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Nucleon-nucleon interaction in a chiral constituent quark model
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We study the short-range nucleon-nucleon interaction in a chiral constituent quark model by diagonalizing
a Hamiltonian comprising a linear confinement and a Goldstone boson exchange interaction between quarks.
The six-quark harmonic oscillator basis contains up to two excitation quanta. We show that the highly domi-
nant configuration iss*p?[42]o[51]¢s) due to its specific flavor-spin symmetry. Using the Born-Oppenheimer
approximation we find a strong effective repulsion at zero separation between nucleons #spatid 1S,
channels. The symmetry structure of the highly dominant configuration implies the existence of a node in the
S-wave relative motion wave function at short distances. The amplitude of the oscillation of the wave function
at short range will be, however, strongly suppressed. We discuss the mechanism leading to the effective
short-range repulsion within the chiral constituent quark model as compared to that related with the one-gluon
exchange interactiofS0556-281@7)05311-9

PACS numbeps): 24.85+p, 12.39.Fe, 13.75.Cs, 21.3&

[. INTRODUCTION teraction, the quarks belonging to differemt 8lusters inter-
act via pseudoscalar and scalar meson exchange. In these
An interest in the constituent quark modgQM) has  hybrid models the short-range repulsion in tbl system is
recently been revitalizefll] after recognizing the fact that still attributed to the OGE interaction between the constitu-
the constituentdynamical mass of the light quarks appears ent quarks.
as a direct consequence of spontaneous chiral symmetry It has been shown, howevegt,16], that hyperfine split-
breaking(SCSB [2,3] and is related to the light quark con- tings as well as the correct ordering of positive and negative

densateiﬁ) of the QCD vacuum. This feature becomes parity states in spectra of baryons With.d’s quarks are
explicit in any microscopical approach to SCSB in QCD’produced in fact not by the color-magnetic part of the OGE

e.g., in the instanton gaiquid) model[4]. The mechanism interaction, but by the short-range part of the Goldstone bo-

) L son exchang€éGBE) interaction. This short-range part of the
of the dynamical mass generation in the Nambu-Goldston BE interaction has just the opposite sign as compared to

mode of chiral symmetry is very t_rqnsparent within e the Yukawa tail of the GBE interaction and is much stronger
model[5] or Nambu and Jona-Lasinio modgB. Another 5 snort interquark separations. There is practically no room
consequence of the chiral symmetry in the Nambu-Goldstong,, ihe OGE interaction in light baryon spectroscopy and any
mode is the appearance of an octet of Goldstone bosong,preciable amount of color-magnetic interaction, in addition
(m,K,7 mesons It was suggested ifl] that beyond the g the GBE interaction, destroys the spectr8h If so, the
scale of SCSB, nonstrange and strange baryons should Bgiestion arises as to which interquark interaction is respon-
viewed as systems of three constituent quarks which interagjple for the short-rangi N repulsion. The goal of this paper
via the exchange of Goldstone bosons and are subject g to show that the same short-range part of the GBE inter-
confinement. This type of interaction between the constitueniction, which produces good baryon spectra, also induces a
quarks provides a very satisfactory description of the low-short-range repulsion in tHgN system.

lying nonstrange and strange baryon spelct,§ including The present study is rather exploratory. We calculate an
the correct ordering of the levels with positive and negativeeffectiveNN interaction at zero separation distance only. We
parity in all parts of the considered spectrum. also want to stress that all main ingredients of i inter-

So far, all studies of the short-randiN interaction within ~ action, such as the long- and middle-range attraction and
the constituent quark model were based on the one-gluoshort-range repulsion, are implied by the chiral constituent
exchangd OGE) interaction between quarks. They explainedquark model. Indeed, the long- and middle-range attraction
the short-range repulsion in tHéN system as due to the automatically appear in the present framework due to the
color-magnetic part of the OGE interaction combined withlong-range Yukawa tail of the pion-exchange interaction be-
quark interchanges betweem Zlusters.(For reviews and tween quarks belonging to different nucleons and duerto 2
earlier references s¢®—11].) There are also models which (or sigma exchanges. Thus, the only important open ques-
attribute the short-range repulsion in theN system to the tion is whether or not the chiral constituent quark model is
color-electric part of the OGE interactidt2]. able to produce a short-range repulsion in ki system.

In order to provide the necessary long- and intermediate- For this purpose, we diagonalize the Hamiltonian of Ref.
range attraction in the baryon-baryon system, hybrid modelE7] in a six-quark harmonic oscillator basis up to two exci-
were suggestefll3—15, where in addition to the OGE in- tations quanta. Using the Born-Oppenheirfediabatig¢ ap-
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proximation, we obtain an effective internucleon potential at TABLE I. Expectation values of the operators defined by Egs.
zero separation between nucleons from the difference bdl) and (12) for all compatible symmetriegf]o[f]es in the
tween the lowest eigenvalue and 2 times the nucleon mad§=(01) and(10) sector(V,) is in units ofC, and(V ) in units
calculated in the same model. We find a strong effective®f Ce.m.-

repulsion between nucleons in botB, and 'S, channels of

a height of 800—1300 MeV. This repulsion implies a strong 1=0,5=1 1=1,5=0
suppression of thalN wave function in the nucleon overlap L[flolfles (V) (Vem) Vo (Vem)
region as compared to the wave function of the well sepa[e]o[%]FS —28/3 8/3 -8 38
rated nucleons. . . 42)0[33]s -28/3 -26/9 -8 —4/3

Because of the specific flavor-spin symmetry of the GB 42)o[51] _100/3 16/9 _32 16/9
interaction, we also find that the highly dominarg 6on- 42]0[411? _0g/3 20/9 _8 44/9
figuration at zero separation between nucleons i% 42]0[321]FS 8/3 —164/45 4 232/45
|s*p?[42]o[51]¢s). As a consequence the Begion(i.e., the 42]0[221135 6813 P 60 49/5
nucleon overlap regigrcannot be adequately represented by[ © Fs

the one-channel resonating group meth@GM) ansatz

A{N(1,2,3)N(4,5,6 ()} which is commonly used at from theA-N spliting. For that purpose one only needs the
present for the short-rangdN interaction with the OGE  spin (S), flavor (F), and flavor-spin FS) symmetries of the
Interaction. N andA states, identified by the corresponding partitipfis

~ The symmetry structur42]o[ 51]rs of the lowest con-  associated with the groups SUE2)SU(3):, and SU(6}:
figuration will induce an additional effective repulsion at

short range related to the “Pauli forbidden state” in this IN)=|s%[3]cd 21]([ 21]s), 2
case. This latter effective repulsion is not related to the en-
ergy of the lowest configuration as compared to two-nucleon |AY=|s[3]rd 3]¢[3]s). )

threshold and thus cannot be obtained within the Born-
Oppenheimer approximation procedure. We notice, howeveiThen the matrix elements of the interactid are[1]
that the structure of the six-quark wave function in the

nucleon overlap region is very different from the one asso- <N|VX|N>: —14C,, (4)
ciated with the soft or hard cofdN potentials.
This paper is organized as follows. In Sec. Il, in a quali- (AlV,la)=~4cC,. )

tative analysis at the Casimir operator level, we show that the _ hich i _ it
short-range GBE interaction generates a repulsion betwedﬂenceEA_EN__locX' which givesC, =29.3 MeV, i one
nucleons in both®S; and 'S, channels. We also suggest uses the experimental value of 293 MeV for theN split-
there that the configuration with th&1]cs flavor-spin sym- Ing. . . . :
metry should be the dominant one. Section Ill describes the To see the effect of the interactidd) in the six-quark

Hamiltonian. Section IV contains results of the diagonaliza-SyStem’ the most convenient is to use the coupling scheme

tion of the & Hamiltonian and of theNN effective interac- called FS, where the spatidif]o and color[f]c parts are
tion at zero separation between nucleons. The structure of tr‘r‘é)_UpIEd together pf]oc, a’Fd then to the SU(% flavor-
short-range wave function is also discussed in this section. I5PIN Part of the wave function in order to provide a totally

Sec. V, we show why the single-channel RGM ansatz is nof"iSymmetric wave function in the OCFS sp4dé]. The
adequate in the present case. In Sec. VI, we present a surdtisymmetry condition requirds Jes=[ f Joc, where[ f ]

mary of our study. is the conjugate of f].
The color-singlet § state i 222] . Assuming thal has
Il. QUALITATIVE ANALYSIS AT THE CASIMIR a[3]o spatial symmetry, there are two possible statk,
OPERATOR LEVEL and[42], compatible with thes-wave relative motion in the

NN system[17]. The flavor and spin symmetries dré2].

In order to have a preliminary qualitative insight it is con- and [ 33]g for 1S, and[33]r and[42]s for 3S, channels.
venient first to consider a schematic model which neglectg\pplying the inner product rules of the symmetric group for
the radial dependence of the GBE interaction. In this modehoth the[ f]oX[f]c and[f]X[f]s products one arrives at
the short-range part of the GBE interaction between the conthe following & antisymmetric states associated with the

stituent quarks is approximated py] 33, and 'S, channeld18,19: |[610[33]rs), [[42]0[33]rs).
[42]0[51]es), [[42]0[411rs), [[42]0[321]¢s), and

V,=—C > \N\fgai, 1 420221 Ts).
X XS ! ) Then the expectation values of the GBE interactibrfor

these states can be easily calculated in terms of the Casimir
where A" with an implied summation overF  operators eigenvalues for the groups SW&)SU(3), and
(F=1,2,...,8) andsr are the guark flavor Gell-Mann and SU(2)s using the formula given in Appendix A. The corre-
spin matrices, respectively. The minus sign of the interactiorsponding matrix elements are given in Table I, from where
(1) is related to the sign of the short-range part of the pseuene can see that, energetically, the most favorable configu-
doscalar meson exchange interactigvhich is opposite to ration is[51]gs. This is a direct consequence of the general
that of the Yukawa taj| crucial for the hyperfine splittings in rule that at short range and with fixed spin and flavor, the
baryon spectroscopy. The consta®f can be determined more “symmetric” a givenFS Young diagram is, the more
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negative is the expectation value of Ed) [1]. The differ- tween nucleons. We calculate this potential in the Born-
ence in the potential energy between the configuratioOppenheimerfor adiabati¢ approximation defined as
[51]s and[33]gs or [411]g is

([33rg|V,I[33]rs) —([51]rs|V,I[51]ks)

=([411]rg|V,|[411]rs) — ([51]rg|V,|[51]rs)=24C, whereR is a collective coordinate which is the separation
®) distance between the twe® nucleons,(H)g is the lowest
expectation value of the Hamiltonian describing tlpsys-

and usingC, given above one obtains approximately 703tem at fixedR, and(H)..=2my for theNN problem, i.e., the
MeV for both theSI=10 and 01 sectors. energy of two well-separated nucleons. As above, we ignore

In a harmonic oscillator basis containing up th@ exci- ~ the small difference between the confinement energy of
tation quanta, there are two differery 6tates corresponding (H)r=o and{H)... That this difference is small follows from
to the[6]c spatial symmetry with removed center-of-massthe A7\ structure of the confining interaction and from the
motion. One of them|s®[6]5), belongs to theN=0 shell, identity
whereN is the number of excitation quanta in the system,
and the other,\/§|s525[6]o>—\/g|34p2[6]0), belongs to
theN=2 shell. There is only one state with2]5 symmetry, [222].
the |s*p?[42]o) state belonging to th&l=2 shell. While
here and below we use notations of the shell model it is
always assumed that the center-of-mass motion is removed. :2< (111,
The kinetic energy(KE) for the |s*p?[42],) state is

larger than the one for the|s6]y) state by . .
KEy-,— KEy_o=/ . Taking & o=250 Me?/ [1], and de- If the space part§6]o and[3]o contain the same single-

noting the Kinetic energy operator Iy, we obtain particle state, for example astate, then the difference is
0 identically zero.

Van(R)=(H)r—(H)=., 9

6
2 AN
i<j

[222]C>

3
PR
i<j

[111]c> . (10

S%33]cdHa+ V.S 331 <) — (s*p2[ 511 | H It has been shown by Harvey8] that when the separa-
(733JeslHo X| [33es) ~("p5rslHo tion R between twas® nucleons approaches 0, then only two
+V,|s*p?[51]rs)=453 MeV, (7)  types of @& configurations survive: [s[6]o) and

|s*p?[42]o). Thus in order to extract an effectiN poten-
which shows tha{51]s is far below the other states of tjal at zero separation between nucleons in the adiabatic
Table I. For simplicity, here we have neglected a small dif-Born-Oppenheimer approximation one has to diagonalize the
ference in the confinement potential energy between thgjamiltonian in the basi$l)—|4). In actual calculations in
above configurations. Sec. IV we extend the basis adding the configurat®n
This qualitative analysis suggests that in a more quantitayhich practically does not change much the result. For the

tive study, where the radial dependence of the GBE interacoygh estimate below we take only the lowest configuration
tion is taken into account, the sta&p?[42]o[51]rs) will |3, One then obtains

be highly dominant and, due to the important lowering of
this state by the GBE interaction with respect to the other, 4 - 4.2
states, the mixing angles with these states will be small. Tha{S P142]o[ S1]rslHo+ V,|s*p 420l Slrs)

this is indeed the case will be proved in Sec. IV below. —2<N|H0+VX|N)
Table | and the discussion above indicate that the follow- _
ing configurations should be taken into account for the di- (—100/3+28)C, + 74 0=280 MeV if SI=10,
agonalization of the realistic Hamiltonian in Sec. IV: =) (—32+28C +7/4iw=320MeV if SI=01.
11)=[s[610[ 33]ks), (11)

— |42
12)=1s"p"[42]0[33]rs), The rough estimat¢l1) suggests that there is an effective
|2 repulsion of approximately equal magnitude in th#l sys-
13)=1s"p142lol 51les). ®  tem in the nucleon overlap region in bots, and 'S, chan-
nels. In a more quantitative calculation in Sec. IV we find
that the height of the effective core is much larger, in par-
ticular 830 MeV for3S,; and about 1.3 GeV fotS,,.
|5>:|(\/§5525— \/ESAPZ)[G]O[33]FS>- At this stage it is useful to compare the nature of the
short-range repulsion generated by the GBE interaction to
A strong dominance of the configurati¢®) also implies  that produced by the OGE interaction.

|14)=|s"p?[42]c[411]ks),

that the one-channel approximati(ix{N NX(F)} is highly In the constituent quark models based on the OGE inter-
inadequate for the short-rantN system. This problem will  action the situation is more complex. Table | helps in sum-
be discussed in Sec. V. marizing the situation there. In this table we also give the

Now we want to give a rough estimate of the interactionexpectation value of the simplified chromomagnetic interac-
potential of theNN system at zero separation distance be-tion
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action (16) includesw, K, 5, and ' exchanges. While the

Vem=—Cem> A -\loi 0] (12 m, K, and » mesons ardpseudgGoldstone bosons of the

=<l spontaneously broken SU(3¥ SU(3)x— SU(3), chiral
symmetry, then’ (flavor single} is a priori not a Goldstone
boson due to the axial U(})anomaly. In the largé&l¢ limit
the axial anomaly disappears, however, andfhdecomes
the ninth Goldstone boson of the spontaneously broken
U(3) X U(3)g—U(3)y chiral symmetry[21]. Thus in the
real world with No=3 the 7' should also be taken into
account, but with parameters essentially different fronk,
and » exchanges due to NI§ corrections. For the system of
u andd quarks only theK exchange does not contribute.

In the simplest case, when both the constituent quarks and
mesons are pointlike particles and the boson field satisfies
the linear Klein-Gordon equation, one has the following spa-
tial dependence for the meson exchange potertidis

in units of the constant. , (the constantC, , can also be
determined from theA-N splitting to be C.,,=293/16
MeV).

The expectation values of E(L2) can be easily obtained
in the CS scheme with the help of Casimir operator formula
in Appendix A and can be transformed ES scheme by
using the unitary transformations from theS scheme to the
FS scheme given in Appendix B.

The color-magnetic interaction pulls the configuration
|s*p?[42]o[42]cs) down to become approximately degener-
ate with|s®[6]o[222]c<) which is pulled up. In a more de-
tailed calculation with explicit radial dependence of the
color-magnetic interaction as well as with a Coulomb term
the configuration|s®[6]c) is still the lowest one[9,20).
[With the model(12) the Zw should be about 500 MeV.
Thus in the Born-Oppenheimer approximation we can
roughly estimate an effective interaction with OGE model
through the difference (y=mK, 7, 7'), (17)

(s°[6]0[222lcdHo+ Veml ST 61o[222]cs)

2 — -

- 0951 1 e i
Vo=t 5t
47 3 4m2 rij

where u,, are the meson masses a@iMw are the quark-

—2(N|Hg+ V¢ mlN) meson coupling constants given below.
Equation (17) contains both the traditional long-range
5_6C +3/4hw=717 MeV if SI=10, Yukawa potential as well as &function term. It is the latter
=¢ 3 7m (13  that is of crucial importance for baryon spectroscopy and
24C, n+3/4hw=815MeV if SI=01. short-rangeN N interaction since it has a proper sign to pro-

vide the correct hyperfine splittings in baryons and is becom-
We conclude that both the GBE and OGE models implying highly dominant at short range. Since one deals with
effective repulsion at short range of approximately the samstructured particlegboth the constituent quarks and pseudo-

magnitude. scalar mesonsof finite extension, one must smear out e
function in Eq.(17). In Ref.[7] a smooth Gaussian term has
1. HAMILTONIAN been employed instead of thefunction,
In this section we present the GBE mofiel7] used in the 4

diagonalization of six-quark Hamiltonian in the bas8. 4m8(rij)= —=aexf — a?(r —rg)?], (18
The Hamiltonian reads m

~2 ~\2 f

PP (Zipi) - wherea andr, are adjustable parameters.

H=6m+§i: >m~ 12m +i§<:j Vconf(rij)+i§<:j Volrip), The parameters of the Hamiltonigh4) are[7]
(14
- - 92 9 g2

wherem is the constituent quark mass ang=|r;—r| is the 2T ZM 067, —29=1.208,
interquark distance. Am 4w Am

The confining interaction is
ro=0.43fm, «=2.91 fm1,
VeonTij)= = AT N{Crij, (15 °
where\{ are the S\B)-color matrices and is a parameter C=0.474 fn2, m=340 MeV, (19
given below.

The spin-spin component of the GBE interaction between

i isand j =139 MeV, pu,=547 MeV, pu, =958 MeV.
the constituent quarkisand| reads Hm Moy 12

R 3 R 7 R The Hamiltonian(14) with the parameter$19) provides a
Vo (ri)=1 2 V(AT + 2 Vieripaial very satisfactory description of the low-lyifg andA spec-
F=1 F=4 tra in a fully dynamical nonrelativistic three-body calculation
[7].

g 8y 8 g 0y0( > =
VDAV (AR 00y, (16) At present we are limited to usd sf) harmonic oscillator
wave function for the nucleon in thdN problem. The pa-
where \F,F=1, ... ,8 areflavor Gell-Mann matrices and rametrization(19) is especially convenient for this purpose

\%=/2/31, wherel is the 3x 3 unit matrix. Thus the inter- since it allows to use thgs®) as a variational ansatz. Other-
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TABLE Il. Results of the diagonalization of the Hamiltonian TABLE Ill. Same as Table Il but fotS=(10).

(14) for 1IS=(01). Column 1, the basis states; column 2, diagonal

matrix element§GeV); column 3, eigenvaluegGeV) for a 5X5 State X1 5X%X5 Lowest state

matrix; column 4, components of the lowest state. The results are components

for B=0.437 fm. In columns 2 and 3, the quantityng=1.939

GeV is subtracted. |s°[6]0[33]ks) 2.990 1.356 —0.12195

|s*p[42]0[33]ks) 3.326 1.895 0.08825

State X1 5x5 Loweststate [s*p42]o[51]cs) 1.486 3.178 —0.96345

components  |s*p?[42]o[411]s) 3.543 3.652 —0.21644
5 4.2
S6]0[33]0) 2346 0830 —0.14031 |(\/5/6s°2s— \[1/65*p?)[6]o[33]rs) 3.513 4.777 0.04756
[s*0?[42]0[33]ks) 2.824 1.323  0.07747
4.2
I;E%jgji]ﬁi g:gjé é:gig %_223;2 components of the ground state are given. In agreement with

Sec. I, one can see that the expectation value of the configu-
ration |s*p?[42]o[51]es) given in column 2 is much lower
than all the other ones, and in particular it is about 1.5 GeV
below the expectation value of the configuration
|s8[6]0[33]es). The substantial lowering of the configura-

|(/5/6s°2s— \1/6s*p?)[6]0[33]rs) 3.011 4.169  0.05747

wise the structure ol should be more complicated. Indeed,

(N|H|N) takes a minimal value of 969.6 MeV at a harmonic !} oLy i e
oscillator parameter value ¢f=0.437 fm[22], i.e., only 30 tion|s*p*42]o[ 51]rg) relative to the other ones implies that

MeV above the actual value in the dynamical three-bod)}h's configuration is by far the most important component in

calculation. In this way one satisfies one of the most impor_the ground state eigenvector. The last column shows that the

tant constraint for the microscopical study of tR& inter- ngObgfiIithO;tTgnZ%'ngeur:?go?hE ?:v(\ﬁ;o'{ehig;glvzalluoeaigdonly
action: the nucleon stability conditiq9] about 100 MeV lower than the expectation value of the con-
P figuration|3).
%<N|H|N)=O. (20 The main outcome is thatyy(R=0) is highly repulsive
in both 3S; and 'S, channels, the height being 0.830 GeV in
the former case and 1.356 GeV in the latter one.

The other condition, the qualitatively corre&tN splitting, o . : C
is also satisfied22]. In order to see that it is the GBE interaction which is

We keep in mind, however, that a nonrelativistic descrip_respon5|ble for the short-range repulsion, it is very instruc-

tion of baryons cannot be completely adequate. Within thé‘,'ve to removeV, from the Hamiltonian(14), compute the

semirelativistic description of baryofi8] the parameters ex- nuEIiz%r;?)m%sesV 'Qt tmz %1?%0:]\;2'(:23;;:&; ou;r;?netzgr
tracted from the fit to baryon masses become considerabl ﬁ?) 9‘17 fm and diaconaliz h a Hamiltoni [r)] i in
different and even the representation of the short-range paft a agonalize such a Hamilionian aga

of the GBE interaction(18) has a different form. Within a hgz basig8). In this case_the most important C(_)nfiguration s
semirelativistic description the simpg wave function for |S°[6]0[33]rs). Subtracting from the lowest elgenvalug the
“{Wo-nucleon energy” 2ny=2X%X1.633 GeV one obtains

the nucleon is not adequate anymore. All this suggests tha

NOGBE/ . Ay . -
the description of the nucleon based on the paramét®s Vnn  (R=0)=—0.197 GeV. This soft attraction comes
and ans® wave function is only effective. Since in this paper from the unphysical color van der Waals forces related to the

we study only qualitative effects, related to the spin-flavorpairWise confinement. The van der Waals forces would not

structure and sign of the short-range part of the GBE inter@PP€ar if the basis was restricted to 68 state only. If the
tially excited § clusters from thes*p? configurations

action, we consider the present nonrelativistic parametriza2P& _
tion as a reasonable framework. were removed, the vNag GdBeEr Waals forces would disappear and
We diagonalize the Hamiltoniafi4) in the basig8). Al We would arrive atvyy “"(R=0)=0. Thus it is the GBE

the necessary matrix elements are calculated with the help #fteraction which brings about 1 GeV repulsion, consistent

the fractional parentage technique. Some important detail¢ith the previous discussion. o
can be found in Appendixes C and D. The effective repulsion obtained above implies a strong

suppression of thk =0 relative motion wave function in the
nucleon overlap region, as compared to the wave function of
two well-separated nucleons.

In Tables 1l and Il we present our results obtained from  There is another important mechanism producing addi-
the diagonalization of the Hamiltoniaii4) in the basig8).  tional effective repulsion in th&IN system, which is related
According to the definition of the effective potential within to the symmetry structure of the lowest configuration but not
the Born-Oppenheimer approximati¢® at zero separation related to its energy relative to théN threshold. This “ex-
between nucleons all energies presented in Tables Il and Ifra” repulsion, related to the “Pauli forbidden stat¢23],
are given relative to two-nucleon threshold; i.e., the quantitypersists if any of the configurations from tiep?) shell
2(N|H|N)=1939 MeV has always been subtracted. In thebecomes highly dominantl7]. Indeed, theNN phase shift
second column we present the diagonal matrix elements fatalculated with a pur@51]gg state, which is projected “by
all the states listed in the first column. In the third column wehands” (not dynamically from the full NN state in a toy
present all the eigenvalues obtained from the diagonalizatiomodel[9], shows a behavior typical for repulsive potentials.
of a 5xX5 matrix. In the fourth column the amplitudes of all As a result theS-wave NN relative motion wave function

IV. RESULTS AND DISCUSSION
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4.0 . . - . - only the short-range & configurations, like in the present
v paper, but also the basis states representing the middle and
long distances in th&IN system.
20 In Fig. 1 one observes a nodal behavior of bﬂ{nN(F)
] and\IfAA(F) at short range. AlseifAA(F) is essentially larger
e at short range thai y(r). At large distances only’ yn(r)
0.0 = - will survive. This nodal behavior is related to the fact that
\\\ // the configuratior{3) is highly dominant. In the case of any
NN configurations*p? or s°2s from theN=2 shell, the relative
20 Y - - motion of twos® clusters(e.g.,NN andAA) is described by
ool om e a nodal wave function.
R . Now we want to discuss the question which typeNdfl
40 , . , ) , potential would be equivalent to the short-range picture ob-
0.00 0.10 0.20 0.30 0.40 0.50 tained above. If one considers the effect of the short-range

r(fm) dynamics on thé&IN phase shifts, in a limited energy interval
FIG. 1. Projections of the lowest eigenvector in Table Il onto the phase shifts in botfiS, .‘"‘”d 'S, partial waves can“be
NN andAA channels(in arbitrary units. smulaﬁed by strong rgpulswg core potentials or by “deep
attractive potentials with forbidden state$24]. The latter
potentials are in fact supersymmetric partners of the former
ones[28].
If, on the other hand, one considers the effect of the short-
range dynamics on the structure of the wave function at short
Jange, it is difficult to construct a potential which would be
c1’;1dequate. For example, a repulsive core potential produces a
ave function which is indeed suppressed at short range, but
oes not have any nodal structure. If one takes, instead, a
“deep attractive potential with forbidden state,” one obtains
nodal behavior, but the wave function is not suppressed at
ahort rangdi.e., the amplitude left to the node is a very large
one. As a direct consequence, the latter potential produces a
very rich high-momentum component, which is in contradic-
tion with the deuteron electromagnetic form factt8]. The
high-momentum component, implied by a “very soft node,”
like in our case, will be much smaller and closer to that one
obtained from the potentials with strong repulsive core.
We also see large projections onto otli&yB, channels
R 6! (exemplified by theAA channel in Fig. L These compo-
‘PBle(r)z m{Bl(1,2,3)82(4,5,6)|\If(1,2, c,0), nent_s canngt be taken.into acco_unt in any_sinmré poten-
" 21) tial, in principle. Thus, if we are interested in effects, related
to the short-rang®& N system, there is no way, other than to

whereW (1,2, . . . ,6) is dully antisymmetric & wave func- consider the full § wave function in this region.
tion, which in the present case is represented by the eigen-
vector in Table Il, and3,(1,2,3) andB,(4,5,6) are intrinsic V. WHY THE SINGLE CHANNEL RESONATING GROUP
baryon wave functions. METHOD ANSATZ IS NOT ADEQUATE

In order to calculate Eq21) we need a “3+ 3" expan-
sion of each state in the basi®). The corresponding
‘3 +3” decomposition of each state can be found26] in
the CScoupling scheme. To use it here one needs the unitar
matrix from theCS basis to thé=S one. This matrix can be
found in Appendix B.

In Fig. 1 we show the projection21) onto theNN and
AA channels in the’S; partial NN wave at short range. In

has an almost energy independent nfi2. A similar situ-
ation occurs in*He-*He scattering25]. The only difference
between this nuclear case and thl system is that while in
the former case a configuratiefi is indeed forbidden by the
Pauli principle in an eight-nucleon system, the configuratio
s® is allowed in a six-quark system, but is highly suppresse
by dynamics, as was discussed above. In the OGE model th
effect is absent because none of fA&], states is dominant
[9,20,27. The existence of a strong effective repulsion, re-
lated to the energy balance in the adiabatic approximation,
in our case, suggests, however, that the amplitude of th
oscillating NN wave function at short distance will be
strongly suppressed.

To illustrate this discussion we project the lowest eigen
vector in Table Il onto theNN and AA channels. The pro-
jection onto any baryon-baryon chanri®|B, is defined as
follows [13,26:

In this section we show that the currently used one-
channel resonating group meth(RIGM) ansatz for the two-
ucleon wave function is not adequate in a study of the
hort-rangeN N interaction with the chiral quark model.
In the one-channel RGM approximation the 6vave
function has the form

fact, such projections can be shown for other channels too as, y=A{N(1,2,3N(4,5,6) x(r)},

e.g.,NN*, N*N*, ..., some of them being not small. Note

that our six-quark wave function, calculated at short range . R

only, was normalized to 1. Hence, we cannot show the sup- A= E(l—QP%), (22

pression of theNN projection in the nucleon overlap region

as compared to the wave function of the well-separated

nucleons, discussed above. This can only be seen from -
r:

W n(r) obtained in dynamical calculations including not 3 3

P+l Hrg Fa+rg+rg
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This is reasonable in the case where the short-range quark . 10
dynamics is described in terms of the OGE interaction. In A{N(1,2,3)N(4,5,6) ¢os(F)}si=10= \/;|36[6]o[33]F5),
this case the addition of new channels, orthogonal to the 25)
wave function(22), does not change considerably the full
wave function in the nucleon overlap region. This is not the A >
case for the chiral constituent quark model, where the short- AIN(L,2,3N(4.5,8 ¢2s(N}si-10
range quark dynamics is due to the GBE interaction. To have 3.2 5 1
a better insight into why the wave functid@?) is a poor ZT( ESSZS_ gS4p2)[6]o[33]Fs>,
approximation in the present case, we begin with the expla-
nation why the wave functio(22) is reasonable for the OGE 4\/§
model[20]. 9 |s*p?[42]0[33]s)
To this end, it is very convenient to use the six-quark shell
model basis for th&NN function in the nucleon overlap re- 4.2
gion [13,20,3Q. Such a basis is much more flexible than the - T|S4p2[42]0[51]FS>- (26)

wave function(22). Diagonalizing a Hamiltonian comprising
the OGE interaction and a confining interaction in the harFrom the expressio(26) we see that the relative amplitudes
monic oscillator basis up to two excitation quanta, one carf the state$5), |2), and|3) are in the ratio

obtain the § wave function in the fornj20] 15:12):[3)= 31— 4:—4 @

=Co|s®)+ >, C,la), (23)  and the amplitude of the staté) is zero. The diagonaliza-
@ tion of the Hamiltonian made in the previous section gives

where « lists all possible configurations in tHé=2 shell: |5):]2):|3):|4)=0.06:0.08:-0.96:0.20. (28
[6]o[222]cs, [42]o[42]cs, [42]0[321]cs, [42]0[222]cs, . . :
[42]o[311Tcs, and[42)o[2111Tcs. With the OGE inter-  Therefore the ansat@?) is completely inadequate in the
action, the CS coupling scheme based on the chainnucleon overlap region and the incorporation of additional
SU(6)csD SU(3)c X SU(2)s is more convenient. It has been channels is required in RGM calculations.

found that there are a few most important configurations,

VI. SUMMARY
|°[610[222)ce), [s*p742]0[42]cs), s*p2[420ol321]cs),
andl(ﬁGsSZS— V1/65*p?)[6]0[ 222]cs), with sizable am- In the present paper we have calculated an adiab#tic
plitudesC,, [20,26,3Q. potential at zero separation between nucleons in the frame-

Now, let us expand the RGM wave functi¢®2) in the  work of a chiral constituent quark model, where the constitu-
shell model basis. For that purpose, the trial functign) in  ent quarks interact via pseudoscalar meson exchange. Diago-
the wave function(22) should be expanded in a harmonic nalizing a Hamiltonian in a basis consisting of the most
oscillator basis too: important @ configurations in the nucleon overlap region,

we have found asvery strlong effective repulsion of the order
- - of 1 GeV in both®S; and S, NN partial waves. Because of
XL=o(f)—N:0'2A”_ (xt-ol &ns) dns(r), (24 the specific flavor-spin symmetry of the Goldstone boson
exchange interaction, the configuratidefp?[42]o[51]¢s)
where ¢y (r) is a harmonic oscillator state with quanta becomes highly dominant at short range. As a consequence,
andL=0. Thus in the ansai22) the variational coefficients the projection of the full § wave function onto theNN
based on the expansit®4) are(x, _o| ¢ns). The last stepis channel should have a node at short range in B&hand
to use the expression&1) and (22) of Ref. [26] for 13, partial waves. The amplitude of the oscillation left to the

A{N(1,2,3)|\I(4,5,6)¢03(F)}, A{N(1,2,3)|\I(4,5,6)¢23(F)}, node should be strongly suppressed as compared to the wave

written in the shell model basis. These are transformationgmcuon of two well-separated nucleons. .
from one basis to another and do not depend on thelys We have also found that due to the strong dominance of

; ; 4.2
namics. If it turns out that for a given Hamiltonian the varia- the anﬂgulrellggrlvls P [‘:2]_0[51]':9 the comm(_)nlyt_ us?dth
tional coefficientsC, in Eq. (23) are close to the algebraical one-channe ansatz 1s a very poor approximation to the

~ - 6g wave function in the nucleon overlap region.
olneas(c:1|A{l\tI1(1,2,3)|\IEC4,5,€_5)¢2§(r_)}>, ther(lj oneé can con- Thus, within the chiral constituent quark model one has
clude that the wave u_nctloﬁz ) is a goo approximation - 5| {he necessary ingredients to understand microscopically
for the variational solutiori23). If not, the variational ansatz

. ; the NN interaction. There appears strong effective short-
(22) is poor and other channels, not equivalent to the WaV&ange repulsion from the same part of Goldstone boson ex-

function (22), should be addedle.g., A{N*Nx*(r)},  change which also produces hyperfine splittings in baryon
A{N*N* x** (r)}, .. .]. For the OGE model it is found that spectroscopy. The long- and middle-range attraction in the
indeed the variational coefficients, in Eq. (23) are very NN system is automatically implied by the Yukawa part of
close to the algebraical ong20] (see alsd26]). pion exchange and two-piofor o) exchanges between

Let us now turn to the analysis of the results of Sec. IVquarks belonging to different nucleons. With this first en-
based on the GBE interaction. Using the unitary transformaeouraging result, it might be worthwhile to perform a more
tion from theCS to FS scheme, given in Appendix B, one elaborate calculation of thBIN system and other baryon-
can rewrite Eqs(21) and(22) of Ref.[26] as baryon systems within the present framework.
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TABLE IV. The unitary transformation between tkxS andF S basis vectors of orbital symmetfy2]5,
isospinl =0, and spinS=1.

5 o5 5 5 5
[42]0[33]es 9\/§ 8\/5 5\/5 E é)
36 ~ 36 36 36 36
[42]0[51]¢s 9,5 8\5 512 _25 25
25 TS 5 45 45
[42]0[411]¢s 910 8110 _170 25\2 20V2
180 180 180 180 180
[42]o[ 2211 ks E i \/1—0 5\/5 4\/5
20 20 0 20 ~ 20
[42]0[321¢s _18 29 _ 210 1045 _8%5
45 45 45 45 45
APPENDIX A [6]o[33]rs=[6]o[222]cs (B1)

The expectation value of the operat@is and (12), dis-

played in Table I, are calculated with the following formulas: either forlS=01 or 10.

For the[42]o symmetry, sectotS=01, Table IV repro-
4 duces Table 7 of Ref31] with a phase change in columns 3
<Z - )\j(;'i . ,}j> =4C5Y0 20§U<3>_§C§U<2>_8N, and 5, required by consistency with RE26].

i< In this table, the column headings are
(A1)

. . . ¢1°=[42]o[ 42]cs,
whereN is the number of particles; hehe=6, andC3® is ! oLTes
the Casimir operator eigenvalues of Si)(which can be $SS=[42]0[321]cs,
derived from the expression

Y5 5=[42]0[ 311 cs, (B2)

1
CgU(ﬂ):E[fl(fl-f— n—1)+f,(f;+n—3)+f3(f3+n—5) ¢SS=[42]0[222]05

¥g3=[42]0[2111Tcs.

n—1 2
_i( E fi’) , (A2) For the[42]o symmetry, sectolS=10, we reproduce in
2n\ =1 Table V the corresponding table from R¢82] by inter-

changing rows with columns and then reorder the rows. In
where f{ =f;—f,, for an irreductible representation given this case, the notation is

by the partition[ f,,f,, ... f,].

+i(fatn=7)+- -+ _,(f,_;—n+3)]

$§5=[42]0[411cs,
APPENDIX B

—Ts
=[42]0[33]cs,
This appendix reproduces transformations, derived else- V2 "=[42lol 33lcs

where, from theCS coupling scheme to th&S coupling

T CS_ 1
scheme, or vice versa, related to the orbital symmejBég ¥37=[42lo[ 2211cs, (B3)
and[42],, appearing in the basis vectd®.
For the[6]o symmetry one obviously has Y55=[42]0[ 2211,

TABLE V. Same as Table IV but fog=0, |=1.

S S 5* v ¥5°
42]0[33 [25
[42]o[ 33]s % _ % _ % _\/% — %
[42]o[51]rs Ng i Vi NG Vi
42]o[2211]
[2ol210es [ V& V& VA -V
42]o[321 16
[4210[320rs _JE _JE i Vi VE
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TABLE VI. All one-meson exchange two-body matrix elemef@eV) for the sectoi S=01 evaluated at
B=0.437 fm. The remaining one {®p|Ve|ps)=—(s9Ve|(pp)L-o)/ /3.

Two-body matrix F=mx F=n% F=7%'
elements
SSVE|SS —0.108357 —0.104520 —0.189153
(s9Velss)
(sSVe|(PP)L—o) 0.043762 0.042597 0.076173
sp|VE|s —0.083091 —0.079926 —0.145175
(splVelsp)
{((PP)L=olVEl(PP) L0} —0.081160 —0.078594 —0.142205
S2s|VE|s2s —0.0694 —0. —0.121701
(s25|Vg|s2s) 0.069492 0.066963 0.12170
sqVg|s2s —0.030945 —-0.030121 -0.05
(s9YVg|s2s) 0.0309 0.03012 0.053863
(s2s|Ve| (PP) L —o) 0.033309 0.031753 0.057499
YES=[4210[1%cs. are the same forfS=01 and 10, but the coefficients ¢¥,)

are usually different. In both cases the coefficientg\6f,)

The upper indices 1 and 2 take into account the two distincft"® 2 times those div,). We found that the two-body GBE

2211] states appearing in the inner prod{iz22] X[ 33]. matrix elements satisfy the relationgv,)=(V,) and
[ ] PP g prod}ize2) <[ 33] (V,)=2(V,). As an example, in Table VI we show the

matrix elements obtained fd6=01. Except for(sgV|pp)
and(s2s|V|pp) they are all negative, i.e., carry the sign of
The calculation of the matrix elements of the HamiltonianEd- (1)- ) ) ) ) )
(14) is based on the fractional parentage (CFP) technique In a harmonic oscillator basis the confinement potential
described in Ref[18]. For details, see also Rdfl9], Chap. matrix elements can be performed analytically. As an illus-
10. In dealing with particles the matrix elements of a sym- tration, in Appendix D, we reproduce the results for all con-

metric two-body operator between totallsymmetric oy an- ~ figurations required in these calculations.
tisymmetric statess, and ¢/, reads Finally, the kinetic energy matrix elements can be calcu-
n

lated as above, by writing the relative kinetic energy operator
o

as a two-body operator
The matrix elements o¥,_, , are calculated by expanding
i, and ), in terms of products of antisymmetric states of thewith
first n—2 particlesy,_, and of the last paig,:

APPENDIX C

> Vi
i<j

, n(n—1) ,
‘r/fn> = 2 <'/’n|vn—1,n|‘//n>' (Cy )
Pi >
-5 -d 3 -E . ©

— 1 2 2 1. -
=3, Pagthn-o(0) b2( ), 2 T = om (PP~ P Pr (4

) ) ) Alternatively we can use a universal formula for the kinetic
with «, 8 denoting the possible structures @}, and ¢, energy of harmonic oscillator states:
andP .z the products of CFP coefficients in the orbital, spin-

flavor, and color space states. In practical calculations, the
color space CFP coefficients are not required. The orbital
CFP are taken from Ref33], Tables | and Il by using the
replacement 41?—s*p? andr® —s°p. The trivial ones are
equal to 1. The flavor-spin CFP’s f6=01 are identical to
the K matrices of Table | of Ref.31] with [42]4 33]¢ in the
column headings. FoiS=10 they are the same as for
IS=01 but the column headings [¢}2]¢[33]s instead of APPENDIX D

[42]4[33]F as above, and this is due to the commutativity of e work with the following single particle harmonic os-
inner products oS, (see, for example, Reff19]). The CFP’s  cijllator states:

used in theOC coupling are from Ref[33], Table Il

KE=%[N+3(n—-D]to+ i to, (CH

whereN is the number of quanta amdthe number of par-
ticles. The last term is the kinetic energy of the center of
mass.

for [42]pX[222]c—[311Yoc and Table V of Ref. |sy= 7348~ 3exp —r2/28?), (D1)
[31] for [42]oX[222]c—[222]gc and [42]pX[222]¢
—[2111oc. |p)m=8Y23~ Y27~ VAg—52 ey —2/282)Y,,,, (D2)

In this way, after decoupling all degrees of freedom one
can integrate out in the color, spin, and flavor space. The net 3 g2
outcome of this algebra i_s th_at any six-body matr_ix elemgnt |2$)=21’23*1’277*3’4,3*3’2 > exp —r2/232).
becomes a linear combination of two-body orbital matrix 2 2
elements(V,), (V,), and(V,). The coefficients ofV ) (D3)
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In this basis the two-body matrix elements of the confining

potentialV¢=Cr of Eq. (15) are

(s4Vels9 = \/;cg,

(D4)
7C
(spIVesp)= \[ =E (DS)
2C
(splVe|ps)=— \[;TB (D6)
(s9VY(PP)L—0)=—V3(sp|V°|ps), (D7)
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25CB
((PP)L=0lVE|(PP)L=0) = \/;T

(D8)
31CR
(s2s|VC|s2s) = \/> , (D9)
1
(sgVe|s2s)=— \/EC,B, (D10)
(25VFl(PP) )=~ = 2. (1LY
L=0 \/_ 2 .
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