
P/‘:EJ dx d?x, THA(xT=0x",x,). (2.9 and
— 2 + +y4t kf+mf’
The usual relations determirfe’ #, with Po (w)zf d°k, dkTo(k™)a (k)-a(k)k—+,
TH=—g"'L+ D o~ ' (2.9 o
r 0(0ubr) " ' with commutation relations analogous to that of E}13).
_ ) The energy momentum tensor for the free vector meson
in which the degrees of freedom are labeleddgy. field is obtained directly from the defining relati¢®.9) as
B. Free meson fields 1 5 2
wv —\/Jau 9V pv| _\ja@ __v @
It is worthwhile to consider the limit in which the inter- To"(V)=VH#a'Vatg 4V Vap 2 VaV.

actions between the fields are removed. This will allow us to (2.18
define the free HamiltoniaR, and to display the necessary

commutation relations. The energy momentum tensors of thl is desirable to obtain the symmetric energy momentum
noninteracting fields are defined as B4"(4), T4*(V), tensor. Thisis done by usingV®=4“V"+V"*, subtracting
and T#*(w). The fermion fields are quantized in Sec. Il C. @ total divergence and using the free field equations. The

Then the use of Eq2.9) leads to the result result is
nv v g#«V o 242 % auy\vB 2 v V| 1 af
To'(¢)=0"¢pd"¢— —-[d,43"¢—ms¢7], (2.10 To (V) =VEVPGgo VAV +gH" 2V o g
with m;
- =2V, Ve, (2.19
2
T ()= 5V, 6.V, b+ 2l (2.1
2 + 2 87 ' The component relevant for the light front Hamiltonian can

] ) . be shown to be
The scalar field can be expressed in terms of creation and

destruction operators 1 m?2

+ - a+ 9— a+ U\ sky 7k
2k dk 6(k") To (V)=§V I V,—V aav++7vv.
d<k, 0 . .

)= | ——— “Ta(k)e X+ af(k)eik* , (2.20
¢><>f(27)3,2m[<> (kye' ]

(2.12  The expression for the vector meson field operator is
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d%k, dk* a(k™) N (i0"=g,V)¢'=[a - (p. =9,V ) +B(MU+gsh) ]y,

V”(x)=f— > et(k,w)[akw)e kX

(27T)3/2\ 2kJr 0w=13 ’ 7 P + r ’

_ (i0"=g,V)yl=[a - (p.=9,VL)+ BMU+gsd) ]y, .
+al(k,w)e'k ], (2.21) (2.27)

The relation betweegy” and . is very complicated unless
one sets the plus component of the vector field to Z8to

This is a matter of a choice of gauge for QED and QCD, but
ke, (k,0)=0, e,(kw)e“(Kw')=—25,,, the nonzero mass of the vector meson prevents such a choice
here. Instead, one simplifies the equation #dr by [12,14]
transforming the fermion field according to

where the polarization vectors are the usual ones:

kK
> k)€ (k)= ( gr’— F) . (222

o=1, v w’ :eiigvA(X)wl (2.28
Once again the four momenta are on shell withith
k*=(kf+mf)/k*. The light front commutation relations
ItA=V". (2.29

a(k,w),a'(k’,0")]=8,, 6> (k=K' 2.2

[atk @), a’(K' @)= du.r ( ) 229 This transformation leads to the result
with the others vanishing, lead to commutation relations . _  —. T
among the field operators that are the same as in [R4f. (10" =9,V )¢ =[a,-(p. g”Vi)+B(MU+gs¢)(]2‘/’3‘Oé
The expression foP, (V) can now be obtained from Egs. '

(220 and(2.2] as 10"y =[ a1 - (pL— V1) + BMU+ged) 14 |

(2.30bh
- 2 + + ki_’_mi t
Po(V)= 2, | d?,dk"o(k )= a(kwatke).  where
2.29 TVE= gt VH— gyt =V (2.3)
C. Interacting fields Note that all of the previously obtained fermionic sources

This subject is complicated by the presence of massivé)f meson fields are unchanged by the transformaing:

vector meson fields. Various difficulties were handled by

Soper[12] and Yan[14]. The key features that we use are py=y9'y’,

summarized here. In particular, the fied$,V*' are chosen .

as the three independent fields, with the others expressible in YUy=y'Uy’, (2.32
terms of these. We shall need only one of these relationships

in which the plus component of E¢2.5) can be used to Yyrh= g Yy

obtain

5 The eigenmode expansion far* is needed to compute
V =—[g,J" —miVT -4V *]. (2.25 the interaction between nucleons. Equatiofs2l) and
J v (2.31) can be used to obtain

with d2k, dk* 6(
B VE(X)= f 2n )”W :Z Kk, w)[ak,w)e” KX
=y 2.2
vy (229 +al(k,w)e ], (2.33

and the inverse ob" is defined in Refs[12—14. A more
recent discussion is given by Harindrinath and Zhap4
and the essentials are presented here in the Appendix. K

We turn to the case of spin-1/2 fermions. Although de- u(k w)= et (K, w)_ —e"(kw), (2.34
scribed by four-component spinors, these fields have only
two independent degrees of freedom. The light front formal-
ism allows a convenient separation of dependent and ind
pendent variables via the projection operatars= y°y*/2 2
[12], with . =A .. . The independent fermion degree of kEe (K, w)=— m_E (K, w),
freedom is chosen to bg', . The properties of the projection g
operators are discussed in the Appendix. One gets two
coupled equations fogs’, by multiplying Eq.(2.4) by A .
andA _:

where the polarization vectors_“(k,w) are given by 14]

Qvith the properties

2

€,k o) el (ko)== 384, (:2”) Zet (k,w) e (k')
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_ — IS It is convenient to considey_ as a sum of terms, one.
213 e“ko)e’(kw)=—{g"=g 79" "= whose relation withy, is free of interaction§12], the other
©eTn 7_ containing the interactions. That is, rewrite E8.30bh
(2.35
as[24]
The path towards the light front Hamiltonian proceeds via 1
the energy momentum tensor, which is given by §_=p—+(aL pL+BM) Y,

TH'=—gH L+ V*#VEg g, +mIVAVY 1 _
7-=pFim e gV AIMU=1) +gedlty. .

1
+ Ew’[y”(iaV—gUVV) +y¥(io*—g,V*) ]y’ (2.40
+ I P p+ It Furthermore, defing, (x)= ¢, (x), so that
. 2 = _(x), 2.4
e a:n(l_f_zsinzz). (2.3 P(X) = E(X) + 1-(X) (2.4
. T f

whereé(xX)=¢_(x)+ &, (X). The purpose of the above de-
composition is to separate the dependent and independent
The use of the fermion field equation allows one to obtainparts of 4 and to allow one to expand in terms of eigen-
the light front Hamiltonian density states of momentum.
One may make a similar treatment for the vector meson

1 1 fields. The operatoW* ~, determined by Eq(2.25), is rel-
T "=V, ¢-V, ¢+ mip*+ Z(V+7)2+ EVlek'ﬂL m;VKVE  evant for the Hamiltonian. Part of this operator is determined
by a constraint equation. To see this examine B®5 and
make a definition

(3V, m%)? f2 T T
+(V, @)+ 1— i — | + m2f2sirP —
m m f Vi =t 4wt (2.42
+2y8 (135 -9,V ). (2.39  where
It is now worthwhile to discuss a subtle feature regarding w0t =__23+ (2.43
chiral symmetry in light front formalisms. Chiral invariance ot ’

is defined as invariance under the transformation defined by
Eq. (2.3 if the equal time formalism is used. Now the inde- Next use Eqs(2.41) and(2.42 to rewrite the Hamiltonian as
pendent fermion variable ig, and ¢_ is a functional of a sum of a free and interacting terms. The sum of the last

this. Thus chiral invariance is the invariance under the transterm of Eq.(2.39 and the terms involvings* ~ is the den-
formation sity of the interaction HamiltoniaR,” plus the free fermion
term Py (N). Use Eqgs.(2.41) and (2.42 in the expression

g —e Ty (2.3  (2.39 for T"~ along with the field equations and integration

by parts to find

which is not the same as E¢{R.3) because Eq(2.38 pro- 1
duces a change ingy_ that is dlffe_rent than using Py (N)= _f d?x, dx™ &(y, - p+M)éE (2.44
y_—e'7573y_ [25,26. The Tt~ (or equivalently the light 2
front Hamiltonian of Eq. (2.37) is invariant under the trans-
formation (2.38 if the pion mass is neglected so the usual@nd
chiral properties are obtained in these light front dynamics. _
Expression(2.37) is useful for situations, such as in the Py =vitvatus, (2.45
mean-field approximation case for infinite nuclear matter ex-
amined below, for which a simple expression for is  With
known. This is not always the case, so it is worthwhile to use

the Dirac equation to expreds ~ in an alternate form lef d2x, dx~ €[g,y-V+M(U—1)+g.p]é

2.4
+— 221+—21klkl 2y sky 7k (249
TH =Y.V gt mig?+ 2(VF )24+ SVIVK+ mivky

+

— — 4
Uzzfdzdex §[—gw-V+M(U—1)+gs¢]zp+

(3V, 72 f2
T l—?smz?

+(V m)?+ +mf,fzsin2;

X[—g,7-V+M(U—1)+gep]¢, (2.47

+ [y -(pL—9,V.) +(MU+geh) 9. (239  and
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2
g; B e _ B . 1 1
US:S_ZJ dx, dx j dy; €(x.,y1) v é(x,,y1) ENWZW'}’M'&M_M"' 1+ (m/2) {E?’”%T' ot
1 2
Xe(xf—yI)J’ dy, e(x —y,) _(E) yrr aX ot ]N. (3.0
><axL Y2 )y EX LY, ). (2.48 Next obtain the fermion field equation and make the usual

decompositioN.=A . N, with
The termv, accounts for the emission or absorption of a

single vector or scalar meson, as well as the emission or (i0" =07 )N, =[a, - (p,—O, ) +BM]N_,
absorption of any number of pions through the operator - . _
U—1. The termw, includes contact terms in which there is (i0"=O")N_=[a;-(p.—O)+BM]IN,, (3.2

propagation of an instantaneous fermion. The ternac-

where the operatod* has been defined as
counts for the propagation of an instantaneous vector meson

We may now quantize the fermion fields using -1 1 1\2
e | M — | — . 1%
, O = T men 2t Vs ' (Zf) Tt
d?k, dk" a(k™) ‘. 3.3
- [ S o, S [utke bl '
(2m) We wish to remove th®©* term from the left-hand side of
+o(k,n)etkxdT(k,N)], (2.49  the equation foN_ . This can be done by defining a unitary

operatorF and fermion fieldy such that
where again the momenta are on shEn,=(kf+M2)/k+,

and the anticommutation relations are given by N=Fx, 3.4
bk, ), b (K )= {d(k N d (K A1) i
=6, 1 82 (K—K') i0TF=0"F. (3.5
The identity[18]
{b(k,\),b(k",A")}={d(k,\),d(k,\")}=0. (2.50
u3Zoru, Y2=io*, (3.6

The properties of the Dirac spinors are described in the Ap-
pendix. The ternP, (N) of Eq. (2.44) can now be expressed WhereUy is given in Eq.(2.2), helps a good deal. |tS use in
as Eq. (3.5, combined with the conditions“(U,U, %) =0,

leads to the result
2

k2
Pg(N)=f d?k, dk* (k™) 2 [bT(k,\)b(k,\) F=U3"? (3.7)

Fdt ko) dkon)], (2.51) so that using Eqg3.7) and(3.4) in Eq. (3.2) yields

. . 10" x+=[a,-p.+BMUz]x,
The component that is related to the plus momentum is i s 2

T* 7. The necessary expression is given by i0txy_=[a, -p,+BMU,]x. . (3.9
T+ =Vikyikt mfv*v+ +%ﬁia+ Y+t poT This is of the desired form in which no interactions appear
on the left-hand side of the equation fpr . Thus the use of
N N N it 2 light front quantization mandates that the pion-nucleon inter-
toTmd mtm |1 5SiN? actions be of the form of Eq2.1).
& The first test for any chiral formalism is to reproduce the
(252  early soft pion theoremg28]. Here we concentrate on low-
energy pion-nucleon scattering because of its relation to the
IIl. CHIRAL SYMMETRY AND PION-NUCLEON nucleon-nucleon force. We work to second order ifi ity
SCATTERING this first application. In this case, each of tbe takes the
same form
We begin by showing that if one starts with a nonlinear
representation of chiral symmetry, the requirement of solv- R
ing the constraint equation for the minus component of the U=1+iys—~—— 527" (3.9

fermion field leads one to a Lagrangian of the Gursey-type

linear representation. The focus is on chiral properties and This expression is to be used in the potentigjsanduv,
pion-nucleon scattering, so we dispense with the vector andf Egs.(2.46) and(2.47). The second-order scattering graphs
nonchiral¢ meson fields for this section, and it is sufficient are of three types and are shown as tixieordered pertur-

to examine only the following fermion-pion term of a non- bation theory diagrams in Fig. 1. The kinematics are such
linear representatiof27]: that @ (q)N(k)—a(q')N(k’), with P;=q+k and
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1 2 1 2
T (@)
(b)
3 4
SO '/’ ,:T:\ SN L7
1 1
(c)
1 2
FIG. 1. x"-ordered graphs for low-energy pion-nucleon scatter- (b)
ing. (a) Second-order effects of theysu termv,. (b) Second-order
effects of theuysp and v ysu terms ofv,. (c) Effects of the in- _
stantaneous fermion propagation terms gfand of ther? term of FIG. 2. x"-ordered graphs for one-boson exchange contribu-
vy. The termsy; are defined in Eqg2.46—(2.49. tions to nucleon-nucleon scattering. The numbers 1—-4 represent the

momentum, spin and charge states of the nucleons. kerek; .
P;=q’ +k’. The iteration ofv, to second order yields the (a) Meson propagation terms arftl) instantaneous vector meson
direct and crossed graphs of Figall In this formalismu, is ~ €*change obs [Eq. (2.48].

proportional to the matrix element of; betweenu spinors, . o
so it is proportional to the momentum of the absorbed ofPion-nucleon states leads to the result that each contribution

emitted pion. Thus the terms of Fig(al vanish near thresh- 0 the S matrix is proportional to a common factor
old. The terms of Fig. (b) are generated by theysv terms

of v,. Using the various field expansions in the expression SH(P—Py)
(2.46 for v, leads to the result that plus momentum is con- 202m3Jk' kg Fq*

served and the plus momentum of every particle is greater

than zero. This means that the first of Figbjlvanishes \yhich combines with the result of the required integration
identically and the second vanishes for values of the initial),er the light cone timex") to provide the necessary mo-
pion plus momentum that are less than twice the nucleopentum conservation and flux factors. The remaining factor

mass. The net result is that only the instantaneous tewy of ¢ each term is its contribution to the invariant amplitutie
and the? term of v, [shown in Fig. 1c)] remain to be The result is

evaluated.
Proceeding more formally, we evaluate Benatrix given M2 u_(k’)y+u(k) M2 u_(k’)y*u(k)
> METTT Qi eg T 2k —at)
i o]
_ _ +Ph (vt M_—
S—T+exp( 5 wdx P, (x )), (3.10 —5if?u(k’)u(k), (3.13

whereT, is thex" - (light front time) ordering operator and \yhere the three terms here correspond to the three terms of
P, is the interaction representation light front Hamiltonian. Fig. 1(c). The role of cancellations in the reduction of the
Then term proportional tod;; is already apparent. To understand
the threshold physics take *=k*=M andq’ *=q"=m,,.
(S—1)sj=—2mi (P, =Py ){(f|T(P;)]i), (3.1)  Then one finds

with 2mz m, M
M:‘Siff_2+2|6fin7'nf_2 (314)
1
T(P)=P; +P] ————T(P; 3.1
(P=Pr+Py P —Py (P) 312 to leading order irm_/M. The weak nature of thé;; term

and the presence of the second Weinberg-Tomazowa term is
The evaluation proceeds by using the field expansions in ththe hallmark of chiral symmetrj28]. The same results could
expressions fow; and v,. Integrating overd®x, dx* and  be obtained using the linear model, withc exchange play-
evaluating the result between the relevant initial and finaing the role of ther? term of Eq.(3.9).
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IV. NUCLEON-NUCLEON SCATTERING VIA ONE- where the notation is that(i) is the spinor for a nucleon of
BOSON EXCHANGE POTENTIALS guantum numbers andT is of the form eithergy or igys.
The momentum of the exchanged mesolk iand it is nec-

The ultimate aim is to derive the nuclear wave function ssary to realize that

including correlation effects. The first step is to understande
nucleon-nucleon scattering using our light front formalism. kt=q*, k. =q 4.3
We start with the one-boson exchange approximation, dis- ’ ’

cuss the light front wave equation, and show that this procebut

dure gives the same scattering amplitude as the usual proce-

dure of computing the one-boson exchange contributions to OKR+u?

the invariant amplitudes and using the Blankenbeckler-Sugar k™= KT #q 4.4
reduction of the Bethe-Salpeter equat{@9,30. This usual

procedure is covariant, so that our construction shows th%here,u is the mass of the exchanged scalar meson or pion
the light front wave procedure respects rotational invarianceThe factor 1+ arises from the denominators of the field '

This invariance is the result of Frankfur_t gnd_ Strikn{dg] expansions andk{ —k; —k") is the result of evaluating the
and others. The present treatment explicitly includes the ef

: . : light front energy denominatd?; — P, . Define the energy
fects of nucleon spin and the nucleon-nucleon interaction C@enominator of Eq(4.2) to beD so that
be derived from an underlying chiral Lagrangian. '

The starting point is theS matrix of Egs.(3.10 and T S S Ny
(3.11). Here the initial staté consists of nucleons with quan- D=k"(ky —kg =k )= (kg —kg)(ky —kg )=k Tk ('4 5
tum numbers labeled by 1 and 2 and the sfatonsists of '
nucleons 3 and 4. To be definite, we take the plus momenturdsing Eqs.(4.3) and (4.4) immediately yields
of nucleon 1 to be greater than that of nucleon 3 and the

momentum transfeq to be D=q°— u?, (4.6)
so the amplitudeC takes the form
a=k;— ks, (4.0 B B
u(4)Tu(2)u(3)ru(l)
so thatq™ >0. (3.4K(¢,m)|1,2= . (4

2 3(n2 2
The lowest-order contributions to the invariant amplitude AMA2m)A(a”— )
are represented by the light front time-ordered graphs showmhis is the usua[29-31 expression for a one-boson ex-
in Fig. 2. The graphs of Fig.(2) represent terms of the form change potential if no form factor effects are included. Note
v4[1/(P; —Pg)Jv, and that of Fig. fb) accounts for the that the Klein-Gordon propagator is obtained using only a
instantaneous massive vector boson exchange termy.of Single time-ordered graph. The calculation with the equal
These terms may be evaluated by using the field expansiorigne® formulation requires the summation of two time-

and doing the relevant integrals over ttiéx, dx~ coordi- ~ordered graphs. _
nate space. Each term has a common factor of The derivation of the contribution of vector meson ex-

change proceeds by adding the terms of Figa) and Zb).
The term of Fig. 2a) can immediately be seen to be

AM252H (P —Py)

—— u(4)y,u(2)u(3)y,u(l)
2\/k1 I(2 k3 k4 <3'4{ K:Za(v)|112>:gg AM Z;ZZW)3(q2_ mg)

where the factor M2 in the numerator is compensated by k” k#
dividing the invariant amplitude byM?. X| =gt + 9+”k—++ 9+Vk—+ :

It is simplest to consider the effects of scafaand pseu-
doscalarsr exchanges at the same time. The scattering am- (4.8

plitudes(3,4K(¢,)|1,2) take the form

The factor in square brackets arises from the polarization
_ _ sum; recall Eq(2.35. It is worthwhile to define the contri-
u(@Tu(2)u(3)ru(1) bution of the second and third terms in square brackets,

AM?(2m)3k* (ky —kg —k7)’ which result from the difference betweaft* and Vv~ fields,
(4.2 as(3,4Kpall,2), with

(34K(¢,m)|1,2=

u(4)y u(2)u(3)y-ku(1)+ u(4)y-ku(2)u(3)y u(l)
2=g; :
<314'|Kbal’|1' > gv 4M2(27T)3q+(q2_m5)

4.9
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Next use the relationsi(3)yqu(1)=u(4)yqu(2)=0 and after removing the common factor and accounting for the

the equa"ty of the p|us and perpendicu'ar Componenfk of momentum'conserVing functions. One realizes that this is
with those ofq to obtain the results of the form of the Weinberg equatidB2] by expressing the

plus-momentum variable in terms of a light front momentum
fraction @ such that

— 1

u(3)y-ku()=zu(3)y u()(k =a"),
ps =aP;’ (4.17)

— 1

u(4)y-ku(2)= Eu(4) y"u(2)(k-—q7). (4.10 and using the relative and total momentum variables

P.=(1—a)ps; —apg, ,

Pi. =Ps. +Pe. - (4.18

But k-—q =(g*+m?)/q"—q =—(g?>—m?)/k", which
leads to a compact rewriting of E(4.9) as

L,u(@)y u2)u(3)y*u(1) Then
v AM2(27)3(k*)2 '

<314{ Koar 112> =—4g

@10 (34M12-@E4Kn2+ | 3 (34Kise
A
The term of Fig. 2b) is obtained by using the field expansion Ms:he

in the equation forv; (2.48, integrating over coordinate 2M?2 d’p, da
space and removing the common factor. The result is Xa(l_a) RERVE (5,6 M]1,2),
U@y u2)u(3)y*u() @ e
u(4)y u(2)u(3)yru -
(34K2(V)|1.2=0? PSRy E—
AM=(2)>(k™) (4.19

.12 whereP? is square of the total initial four-momentum, oth-
which exactly cancels the ter(8,4Kpo,|1,2). The netresult erwise known as the invariant energys, and
is that the amplitude for vector meson exchange(p? +M?)/a(1— «) is the corresponding quantity for the in-
(3,4K(V)|1,2=(3,4K2(V) +K3|1,2) takes the familiar termediate state. Because the kerkiais itself an invariant

form amplitude, the procedure of solving this equation to deter-
— — mine observables is manifestly covariant.
(3AKV)|1.2— _92U(4) Y, U(2)u(3)y*u(l) Equation (4.19 can in turn be reexpressed as the
’ ’ UoaM22m¥(qi-md) Blankenbecler-SugaBbS) equation[33] by using the vari-
(4.13  able transformatiofi34]
The sum of the amplitudes arising from each of the indi- E(p)+p?
vidual one-boson exchange terms “T 2E(p) (4.20

(34K|1.2=(34K(¢)+ K(m)+L(V)|1.2, 414 \ith E(p)=p-p+ MZ. The result is

gives the invariant amplitude to second order in each of the
coupling constants. These amplitudes are strong, so comput- (3,4 M|1,2=(3,4K|1,2 + > (3,4K|5,6)
ing the nucleon-nucleon scattering amplitude and phase A5 .hg

shifts requires including higher-order terms. One may in- M d%p
clude a sum that gives unitarity by including all iterations of X s (5,§M|1,2),
the scattering operatd€ through intermediate two-nucleon E(P) pi—p tie
states: M
(4.20
M=Kty 4.15
P —P, ’ ' which is the desired equation. The three-dimensional propa-

gator is exactly that of the BbS equation; there is one-
whereP; is the negative momentum in the initial state anddifference. Our one boson exchange potentials depend on the
P,y projects onto two-nucleon intermediate states. More exsquare of the four-momentuny transferred when a meson
plicitly, Eq. (4.15 is given by is absorbed or emitted by a nucleon. Thus the energy differ-
ence between the initial and final on-shell nucleons is in-
cluded andq®+#0. The derivation of the BS equation from
the Bethe-Salpeter equation specifies th&t0 is used in
the meson propagator. Including#0 instead ofg°=0 in-
2M? dzpmdpg creases the range of the potential. Such an effect can be
Xp+ r—————— (5,6 M[1,2) hidden in phenomenological potentials by changing the pion-
5Ps P; —(ps +pg)tie ; _
nucleon coupling constant or form factor. One can easily
(4.16  convert Eq.(4.2)) into the Lippman-Schwinger equation of

<3’4|M|1’2>:<3'4|IC|1,2>+)\2)\ (3,4K|5,6)
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nonrelativistic scattering theory by removing the factor
M/E(p) with a simple transformatiof35].

A. Comparison with realistic one-boson exchange potentials AN ~eee o’

The present results are that one can use the light front
technique to derive nucleon-nucleon potentials in the one-
boson exchange approximation and use these in an appropri- (a) (b) (c)
ate wave equation. Therefore, our procedure is directly com-
parable to the one used in constructing the realistic Bonn
one-boson exchange potentidl®BEPS [29] used in mo-
mentum space. Those potentials also have a close connection

with an underlying Lagrangian. Our purpose here is to argue - .
that the present procedure can yield potentials essentially ’,/’ ‘\\
identical to the Bonn OBEP potentials and therefore would Tl .-

lead to a good description of tH¢N data.
The Bonn one-boson exchange potentja8] employ six
different mesonsr, 7, w, p, o, and the(isovector scalaré (d)
meson. The present techniques can be used to handle all of
these mesons and their couplings, with the possible excep-
tion of the tensow ,,q" part of thep-nucleon interaction. FIG. 3. Feynman graphs for the two-pion exchange potential:
The presence of such a tensor interaction makes it d|ff|.(a) uncrossed box dlagral(mhe horizontal line represents the sub-
cult (or impossiblg¢ to write the equation fory_ as traction of the_contribution arising _from the iterated one pion ex-
W_=1lp*---4. . This is relevant because the standargchange 2p0tentl$,| (b) crossed box diagrantc) sec_ond-ordsr effect
value of the ratio of the tensor to vecternucleon coupling  °f the #* term ofv, [Eq. (2.46], and(d) terms with oner® term.
f,/9, is 6.1, based upon Ref36] and subsequent papers.
Reproducing the observed values &f and P-wave phase
shifts requires a large valug, /g, ; see Ref[37]. However,
the Lagrangian compensates for its lack gf-&l interaction
with tensor coupling by generating such a term via verte
correction diagramgwhich are the origin of the anomalous
magnetic moment of the electron in QESuch diagrams
probably do not generate the phenomenologically require

include one or twaA’s [29], and a treatment of such effects
based on chiral symmetry has been provided by van Kolck
and collaboratorf38]. Including the effects oA’s is beyond
Xthe scope of the present work, but we are able to discuss the
two-pion exchange contributiofof order (M/f)*] to the
nucleon-nucleon potential. The property that a sum of light
gone time-ordered diagrams equals a single Feynman graph
values of the coupling constants, but all that is needed here fan be used to S'”?P"fy the _calc_ulatpn. The releva_nt_ Feyn-
an graphs are displayed in Fig. 3; the terms originating

that terms of the correct form be produced. This is becaus he i linalFi d3b) f h
the standard procedure is to choose the values of the colfo™ the linearysza coup ing[Figs. 3a) and 3b)], from the

pling constants so as to yield a good description of ¢ quadra'FiCWZ-N coupling[Fi_g._B(c)], af‘d fr_om a combiqati_on
scattering data. Indeed, the potentialsB, and C are de- of the linear and quadratic interactiofiSig. 3(d)] are indi-

fined by the parameters that account for the mesonic mass ted. The line through the two-nucleon intermediate state of

coupling constants, and form factors. Thus we end up wit ig. 3(6‘) is_; meant to in.dicate that th? contri.buti_on arising
the same procedure that is used in the Bonn one-boson e om iterating the one-pion exchange m'geractlon is removed.
change potentials his has been a standard procedure since the work of Ref.

S ; : 35] and will not be discussed further.
This brings us to the treatment of divergent terms in our[ _ .
procedure. The definition of any effective Lagrangian re- The sum of the terms of Figs(& and 3b) is equal to the

quires the specification of such a procedure. For the preserﬁﬁartow-Lgmon ltwo-p|on exlchan_g? pottgntlal_,rr?s _thtey uied
it is sufficient to say that we introduce form factdfs(q?) € pseudoscaar pion-nucieon nteraction. TS interaction

that reduce the strenath of themeson-nucleon counling for certginly simplifies the calculation; in particular the diagrams
large values of— qz.gThis is also the procedure pof gRefs. of Figs. 3a), 3(b), and 3d), are convergenfwhereas they

[29,30) would be strongly divergent if pseudovector coupling were

The net result is that the one-boson exchange treatment I&gcﬁf dgst?je c;?fzc(fcgnolfjsfhisr;rhs amﬁgﬁdosizaggguggggéggd
the nucleon-nucleon potential and tfe matrix resulting y Y, P

. 2 . . .
from its use in the BS equation is essentially the same as th'QCIUdeS the eﬁects of the”-N cou_pllng shown in F'g' @)
one-boson exchange procedure of Ré9,30. Thus our and the combined effects of the linear and quadratic interac-

tions [Fig. 3(d)]. The quadratic interaction term cancels the

light front treatment is guaranteed to be consistent witt] r0e pair terms in pion-nucleon scattering and should also
nucleon-nucleon scattering data measured in the standard e 9€ p P 9

ergy range. Such a similarity also has been obtained usin ay a signifi_cant role here in reducing the size .Of the com-
relativistic H amiltonian dynamicgg] uted potential. Thus we expect that the Partovi-Lomon po-

tential contains too large an attraction.
Next turn to the procedure used in constructing the full
Bonn potentia[29]. This potential is constructed by ignoring
The dominant contribution to the two-pion exchange po-all theZ graphs and including the effects of the two-nucleon
tential arises from contributions to intermediate states thaintermediate states that arise from the crossed gfé&jn

B. Nucleonic contribution to the two-pion exchange potential
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3(b)] as well as the parts of Fig.(8 arising from time- With this mean-field approximation, the fermionic field
ordered terms in which two pions exist at the same time. Foequationg2.30b can be rewritten as

such contributions to the two-pion exchange potential _

(TPEB the linear pseudoscalar and pseudovector interac- (io" =g,V )y,=[ea -p +BM+gsd)]¢_,

tions are evaluated between on-shell positive-energy nucleon

spinors and are therefore equivalent. The resulting contribu- 0"y =[a -p+BM+gsd) ], . (5.4
tion to the TPEP is small, but is comparable to that of the _

iterated one-pion exchange potential. The neglect ofzhe Now ¢ andV™ are constants so we expect the mode func-
graphs goes a long way towards including the effects of chitions for the field expansion ofr to be of the plane-wave
ral symmetry. However, terms involving the Weinberg- form ~e™®* and can be obtained from E¢5.4) as[39]
Tomazowa interaction at one or two vertices are ignored.

The computation of the graphs of Fig. 3 would include such L = k2 +(M+gs¢)?

effects implicitly as well as that of pair suppression. Thus a (10" =9,V )= K+ +e (5.9
detailed comparison would be useful. However, the small

nature of the effects that we discuss now indicates that thghe light front eigenenergyi ¢ =k) is the sum of a ki-

dominance of the TPEP by effects of intermediats will netic energy term in which the mass is shifted by the pres-
remain unchallenged. ence of the scalar field and an energy arising from the vector
field. Comparing this equation with the one for free nucle-
V. MEAN-FIELD APPROXIMATION ons, k~=(k?+M?)/k*, shows that the nucleons have a

The nucleon-nucleon interaction of the preceding sectio _eelljs(l)\/l ;g{ﬁ ;ngor;[\rﬁc[{re' dplﬁgiﬁ-vﬁveesi)tlitt?;wggf En(%():leon
can be used as the basis for a light front Brueckner theory O:fls thep lane-wave basis states gl'his means that the nuclear
nuclei. We study the mean-field approximation for infinite P - '
nuclear matter as a first step. The nuclear mean-field mode'lﬁnatter ground_stat.e, defined by operators that create and de-

troy baryons in eigenstates of E§.5), is the correct wave

the shell model, occupies pre-eminence in understandin . .
nuclear structure. We need to see if our formalism can de§JnCtI0n and that Eqs(5.2) and (5.5 represent the solution

scribe this physics. ?g;hﬁaangm?égate field equations and the diagonalization of
In the mean-field approximatiof21], the coupling con- One uestion. remains. We are going to fill up a Fermi sea
stants are considered strong and the fermion density larg q ' going P ’

Then the meson fields can be approximated as classical: ﬂf)é“'t Kr is the magnitude of a three-vector. How is this three-
\ﬁector defined? This was answered in the paper of Glazek

sources of the meson fields are replaced by their expectatio . . : : ;
values. In this case, the nucleon mode functions will be plan nd _Shalqn[lS], Who showe.d.t.hat rotational invariance is
nifest if one uses the definition

waves and the nuclear matter ground state can be assumed &'

be a normal Fermi gas, of Fermi momentim and of large r_ n 2 k- k+k3
volume(} in its rest frame. We consider the case that there is K= V(M +g56)" -k kS ©9
an equal number of protons and neutrons. which implicitly definesk®. Using Eq.(5.6) allows one to

First we examine the mesonic field equati¢®$5)—(2.7).  maintain the equivalence between energies computed in the
The baryon source of the pion field is a pseudoscalar operaight front and equal time formulations of scalar field theo-
tor, so its expectation value vanishes in the ground statgjes[40]. A similar equation has been used to restore mani-
Thus this mean-field approximation leads to the result thaest rotational invariance in light front QEP11]. We shall
mi—0. The other meson fields are constants, independent @how that this same expression also restores rotational in-

space and time, given by variance in this mean-field problem when vector mesons are
g included.
b=——5 () (5.1) Equation(5.6) has the correct form in the limit of nonin-
ms teracting nucleons and therefore seems na{4]l We at-

tempt a heuristic derivation of this equation using the re-
9 — _ 0uJuPB quirement that manifest rotational invariance be restored.
V#_m_5< pytgy=o m2 ' (52 The starting point is the observation that £4.20, with its
definition of « as the plus-momentum fraction carried by a
where the angular brackets denote expectation values of thucleon, restores manifest rotational invariance in the two-
nuclear ground state in its rest frame and the baryon densityucleon system. Let us consider the mean-field approxima-
is tion as involving an interaction between a nucleon and a very
CaL3ie 2 heavy particle containing— 1 nucleongwith A— o). Then
p=2Kg/37". 53 the variablea,, which is the fraction of the nuclear plus
momentum carried by a nucleon, is given by

This result thatv# is a constant, along with Eq&2.31) and

(5.2, can be used to determing”. In pgfticular,v*=0 by JKKF (M T 02) 2+ K
construction. Furthermore, the conditions thét=0 and ap= 5 >
IV =3'Vv0=0 tell us thatv'=0. Finally,9"V* =0, so that Vi ket MR-+ Ve k(M gsep)
d*V~=9"V°, so the net result is that the only nonvanishingand is a suitable generalization of the varialkie The
component olV# is V™ =VC. nucleon mass is taken to ¢+ gs¢ because it is this mass

(5.7)
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that appears in the nucleon field equations. The mass of the

(A—1)-body system is dominated by the mass of #hel

nucleons masgthe binding energy per particle is 16 MeV

(=€) compared to 940 MeY so that we may write

VKK (M+gg)?+ K
- v
X(M+0s¢)Ma]

_ Vk-k+(M+ggpp)*+K3
= v ,

[1+eg/Ma+k2/2

apn

(5.9

in which the last line results from the limA—o~. The key

feature is that the variable, is defined as a momentum

fraction, so that
aAMA=k+. (59)

Comparing Egs(5.8) and(5.9) leads to Eq(5.6).

The computation of the energy and plus-momentum dis-

GERALD A. MILLER

4 1 K2+ (M +gge)?
- 2 + L S +
+W2Ld k, dk ( o +k* .

(5.19

Then replace the integration ovkt by one overk®, using
Eq. (5.6) so that

K+ +
T +0sh)2 k- AC=E Ik (619
where
E(k)=Vk-k+(M+gsp)>. (5.16
Then Eq.(5.14) takes the form
%: ;m§¢2+%m§vg+ %gﬁ:d%a(k,:—k)E(k),
(5.17)

tribution proceeds from taking the appropriate expectation

values of the energy momentum ten3dt discussed in Sec.
Il and

1
P“=§j d?x, dx (TH#). (5.10
We are concerned with the light front ener§y and mo-
mentumP*. The relevant components &f” are presented
in Egs.(2.37 and(2.52. Within the mean-field approxima-

which is the expression familiar from the Walecka model.
This confluence of energies is a nice check on the present
result because a manifestly covariant solution of the present
problem, with the usual energy, has been obtai.

We consider the system to be at a fixed large voldne
so thatE /A depends o andkg . The ground-state energy
is determined by minimizing 5 /A with respect to those two
parameters. SettingE,/d¢ [44] to zero reproduces the field
equation(5.2) for ¢, as is also the case in the equal time

tion (MFA), the derivatives of the meson fields are zero soformalism. The next step is to minimize the energy per par-

that one finds
Tura=m2?+2y8 (i0” =g,V ).,
Tura=MoVi+2ylioty, .

(5.11

Taking the nuclear matter expectation value Tgf-, and
Twea and performing the spatial integral of E¢.10 leads
to the result

= 4 K2+ (M +gs¢p)?
— 2 42 2 + L S
TR g e S
(5.12
P* 2\ /2 4 2 Lot
ﬁ=mvvo+w Fd dek k™. (513)

The subscriptF denotes thatk|<kg with k® defined by
relation(5.6).

Equations(5.12 and (5.13 along with the expression
(5.6) for k™ allow an evaluation oP~ andP*. This shall be

done in two different ways. In the first method we evaluate

the energy of theA-nucleon systenE,=1(P*+P™) [15],

ticle EA/A=EA/pg() at fixed volume with respect thg.
(One may also minimize the energy with respect to the vol-
ume[15].) Start this calculation by using

i EA)—o (5.18

IKe\ pg '
to obtain

JE B E 51

ke Ok (5.19

Using Eq.(5.17) followed by Eqgs(5.1) and(5.2) leads to the
result

4 4ma ms m5v2+ 4 f .
(2m)3 3 °f Fep @5 Vo (2m)3 )¢
X 0(kg—Kk)E(k), (5.20
whereEr=E(kg). This is a transcendental equation that de-
termineskg, so that the calculation dt, is complete.

It is useful to note that the relatidd™ =P~ (which must
hold for a system in its rest frarhalso emerges as a result of

which turns out to be the same as in the usual equal timéhis minimization. To see this rewrite the left-hand side of

treatmen{21]. This can be seen by summing E¢s.12) and
(5.13 to obtain

E, 1 1
ﬁ: §m§¢2+§mﬁvg

Eqg. (5.20 as

B S A P k( K k'k)
(2,”_)3? fEF_(Z’JT)sf 0( F— ) E( )+3E(k) .
(5.21)
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Using this in Eq.(5.20 leads to effect [46] that the structure function of a bound nucleon

) ) differs from that of a free one, showed a principal effect that

ms 5, @Vz_ 4 f 4Pk Oke—K k-k the plus momentum carried by the valence quarks is less for
2 P73 0 (27)3 (ke )3E(k)’ a bound nucleon than for a free one. Many different interest-
(5.22 ing interpretations and related experime#3] were stimu-
S ) ) lated by these experiments. However, a correct interpretation
which is just the relation that one obtains by setiig=P~  equires that the role of conventional effects, such as nuclear
placing the variablé* by k2. Our formalism employs the plus component of the mo-

“Another way to obtain the energy of the ground state is tqnentum so that its use in assessing the nucle@nid there-
minimize the value ofP /A SUbJeCt to the constraint that fore the valence quark)’q)hjs momentum is necessary. We

P~ =P" or to minimize the quantity’ with therefore examine the plus-plus component of the energy
p- p- p+ momentum tensor Eq5.13 to determine how much mo-
= __)\(__ _> (5.23  mentum is carried by nucleons and how much by mesons.
A A A Rewrite Eq.(5.13 as a sum of mesonim and nucleonid\
terms
where \ is a Lagrange multiplier. Setting&/d¢ to zero
leads to[44] Pt Pn Py
—_— =t — (5.29
aP‘(l )\)+)\ap+—0 (5.29 AR
d ip ' with
However, the field equatiotb.1) for ¢ can be restated as P miV3
—= (5.30
P~ oP* 5.25 A ps
—=- : 5.
d¢ d¢ and
Combining Egs(5.24 and(5.25 leads to the result that P, 4
—:ﬁf d?k, dk*k*. (5.3)
1 A pe(2m)° )k
A= E’ (52@
The parameters of Eq$5.27) and (5.28 leads to
so that the minimization of with respect tdg is the same p
as minimizingE, /A with respect tokg . This ends the dis- . —M-=15.75 MeV (5.32
cussion of how the expressions @i are used to determine A

the energy of the system. . )
Solving the field equations and minimizing the energyand the use of Eq5.27) in Eq. (5.30 gives
density determines the properties of nuclear matter once the

+
meson-nucleon coupling constants and masses are chosen. E:
. ; , 329 MeV, (5.33
One can now discuss the properties of the resulting system. A
Of course the necessary calculations have been done Ion%. . ] ] ]
ago. In particular, the parameters while performing the integral involved in E¢5.31) leads to
2\ M2/ 2 — pt
g;M“/m;=195.9 (5.27 %:594 MeV. (5.34
and

2er2, 2 The result is that 65% of the nuclear plus momentum must
gsM/mg=267.1 (5.28  pe carried by the nucleons and the remainder of 35% is car-
ried by the mesons.
How do these numbers relate to experiments? To answer
we need to recall that the nuclear structure funcéigR can

have been chosdd5] so as to give the binding energy per

particle of nuclear matter as 15.75 MeV wittp=1.42
1

Fm~~ In this case, solving the equation fap gives be obtained from the light front distribution functidi{y)
M+9gs¢=0.56M. (which gives the probability for a nucleon to have a plus-
momentum fractiony) and the nucleon structure function
A. Nucleon and meson plus momentum F,n using the relatior48]
and deep inelastic scattering
The light front formalism embodies the use kof as a F2a(X) :f Ay f(y) Fan(X/Y) (5.39
canonical variable that allows us to study the nucleonic and A 2N ' '

mesonic contributions to the nuclear plus momentum. The ) ) )

study of the plus-momentum content is motivated by thevherey is theA times the fraction of the nuclear plus mo-
desire to obtain a better understanding of lepton-nucleu'e€ntum carried by the nucleon ards the Bjorken variable
deep inelastic scattering. The European Muon Collaboratiocomputed using the nuclear mass divided By{M):
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x=Q2/2Mv. This formula is the expression of the convolu- used to obtain a nuclear wave function expressed in terms of
tion model in which one means to assess, f(ig), only the  the plus-momentum variable that is closely related to experi-
influence of nuclear binding. Other effects such as thénent.

nuclear modification of the nucleon structure functiéh Indeed, we can verify that the ability to obtain the nucle-
F,y is obtained from deep inelastic scattering on the freednic plus-momentum is the feature that requires the use of a
nucleon and any influence of the final-state interaction be-light front front formalism instead of an equal time formal-
tween the debris of the struck nucleon and the residuad®Mm. To do this compare the 0.65 fraction with the result of a
nucleus[49] are neglected. relatlylstlc calcplatlon using the equal time forma!|$50].

Our formalism enables us to calculate the functigy) !N this calculation, which uses E¢2.1) and for which the
from the integrand of Eq(5.13. Since the integral gives the Scalar and vector fields are the same as here, the plus mo-
total plus momentum carried by nucleons, the integrand thaf’entum of a nucleon was chosen as the sum of the Dirac
multiplies the factok* can be interpreted as the necessaryeigenenergy and™:

Using this leads to an average nucleon plus-momentum frac-
tion {y)er=(Eg+9,V°/M, which when evaluated with our
f(k*)zf d’k, . (5.37 parameters fokg,¢ andV ™, leads toy)er=1.00! The big

F difference between our result and the earlier equal time result
. , L [compare Egs(5.6) and (5.42] arises from our use of the
The functionf(y) can be obtained by replacig” by the 5,5 momentum as a canonical momentum variable and the
dimensionless  variable y using y=k"/M with  consequent use aF** to construct the light front momen-
M=M —15.75 MeV. Then using Eq5.37) leads to the re- tum and energy density. In particular, the first line of Eq.
sult (5.42 is only a reasonable guess.
We note also that the baryon number distributigygy)

Pﬁ/Azfdk*k*f(k*), (5.39

M3

3 M kﬁ Er (number of baryons pey, normalized to unity can be de-
fy)=7 k—30(y+—Y) oy—y-) ERERdRE termined from the expectation value #f. The result is
F
(5.39 AV ) E2
. J— fB(y)=§_30(y _y)e(y_y ) 1+$
where y*=(Erxks)/M and Ep=kZ+(M+gsp)2. ke M<y
Knowing the following integrals is useful:
g g g y k|2: EF 2 1 kg EF 4]
M2 (M 2y M4\ M
f dyf(y)=1, (5.39
(5.43
_ Some phenomenological models treat the two distributions
j dyyf(y)=0.65, (5.40 f(y) andfg(y) as identical. The distributions have the same

normalization, but they are different as shown by E§s39
with the 0.65 representing the earlier 65% result. and(5.43.

We may now assess the implications of the statement that Consider that the average valueyogqual to 0.65 repre-
nucleons carry only 65% of the nuclear plus momentumsents a very strong binding effect on lepton-nucleus deep
This number is to be compared with the value obtained bynelastic scattering. One might think that the mesons, which
Frankfurt and Strikmari11]. They used data foF,, and cause this binding, would also have huge effects on deep
F,\ along with Eq.(5.35 to determine the average value of inelastic scattering. It is therefore certainly necessary to de-
y required by experiments with the result that termine the momentum distributions of the mesons. The me-

sons contribute 0.35 of the total nuclear plus momentum, but

we need to know how this is distributed over different indi-

j dyyfexp{’y) =0.95. (5.4 vidual values. The paramount feature is tiatand V* are

the same constants for any and all values of the spatial co-
This means that nucleons carrying 95% of the nuclear plusrdinatesx,x, (and alsox*). This means that the related
momentum(a 5% depletion effegts sufficient to explain the momentum distribution can only be proportional té func-
10-15 % depletion effect observed for the Fe nucleus. Oution setting both the plus and perpendicular components of
35% depletion seems to be rather large, but one must remertihie momentum to zero. This result is attributed to the mean
ber that it results from nuclear matter. A result that comparesield approximation for infinite nuclear matter, in which the
more closely with experiment could be obtained in a versiormeson fields are treated as classical quantitates. Thus the
of the present model for which the value df+g.¢ is  finite plus momentum can be thought of as coming from an
closer toM. However, determining specific features of the infinite number of quanta, each carrying an infinitesimal
present model is not the goal of the present work. Instead wamount of plus momentum. A plus momentum of O can only
wish to demonstrate that the light front formalism can bebe accessed experimentallyxafj=0, which requires an in-
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finite amount of energy. Thus, in the mean-field approximaproximatiorn) are presented here. Soft pion-theorems for
tion, the scalar and vector mesons cannot contribute to degpon-nucleon scattering are reproduced. The treatment of
inelastic scattering. The usual term for a field that is constantucleon-nucleon scattering is shown to be manifestly cova-
over space is a zero mode and the present Lagrangian prdgant in the one-boson exchange approximation. The impli-
vides a simple example. For finite nuclei, in the mean-fieldcations of chiral symmetry for the two-nucleon intermediate
approximation, the mesons would carry a very small momenstate contribution to the two-pion exchange potential are dis-
tum of scale given by the inverse of the nuclear radius, undecussed. The present results mainly constitute a feasibility
the mean-field approximation. If fluctuations were to be in-study, in that the emphasis here is on checking the formalism
cluded, the relevant momentum scale would be of the ordepy reproducing known results. But this light front treatment
of the inverse of the average distance between nucleordoes allow the effects of chiral symmetry to be incorporated
(about 2 Fm. within a relativistic formalism and therefore should have a

We can understand the significance of the presence diroad applicability in the future. One remaining technical
components of a wave function that carry plus momentunproblem is to provide a light front quantization of a Lagrang-
but do not participate in deep inelastic processes by reviewian for spin-3/2 particles.
ing a bit of history. The nuclear binding effect is that the plus The special feature of the light front formalism is its use
momentum of a bound nucleon is reduced by the bindingf the plus momentum as one of the canonical variables. This
energy and so is that of its confined quarks. Conservation afnables a close contact with the experimental variables used
momentum implies that if nucleons lose momentum, otheto analyze deep inelastic scattering and any experiment in
constituents such as nuclear pidisl] must gain momen- which there is one large momentum. This feature is exploited
tum. This partitioning of the total plus momentum among thehere in the derivatiorfwithin the mean-field approximation
various constituents is called the momentum sum rule. Pionsf the nucleonic and mesonic distribution functions for infi-
are quark-antiquark pairs so that a specific enhancement aoite nuclear matter. The mesons are shown to carry a signifi-
the nuclear antiquark momentum distribution, mandated byant fraction of the nuclear plus momentum, but only a zero
momentum conservation, is a testab#?] consequence of plus momentunia zero modg and therefore do not partici-
this idea. A nuclear Drell-Yan experime[3], in which a  pate in nuclear deep inelastic scattering or Drell-Yan experi-
qguark from a beam proton annihilates with a nuclear antiiments.
quark to form au* u~ pair, was performed. No influence of  The ultimate validity of the abovéperhaps startling
nuclear pion enhancement was seen, leading Bedselh ~ statement depends on whether or not the dominance of me-
[54] to question the idea that the pion is a dominant carrier osonic zero modes survives calculations performed for finite
the nuclear force. In the present situation, we have a hugeuclei and calculations that include the effects of nucleon-
depletion effect of 35%, but with no consequence for eithemnucleon correlations. There seems to be no technical barrier
the nuclear deep inelastic scattering or Drell-Yan experifrecluding such calculations.
ments.
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the specific numerical results of the present work are far less

relevant than the central feature that the mesons responsible APPENDIX: NOTATION, CONVENTIONS,
for nuclear binding need not be accessible in deep inelastic AND USEFUL RELATIONS
scattering.

This appendix is patterned after the review of Harindri-

H , th t model b ded bei . i .
OWevel, the presen: moae. may e regarred &s hein ath[3]. The light front variables are defined by

one of a class of models in which the mean field plays a
important role[55]. For such models nuclei would have con-
stituents that contribute to the momentum sum rule but do
not contribute to deep |n§ela§tlc scattering. In particular, &0 the four-vectox® is denoted
model can have a large binding effect, nucleons can carry a

xT=x04+x3, x =x0-x5, (A1)

significantly less fraction ofP* than unity, and it is not X = (xT X xb). (A2)
necessary to include the influence of mesons that could be
ruled out in a Drell-Yan experiment. With this notation the scalar product is denoted by
1 1
VI. SUMMARY AND DISCUSSION X-y= §x+y_ + Ex‘y* —xt-yh (A3)

The present paper shows how the light front quantization
of a chiral Lagrangian can be accomplished. The resulting’he metric tensog”” with uw=(+,—,1,2) is obtained from
formalism can be applied to many problems of interest tathe usual one by using E¢AL) (i.e.,g%=g%+g>*). Then
nuclear physics. In particular, pion-nucleon, nucleon-nucleoy™ =g~ *=2, g" = — 1, with the other elements vanishing.
scattering, and infinite nuclear matign the mean-field ap- The term g,, is obtained from the condition that
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g“ﬁgﬁy: Oay- Its elements are the same as thoseg6f (A)?=A., vy'AL=A.vy", (A13)
except forg_, =g, _=1/2. Thus
L L YAE=A-9" atA.=A-at, (A14)
— + — - _ _
X,—EX s X+—EX s (A4) 75A¢:A¢75 7+=2Ai70:7+1\;, (A15)
and the partial derivatives are similarly given b . 1. 1.
b Y gven sy YAs=5yxizeiyy, (AL6)
N J - J
J IZQ,ZZM—_ Jd =25+:2ax—+ (A5) and
The step function is defined a&x)=1 for x>0 and o yiA+:'_6ij vt yo. (A17)
0(x)=0 for x<0. The antisymmetric step function is given 2
by The light front Dirac spinors are given by
€(x)=6(x) ~ 6(=X), (A6) 5
f— — + . L
with uy (k) i IMA_+(k +at kA Iy, (A19)
Jde where
5=25(x). (A7) R R
XT:(]HO;O!O! XL:(O!:L;OIQ (Alg)

In this notation|x| =xe(x). The above few definitions allow _— . . Car—IaqT
us to express the inverse operators appearing in the text i-lr-lhe antiparticle spinors are given (k) =C[u,(k)],

terms of integrals:

2
1 1 — 2 + el
Ff(x_):ZJ dy e(x —y )f(y), (A8) vy (k) k+[MA—+(k +a"-k JA 17y, (A20)
with
1\2 1 S
o fx )=§f dy [x =y [f(y"). (A9) 71=(0,0,0,9, 7/=(0,0-1,0. (A21)
The Bjorken-Drell[56] convention fory matrices is used Other useful relations are
and Uk MUk )=2M8, »r, v (kN)o(kN)=—2M8 .,
Y =9"%52 (A10) (A22)
The relations u_(k,)\)y"u(k,)\’)=2p”“5)\‘w,
Yoy =0, ¥y y vy =4y", y*y*y*=4y*(All) v (KN) Y ok ') =—2p"8) . (A23)

o ) ) The text uses Dirac spinors obeying
can be used to simplify various computations.

The Hermitian projection operators.. are given by — —
u(k,AN)u(k,\)=~vyk+m, K.\ v (KN = yk—m.
; (kM u(k,N)=y E;, v(k,NMo(kKN)=7y

(A12) (A24)

Note that in the above three equatidsis an on-shell four-
and obey the relations vector withk ™= (k? + M?)/k" andk= (k" k).
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