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Nucleon-nucleon interaction in a chiral constituent quark model
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We study the short-range nucleon-nucleon interaction in a chiral constituent quark model by diagonalizing
a Hamiltonian comprising a linear confinement and a Goldstone boson exchange interaction between quarks.
The six-quark harmonic oscillator basis contains up to two excitation quanta. We show that the highly domi-
nant configuration isus4p2@42#O@51#FS& due to its specific flavor-spin symmetry. Using the Born-Oppenheimer
approximation we find a strong effective repulsion at zero separation between nucleons in both3S1 and 1S0

channels. The symmetry structure of the highly dominant configuration implies the existence of a node in the
S-wave relative motion wave function at short distances. The amplitude of the oscillation of the wave function
at short range will be, however, strongly suppressed. We discuss the mechanism leading to the effective
short-range repulsion within the chiral constituent quark model as compared to that related with the one-gluon
exchange interaction.@S0556-2813~97!05311-9#

PACS number~s!: 24.85.1p, 12.39.Fe, 13.75.Cs, 21.30.2x
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I. INTRODUCTION

An interest in the constituent quark model~CQM! has
recently been revitalized@1# after recognizing the fact tha
the constituent~dynamical! mass of the light quarks appea
as a direct consequence of spontaneous chiral symm
breaking~SCSB! @2,3# and is related to the light quark con

densateŝ q̄q& of the QCD vacuum. This feature becom
explicit in any microscopical approach to SCSB in QC
e.g., in the instanton gas~liquid! model@4#. The mechanism
of the dynamical mass generation in the Nambu-Goldst
mode of chiral symmetry is very transparent within thes
model @5# or Nambu and Jona-Lasinio models@6#. Another
consequence of the chiral symmetry in the Nambu-Goldst
mode is the appearance of an octet of Goldstone bos
(p,K,h mesons!. It was suggested in@1# that beyond the
scale of SCSB, nonstrange and strange baryons shoul
viewed as systems of three constituent quarks which inte
via the exchange of Goldstone bosons and are subjec
confinement. This type of interaction between the constitu
quarks provides a very satisfactory description of the lo
lying nonstrange and strange baryon spectra@1,7,8# including
the correct ordering of the levels with positive and negat
parity in all parts of the considered spectrum.

So far, all studies of the short-rangeNN interaction within
the constituent quark model were based on the one-g
exchange~OGE! interaction between quarks. They explain
the short-range repulsion in theNN system as due to th
color-magnetic part of the OGE interaction combined w
quark interchanges between 3q clusters.~For reviews and
earlier references see@9–11#.! There are also models whic
attribute the short-range repulsion in theNN system to the
color-electric part of the OGE interaction@12#.

In order to provide the necessary long- and intermedia
range attraction in the baryon-baryon system, hybrid mod
were suggested@13–15#, where in addition to the OGE in
560556-2813/97/56~5!/2779~10!/$10.00
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teraction, the quarks belonging to different 3q clusters inter-
act via pseudoscalar and scalar meson exchange. In t
hybrid models the short-range repulsion in theNN system is
still attributed to the OGE interaction between the consti
ent quarks.

It has been shown, however@1,16#, that hyperfine split-
tings as well as the correct ordering of positive and nega
parity states in spectra of baryons withu,d,s quarks are
produced in fact not by the color-magnetic part of the OG
interaction, but by the short-range part of the Goldstone
son exchange~GBE! interaction. This short-range part of th
GBE interaction has just the opposite sign as compared
the Yukawa tail of the GBE interaction and is much strong
at short interquark separations. There is practically no ro
for the OGE interaction in light baryon spectroscopy and a
appreciable amount of color-magnetic interaction, in addit
to the GBE interaction, destroys the spectrum@8#. If so, the
question arises as to which interquark interaction is resp
sible for the short-rangeNN repulsion. The goal of this pape
is to show that the same short-range part of the GBE in
action, which produces good baryon spectra, also induc
short-range repulsion in theNN system.

The present study is rather exploratory. We calculate
effectiveNN interaction at zero separation distance only. W
also want to stress that all main ingredients of theNN inter-
action, such as the long- and middle-range attraction
short-range repulsion, are implied by the chiral constitu
quark model. Indeed, the long- and middle-range attrac
automatically appear in the present framework due to
long-range Yukawa tail of the pion-exchange interaction
tween quarks belonging to different nucleons and due top
~or sigma! exchanges. Thus, the only important open qu
tion is whether or not the chiral constituent quark model
able to produce a short-range repulsion in theNN system.

For this purpose, we diagonalize the Hamiltonian of R
@7# in a six-quark harmonic oscillator basis up to two ex
tations quanta. Using the Born-Oppenheimer~adiabatic! ap-
2779 © 1997 The American Physical Society
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2780 56Fl. STANCU, S. PEPIN, AND L. Ya. GLOZMAN
proximation, we obtain an effective internucleon potentia
zero separation between nucleons from the difference
tween the lowest eigenvalue and 2 times the nucleon m
calculated in the same model. We find a strong effect
repulsion between nucleons in both3S1 and 1S0 channels of
a height of 800–1300 MeV. This repulsion implies a stro
suppression of theNN wave function in the nucleon overla
region as compared to the wave function of the well se
rated nucleons.

Because of the specific flavor-spin symmetry of the G
interaction, we also find that the highly dominant 6q con-
figuration at zero separation between nucleons
us4p2@42#O@51#FS&. As a consequence the 6q region~i.e., the
nucleon overlap region! cannot be adequately represented
the one-channel resonating group method~RGM! ansatz
Â$N(1,2,3)N(4,5,6)x(rW)% which is commonly used a
present for the short-rangeNN interaction with the OGE
interaction.

The symmetry structure@42#O@51#FS of the lowest con-
figuration will induce an additional effective repulsion
short range related to the ‘‘Pauli forbidden state’’ in th
case. This latter effective repulsion is not related to the
ergy of the lowest configuration as compared to two-nucle
threshold and thus cannot be obtained within the Bo
Oppenheimer approximation procedure. We notice, howe
that the structure of the six-quark wave function in t
nucleon overlap region is very different from the one as
ciated with the soft or hard coreNN potentials.

This paper is organized as follows. In Sec. II, in a qua
tative analysis at the Casimir operator level, we show that
short-range GBE interaction generates a repulsion betw
nucleons in both3S1 and 1S0 channels. We also sugge
there that the configuration with the@51#FS flavor-spin sym-
metry should be the dominant one. Section III describes
Hamiltonian. Section IV contains results of the diagonaliz
tion of the 6q Hamiltonian and of theNN effective interac-
tion at zero separation between nucleons. The structure o
short-range wave function is also discussed in this section
Sec. V, we show why the single-channel RGM ansatz is
adequate in the present case. In Sec. VI, we present a
mary of our study.

II. QUALITATIVE ANALYSIS AT THE CASIMIR
OPERATOR LEVEL

In order to have a preliminary qualitative insight it is co
venient first to consider a schematic model which negle
the radial dependence of the GBE interaction. In this mo
the short-range part of the GBE interaction between the c
stituent quarks is approximated by@1#

Vx52Cx(
i , j

l i
F
•l j

FsW i•sW j , ~1!

where lF with an implied summation over F

(F51,2, . . . ,8) andsW are the quark flavor Gell-Mann an
spin matrices, respectively. The minus sign of the interac
~1! is related to the sign of the short-range part of the ps
doscalar meson exchange interaction~which is opposite to
that of the Yukawa tail!, crucial for the hyperfine splittings in
baryon spectroscopy. The constantCx can be determined
t
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from theD-N splitting. For that purpose one only needs t
spin (S), flavor (F), and flavor-spin (FS) symmetries of the
N andD states, identified by the corresponding partitions@ f #
associated with the groups SU(2)S , SU(3)F , and SU(6)FS :

uN&5us3@3#FS@21#F@21#S&, ~2!

uD&5us3@3#FS@3#F@3#S&. ~3!

Then the matrix elements of the interaction~1! are @1#

^NuVxuN&5214Cx , ~4!

^DuVxuD&524Cx . ~5!

HenceED2EN510Cx , which givesCx529.3 MeV, if one
uses the experimental value of 293 MeV for theD-N split-
ting.

To see the effect of the interaction~1! in the six-quark
system, the most convenient is to use the coupling sch
called FS, where the spatial@ f #O and color@ f #C parts are
coupled together to@ f #OC , and then to the SU(6)FS flavor-
spin part of the wave function in order to provide a tota
antisymmetric wave function in the OCFS space@18#. The
antisymmetry condition requires@ f #FS5@ f̃ #OC , where@ f̃ #
is the conjugate of@ f #.

The color-singlet 6q state is@222#C . Assuming thatN has
a @3#O spatial symmetry, there are two possible states@6#O
and@42#O compatible with theS-wave relative motion in the
NN system@17#. The flavor and spin symmetries are@42#F
and @33#S for 1S0 and @33#F and @42#S for 3S1 channels.
Applying the inner product rules of the symmetric group f
both the@ f #O3@ f #C and @ f #F3@ f #S products one arrives a
the following 6q antisymmetric states associated with t
3S1 and 1S0 channels@18,19#: u@6#O@33#FS&, u@42#O@33#FS&,
u@42#O@51#FS&, u@42#O@411#FS&, u@42#O@321#FS&, and
u@42#O@2211#FS&.

Then the expectation values of the GBE interaction~1! for
these states can be easily calculated in terms of the Cas
operators eigenvalues for the groups SU(6)FS , SU(3)F , and
SU(2)S using the formula given in Appendix A. The corre
sponding matrix elements are given in Table I, from whe
one can see that, energetically, the most favorable confi
ration is@51#FS . This is a direct consequence of the gene
rule that at short range and with fixed spin and flavor,
more ‘‘symmetric’’ a givenFS Young diagram is, the more

TABLE I. Expectation values of the operators defined by E
~1! and ~12! for all compatible symmetries@ f #O@ f #FS in the
IS5(01) and~10! sector.̂ Vx& is in units ofCx and^Vc.m.& in units
of Cc.m..

I 50, S51 I 51, S50
@ f #O@ f #FS ^Vx& ^Vc.m.& ^Vx& ^Vc.m.&

@6#O@33#FS 228/3 8/3 28 8
@42#O@33#FS 228/3 -26/9 28 24/3
@42#O@51#FS 2100/3 16/9 232 16/9
@42#O@411#FS 228/3 20/9 28 44/9
@42#O@321#FS 8/3 2164/45 4 232/45
@42#O@2211#FS 68/3 262/15 60 42/5
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56 2781NUCLEON-NUCLEON INTERACTION IN A CHIRAL . . .
negative is the expectation value of Eq.~1! @1#. The differ-
ence in the potential energy between the configura
@51#FS and @33#FS or @411#FS is

^@33#FSuVxu@33#FS&2^@51#FSuVxu@51#FS&

5^@411#FSuVxu@411#FS&2^@51#FSuVxu@51#FS&524Cx

~6!

and usingCx given above one obtains approximately 7
MeV for both theSI510 and 01 sectors.

In a harmonic oscillator basis containing up to 2\v exci-
tation quanta, there are two different 6q states correspondin
to the @6#O spatial symmetry with removed center-of-ma
motion. One of them,us6@6#O&, belongs to theN50 shell,
whereN is the number of excitation quanta in the syste

and the other,A 5
6 us52s@6#O&2A1

6 us4p2@6#O&, belongs to
theN52 shell. There is only one state with@42#O symmetry,
the us4p2@42#O& state belonging to theN52 shell. While
here and below we use notations of the shell model i
always assumed that the center-of-mass motion is remo

The kinetic energy~KE! for the us4p2@42#O& state is
larger than the one for the us6@6#O& state by
KEN522KEN505\v. Taking \v.250 MeV @1#, and de-
noting the kinetic energy operator byH0, we obtain

^s6@33#FSuH01Vxus6@33#FS&2^s4p2@51#FSuH0

1Vxus4p2@51#FS&.453 MeV, ~7!

which shows that@51#FS is far below the other states o
Table I. For simplicity, here we have neglected a small d
ference in the confinement potential energy between
above configurations.

This qualitative analysis suggests that in a more quan
tive study, where the radial dependence of the GBE inte
tion is taken into account, the stateus4p2@42#O@51#FS& will
be highly dominant and, due to the important lowering
this state by the GBE interaction with respect to the ot
states, the mixing angles with these states will be small. T
this is indeed the case will be proved in Sec. IV below.

Table I and the discussion above indicate that the follo
ing configurations should be taken into account for the
agonalization of the realistic Hamiltonian in Sec. IV:

u1&5us6@6#O@33#FS&,

u2&5us4p2@42#O@33#FS&,

u3&5us4p2@42#O@51#FS&, ~8!

u4&5us4p2@42#O@411#FS&,

u5&5u~A5
6 s52s2A1

6 s4p2!@6#O@33#FS&.

A strong dominance of the configurationu3& also implies
that the one-channel approximationÂ$NNx(rW)% is highly
inadequate for the short-rangeNN system. This problem will
be discussed in Sec. V.

Now we want to give a rough estimate of the interacti
potential of theNN system at zero separation distance b
n

,

s
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tween nucleons. We calculate this potential in the Bo
Oppenheimer~or adiabatic! approximation defined as

VNN~R!5^H&R2^H&` , ~9!

where R is a collective coordinate which is the separati
distance between the twos3 nucleons,^H&R is the lowest
expectation value of the Hamiltonian describing the 6q sys-
tem at fixedR, and^H&`52mN for theNN problem, i.e., the
energy of two well-separated nucleons. As above, we ign
the small difference between the confinement energy
^H&R50 and^H&` . That this difference is small follows from
thel i

c
•l j

c structure of the confining interaction and from th
identity

K @222#cU(
i , j

6

l i
c
•l j

cU@222#cL
52K @111#cU(

i , j

3

l i
c
•l j

cU@111#cL . ~10!

If the space parts@6#O and @3#O contain the same single
particle state, for example ans state, then the difference i
identically zero.

It has been shown by Harvey@18# that when the separa
tion R between twos3 nucleons approaches 0, then only tw
types of 6q configurations survive: us6@6#O& and
us4p2@42#O&. Thus in order to extract an effectiveNN poten-
tial at zero separation between nucleons in the adiab
Born-Oppenheimer approximation one has to diagonalize
Hamiltonian in the basisu1&2u4&. In actual calculations in
Sec. IV we extend the basis adding the configurationu5&,
which practically does not change much the result. For
rough estimate below we take only the lowest configurat
u3&. One then obtains

^s4p2@42#O@51#FSuH01Vxus4p2@42#O@51#FS&

22^NuH01VxuN&

5H ~2100/3128!Cx17/4\v5280 MeV if SI510,

~232128!Cx17/4\v5320 MeV if SI501.

~11!

The rough estimate~11! suggests that there is an effectiv
repulsion of approximately equal magnitude in theNN sys-
tem in the nucleon overlap region in both3S1 and 1S0 chan-
nels. In a more quantitative calculation in Sec. IV we fi
that the height of the effective core is much larger, in p
ticular 830 MeV for 3S1 and about 1.3 GeV for1S0.

At this stage it is useful to compare the nature of t
short-range repulsion generated by the GBE interaction
that produced by the OGE interaction.

In the constituent quark models based on the OGE in
action the situation is more complex. Table I helps in su
marizing the situation there. In this table we also give t
expectation value of the simplified chromomagnetic inter
tion
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Vc.m.52Cc.m.(
i , j

l i
c
•l j

csW i•sW j ~12!

in units of the constantCc.m. ~the constantCc.m. can also be
determined from theD-N splitting to be Cc.m..293/16
MeV!.

The expectation values of Eq.~12! can be easily obtained
in theCS scheme with the help of Casimir operator formu
in Appendix A and can be transformed toFS scheme by
using the unitary transformations from theCS scheme to the
FS scheme given in Appendix B.

The color-magnetic interaction pulls the configurati
us4p2@42#O@42#CS& down to become approximately degene
ate with us6@6#O@222#CS& which is pulled up. In a more de
tailed calculation with explicit radial dependence of t
color-magnetic interaction as well as with a Coulomb te
the configurationus6@6#O& is still the lowest one@9,20#.
@With the model~12! the \v should be about 500 MeV.#
Thus in the Born-Oppenheimer approximation we c
roughly estimate an effective interaction with OGE mod
through the difference

^s6@6#O@222#CSuH01Vc.m.us6@6#O@222#CS&

22^NuH01Vc.m.uN&

5H 56

3
Cc.m.13/4\v5717 MeV if SI510,

24Cc.m.13/4\v5815 MeV if SI501.

~13!

We conclude that both the GBE and OGE models im
effective repulsion at short range of approximately the sa
magnitude.

III. HAMILTONIAN

In this section we present the GBE model@1,7# used in the
diagonalization of six-quark Hamiltonian in the basis~8!.
The Hamiltonian reads

H56m1(
i

pW i
2

2m
2

~( i pW i !
2

12m
1(

i , j
Vconf~r i j !1(

i , j
Vx~rW i j !,

~14!

wherem is the constituent quark mass andr i j 5urW i2rW j u is the
interquark distance.

The confining interaction is

Vconf~r i j !52 3
8 l i

c
•l j

cCri j , ~15!

wherel i
c are the SU~3!-color matrices andC is a parameter

given below.
The spin-spin component of the GBE interaction betwe

the constituent quarksi and j reads

Vx~rW i j !5H (
F51

3

Vp~rW i j !l i
Fl j

F1 (
F54

7

VK~rW i j !l i
Fl j

F

1Vh~rW i j !l i
8l j

81Vh8~rW i j !l i
0l j

0J sW i•sW j , ~16!

where lF,F51, . . . ,8 areflavor Gell-Mann matrices and
l05A2/31, where1 is the 333 unit matrix. Thus the inter-
n
l

y
e

n

action ~16! includesp, K, h, andh8 exchanges. While the
p, K, and h mesons are~pseudo!Goldstone bosons of the
spontaneously broken SU(3)L3SU(3)R→SU(3)V chiral
symmetry, theh8 ~flavor singlet! is a priori not a Goldstone
boson due to the axial U(1)A anomaly. In the largeNC limit
the axial anomaly disappears, however, and theh8 becomes
the ninth Goldstone boson of the spontaneously bro
U(3)L3U(3)R→U(3)V chiral symmetry@21#. Thus in the
real world with NC53 the h8 should also be taken into
account, but with parameters essentially different fromp, K,
andh exchanges due to 1/NC corrections. For the system o
u andd quarks only theK exchange does not contribute.

In the simplest case, when both the constituent quarks
mesons are pointlike particles and the boson field satis
the linear Klein-Gordon equation, one has the following sp
tial dependence for the meson exchange potentials@1#:

Vg~rW i j !5
gg

2

4p

1

3

1

4m2H mg
2e2mgr i j

r i j
24pd~rW i j !J

~g5p,K,h,h8!, ~17!

wheremg are the meson masses andgg
2/4p are the quark-

meson coupling constants given below.
Equation ~17! contains both the traditional long-rang

Yukawa potential as well as ad-function term. It is the latter
that is of crucial importance for baryon spectroscopy a
short-rangeNN interaction since it has a proper sign to pr
vide the correct hyperfine splittings in baryons and is beco
ing highly dominant at short range. Since one deals w
structured particles~both the constituent quarks and pseud
scalar mesons! of finite extension, one must smear out thed
function in Eq.~17!. In Ref. @7# a smooth Gaussian term ha
been employed instead of thed function,

4pd~rW i j !⇒
4

Ap
a3exp@2a2~r 2r 0!2#, ~18!

wherea and r 0 are adjustable parameters.
The parameters of the Hamiltonian~14! are @7#

gpq
2

4p
5

ghq
2

4p
50.67,

gh8q
2

4p
51.206,

r 050.43 fm, a52.91 fm21,

C50.474 fm22, m5340 MeV, ~19!

mp5139 MeV, mh5547 MeV, mh85958 MeV.

The Hamiltonian~14! with the parameters~19! provides a
very satisfactory description of the low-lyingN andD spec-
tra in a fully dynamical nonrelativistic three-body calculatio
@7#.

At present we are limited to use aus3& harmonic oscillator
wave function for the nucleon in theNN problem. The pa-
rametrization~19! is especially convenient for this purpos
since it allows to use theus3& as a variational ansatz. Othe
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56 2783NUCLEON-NUCLEON INTERACTION IN A CHIRAL . . .
wise the structure ofN should be more complicated. Indee
^NuHuN& takes a minimal value of 969.6 MeV at a harmon
oscillator parameter value ofb50.437 fm@22#, i.e., only 30
MeV above the actual value in the dynamical three-bo
calculation. In this way one satisfies one of the most imp
tant constraint for the microscopical study of theNN inter-
action: the nucleon stability condition@9#

]

]b
^NuHuN&50. ~20!

The other condition, the qualitatively correctD-N splitting,
is also satisfied@22#.

We keep in mind, however, that a nonrelativistic descr
tion of baryons cannot be completely adequate. Within
semirelativistic description of baryons@8# the parameters ex
tracted from the fit to baryon masses become consider
different and even the representation of the short-range
of the GBE interaction~18! has a different form. Within a
semirelativistic description the simples3 wave function for
the nucleon is not adequate anymore. All this suggests
the description of the nucleon based on the parameters~19!
and ans3 wave function is only effective. Since in this pap
we study only qualitative effects, related to the spin-flav
structure and sign of the short-range part of the GBE in
action, we consider the present nonrelativistic parametr
tion as a reasonable framework.

We diagonalize the Hamiltonian~14! in the basis~8!. All
the necessary matrix elements are calculated with the he
the fractional parentage technique. Some important de
can be found in Appendixes C and D.

IV. RESULTS AND DISCUSSION

In Tables II and III we present our results obtained fro
the diagonalization of the Hamiltonian~14! in the basis~8!.
According to the definition of the effective potential with
the Born-Oppenheimer approximation~9! at zero separation
between nucleons all energies presented in Tables II an
are given relative to two-nucleon threshold; i.e., the quan
2^NuHuN&51939 MeV has always been subtracted. In t
second column we present the diagonal matrix elements
all the states listed in the first column. In the third column
present all the eigenvalues obtained from the diagonaliza
of a 535 matrix. In the fourth column the amplitudes of a

TABLE II. Results of the diagonalization of the Hamiltonia
~14! for IS5(01). Column 1, the basis states; column 2, diago
matrix elements~GeV!; column 3, eigenvalues~GeV! for a 535
matrix; column 4, components of the lowest state. The results
for b50.437 fm. In columns 2 and 3, the quantity 2mN51.939
GeV is subtracted.

State 131 535 Lowest state
components

us6@6#O@33#FS& 2.346 0.830 20.14031
us4p2@42#O@33#FS& 2.824 1.323 0.07747
us4p2@42#O@51#FS& 0.942 2.693 20.96476
us4p2@42#O@411#FS& 2.949 3.049 0.20063
u(A5/6s52s2A1/6s4p2)@6#O@33#FS& 3.011 4.169 0.05747
y
r-

-
e

ly
art

at

r
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a-

of
ils

III
y
e
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components of the ground state are given. In agreement
Sec. II, one can see that the expectation value of the confi
ration us4p2@42#O@51#FS& given in column 2 is much lower
than all the other ones, and in particular it is about 1.5 G
below the expectation value of the configuratio
us6@6#O@33#FS&. The substantial lowering of the configura
tion us4p2@42#O@51#FS& relative to the other ones implies tha
this configuration is by far the most important component
the ground state eigenvector. The last column shows tha
probability of this configuration is 93% both forSI510 and
SI501. As a consequence, the lowest eigenvalue is o
about 100 MeV lower than the expectation value of the c
figuration u3&.

The main outcome is thatVNN(R50) is highly repulsive
in both 3S1 and 1S0 channels, the height being 0.830 GeV
the former case and 1.356 GeV in the latter one.

In order to see that it is the GBE interaction which
responsible for the short-range repulsion, it is very instr
tive to removeVx from the Hamiltonian~14!, compute the
‘‘nucleon mass’’ in this case, which turns out to b
mN51.633 GeV at the harmonic oscillator parame
b50.917 fm and diagonalize such a Hamiltonian again
the basis~8!. In this case the most important configuration
us6@6#O@33#FS&. Subtracting from the lowest eigenvalue th
‘‘two-nucleon energy’’ 2mN5231.633 GeV one obtains
VNN

NO GBE(R50)520.197 GeV. This soft attraction come
from the unphysical color van der Waals forces related to
pairwise confinement. The van der Waals forces would
appear if the basis was restricted to theus6& state only. If the
spatially excited 3q clusters from thes4p2 configurations
were removed, the van der Waals forces would disappear
we would arrive atVNN

NO GBE(R50)50. Thus it is the GBE
interaction which brings about 1 GeV repulsion, consist
with the previous discussion.

The effective repulsion obtained above implies a stro
suppression of theL50 relative motion wave function in the
nucleon overlap region, as compared to the wave function
two well-separated nucleons.

There is another important mechanism producing ad
tional effective repulsion in theNN system, which is related
to the symmetry structure of the lowest configuration but
related to its energy relative to theNN threshold. This ‘‘ex-
tra’’ repulsion, related to the ‘‘Pauli forbidden state’’@23#,
persists if any of the configurations from theus4p2& shell
becomes highly dominant@17#. Indeed, theNN phase shift
calculated with a pure@51#FS state, which is projected ‘‘by
hands’’ ~not dynamically! from the full NN state in a toy
model@9#, shows a behavior typical for repulsive potentia
As a result theS-wave NN relative motion wave function

l

re

TABLE III. Same as Table II but forIS5(10).

State 131 535 Lowest state
components

us6@6#O@33#FS& 2.990 1.356 20.12195
us4p2@42#O@33#FS& 3.326 1.895 0.08825
us4p2@42#O@51#FS& 1.486 3.178 20.96345
us4p2@42#O@411#FS& 3.543 3.652 20.21644
u(A5/6s52s2A1/6s4p2)@6#O@33#FS& 3.513 4.777 0.04756
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has an almost energy independent node@24#. A similar situ-
ation occurs in4He-4He scattering@25#. The only difference
between this nuclear case and theNN system is that while in
the former case a configurations8 is indeed forbidden by the
Pauli principle in an eight-nucleon system, the configurat
s6 is allowed in a six-quark system, but is highly suppress
by dynamics, as was discussed above. In the OGE mode
effect is absent because none of the@42#O states is dominan
@9,20,27#. The existence of a strong effective repulsion,
lated to the energy balance in the adiabatic approximation
in our case, suggests, however, that the amplitude of
oscillating NN wave function at short distance will b
strongly suppressed.

To illustrate this discussion we project the lowest eige
vector in Table II onto theNN andDD channels. The pro-
jection onto any baryon-baryon channelB1B2 is defined as
follows @13,26#:

CB1B2
~rW !5A 6!

3!3!2
^B1~1,2,3!B2~4,5,6!uC~1,2, . . . ,6!&,

~21!

whereC(1,2, . . . ,6) is afully antisymmetric 6q wave func-
tion, which in the present case is represented by the eig
vector in Table II, andB1(1,2,3) andB2(4,5,6) are intrinsic
baryon wave functions.

In order to calculate Eq.~21! we need a ‘‘313’’ expan-
sion of each state in the basis~8!. The corresponding
‘‘3 13’’ decomposition of each state can be found in@26# in
theCScoupling scheme. To use it here one needs the uni
matrix from theCS basis to theFS one. This matrix can be
found in Appendix B.

In Fig. 1 we show the projections~21! onto theNN and
DD channels in the3S1 partial NN wave at short range. In
fact, such projections can be shown for other channels too
e.g.,NN* , N* N* , . . . , some of them being not small. Not
that our six-quark wave function, calculated at short ran
only, was normalized to 1. Hence, we cannot show the s
pression of theNN projection in the nucleon overlap regio
as compared to the wave function of the well-separa
nucleons, discussed above. This can only be seen f
CNN(rW) obtained in dynamical calculations including n

FIG. 1. Projections of the lowest eigenvector in Table II on
NN andDD channels~in arbitrary units!.
n
d
is

-
as
e

-

n-

ry

s,

e
p-

d
m

only the short-range 6q configurations, like in the presen
paper, but also the basis states representing the middle
long distances in theNN system.

In Fig. 1 one observes a nodal behavior of bothCNN(rW)
andCDD(rW) at short range. AlsoCDD(rW) is essentially larger
at short range thanCNN(rW). At large distances onlyCNN(rW)
will survive. This nodal behavior is related to the fact th
the configurationu3& is highly dominant. In the case of an
configurations4p2 or s52s from theN52 shell, the relative
motion of twos3 clusters~e.g.,NN andDD) is described by
a nodal wave function.

Now we want to discuss the question which type ofNN
potential would be equivalent to the short-range picture
tained above. If one considers the effect of the short-ra
dynamics on theNN phase shifts, in a limited energy interva
the phase shifts in both3S1 and 1S0 partial waves can be
simulated by strong repulsive core potentials or by ‘‘de
attractive potentials with forbidden states’’@24#. The latter
potentials are in fact supersymmetric partners of the form
ones@28#.

If, on the other hand, one considers the effect of the sh
range dynamics on the structure of the wave function at s
range, it is difficult to construct a potential which would b
adequate. For example, a repulsive core potential produc
wave function which is indeed suppressed at short range,
does not have any nodal structure. If one takes, instea
‘‘deep attractive potential with forbidden state,’’ one obtai
a nodal behavior, but the wave function is not suppresse
short range~i.e., the amplitude left to the node is a very larg
one!. As a direct consequence, the latter potential produc
very rich high-momentum component, which is in contrad
tion with the deuteron electromagnetic form factors@29#. The
high-momentum component, implied by a ‘‘very soft node
like in our case, will be much smaller and closer to that o
obtained from the potentials with strong repulsive core.

We also see large projections onto otherB1B2 channels
~exemplified by theDD channel in Fig. 1!. These compo-
nents cannot be taken into account in any simpleNN poten-
tial, in principle. Thus, if we are interested in effects, relat
to the short-rangeNN system, there is no way, other than
consider the full 6q wave function in this region.

V. WHY THE SINGLE CHANNEL RESONATING GROUP
METHOD ANSATZ IS NOT ADEQUATE

In this section we show that the currently used on
channel resonating group method~RGM! ansatz for the two-
nucleon wave function is not adequate in a study of
short-rangeNN interaction with the chiral quark model.

In the one-channel RGM approximation the 6q wave
function has the form

c5Â$N~1,2,3!N~4,5,6!x~rW !%,

Â5
1

A10
~129P̂36!, ~22!

rW5
rW11rW21rW3

3
2

rW41rW51rW6

3
.
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This is reasonable in the case where the short-range q
dynamics is described in terms of the OGE interaction.
this case the addition of new channels, orthogonal to
wave function~22!, does not change considerably the fu
wave function in the nucleon overlap region. This is not t
case for the chiral constituent quark model, where the sh
range quark dynamics is due to the GBE interaction. To h
a better insight into why the wave function~22! is a poor
approximation in the present case, we begin with the ex
nation why the wave function~22! is reasonable for the OGE
model @20#.

To this end, it is very convenient to use the six-quark sh
model basis for theNN function in the nucleon overlap re
gion @13,20,30#. Such a basis is much more flexible than t
wave function~22!. Diagonalizing a Hamiltonian comprisin
the OGE interaction and a confining interaction in the h
monic oscillator basis up to two excitation quanta, one c
obtain the 6q wave function in the form@20#

c5C0us6&1(
a

Caua&, ~23!

wherea lists all possible configurations in theN52 shell:
@6#O@222#CS, @42#O@42#CS, @42#O@321#CS, @42#O@222#CS,
@42#O@3111#CS, and@42#O@21111#CS. With the OGE inter-
action, the CS coupling scheme based on the cha
SU(6)CS.SU(3)C3SU(2)S is more convenient. It has bee
found that there are a few most important configuratio
us6@6#O@222#CS&, us4p2@42#O@42#CS&, us4p2@42#O@321#CS&,
and u(A5/6s52s2A1/6s4p2)@6#O@222#CS&, with sizable am-
plitudesCa @20,26,30#.

Now, let us expand the RGM wave function~22! in the
shell model basis. For that purpose, the trial functionx(rW) in
the wave function~22! should be expanded in a harmon
oscillator basis too:

xL50~rW !5 (
N50,2,4, . . .

^xL50ufNS&fNS~rW !, ~24!

wherefNS(rW) is a harmonic oscillator state withN quanta
andL50. Thus in the ansatz~22! the variational coefficients
based on the expansion~24! are^xL50ufNS&. The last step is
to use the expressions~21! and ~22! of Ref. @26# for
Â$N(1,2,3)N(4,5,6)f0S(rW)%, Â$N(1,2,3)N(4,5,6)f2S(rW)%,
written in the shell model basis. These are transformati
from one basis to another and do not depend on the 6q dy-
namics. If it turns out that for a given Hamiltonian the vari
tional coefficientsCa in Eq. ~23! are close to the algebraica
ones ^auÂ$N(1,2,3)N(4,5,6)f2S(rW)%&, then one can con
clude that the wave function~22! is a good approximation
for the variational solution~23!. If not, the variational ansatz
~22! is poor and other channels, not equivalent to the w
function ~22!, should be added@e.g., Â$N* Nx* (rW)%,
Â$N* N* x** (rW)%, . . . #. For the OGE model it is found tha
indeed the variational coefficientsCa in Eq. ~23! are very
close to the algebraical ones@20# ~see also@26#!.

Let us now turn to the analysis of the results of Sec.
based on the GBE interaction. Using the unitary transform
tion from theCS to FS scheme, given in Appendix B, on
can rewrite Eqs.~21! and ~22! of Ref. @26# as
rk
n
e

e
rt-
e

a-

ll

-
n

,

s

e

-

Â$N~1,2,3!N~4,5,6!f0s~rW !%SI5105A10

9
us6@6#O@33#FS&,

~25!

Â$N~1,2,3!N~4,5,6!f2s~rW !%SI510

5
3A2

9
USA5

6
s52s2A1

6
s4p2D @6#O@33#FSL ,

2
4A2

9
us4p2@42#O@33#FS&

2
4A2

9
us4p2@42#O@51#FS&. ~26!

From the expression~26! we see that the relative amplitude
of the statesu5&, u2&, andu3& are in the ratio

u5&:u2&:u3&53:24:24 ~27!

and the amplitude of the stateu4& is zero. The diagonaliza
tion of the Hamiltonian made in the previous section give

u5&:u2&:u3&:u4&.0.06:0.08:20.96:0.20. ~28!

Therefore the ansatz~22! is completely inadequate in th
nucleon overlap region and the incorporation of additio
channels is required in RGM calculations.

VI. SUMMARY

In the present paper we have calculated an adiabaticNN
potential at zero separation between nucleons in the fra
work of a chiral constituent quark model, where the consti
ent quarks interact via pseudoscalar meson exchange. Di
nalizing a Hamiltonian in a basis consisting of the mo
important 6q configurations in the nucleon overlap regio
we have found a very strong effective repulsion of the or
of 1 GeV in both3S1 and 1S0 NN partial waves. Because o
the specific flavor-spin symmetry of the Goldstone bos
exchange interaction, the configurationus4p2@42#O@51#FS&
becomes highly dominant at short range. As a conseque
the projection of the full 6q wave function onto theNN
channel should have a node at short range in both3S1 and
1S0 partial waves. The amplitude of the oscillation left to th
node should be strongly suppressed as compared to the
function of two well-separated nucleons.

We have also found that due to the strong dominance
the configurationus4p2@42#O@51#FS& the commonly used
one-channel RGM ansatz is a very poor approximation to
6q wave function in the nucleon overlap region.

Thus, within the chiral constituent quark model one h
all the necessary ingredients to understand microscopic
the NN interaction. There appears strong effective sho
range repulsion from the same part of Goldstone boson
change which also produces hyperfine splittings in bary
spectroscopy. The long- and middle-range attraction in
NN system is automatically implied by the Yukawa part
pion exchange and two-pion~or s) exchanges betwee
quarks belonging to different nucleons. With this first e
couraging result, it might be worthwhile to perform a mo
elaborate calculation of theNN system and other baryon
baryon systems within the present framework.
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TABLE IV. The unitary transformation between theCSandFS basis vectors of orbital symmetry@42#O ,
isospinI 50, and spinS51.

c1
CS c2

CS c3
CS c4

CS c5
CS

@42#O@33#FS 9A5

36
2

8A5

36

5A2

36

11
36

20
36

@42#O@51#FS 9A5

45
2

8A5

45

5A2

45
2

25
45

2
25
45

@42#O@411#FS 9A10

180
2

8A10

180
2

170
180 2

25A2

180

20A2

180
@42#O@2211#FS 11

20
8

20 2
A10

20

5A5

20
2

4A5

20
@42#O@321#FS

2
18
45

2
29
45 2

2A10
45

10A5
45

2
8A5
45
s

n

ls

3

In
APPENDIX A

The expectation value of the operators~1! and ~12!, dis-
played in Table I, are calculated with the following formula

K (
i , j

l i•l jsW i•sW j L 54C2
SU~6!22C2

SU~3!2
4

3
C2

SU~2!28N,

~A1!

whereN is the number of particles; hereN56, andC2
SU(n) is

the Casimir operator eigenvalues of SU(n) which can be
derived from the expression

C2
SU~n!5

1

2
@ f 18~ f 181n21!1 f 28~ f 281n23!1 f 38~ f 381n25!

1 f 48~ f 481n27!1•••1 f n218 ~ f n218 2n13!#

2
1

2nS (
i 51

n21

f i8D 2

, ~A2!

where f i85 f i2 f n , for an irreductible representation give
by the partition@ f 1 , f 2 , . . . ,f n#.

APPENDIX B

This appendix reproduces transformations, derived e
where, from theCS coupling scheme to theFS coupling
scheme, or vice versa, related to the orbital symmetries@6#O
and @42#O , appearing in the basis vectors~8!.

For the@6#O symmetry one obviously has
:

e-

@6#O@33#FS5@6#O@222#CS ~B1!

either for IS501 or 10.
For the@42#O symmetry, sectorIS501, Table IV repro-

duces Table 7 of Ref.@31# with a phase change in columns
and 5, required by consistency with Ref.@26#.

In this table, the column headings are

c1
CS5@42#O@42#CS,

c2
CS5@42#O@321#CS,

c3
CS5@42#O@3111#CS, ~B2!

c4
CS5@42#O@222#CS,

c5
CS5@42#O@21111#CS.

For the @42#O symmetry, sectorIS510, we reproduce in
Table V the corresponding table from Ref.@32# by inter-
changing rows with columns and then reorder the rows.
this case, the notation is

c̄1
CS5@42#O@411#CS,

c̄2
CS5@42#O@33#CS,

c̄3
CS5@42#O@2211#CS

1 , ~B3!

c̄4
CS5@42#O@2211#CS

2 ,
TABLE V. Same as Table IV but forS50, I 51.

c̄1
CS c̄2

CS c̄3
CS c̄4

CS c̄5
CS

@42#O@33#FS A 25
72 2A 25

144 2A 49
144 2A 1

36 2A 1
9

@42#O@51#FS A 2
9 2A1

9 A 1
9 A 4

9 A 1
9

@42#O@411#FS A 1
36 A 25

72 2A25
72 A 1

18 A 2
9

@42#O@2211#FS 2A 9
40 2A 1

80 2A 9
80 A 9

20 2A 1
5

@42#O@321#FS 2A 8
45 2A16

45 2A 4
45 2A 1

45
A 16

45
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TABLE VI. All one-meson exchange two-body matrix elements~GeV! for the sectorIS501 evaluated at
b50.437 fm. The remaining one iŝspuVFups&52^ssuVFu(pp)L50&/A3.

Two-body matrix F5p F5h F5h8
elements

^ssuVFuss& 20.108357 20.104520 20.189153
^ssuVFu(pp)L50& 0.043762 0.042597 0.076173
^spuVFusp& 20.083091 20.079926 20.145175
^(pp)L50uVFu(pp)L50& 20.081160 20.078594 20.142205
^s2suVFus2s& 20.069492 20.066963 20.121701
^ssuVFus2s& 20.030945 20.030121 20.053863
^s2suVFu(pp)L50& 0.033309 0.031753 0.057499
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c̄5
CS5@42#O@16#CS.

The upper indices 1 and 2 take into account the two dist
@2211# states appearing in the inner product@222#3@33#.

APPENDIX C

The calculation of the matrix elements of the Hamiltoni
~14! is based on the fractional parentage (CFP) techni
described in Ref.@18#. For details, see also Ref.@19#, Chap.
10. In dealing withn particles the matrix elements of a sym
metric two-body operator between totally~symmetric or! an-
tisymmetric statescn andcn8 reads

K cnU(
i , j

Vi jUcn8L 5
n~n21!

2
^cnuVn21,nucn8&. ~C1!

The matrix elements ofVn21,n are calculated by expandin
cn andcn8 in terms of products of antisymmetric states of t
first n22 particlescn22 and of the last pairf2:

cn5(
ab

Pabcn22~a!f2~b!, ~C2!

with a,b denoting the possible structures ofcn22 and f2
andPab the products of CFP coefficients in the orbital, sp
flavor, and color space states. In practical calculations,
color space CFP coefficients are not required. The orb
CFP are taken from Ref.@33#, Tables I and II by using the
replacementr 4l 2→s4p2 and r 5l→s5p. The trivial ones are
equal to 1. The flavor-spin CFP’s forIS501 are identical to
the K̄ matrices of Table I of Ref.@31# with @42#S@33#F in the
column headings. ForIS510 they are the same as fo
IS501 but the column headings is@42#F@33#S instead of
@42#S@33#F as above, and this is due to the commutativity
inner products ofSn ~see, for example, Ref.@19#!. The CFP’s
used in theOC coupling are from Ref.@33#, Table III,
for @42#O3@222#C→@3111#OC and Table V of Ref.
@31# for @42#O3@222#C→@222#OC and @42#O3@222#C
→@21111#OC .

In this way, after decoupling all degrees of freedom o
can integrate out in the color, spin, and flavor space. The
outcome of this algebra is that any six-body matrix elem
becomes a linear combination of two-body orbital mat
elements,̂ Vp&, ^Vh&, and ^Vh8&. The coefficients of̂ Vp&
ct

e

-
e

al

f

e
et
t

are the same forIS501 and 10, but the coefficients of^Vh&
are usually different. In both cases the coefficients of^Vh8&
are 2 times those of̂Vh&. We found that the two-body GBE
matrix elements satisfy the relationŝVp&.^Vh& and
^Vh8&.2^Vp&. As an example, in Table VI we show th
matrix elements obtained forIS501. Except for̂ ssuVupp&
and ^s2suVupp& they are all negative, i.e., carry the sign
Eq. ~1!.

In a harmonic oscillator basis the confinement poten
matrix elements can be performed analytically. As an illu
tration, in Appendix D, we reproduce the results for all co
figurations required in these calculations.

Finally, the kinetic energy matrix elements can be calc
lated as above, by writing the relative kinetic energy opera
as a two-body operator

T5(
i

pi
2

2m
2

1

12S (i
pW i D 2

5(
i , j

Ti j , ~C3!

with

Ti j 5
1

12m
~pi

21pj
2!2

1

6m
pi
W

•pj
W . ~C4!

Alternatively we can use a universal formula for the kine
energy of harmonic oscillator states:

KE5 1
2 @N1 3

2 ~n21!#\v1 3
4 \v, ~C5!

whereN is the number of quanta andn the number of par-
ticles. The last term is the kinetic energy of the center
mass.

APPENDIX D

We work with the following single particle harmonic os
cillator states:

us&5p23/4b23/2exp~2r 2/2b2!, ~D1!

up&m581/2321/2p21/4b25/2rexp~2r 2/2b2!Y1m , ~D2!

u2s&521/2321/2p23/4b23/2S 3

2
2

r 2

b2D exp~2r 2/2b2!.

~D3!
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In this basis the two-body matrix elements of the confin
potentialVc5Cr of Eq. ~15! are

^ssuVcuss&5A2

p
2Cb, ~D4!

^spuVcusp&5A2

p

7Cb

3
, ~D5!

^spuVcups&52A2

p

Cb

3
, ~D6!

^ssuVcu~pp!L50&52A3^spuVcups&, ~D7!
F

se

. C

y,

c
.

ts
-

^~pp!L50uVcu~pp!L50&5A2

p

5Cb

2
, ~D8!

^s2suVcus2s&5A2

p

31Cb

12
, ~D9!

^ssuVcus2s&52A 1

3p
Cb, ~D10!

^s2suVcu~pp!L50&52
1

Ap

Cb

2
. ~D11!
g.
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