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It is suggested that, contrary to previous proposals, the properties éf*tltﬂwels of 5He and®Li may be
understood as easily from the conventioRamatrix parameters as from the complex-energy poles ofSthe
matrix. [S0556-28187)02211-5
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. INTRODUCTION the maximum possibjeof the *H(d,n)*He cross sectionry),
at the resonandd.0]; (3) the energies and full widths at half
The most recent compilation fér=>5 nuclei[1] gives the  maximum (FWHM) of the measured peaks iny, [3] and
lowest 3* level of °He at an excitation energy of 16.75 the *He+n total cross section [11]; (4) the difference in
MeV, about 50 keV above théH+d threshold, with a width  the character of théHe+ n dg, phase shift as measurgt?]
of 76 keV shared almost equally between the+d and and as predictefll3] from models that fit other data; arid)
*He+n channels. As well as being of importance in thethe different characters of the predict¥d+d s-wave phase
production of thermonuclear energy, this level has severgghift[13] and the measuretHe+d s-wave phase shiftl4].
interesting properties, which are exhibited in the

3H(d,n)*He reaction cross section, tif#He+n total cross Il. ALTERNATIVE INTERPRETATIONS
section, and théH+d and *He+n elastic scattering phase _ _ _
shifts. The formulas connecting cross sections and phase shifts

with the elements of th& matrix, which are common to both

Comprehensive multilevel, multichannd®-matrix fits | ;
have been made to the dd@l. The data forE4<250 keV interpretations, are taken from Lane and Thoiddg (where
he S matrix is denoted by)).

have also been fitted using a one-level, two-channel approxf— . . 3 4
mation[3]. Fits to more recent and more extensive data have The integrated cross sectian, for the “H(d,n)"He re-

used two- and four-level approximatiof 4] 'ixction, withd labeling the?Hfd s-wave channel and the
Hale [5] has pointed out that it is not always easy to He+n d-wave channel, is given by

interpret multilevelR-matrix parameters, and that it would
be better to extract resonance properties from an asymptotic Ogn=7
quantity such as th8 matrix. Pearce and Gibsd] say “it ka3
is not possible to determine from tl&matrix parametriza-

tion . . .whether it is thena or dt channel that is responsible whereky is the deuteron wave number in the c.m. system.
for the J7=2* resonance in°He.” Recently, Csoto and The corresponding astrophysicalfactor is defined by

Hale[7], in a paper on the low-lying levels dHe and®Li,

conclude “we recommend using the compl&qole pre- S=E€& 0y, 2
scription to specify resonance parameters in all cases,” and

they say, with particular reference to té level of *He, ~ whereE is the c.m. energy in thH+d system andy is the
“Only analyses at complex energies were able to reveal thabommerfeld parameter.

|Sanl?, 1)

the large reaction cross sectifior 3H(d,n)*He] is caused The phase shift$. (c=d,n) are defined by
by a shadow pole of the scattering matrix.”
For each of the one-, two-, and four-leveimatrix fits, See=e2(@ct ) = r?i(wct i) 3

two complex-energy poles of the correspondiBgmatrix

have been found4], with real parts about 48 keV and 80 \;nare . is the Coulomb phase shiftn the present case,

keV, lying on different (unphysical sheets of the two- , _ g pecausé,=0, andw,=0 because the neutron is un-
channel Riemann energy surface. The 48 keV pole is of Conéhargec)l u.=Red an?:i the inelastic parameter
ventional type, while the 80 keV pole has been identified__ ,*2im 5°=[Cl—|~°u |2°]1le The corresponding scattering am-
[4,8] as a shadow pol@]. Here, we consider the alternative plitude is[12] "

interpretations of various properties of tBé level of *He

(and of its analog level in°Li) in terms of either the

2i 6,
complex-energy poles of th8 matrix or the conventional fC:e C__ll (4)
R-matrix parameters. 2i
Among the properties that need explanation érethe
nature of the ™ resonance(2) the very large valugnearly The total “He+n cross section is
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T . A The approximate equality of the energies of thg, and
or=1z 41-Ree 7S] = 17 [1- 7 COS up]. o1 peaks(about 64 keV and 5# 8 keV, respectivelyand of
n n

(5) their FWHM (about 80 keV and 7612 keV) is somewhat
surprising if the peak iy, is attributed to the shadow pole
and the peak it to the conventional pole, as in R¢8].

A. Complex-energy poles of theS matrix (4) Hoop and Barschall12] made a phase-shift analysis

We consider how the properties listed in Sec. | have beeff their “He+n elastic scattering measurements. They found
interpreted 8,13] in terms of theS-matrix poles, which are that, as the energy increases through ifieresonance, the
located at the complex energi&—il'/2. As in Refs.[8, real partu, of the ds, phase shift first increases, then de-
13], we use the values of tH®matrix pole parameters given creases rapidly at the resonance energy by about 70°, and
by Haleet al.[8] for the four-levelR-matrix fit. The conven- finally increases slowly to near its initial value. Simulta-
tional pole is atE,=47.0 keV with a width'=74.2 keV, neously the inelastic parameterdecreases from unity to a
while the shadow pole has, =81.6 keV and'=7.3 keV.  small value at the resonance, then increases.

Here and elsewhere, energies and widths are in’the d Csotoet al. [13] calculated the*He+n dg, phase shift
c.m. system, unless otherwise specified. Hdlal. also give  from a resonating-group type microscopic model with poten-
values of the partial widths for the-wave deuteron and tial adjusted to fit predictions of the four-levBtmatrix fit
d-wave neutron channels; tilewave deuteron partial widths [8] for the *H+d s-wave phase shift and fdiSy,|2. The

are negligible. Qualitatively similag-matrix parameter val-  calculatedu,, increases rapidly at the resonance, rather than
ues come from the One-IEVEL tWO'Channe! fit of Jaretial. decreasing_ By S||ght|y reducing the Coup"ng Strength' the
[3] and from the tlwo-level, two-channel fit of Browet al. calculatedu,, could be made similar to that measufda],

[4] (see Table IV in Refl4]). _ but at the expense of spoiling the agreement with%He-d

(1) From the sheet on which the shadow pole lies, Halg)nase shiff13]. In terms of theS-matrix poles, the reduced
et al.[8] concluded that thé * resonance ir’He originates coupling strength moves the shadow pole onto a different

4
from the "He+n channel. Later work6,13,14 showed that sheet of the Riemann surface, which has the effect of chang-
the shadow pole can move from one sheet to another as the

3
coupling between théH+d and “He+n channels changes, 'nh%ft;h[% ;%aracters of both théHe+n and *H+d phase
and that the sheet on which the shadow pole lies in the limit .

of zero coupling identifies the resonance as associated wit It may be_noted that H_oop and Ba_r schill] said th_at,
the 2H+d channel. although their data are fitted best with a phase shift that

(2) Hale et al. [8] show their calculatefiSy,|2 peaking at decreases rapidly at the resonance, the possibility of a rapid

E~82 keV, and so they attribute the peak dny, to the ncrease could not be excluded. .
shadow pole. The shadow polen an unphysical sheeis (5 Tr;e.A:S compilation[1] gives the analogous
associated with a zero @&,, on the physical sheet at the level of °Li at about 270 keV above théHe+d threshold,
same complex energy. The smallnessiofor the shadow With a width of about 200 keV. Analysis of théHe+d
pole means thaS,,| becomes very small for real energies elastic scattering data gives teavave phase shift with the
nearE, , and unitarity then forcekS,,| to approach its maxi-  real part increasing smoothly through thé resonancé14].
mum value of unity{8]. The smallness of for the shadow The ®H+d elastic scattering differential cross section in
pole is related to the smallnelsk?] of the inelastic parameter the resonance region has been measured only af190?
at resonancgs]. The connection, if any, between this value Which is not enough for a complete phase-shift analysis.
of I' (7.3 keV) and the FWHM ofo 4, (about 80 keV from Bogdanoveet al. [16] show that thes-wave phase shift, cal-
Fig. 11 of Ref.[3]) is not explained in Ref8]. culated from a model with parameter values adjusted to best

(3) Although the calculate{iS,,|? peaks at about 82 keV, fitthe 3H+ d scattering amplitude predicted by the four-level
o4n and S given by Egs.(1) and (2) peak at much lower R-matrix fit [8], gives a 90° differential cross section consis-
energies, about 64 keV and 49 keV, respectively, in goodent with that measurefil7]. The phase shify from the
agreement with the experimental valu&3. Hale et al. [8]  four-level fit is shown in Fig. 1 of Csotet al. [13]; it de-
calculate the peak of (AReS,,), and therefore obry, at  creases as the energy increases through the resonance.
about 58 keV. They therefore say that the conventional pole The different character of thtHe+d and ®°H-+d s-wave
at E,=47.0 keV is mainly responsible for the peak dr . phase shifts is attributdd 3] to the shadow poles in the two
They obtain good agreement with tleer measurement of cases being on different sheets, due to the different charges
Haesner et al. [11], who found the peak atE,(lab) involved.
=22133+10 keV, corresponding t&=54+8 keV.! There We note that theH+d s-wave phase shift extracted by
is also good agreement betweBr=74.2 keV for the con- Balashko[17] from his data, using plausible assumptions
ventional pold 8] and the measured FWHM of the; peak about the other phase shifts, increases smoothly with increas-
of 76=12keV [11], and between the partial width', ing energy, contrary to the prediction from the four-level
=39.8 keV for the conventional po[8] and Haesneet al’s ~ R-matrix fit [8].
value of 375 keV [11].

B. R-matrix parameters

General multilevel, multichannel formulas for the ele-
1| am indebted to Hale for pointing out the need to use relativisticments of the scattering matrix in terms Bfmatrix param-
kinematics for 22 MeV neutrons. eters are given by Lane and Thon{as):
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12 functions of energy over the resonance region. In this ap-
Seer =Qfder| oo +2IPTP )\2 aeYucPruls  (6)  proximation, “observed” partial widths are defined by
M

Where I=Tc/(1-dA/dE),
— al(wc—¢¢
Qe=ellve?d @) =292P /[ 1+, yidSC/dE) . (14)
and the level matriA is defined by its inverse ¢ E
. Then
(A= (Bx=E) 8= 2 (S BetiPo) VaeVe-
_ iry
) Syg=e 2% 1+ ?&/Z)IFO} (I°=13+T19),

HereS;, P;, and— ¢., which are the energy-dependent ' (15)
shift factor, penetration factor, and hard-sphere phase shift
for the channet, are known functions of the channel radius rore
a., andB; is the constant boundary condition parameter, | Sgnl?= E_E? ¢ n T2 (16
while E, and vy,. are the eigenenergy and reduced width (B —B)"+[(1/AT7]
amplitude for the level. .10

In order to understand the properties of the level of S, =e 2|1+ Ty } (17)
SHe, it is simplest to consider a one-level, two-channel fit to n E,—E- (1/2)i1“5 ’

the data. Such fits were made to quite different data by

Jarmieet al. [3] and by Hoop and Barschdll2]; both give It is T'° rather thanI' that in general approximates the

values of theirR-matrix parameters.., B., E,, and y,.. FWHM of a peak.

Hale et al. [8] give the R-matrix parameter values for their ~ We now consider how the properties listed in Sec. | are to

four-level, four-channel fit. They say that the lowest of thebe understood in terms of tlie-matrix parameters, together

four levels is primarily responsible>{99%) for the two with the penetration factors, shift factors, and hard-sphere

S-matrix poles discussed in Sec. Il A, so that for the presenphase shifts, all calculated at real energies only. Some of

purposes it would seem to be reasonable to approximate theitese considerations resemble those in the literature around

fit by retaining only this level. We also omit the twibwave 40 years ago.

deuteron channels, which contribute little at low energies. (1) The reduced widthy? is related to the spectroscopic
In this one-level, two-channelc&d,n) approximation, factor S, by [15,19

one has
- Ye=(1*IMcad)Seb2y(c), (18)
Syg=e 2t 1+ LE— (9) . . o
Ei+A—E—(1/2)il' whereM. is the reduced mass, and the single-particle dimen-
sionless reduced width is defined by
|Sunl2= o (10)
dnl 2 2 a,
E,+A-E)°+[(1/2T c
(Eq ) +[(1/2T] egp(c)=(ac/z)u§(ac)/ JO uZ(r)dr. (19
and
ir Herer ~tu,(r) is the radial wave function in channej we
Syp=e 2%l 1+ A Y } (11)  calculate it for a central Woods-Saxon potential with con-
Ei+A-E-(1/2iT ventional radius and diffuseness parameters, cut off at
where r=ac, and with the depth adjusted to fit the energy of the

resonance in the channel. For the one-level approximation to
, the Hale etal. fit [8], one finds #Z,(d)=0.88 and
P=2 Te, Te=2P, 62(n)=1.17, giving S;=1.18 and S,=0.021, with
Sq/85,~=56. This ratio is not sensitive to the potential param-
eters. Similarly large values are found for the one-level fits
A=E Ac, A=— yﬁ[SC— B.]. (12 [3,12] (see also Table 5.2 in Rdf20]). The large value of
¢ Sy4/S, makes it natural to associate the resonance with the
deuteron channel rather than the neutron channel. In addi-
tion, one can investigate the reasons whyand S, are so
different, and why thé * resonance is so close to tAe+ d
E,+A(E,)—E,=0. (13  threshold. In a shell model calculati¢@l], using an inter-
action chosen to fit properties of other light nuclei, the lowest
The quantitieEE, andI" here are not necessarily the same asi " state of °He at an excitation energy of 14.5 MeV is
theE, andT" in Sec. Il A. In order to discuss the widths, it is mainly of “He+n structure; its calculated width is therefore
useful to introduce the Thomas approximatid@]. This is  so large that it would not appear as an experimentally iden-
based on the assumption that the shift fac®rsare linear tifiable peak. The observedl® level is identified with the

It should be noted thdt andA are energy dependent. The
resonance enerdy, is defined by
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TABLE I. Parameter values for one-levietmatrix fit to oy, and o1 data. The background phase shift in the neutron channel is taken as
¢$=—3.29°+0.510E,(lab), with E,(lab) in MeV, and the background contribution ég is A+ BE,(lab).

ay a, By B, = 3 ¥ A B
(fm) (fm) (MeV) (MeV) (MeV) (b) (b MeV™h
6.0 50 —0.285 —0.197 0.0912 2.93 0.0794 1.050 —0.0160

secondi™ shell model state, which is mainly otH+d a higher energy than th® factor for *H(d,n)*He but at a
structure and therefore has a large valueSgf while S, is  lower energy thanS,,|?, i.e., between 49 keV and 82 keV.
calculated to be 0.00R21]. One cannot obtaigp=8° as a hard-sphere phase shift, but
An enhanced probability of finding a level close to the the equivalent valugh=8°—180°= —172° is the value of
threshold of a channel for which it has a large spectroscopic- ¢ for a,~7 fm. The use of a “small” channel radius,
factor has been derivg@2] from R-matrix formulas; for the 5 —3 fm, in Refs[3,4,8 presumably originated in the work

present case, the enhancement factor foithéevel of *He of Adair [24] and Dodder and Gammé25], who chosea
being close to théH+d threshold is calculated to be about =2.9fm in order to fit the low-energp,,, and ps, *He+

Six([zz)z'llhe cross sectiom, is given in terms ofSy,|2 in E nucleon phase shifts with one-level approximations and to

. F Egs. (10) d“d %13) t E=E dn hq. account for the Coulomb energy difference betwéknand

| S. |2:r2r1‘£1 I (qul“ 0T )";‘”Wmch ,hag its n:axrir’rm%n\?aluszf °He. More recently, consisteR-matrix analyses of these
dn drnfidrton o phase shifts and of data from reactions in whitte and®Li

unity whenl'q=T",. In the four-level fit of Haleet al. [8], are product nuclei, using two-level approximations, have led
Sunl? peaks atE~82 keV, and at thi thei - o i e
[Sunl* peaks a ev, anc at fhis energy thetr param to a best channel radius of 5:3.0 fm[26]. A two-level fit

eter values for the lowesR-matrix level givel’ ;=260 keV . ;
one-level fits of Refs[3,12], this quantity is 0.98 and 0.999, t_hg ir;ergy of the IOWES%_ hle\r:el ar: ‘?‘lbOUtdlf' MIeV foay,
respectively. Thus the large value of;, at resonance is O m, mlggreem(fa_nt r\]N'tdt es eh mo.eht;/a Ee‘ d of th
attributed to the near equality &f; andT",, at the resonance ne cou 3+try to fit t S ata. In the neighborhoo 0 the
(cf., e.g., Ref[10]) 16.75 MeV 37 level of >He with a three-levelR-matrix

; approximation, one of the levels being the 16.75 MeV reso-
wh(ili) Lgig:]ee?:tu;led[ff]agi\elgetﬁg?{” [;SeZEO:tt gi?&g} nance itself and the other two providing the background

The corresponding FWHM are about 80 kel@] and phase shift in the neutron channel. It is simpler, however,
76+ 12 keV[11], respectively and probably adequate, to use the one-level approximation,

but with the background phas¢ in the neutron channel

adjusted to fit the measured val@8]. We use a quadratic

extrapolation to obtai in the resonance region. In this way

we have attempted to fit they, [3,4,27] and o1 (Fig. 4 of

Ref. [11]) data. A linear function of energy is included to
epresent the background contributionde (see Fig. 3 of
ef. [11])).

For given values of the channel radjj anda,,, and with
B4 andB,, chosen to maké&,(E,)=B,, there are then five
adjustable parameter§; ,v3,v2, and the two parameters in
the linear background. Fa;=6.0 fm anda,=5.0 fm, the
parameter values that best fit the,, and o1 data, with
x?/degree of freedom=1.0, are given in Table I. The corre-
sponding fits are shown in Figs. 1 and 2. Allowance for the
d experimental resolution of about 30 keV FWHM in thg

data[11] has little effect on eitheg? or the parameter val-
butions from the three higher levels could change the effecU€S- There is little dependence on the valuapfas long as
tive value of . ¢ is not changed A slightly better fit is obztamed vy|trad

The background phase shift has actually been measureg®-0 fm, but for a much larger value ofg, implying a
for E,(lab) up to 20 MeV[23], and extrapolation to the Value ofSq much greater than unity. This is connected with
resonance energy gives~8°. If one takes as an approxi- the upper limit onl'y, obtained asyg— in Eq. (14), be-

The four-level fit of Haleet al. [8] and the one-level fits
of Jarmieet al. [3] and Hoop and Barscha]ll2] each in-
cluded measured, values in their fits, and so reproduce
the energy of thery, peak reasonably well. Halet al. and
Hoop and Barschall give similar predictions fef with the
peak energy at about 58 keV, in good agreement with th
measured valugll]. Jarmieet al. predict the peak energy at
about 95 keV, and their peak is much too broad.

From Eq.(5), together with Eq(11) or (17), it is seen that
o1 may depend sensitively on the value @f. In this one-
level approximation, thél;, neutron background phase shift
(which we call¢ as in[12]), is just — ¢,, the hard-sphere
phase shift. Jarmiet al. used a channel radiug,= 3 fm for
which ¢,~29°. Hoop and Barschall took,=5 fm, for
which ¢,~98°, but in order to fit their data they use
¢=5°. Haleet al. also useda,,= 3 fm, ¢,~29°, but contri-

mation ¢,=0 in Eq.(17), then one obtains coming smaller agy becomes smaller.
A slightly better fit is also obtained if the background
om (1“84—1“0)1“0 phased is increased by about 30%, but such an increase
or=—5 5 no_n T (20) appears to be inconsistent with the experimental values of
ky (E;—E)*+[(1/2T7] at lower energie$23].

From Fig. 2, the peak of thés, contribution too is at
Comparison with Eq(16) for |Syy|2 suggests that, sinde’; E,(lab)=22.139 keV, corresponding tB=59 keV, and its
andI'? are slowly varying functions o, oy should peak at FWHM is about 138 keV(lab) or 110 keV (c.m). These
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FIG. 1. Cross sectiowry, for the 3H(d,n)*He reaction as a Re(S)

function of deuteron lab enerdyy . The experimental data are from

FIG. 3. Argand diagram foS-matrix elements: for one-
Jarmie etal. [3] (E4=8-78keV), Brown etal. [4] 9 g Shn

B - level fit (solid curve; Syq for one-level fit(dashed curve S, for
(Eq=80-116 keV), and Conneet al. [27] (Eq=125-227 keV, four-level fit of Haleet al. [8] (dotted curvé. On each curve, the

with o4, assumed isotropic and normalized at peak to Rf. The marks indicate values dE increasing(in an anticlockwise senge

calculated curve is for the one-level fit with parameter values giveqtrom 25 to 125 keV, in 25 keV steps. The dotted straight line has a

in Table I. slope of 2(E;)~16°. The point&A, B, andC indicate the energy

at which |Sy,|? is a maximum, the energy at which; is a maxi-
agree well with the predictions from the four-level fit of Hale mum, and the resonance enefy, respectively.

et al. [8] of E~58 keV and FWHM=105 keV. The FWHM

is appreciably greater than the value=782 keV given by  clear by plottingS,, on an Argand diagram, as in Fig.(&
Haesneret al. [11], presumably because they assumed d&lotof the scattering amplitude, gives similar information
Breit-Wigner shape for the peak, resulting in a significantlySince|Synl >+ |Sna*=1 from unitarity,| Sy, is a maximum
higher background. A similar comment applies to the earlieivhen [Sy,|* is a minimum, at the point marked (E,
measurement ofr by Shamu and Jenki28], who founda =77 keV). Becausg&, varies little over the resonancey is
FWHM of 105 keV(lab) or 84 keV(c.m) (not 100-50 kevV @ maximum where R&,) is a minimum, at the poinB
as stated in Ref[11]). Shamu and Jenkin gave the peak(Ep=58 keV). At the resonance energ (point C), the
energy asE,(lab)=22.15 MeV; since they used neutrons argument ofS,, is 2¢(E,;)~16° [see Eq.(17)]. This fit
produced in the®H(d,n)*He reaction, for which they took gives Ep<E,. The one-level fit of Jarmiet al. [3] gives
the Q value as 22.07 MeV, their peak was about 80 keVEpr>E,, due to their background neutron phase sthifbe-
(lab) above threshold, corresponding =64 keV. ing about —29° (which is inconsistent with the measure-

The relationship between the resonance endtgyE,  ments of Ref[23]). The plot ofS,, for their fit is obtained

=91 keV and the peak energies fi@,/?> and o1 is made from that of the one-level fit in Fig. 3 essentially by rotation
about the origin in a clockwise direction by
——— 2(8°+29°)=74°; then Re§,, increases very slowly for
energies abov&,, giving a very long tail toot.
i Figure 3 also shows,, for the four-level fit of Haleet al.
[8]. It is seen that, compared with the one-level fit, the four-
level fit gives theoy, peak 2.3% higher and tha, contri-
bution to theo; peak 19% higher. From Fig. 2, it might
seem that a highes; peak would be desirable; we have,
however, been unable to obtain a good fit to all the data with
an appreciably larger value of/y3.

The values of the various widths, calculated for the one-
level fit at the energyE,=77 keV, arel';=645keV, T',
o D T =543 keV, I'=92 keV, I'’=77 keV, I'°=169 keV. This
value of I'° is somewhat smaller than the FWHM of the
|Sanl? peak(about 210 keY, but the FWHM ofoy,, is much
smaller(about 80 keV due to the factokg2 in Eq. (2).

(4) From Egs.(3), (15), and(17), the inelastic parameter
is given by

Total cross section (b)

Neutron energy (MeV)

FIG. 2. *He+n total cross sectiom as a function of neutron
lab energyE, . The experimental data are from Haesatal.[11]. (E,— E)2+ (1/4)(F0—F0)2 1/2
The solid curve shows the calculated one-level fit with parameter = ! 5 g 8 5
values given in Table I. The dotted curve shows the background. (B, —B)*+(UH(Ty+T'p)

, (21)
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and the real parts of the phase shifts by ——— T
100 + 4
L (a) 4
1 (U2)(Tg+Tp) 1 (12)(Ig-T9) 80 | ]
= — —_ n—
Ba=7 arcta E—E + 5 arcta E—E 5 I ]
S 60t 1
- ¢d ’ E | |
n N
3 40r .
1 (12(T3+TY 1 (1/2)(T-T2) T 1
=— —— = ———— L B
M=% arcta E—E 5 arcta E—E 20 |
— ¢n- (22 0 i ——
For a one-channel case, the phase shift is real and is given by 0 50 100 150 200 250
[15] Deuteron energy (keV)
(1/2)1° 1.0 =
S=arctan——— ¢; (23
E,—E -
: . 08t
S increases by about 90° over the energy intefValkround
E,. Thus from EqQ.(22), uq increases by about 45° over a g "
width T°=T3+T?, with an additional change by about 45° £ 06
over a width of[’—T0|, this being an increase or a de- § L
crease according to WhethEg is greater than or less thé‘r?, 2 04l
at E=E,. This change becomes more rapid g and I'0 2 ]
approach equality. Similarly., has a rapid change, but in —
the opposite sense oy . The width of the dip inris deter- 02t
mined more by the value df5+T'® than by that o §—T'C. F :
As a schematic illustration, the energy dependence ahd Ol e
7in a one-level, two-channel case is given in Fig. 3 of Ref. 0 50 100 150 200 250

[29], for a range of ratios of the partial widths. From the
present one-level fit of they, and o1 data, the predicted
phase shifts are shown in Fig. 4. FIG. 4. (a) Predictions from the one-level fit 19y, andor data,
The character of the real parts of the phase shiftsand  for the real parts of théH+d s-wave phase shift.4 (solid curve
n, Whether they increase rapidly or decrease rapidly at thand the*He+n d,,-wave phase shift., (dashed curve plotted as
resonance energy, is determined by the relative size of thinctions of deuteron lab enerdsy . (b) The corresponding inelas-
partial widthsT'4(E,) and I',(E,). Expressed in different tic parameterr.
terms, the character is determined by whether the scattering
amplitudesf 4 andf,,, given by Eq.(4), when plotted on an
Argand diagram, do or do not go round the paif?, or
equivalently whetheB,4 andS;,,, do or do not go round the
origin. In the four-level fit of Haleet al. [8], S,,,, (shown in
Fig. 3) does go round the origin, indicating a rapid increas
of u, at the resonance and a rapid decreasg of On the
other hand, for the one-level fifTable |), S, does not go
round the origin(while Sy4, which is also shown in Fig. 3,

does, so thatu, decreases rapidly at the resonance while L . :
increases, as shown in Fig.(@ This corresponds to there were some ambiguity in the relative sizesI'g{E,)

T'4(E,)>T(E,), which was also favored by Jarmé al. anan(E_,) for the 5He level, there is no uncertainty in the
[3], Hoop and Barschalll2], Balashkd17], and Kunz{30], ~ €XPectation for the'Li case.
who compared3H(d,n)*He and 3He(d,p)*He cross sec- More quantitatively, we calculate thé’He+d and
tions. “He+ p phase shifts, assuming the one-level approximation
(5) The real part of theéHe+d elastic scattering-wave  With the values of the reduced widths as in Table I. The
phase shift is observed to rise smoothly throughdthieeso-  value of E; is adjusted to best fitHe(d, p)*He data. Figure
nance at a c.m. energy of about 270 kEM)]. Consistent 5 shows results from tw$32,33 of the several measure-
with this, the*He+ p dsj, phase shift is observed to decreasements(see Ref[31]) that find varying positions and heights
sharply at the resonancg31]. These indicate that for the peak in the’He(d,p)*He cross section, and our cal-
I'(*He+d,E,)>T'(*He+p,E,). One expects I'(*He culated cross section usifgy = E,=0.450 MeV. The corre-
+p,E,)=T",(E,) (for “He+n), since the reduced widths sponding phase shifts are given in Fig. 6, in reasonable
should be about the sanfrom charge symmetjyand the agreement with the measured valjigd,31.

Deuteron energy (keV)

penetration factors are about the same, because of the large
channel energies involved. In comparifig®He+d, E,) with
eFd(E,) (for 3H+d), the reduced widths should be about
equal, but the calculated penetration factors differ, with a
ratio about 2.5:1; the effect of the larger Coulomb barrier is
outweighed by the higher resonance energy. Thus, even if
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FIG. 5. Cross section for thHe(d,p)*He reaction as a func-
tion of deuteron lab energy. The experimental data are from Bonner
et al.[32] (squaresand Yarnellet al.[33] (crosses The calculated
curve is the one-level fit with only the value Bf adjusted.

C. Discussion

In the R-matrix description of the properties of the"
level of °He (Sec. Il B, the critical factors are the approxi-
mate equality at resonance of the partial widths in the deu-
teron and neutron channelBy4(E,) and I'(E,), and the 02| (b) .
sensitivity of some quantities to the sign of their difference.
These factors account directly for the character of the state, L
the large value of the cross sectiony, at resonance, the % 200 400 600 800 1000
rapid changes in the phase shifi§ and u, as one passes
through the resonance, and also the behavior of the corre-

sponding phase shifts at ﬂ%é resonance irFLi. FIG. 6. (a) Real parts of théHe+d s-wave phase shificrosses

In the de?]crlptlo? n terr]rls of the porl]es of tﬁemat”;( h and solid curvgand the*He+ p dg-wave phase shiftsquares and
(Sec. Il A), the analogous factors are the proximity of t € dashed cunve as functions of deuteron lab energy. The experimen-

shadow pole to the _real axis, and the sensitivity to the Riegy, points are from Jennet al.[14] and Plattneet al.[31], respec-
mann surface on which the shadow pole lies. The corresponyely. The curves are predictions from the one-level fit, with
dence between the vanishing Bffor the shadow pole and adjusted to fit the’He(d, p)*He data(Fig. 5), and the background
the vanishing of the inelastic parameter at resongntich  proton phase shift taken as a linear function of energy fitting the
is equivalent from Eq(21) to the exact equality of 4(E;)  extreme values in Fig. 1 of Ref31]. (b) The corresponding inelas-
andI',(E,)] has been pointed out previougl]. It is appar-  tic parameter.

ent that, whenI'4(E,) and I',(E,) are about equal, or

equivalently, whenl" for the shadow pole is small, slight

changes in the parameter values can change the charactersbot particularly for the shadow pole and f6F small. In fact,
the phase shiftg.q and u,, from a rapid increase at reso- one can show thgr3,+r5,//I'S—1 asI'>—0. For the con-
nance to a rapid decrease, or vice versa. iéal. [8] have  ventional pole, the arguments of; andr$, tend to be simi-
defined partial widths at as-matrix pole byT'c=[poc|?,  lar so thatr+r$)~|rS+|rSy; with Hale et al’s defini-
where the residue d at the pole isipopg , but these partial  tion of a partial width, one then finds a relation between the
widths do not satisfE I'.=I", whereE, —il'/2 is the com-  partial widths and"C similar to that found by Halet al.[8].

plex energy of the pole. WhilgI"c~I" for the conventional  For the shadow pole, the argumentsr8f andr3, differ by
pole, this is far from the case for the shadow d@e3]. The  apout 180° so thar S+ r5)~|r$)—|r)|; this gives

relationship, if any, between thE. andI" for the shadow

pole has not been made clear in R¢&13]. IS~|I$-T3. (24)
Eden and Taylof9] have considered a simple one-level,

two-channel resonance model, in which each channel is an Actually the relative argument of the residugs andr5,

s-wave neutral channel; in this model the properties of thext either pole(conventional or shadomis just the relative

S-matrix poles can be studied relatively easily. With theargument of the wave numbeks andk, at the pole. For the

channels labeled 1 and 2, and the complex residu&sofit  shadow pole, af°—0, the relative argument of’, andr3,

the conventional and shadow pole labetéd, (with p=C  tends to 180° exactly, so that E@®4) tends to an equality.

andS, respectively, one findsl'P~|r?,+r5,| for both poles, Although the numerical values of the partial widths given by

04 b

Inelastic parameter
.
1

Deuteron energy (keV)
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Haleet al.[8] in their Table Ill do not satisfy a relation like D. Conclusion

(24), because of the surprisingly large value 18§, it is _ _
tempting to suggest thdtS for the shadow pole is approxi- _ It seems that the observed properties of §helevel in

mately the difference of theR-matrix (observedl partial ~ °He and its analog ir’Li can be understood as easily in
widths, and that it determines the energy interval over whicerms of theR-matrix parameters themselves as from the
the phase shiftgy and i, change rapidlysee Fig. 1a) and  positions and residues of the complex-energy poles ofsthe

Table | in Ref.[13]]. matrix.
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