
sity,

PHYSICAL REVIEW C NOVEMBER 1997VOLUME 56, NUMBER 5
3
2

1

levels of5He and 5Li, and shadow poles
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It is suggested that, contrary to previous proposals, the properties of the3
2

1 levels of 5He and5Li may be
understood as easily from the conventionalR-matrix parameters as from the complex-energy poles of theS
matrix. @S0556-2813~97!02211-5#

PACS number~s!: 24.30.2v, 25.10.1s, 27.10.1h
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I. INTRODUCTION

The most recent compilation forA55 nuclei@1# gives the
lowest 3

2
1 level of 5He at an excitation energy of 16.7

MeV, about 50 keV above the3H1d threshold, with a width
of 76 keV shared almost equally between the3H1d and
4He1n channels. As well as being of importance in t
production of thermonuclear energy, this level has sev
interesting properties, which are exhibited in t
3H(d,n)4He reaction cross section, the4He1n total cross
section, and the3H1d and 4He1n elastic scattering phas
shifts.

Comprehensive multilevel, multichannelR-matrix fits
have been made to the data@2#. The data forEd&250 keV
have also been fitted using a one-level, two-channel appr
mation@3#. Fits to more recent and more extensive data h
used two- and four-level approximations@2,4#.

Hale @5# has pointed out that it is not always easy
interpret multilevelR-matrix parameters, and that it woul
be better to extract resonance properties from an asymp
quantity such as theS matrix. Pearce and Gibson@6# say ‘‘it
is not possible to determine from theR-matrix parametriza-
tion . . .whether it is thena or dt channel that is responsibl

for the Jp5 3
2

1 resonance in5He.’’ Recently, Csoto and
Hale @7#, in a paper on the low-lying levels of5He and5Li,
conclude ‘‘we recommend using the complexS-pole pre-
scription to specify resonance parameters in all cases,’’
they say, with particular reference to the3

2
1 level of 5He,

‘‘Only analyses at complex energies were able to reveal
the large reaction cross section@for 3H(d,n)4He# is caused
by a shadow pole of the scattering matrix.’’

For each of the one-, two-, and four-levelR-matrix fits,
two complex-energy poles of the correspondingS matrix
have been found@4#, with real parts about 48 keV and 8
keV, lying on different ~unphysical! sheets of the two-
channel Riemann energy surface. The 48 keV pole is of c
ventional type, while the 80 keV pole has been identifi
@4,8# as a shadow pole@9#. Here, we consider the alternativ
interpretations of various properties of the3

2
1 level of 5He

~and of its analog level in5Li ! in terms of either the
complex-energy poles of theS matrix or the conventiona
R-matrix parameters.

Among the properties that need explanation are~1! the
nature of the3

2
1 resonance;~2! the very large value~nearly
560556-2813/97/56~5!/2646~8!/$10.00
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the maximum possible! of the 3H(d,n)4He cross sectionsdn
at the resonance@10#; ~3! the energies and full widths at ha
maximum ~FWHM! of the measured peaks insdn @3# and
the 4He1n total cross sectionsT @11#; ~4! the difference in
the character of the4He1n d3/2 phase shift as measured@12#
and as predicted@13# from models that fit other data; and~5!
the different characters of the predicted3H1d s-wave phase
shift @13# and the measured3He1d s-wave phase shift@14#.

II. ALTERNATIVE INTERPRETATIONS

The formulas connecting cross sections and phase s
with the elements of theS matrix, which are common to both
interpretations, are taken from Lane and Thomas@15# ~where
the S matrix is denoted byU!.

The integrated cross sectionsdn for the 3H(d,n)4He re-
action, withd labeling the3H1d s-wave channel andn the
4He1n d-wave channel, is given by

sdn5
p

kd
2

2

3
uSdnu2, ~1!

wherekd is the deuteron wave number in the c.m. syste
The corresponding astrophysicalS factor is defined by

S5Ee2phsdn , ~2!

whereE is the c.m. energy in the3H1d system andh is the
Sommerfeld parameter.

The phase shiftsdc (c5d,n) are defined by

Scc5e2i ~vc1dc!5te2i ~vc1mc!, ~3!

wherevc is the Coulomb phase shift~in the present case
vd50 becausel d50, andvn50 because the neutron is un
charged!, mc5Redc and the inelastic paramete
t5e22 Im dc5@12uSdnu2#1/2. The corresponding scattering am
plitude is @12#

f c5
e2idc21

2i
. ~4!

The total 4He1n cross section is
2646 © 1997 The American Physical Society
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1
LEVELS OF 5He AND 5Li, AND SHADOW POLES
sT5
p

kn
2 4@12Re~e22ivnSnn!#5

4p

kn
2 @12t cos 2mn#.

~5!

A. Complex-energy poles of theS matrix

We consider how the properties listed in Sec. I have b
interpreted@8,13# in terms of theS-matrix poles, which are
located at the complex energiesEr2 iG/2. As in Refs.@8,
13#, we use the values of theS-matrix pole parameters give
by Haleet al. @8# for the four-levelR-matrix fit. The conven-
tional pole is atEr547.0 keV with a widthG574.2 keV,
while the shadow pole hasEr581.6 keV andG57.3 keV.
Here and elsewhere, energies and widths are in the3H1d
c.m. system, unless otherwise specified. Haleet al. also give
values of the partial widths for thes-wave deuteron and
d-wave neutron channels; thed-wave deuteron partial width
are negligible. Qualitatively similarS-matrix parameter val-
ues come from the one-level, two-channel fit of Jarmieet al.
@3# and from the two-level, two-channel fit of Brownet al.
@4# ~see Table IV in Ref.@4#!.

~1! From the sheet on which the shadow pole lies, H
et al. @8# concluded that the32

1 resonance in5He originates
from the 4He1n channel. Later work@6,13,16# showed that
the shadow pole can move from one sheet to another as
coupling between the3H1d and 4He1n channels changes
and that the sheet on which the shadow pole lies in the l
of zero coupling identifies the resonance as associated
the 3H1d channel.

~2! Hale et al. @8# show their calculateduSdnu2 peaking at
E'82 keV, and so they attribute the peak insdn to the
shadow pole. The shadow pole~on an unphysical sheet! is
associated with a zero ofSnn on the physical sheet at th
same complex energy. The smallness ofG for the shadow
pole means thatuSnnu becomes very small for real energie
nearEr , and unitarity then forcesuSdnu to approach its maxi-
mum value of unity@8#. The smallness ofG for the shadow
pole is related to the smallness@12# of the inelastic paramete
t at resonance@6#. The connection, if any, between this valu
of G ~7.3 keV! and the FWHM ofsdn ~about 80 keV from
Fig. 11 of Ref.@3#! is not explained in Ref.@8#.

~3! Although the calculateduSdnu2 peaks at about 82 keV
sdn and S given by Eqs.~1! and ~2! peak at much lower
energies, about 64 keV and 49 keV, respectively, in go
agreement with the experimental values@3#. Hale et al. @8#
calculate the peak of (12ReSnn), and therefore ofsT , at
about 58 keV. They therefore say that the conventional p
at Er547.0 keV is mainly responsible for the peak insT .
They obtain good agreement with thesT measurement o
Haesner et al. @11#, who found the peak atEn(lab)
522133610 keV, corresponding toE55468 keV.1 There
is also good agreement betweenG574.2 keV for the con-
ventional pole@8# and the measured FWHM of thesT peak
of 76612 keV @11#, and between the partial widthGn
539.8 keV for the conventional pole@8# and Haesneret al.’s
value of 3765 keV @11#.

1I am indebted to Hale for pointing out the need to use relativis
kinematics for 22 MeV neutrons.
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The approximate equality of the energies of thesdn and
sT peaks~about 64 keV and 5468 keV, respectively! and of
their FWHM ~about 80 keV and 76612 keV! is somewhat
surprising if the peak insdn is attributed to the shadow pol
and the peak insT to the conventional pole, as in Ref.@8#.

~4! Hoop and Barschall@12# made a phase-shift analys
of their 4He1n elastic scattering measurements. They fou
that, as the energy increases through the3

2
1 resonance, the

real partmn of the d3/2 phase shift first increases, then d
creases rapidly at the resonance energy by about 70°,
finally increases slowly to near its initial value. Simult
neously the inelastic parametert decreases from unity to a
small value at the resonance, then increases.

Csoto et al. @13# calculated the4He1n d3/2 phase shift
from a resonating-group type microscopic model with pote
tial adjusted to fit predictions of the four-levelR-matrix fit
@8# for the 3H1d s-wave phase shift and foruSdnu2. The
calculatedmn increases rapidly at the resonance, rather th
decreasing. By slightly reducing the coupling strength,
calculatedmn could be made similar to that measured@12#,
but at the expense of spoiling the agreement with the3H1d
phase shift@13#. In terms of theS-matrix poles, the reduced
coupling strength moves the shadow pole onto a differ
sheet of the Riemann surface, which has the effect of cha
ing the characters of both the4He1n and 3H1d phase
shifts @6,13#.

It may be noted that Hoop and Barschall@12# said that,
although their data are fitted best with a phase shift t
decreases rapidly at the resonance, the possibility of a r
increase could not be excluded.

~5! The A55 compilation @1# gives the analogous32
1

level of 5Li at about 270 keV above the3He1d threshold,
with a width of about 200 keV. Analysis of the3He1d
elastic scattering data gives thes-wave phase shift with the
real part increasing smoothly through the3

2
1 resonance@14#.

The 3H1d elastic scattering differential cross section
the resonance region has been measured only at 90°@17#,
which is not enough for a complete phase-shift analy
Bogdanovaet al. @16# show that thes-wave phase shift, cal-
culated from a model with parameter values adjusted to b
fit the 3H1d scattering amplitude predicted by the four-lev
R-matrix fit @8#, gives a 90° differential cross section cons
tent with that measured@17#. The phase shiftmd from the
four-level fit is shown in Fig. 1 of Csotoet al. @13#; it de-
creases as the energy increases through the resonance.

The different character of the3He1d and 3H1d s-wave
phase shifts is attributed@13# to the shadow poles in the tw
cases being on different sheets, due to the different cha
involved.

We note that the3H1d s-wave phase shift extracted b
Balashko @17# from his data, using plausible assumptio
about the other phase shifts, increases smoothly with incr
ing energy, contrary to the prediction from the four-lev
R-matrix fit @8#.

B. R-matrix parameters

General multilevel, multichannel formulas for the el
ments of the scattering matrix in terms ofR-matrix param-
eters are given by Lane and Thomas@15#:

c
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Scc85VcVc8Fdcc812iPc
1/2Pc8

1/2(
lm

glcgmc8AlmG , ~6!

where

Vc5ei ~vc2fc! ~7!

and the level matrixA is defined by its inverse

~A21!lm5~El2E!dlm2(
c

~Sc2Bc1 iPc!glcgmc .

~8!

HereSc , Pc , and2fc , which are the energy-depende
shift factor, penetration factor, and hard-sphere phase
for the channelc, are known functions of the channel radiu
ac , and Bc is the constant boundary condition paramet
while El and glc are the eigenenergy and reduced wid
amplitude for the levell.

In order to understand the properties of the3
2

1 level of
5He, it is simplest to consider a one-level, two-channel fit
the data. Such fits were made to quite different data
Jarmieet al. @3# and by Hoop and Barschall@12#; both give
values of theirR-matrix parametersac , Bc , El , andglc .
Hale et al. @8# give theR-matrix parameter values for the
four-level, four-channel fit. They say that the lowest of t
four levels is primarily responsible (.99%) for the two
S-matrix poles discussed in Sec. II A, so that for the pres
purposes it would seem to be reasonable to approximate
fit by retaining only this level. We also omit the twod-wave
deuteron channels, which contribute little at low energies

In this one-level, two-channel (c5d,n) approximation,
one has

Sdd5e22ifdF11
iGd

E11D2E2~1/2!iG G , ~9!

uSdnu25
GdGn

~E11D2E!21@~1/2!G#2 , ~10!

and

Snn5e22ifnF11
iGn

E11D2E2~1/2!iG G , ~11!

where

G5(
c

Gc , Gc52gc
2Pc ,

D5(
c

Dc , Dc52gc
2@Sc2Bc#. ~12!

It should be noted thatG andD are energy dependent. Th
resonance energyEr is defined by

E11D~Er !2Er50. ~13!

The quantitiesEr andG here are not necessarily the same
theEr andG in Sec. II A. In order to discuss the widths, it
useful to introduce the Thomas approximation@18#. This is
based on the assumption that the shift factorsSc are linear
ift

,

y

t
eir

s

functions of energy over the resonance region. In this
proximation, ‘‘observed’’ partial widths are defined by

Gc
05Gc /~12dD/dE!Er

52gc
2Pc /S 11(

c
gc

2dSc /dED
Er

. ~14!

Then

Sdd5e22ifdF11
iGd

0

Er2E2~1/2!iG0G ~G05Gd
01Gn

0!,

~15!

uSdnu25
Gd

0Gn
0

~Er2E!21@~1/2!G0#2 , ~16!

Snn5e22ifnF11
iGn

0

Er2E2~1/2!iG0G . ~17!

It is G0 rather thanG that in general approximates th
FWHM of a peak.

We now consider how the properties listed in Sec. I are
be understood in terms of theR-matrix parameters, togethe
with the penetration factors, shift factors, and hard-sph
phase shifts, all calculated at real energies only. Some
these considerations resemble those in the literature aro
40 years ago.

~1! The reduced widthgc
2 is related to the spectroscop

factorSc by @15,19#

gc
25~\2/Mcac

2!Scusp
2 ~c!, ~18!

whereMc is the reduced mass, and the single-particle dim
sionless reduced width is defined by

usp
2 ~c!5~ac /2!uc

2~ac!Y E
0

ac
uc

2~r !dr. ~19!

Here r 21uc(r ) is the radial wave function in channelc; we
calculate it for a central Woods-Saxon potential with co
ventional radius and diffuseness parameters, cut off
r 5ac , and with the depth adjusted to fit the energy of t
resonance in the channel. For the one-level approximatio
the Hale et al. fit @8#, one finds usp

2 (d)50.88 and
usp

2 (n)51.17, giving Sd51.18 and Sn50.021, with
Sd /Sn'56. This ratio is not sensitive to the potential para
eters. Similarly large values are found for the one-level
@3,12# ~see also Table 5.2 in Ref.@20#!. The large value of
Sd /Sn makes it natural to associate the resonance with
deuteron channel rather than the neutron channel. In a
tion, one can investigate the reasons whySd andSn are so
different, and why the32

1 resonance is so close to the3H1d
threshold. In a shell model calculation@21#, using an inter-
action chosen to fit properties of other light nuclei, the low
3
2

1 state of 5He at an excitation energy of 14.5 MeV i
mainly of 4He1n structure; its calculated width is therefor
so large that it would not appear as an experimentally id
tifiable peak. The observed32

1 level is identified with the
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1
LEVELS OF 5He AND 5Li, AND SHADOW POLES
TABLE I. Parameter values for one-levelR-matrix fit to sdn andsT data. The background phase shift in the neutron channel is take
f523.29°10.510°En(lab), with En(lab) in MeV, and the background contribution tosT is A1BEn(lab).

ad an Bd Bn E1 gd
2 gn

2 A B
~fm! ~fm! ~MeV! ~MeV! ~MeV! (b) (b MeV21)
6.0 5.0 20.285 20.197 0.0912 2.93 0.0794 1.050 20.0160
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second 3
2

1 shell model state, which is mainly of3H1d
structure and therefore has a large value ofSd , while Sn is
calculated to be 0.005@21#.

An enhanced probability of finding a level close to t
threshold of a channel for which it has a large spectrosco
factor has been derived@22# from R-matrix formulas; for the
present case, the enhancement factor for the3

2
1 level of 5He

being close to the3H1d threshold is calculated to be abo
six @22#.

~2! The cross sectionsdn is given in terms ofuSdnu2 in Eq.
~1!. From Eqs. ~10! and ~13!, at E5Er , one has
uSdnu254GdGn /(Gd1Gn)2, which has its maximum value o
unity whenGd5Gn . In the four-level fit of Haleet al. @8#,
uSdnu2 peaks atE'82 keV, and at this energy their param
eter values for the lowestR-matrix level giveGd5260 keV
and Gn5409 keV, with 4GdGn /(Gd1Gn)250.95. For the
one-level fits of Refs.@3,12#, this quantity is 0.98 and 0.999
respectively. Thus the large value ofsdn at resonance is
attributed to the near equality ofGd andGn at the resonance
~cf., e.g., Ref.@10#!.

~3! The measured peak energy ofsdn is about 64 keV@3#,
while Haesneret al. @11# give the sT peak at 5468 keV.
The corresponding FWHM are about 80 keV@3# and
76612 keV @11#, respectively.

The four-level fit of Haleet al. @8# and the one-level fits
of Jarmieet al. @3# and Hoop and Barschall@12# each in-
cluded measuredsdn values in their fits, and so reproduc
the energy of thesdn peak reasonably well. Haleet al. and
Hoop and Barschall give similar predictions forsT with the
peak energy at about 58 keV, in good agreement with
measured value@11#. Jarmieet al. predict the peak energy a
about 95 keV, and their peak is much too broad.

From Eq.~5!, together with Eq.~11! or ~17!, it is seen that
sT may depend sensitively on the value offn . In this one-
level approximation, thed3/2 neutron background phase sh
~which we callf as in @12#!, is just 2fn , the hard-sphere
phase shift. Jarmieet al. used a channel radiusan53 fm for
which fn'29°. Hoop and Barschall tookan55 fm, for
which fn'98°, but in order to fit their data they use
f55°. Haleet al. also usedan53 fm, fn'29°, but contri-
butions from the three higher levels could change the ef
tive value off.

The background phase shift has actually been meas
for En(lab) up to 20 MeV@23#, and extrapolation to the
resonance energy givesf'8°. If one takes as an approx
mationfn50 in Eq. ~17!, then one obtains

sT5
2p

kn
2

~Gd
01Gn

0!Gn
0

~Er2E!21@~1/2!G0#2 . ~20!

Comparison with Eq.~16! for uSdnu2 suggests that, sincekn
2

andGn
0 are slowly varying functions ofE, sT should peak at
ic

e

c-

ed

a higher energy than theS factor for 3H(d,n)4He but at a
lower energy thanuSdnu2, i.e., between 49 keV and 82 keV

One cannot obtainf58° as a hard-sphere phase shift, b
the equivalent valuef58°2180°52172° is the value of
2fn for an'7 fm. The use of a ‘‘small’’ channel radius
an53 fm, in Refs.@3,4,8# presumably originated in the wor
of Adair @24# and Dodder and Gammel@25#, who chosea
52.9 fm in order to fit the low-energyp1/2 and p3/2

4He1
nucleon phase shifts with one-level approximations and
account for the Coulomb energy difference between5Li and
5He. More recently, consistentR-matrix analyses of these
phase shifts and of data from reactions in which5He and5Li
are product nuclei, using two-level approximations, have
to a best channel radius of 5.561.0 fm @26#. A two-level fit
of the d3/2 phase-shift data forEn(lab)<20 MeV @23# gives
the energy of the lowest32

1 level at about 14 MeV foran
55.1 fm, in agreement with the shell model value.

One could try to fit the data in the neighborhood of t
16.75 MeV 3

2
1 level of 5He with a three-levelR-matrix

approximation, one of the levels being the 16.75 MeV re
nance itself and the other two providing the backgrou
phase shift in the neutron channel. It is simpler, howev
and probably adequate, to use the one-level approxima
but with the background phasef in the neutron channe
adjusted to fit the measured values@23#. We use a quadratic
extrapolation to obtainf in the resonance region. In this wa
we have attempted to fit thesdn @3,4,27# andsT ~Fig. 4 of
Ref. @11#! data. A linear function of energy is included t
represent the background contribution tosT ~see Fig. 3 of
Ref. @11#!.

For given values of the channel radiiad andan , and with
Bd andBn chosen to makeSc(Er)5Bc , there are then five
adjustable parameters:E1 ,gd

2 ,gn
2 , and the two parameters i

the linear background. Forad56.0 fm andan55.0 fm, the
parameter values that best fit thesdn and sT data, with
x2/degree of freedom'1.0, are given in Table I. The corre
sponding fits are shown in Figs. 1 and 2. Allowance for t
experimental resolution of about 30 keV FWHM in thesT
data@11# has little effect on eitherx2 or the parameter val-
ues. There is little dependence on the value ofan ~as long as
f is not changed!. A slightly better fit is obtained withad

55.0 fm, but for a much larger value ofgd
2 , implying a

value ofSd much greater than unity. This is connected w
the upper limit onGd

0 , obtained asgd
2→` in Eq. ~14!, be-

coming smaller asad becomes smaller.
A slightly better fit is also obtained if the backgroun

phasef is increased by about 30%, but such an incre
appears to be inconsistent with the experimental values of
at lower energies@23#.

From Fig. 2, the peak of thed3/2 contribution tosT is at
En~lab!522.139 keV, corresponding toE559 keV, and its
FWHM is about 138 keV~lab! or 110 keV ~c.m.!. These
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agree well with the predictions from the four-level fit of Ha
et al. @8# of E'58 keV and FWHM'105 keV. The FWHM
is appreciably greater than the value 76612 keV given by
Haesneret al. @11#, presumably because they assumed
Breit-Wigner shape for the peak, resulting in a significan
higher background. A similar comment applies to the ear
measurement ofsT by Shamu and Jenkin@28#, who found a
FWHM of 105 keV~lab! or 84 keV~c.m.! ~not 100650 keV
as stated in Ref.@11#!. Shamu and Jenkin gave the pe
energy asEn~lab!522.15 MeV; since they used neutron
produced in the3H(d,n)4He reaction, for which they took
the Q value as 22.07 MeV, their peak was about 80 k
~lab! above threshold, corresponding toE'64 keV.

The relationship between the resonance energyEr5E1
591 keV and the peak energies foruSdnu2 and sT is made

FIG. 1. Cross sectionsdn for the 3H(d,n)4He reaction as a
function of deuteron lab energyEd . The experimental data are from
Jarmie et al. @3# (Ed58278 keV), Brown et al. @4#
(Ed5802116 keV), and Conneret al. @27# ~Ed51252227 keV,
with sdn assumed isotropic and normalized at peak to Ref.@4#!. The
calculated curve is for the one-level fit with parameter values gi
in Table I.

FIG. 2. 4He1n total cross sectionsT as a function of neutron
lab energyEn . The experimental data are from Haesneret al. @11#.
The solid curve shows the calculated one-level fit with param
values given in Table I. The dotted curve shows the backgroun
a

r

clear by plottingSnn on an Argand diagram, as in Fig. 3~a
plot of the scattering amplitudef n gives similar information!.
SinceuSdnu21uSnnu251 from unitarity,uSdnu2 is a maximum
when uSnnu2 is a minimum, at the point markedA (Ea
577 keV). BecauseEn varies little over the resonance,sT is
a maximum where Re(Snn) is a minimum, at the pointB
(Eb558 keV). At the resonance energyEr ~point C!, the
argument ofSnn is 2f(Er)'16° @see Eq.~17!#. This fit
gives Eb,Ea . The one-level fit of Jarmieet al. @3# gives
Eb.Ea , due to their background neutron phase shiftf be-
ing about 229° ~which is inconsistent with the measure
ments of Ref.@23#!. The plot ofSnn for their fit is obtained
from that of the one-level fit in Fig. 3 essentially by rotatio
about the origin in a clockwise direction b
2(8°129°)574°; then Re(Snn) increases very slowly for
energies aboveEb , giving a very long tail tosT .

Figure 3 also showsSnn for the four-level fit of Haleet al.
@8#. It is seen that, compared with the one-level fit, the fo
level fit gives thesdn peak 2.3% higher and thed3/2 contri-
bution to thesT peak 19% higher. From Fig. 2, it migh
seem that a highersT peak would be desirable; we hav
however, been unable to obtain a good fit to all the data w
an appreciably larger value ofgn

2/gd
2 .

The values of the various widths, calculated for the on
level fit at the energyEa577 keV, areGd5645 keV, Gn

5543 keV, Gd
0592 keV, Gn

0577 keV, G05169 keV. This
value of G0 is somewhat smaller than the FWHM of th
uSdnu2 peak~about 210 keV!, but the FWHM ofsdn is much
smaller~about 80 keV! due to the factorkd

22 in Eq. ~1!.
~4! From Eqs.~3!, ~15!, and~17!, the inelastic paramete

is given by

t5F ~Er2E!21~1/4!~Gd
02Gn

0!2

~Er2E!21~1/4!~Gd
01Gn

0!2G1/2

, ~21!

n

r
.

FIG. 3. Argand diagram forS-matrix elements:Snn for one-
level fit ~solid curve!; Sdd for one-level fit~dashed curve!; Snn for
four-level fit of Haleet al. @8# ~dotted curve!. On each curve, the
marks indicate values ofE increasing~in an anticlockwise sense!
from 25 to 125 keV, in 25 keV steps. The dotted straight line ha
slope of 2f(Er)'16°. The pointsA, B, andC indicate the energy
at which uSdnu2 is a maximum, the energy at whichsT is a maxi-
mum, and the resonance energyEr , respectively.
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LEVELS OF 5He AND 5Li, AND SHADOW POLES
and the real parts of the phase shifts by

md5
1

2
arctan

~1/2!~Gd
01Gn

0!

Er2E
1

1

2
arctan

~1/2!~Gd
02Gn

0!

Er2E

2fd ,

mn5
1

2
arctan

~1/2!~Gd
01Gn

0!

Er2E
2

1

2
arctan

~1/2!~Gd
02Gn

0!

Er2E

2fn . ~22!

For a one-channel case, the phase shift is real and is give
@15#

d5arctan
~1/2!G0

Er2E
2f; ~23!

d increases by about 90° over the energy intervalG0 around
Er . Thus from Eq.~22!, md increases by about 45° over
width G05Gd

01Gn
0 , with an additional change by about 45

over a width of uGd
02Gn

0u, this being an increase or a de
crease according to whetherGd

0 is greater than or less thanGn
0

at E5Er . This change becomes more rapid asGd
0 and Gn

0

approach equality. Similarlymn has a rapid change, but i
the opposite sense tomd . The width of the dip int is deter-
mined more by the value ofGd

01Gn
0 than by that ofGd

02Gn
0 .

As a schematic illustration, the energy dependence ofm and
t in a one-level, two-channel case is given in Fig. 3 of R
@29#, for a range of ratios of the partial widths. From th
present one-level fit of thesdn and sT data, the predicted
phase shifts are shown in Fig. 4.

The character of the real parts of the phase shifts,md and
mn , whether they increase rapidly or decrease rapidly at
resonance energy, is determined by the relative size of
partial widths Gd(Er) and Gn(Er). Expressed in differen
terms, the character is determined by whether the scatte
amplitudesf d and f n , given by Eq.~4!, when plotted on an
Argand diagram, do or do not go round the pointi /2, or
equivalently whetherSdd andSnn do or do not go round the
origin. In the four-level fit of Haleet al. @8#, Snn ~shown in
Fig. 3! does go round the origin, indicating a rapid increa
of mn at the resonance and a rapid decrease ofmd . On the
other hand, for the one-level fit~Table I!, Snn does not go
round the origin~while Sdd , which is also shown in Fig. 3
does!, so thatmn decreases rapidly at the resonance whilemd
increases, as shown in Fig. 4~a!. This corresponds to
Gd(Er).Gn(Er), which was also favored by Jarmieet al.
@3#, Hoop and Barschall@12#, Balashko@17#, and Kunz@30#,
who compared3H(d,n)4He and 3He(d,p)4He cross sec-
tions.

~5! The real part of the3He1d elastic scatterings-wave
phase shift is observed to rise smoothly through the3

2
1 reso-

nance at a c.m. energy of about 270 keV@14#. Consistent
with this, the4He1p d3/2 phase shift is observed to decrea
sharply at the resonance@31#. These indicate tha
G(3He1d,Er).G(4He1p,Er). One expects G(4He
1p,Er)'Gn(Er) ~for 4He1n!, since the reduced width
should be about the same~from charge symmetry! and the
by

.

e
he

ng

e

penetration factors are about the same, because of the
channel energies involved. In comparingG(3He1d,Er) with
Gd(Er) ~for 3H1d!, the reduced widths should be abo
equal, but the calculated penetration factors differ, with
ratio about 2.5:1; the effect of the larger Coulomb barrier
outweighed by the higher resonance energy. Thus, eve
there were some ambiguity in the relative sizes ofGd(Er)
andGn(Er) for the 5He level, there is no uncertainty in th
expectation for the5Li case.

More quantitatively, we calculate the3He1d and
4He1p phase shifts, assuming the one-level approximat
with the values of the reduced widths as in Table I. T
value ofE1 is adjusted to best fit3He(d,p)4He data. Figure
5 shows results from two@32,33# of the several measure
ments~see Ref.@31#! that find varying positions and height
for the peak in the3He(d,p)4He cross section, and our ca
culated cross section usingE15Er50.450 MeV. The corre-
sponding phase shifts are given in Fig. 6, in reasona
agreement with the measured values@14,31#.

FIG. 4. ~a! Predictions from the one-level fit tosdn andsT data,
for the real parts of the3H1d s-wave phase shiftmd ~solid curve!
and the4He1n d3/2-wave phase shiftmn ~dashed curve!, plotted as
functions of deuteron lab energyEd . ~b! The corresponding inelas
tic parametert.
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C. Discussion

In the R-matrix description of the properties of the32
1

level of 5He ~Sec. II B!, the critical factors are the approx
mate equality at resonance of the partial widths in the d
teron and neutron channels,Gd(Er) and Gn(Er), and the
sensitivity of some quantities to the sign of their differenc
These factors account directly for the character of the st
the large value of the cross sectionsdn at resonance, the
rapid changes in the phase shiftsmd and mn as one passe
through the resonance, and also the behavior of the co
sponding phase shifts at the3

2
1 resonance in5Li.

In the description in terms of the poles of theS matrix
~Sec. II A!, the analogous factors are the proximity of t
shadow pole to the real axis, and the sensitivity to the R
mann surface on which the shadow pole lies. The corresp
dence between the vanishing ofG for the shadow pole and
the vanishing of the inelastic parameter at resonance@which
is equivalent from Eq.~21! to the exact equality ofGd(Er)
andGn(Er)# has been pointed out previously@6#. It is appar-
ent that, whenGd(Er) and Gn(Er) are about equal, o
equivalently, whenG for the shadow pole is small, sligh
changes in the parameter values can change the charact
the phase shiftsmd and mn , from a rapid increase at reso
nance to a rapid decrease, or vice versa. Haleet al. @8# have
defined partial widths at anS-matrix pole by Gc5ur0cu2,
where the residue ofS at the pole isir0r0

T , but these partial
widths do not satisfy(cGc5G, whereEr2 iG/2 is the com-
plex energy of the pole. While(cGc'G for the conventional
pole, this is far from the case for the shadow pole@8,13#. The
relationship, if any, between theGc and G for the shadow
pole has not been made clear in Refs.@8,13#.

Eden and Taylor@9# have considered a simple one-leve
two-channel resonance model, in which each channel is
s-wave neutral channel; in this model the properties of
S-matrix poles can be studied relatively easily. With t
channels labeled 1 and 2, and the complex residues ofScc8 at
the conventional and shadow pole labeledr cc8

p ~with p5C
andS, respectively!, one findsGp'ur 11

p 1r 22
p u for both poles,

FIG. 5. Cross section for the3He(d,p)4He reaction as a func
tion of deuteron lab energy. The experimental data are from Bon
et al. @32# ~squares! and Yarnellet al. @33# ~crosses!. The calculated
curve is the one-level fit with only the value ofEr adjusted.
-

.
e,

e-

-
n-

s of

an
e

but particularly for the shadow pole and forGS small. In fact,
one can show thatur 11

S 1r 22
S u/GS→1 asGS→0. For the con-

ventional pole, the arguments ofr 11
C andr 22

C tend to be simi-
lar so thatur 11

C 1r 22
C u'ur 11

C u1ur 22
C u; with Hale et al.’s defini-

tion of a partial width, one then finds a relation between
partial widths andGC similar to that found by Haleet al. @8#.
For the shadow pole, the arguments ofr 11

S and r 22
S differ by

about 180° so thatur 11
S 1r 22

S u'uur 11
S u2ur 22

S uu; this gives

GS'uG1
S2G2

Su. ~24!

Actually the relative argument of the residuesr 11
p andr 22

p

at either pole~conventional or shadow! is just the relative
argument of the wave numbersk1 andk2 at the pole. For the
shadow pole, asGS→0, the relative argument ofr 11

S andr 22
S

tends to 180° exactly, so that Eq.~24! tends to an equality.
Although the numerical values of the partial widths given

er

FIG. 6. ~a! Real parts of the3He1d s-wave phase shift~crosses
and solid curve! and the4He1p d3/2-wave phase shift~squares and
dashed curve!, as functions of deuteron lab energy. The experim
tal points are from Jennyet al. @14# and Plattneret al. @31#, respec-
tively. The curves are predictions from the one-level fit, withEr

adjusted to fit the3He(d,p)4He data~Fig. 5!, and the background
proton phase shift taken as a linear function of energy fitting
extreme values in Fig. 1 of Ref.@31#. ~b! The corresponding inelas
tic parameter.
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Hale et al. @8# in their Table III do not satisfy a relation like
~24!, because of the surprisingly large value ofGd

S , it is
tempting to suggest thatGS for the shadow pole is approxi
mately the difference of theR-matrix ~observed! partial
widths, and that it determines the energy interval over wh
the phase shiftsmd andmn change rapidly@see Fig. 1~a! and
Table I in Ref.@13##.
r
r,

C

s-
-

r,

G

h

D. Conclusion

It seems that the observed properties of the3
2

1 level in
5He and its analog in5Li can be understood as easily i
terms of theR-matrix parameters themselves as from t
positions and residues of the complex-energy poles of thS
matrix.
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