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Deuteron lifetime in hot and dense nuclear matter near equilibrium
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We consider deuteron formation in hot and dense nuclear matter close to equilibrium and evaluate the
lifetime of the deuteron fluctuations within the linear response theory. To this end we derive a generalized
linear Boltzmann equation where the collision integral is related to equilibrium correlation functions. In this
framework we then utilize finite temperature Green functions to evaluate the collision integrals. The elemen-
tary reaction cross section is evaluated within the Faddeev approach that is suitably modified to reflect the
properties of the surrounding hot and dense maft&0556-28187)01411-9

PACS numbes): 21.65+f, 24.60—~k, 25.70—~2, 21.45+v

[. INTRODUCTION The cluster formation during the expansion of hot and
dense matter is driven by the collision term in the general-
The complicated dynamics of heavy-ion collisions pro-ized linear Boltzmann equatiofsee, e.g., Refd.15, 16).
vides a great challenge for many-particle theory. In particulaHere we consider the fluctuations of the deuteron distribu-
at intermediate energies where the elementary ingredients atiens in hot and dense nuclear matter in a near-equilibrium
rather well known—in terms of constituents and their respecsituation. One important question in this context is the time
tive interactions—the main problem arises from a sufficientscale of formation and disintegration processes that govern
description of the many-particle aspect. To provide singlethe evolution to chemical equilibrium. Within linear re-
particle distribution functions such reactions can be simusponse theory we relate the reaction rates to the equilibrium
lated on the basis of kinetic equations as, e.g., supplied byorrelation functions. To calculate the response coefficients
the Boltzmann-Uhlenbeck-UhlingBUU) approach (see, it js then possible to apply the method of finite temperature
e.g., Refs[1-6)). , , Green function§17-19.
However, the formation of light clusters such as deuter- 1o ogsentials of the three-body problem for the isolated
ﬁns, hglluma pqmcles, etc., Is an important phenomenon Of§ystem are well known: see, e.g., Rg0]. In the following
eavy—|or.1.coII|S|c.)ns at m_terme@ate energies. see, €.g., Re ve utilize the Alt-Grassberger-Sandh&aGS) formalism
[7]. Empirical evidence, including recent experimental data[21 itabl dified to treat the three-bod bl ithi
on cluster formatior8,9], indicates that a large fraction of | suitably modifie 0 treat the three-body problem within
Quclear matter. To derive the proper AGS-type equations we

deuterons can be formed in heavy-ion collisions of energie ) )
below E/A<200 MeV. Also, during the expansion of the use the self-consistent random phase approximgf@hex-
tended to finite temperatures. For a numerical solution we

system the density can drop below the Mott density of deu i ; i
teron dissociatiofil0—17. rely on a separable representation of M potential. This

The description of the formation of such bound statechoice simplifies the problem considerably. A systematic in-
(clusters during the expansion of hot and dense matter is novestigation of separable parametrizations of “realistic” po-
as well elaborated as the single-particle distribution. Thdentials has been pursued, e.g., in R&B]. We note that
main obstacle is that the formation of bound states requiresolutions of the three-body problem using “realisti®IN
the notion of few-body reactions within the medium. Evenpotentials have been achieved, e.g., by the Bochum group
the simplest case, i.e., the abundances of deuterons that 4] and the Bonn group in the framework of thié-matrix
determined by the deuteron formation MMINN—dN (N approacH 25].
nucleon,d deuterom and breakupd N—NNN, reactions, re- In the following section we present the formalism to treat
quires a proper treatment of the effective three-body probeluster formation in a linear approximation of the general-
lem. Previous studies of the kinetics of deuteron productionzed Boltzmann equation. In Sec. lll we introduce the finite
have utilized the impulse approximation to calculate the retemperature Green function and derive a Faddeev-type equa-
action cross section at energies above 200 M&8]. For  tijon that includes medium modifications due to Pauli block-
lower energies, viz.E/A<200 MeV, the impulse approxi- ing and energy shifts. We relate the “in-medium” cross sec-
mation fails badly and a full three-body treatment of thetion to the collision term in the Boltzmann equation. Our

scattering problem is necessaf]. Furthermore, a consis- numerical results are presented in Sec. IV and we summarize
tent treatment of cluster formation in expanding hot andand conclude in Sec. V.

dense matter requires the inclusion of medium effects into

the respective elementary reaction cross sections as has been

done in .the' nucleon 'nucleprNd\I) case and proveq to be IIl. QUANTUM KINETICS AND BOUND STATE
substantial in BUU simulations of heavy-ion reactidi6s. FORMATION

Therefore we present an exact treatment of the three-body

problem including medium modifications in mean-field ap- The Hamiltonian of the Fermi system in question is given
proximation. in terms of creation and annihilation operators,

0556-2813/97/56)/263610)/$10.00 56 2636 © 1997 The American Physical Society



56 DEUTERON LIFETIME IN HOT AND DENSE NUCLER . .. 2637

" 1 ot change the internal quantum numbers of the particles. They
H=2> Ho(1,1)aja, + > > Vy(12,12')alabayay, determine the time scales for thermal relaxation. However,
1w 12172 o the inelastic processes that are related to excitation as well as

to bound state formation and disintegration change the abun-

wherea’ and a satisfy the well-known commutation rela- dances of the components characterized by the internal quan-
tions. The indices 1,2 .. collectively denote the quantum tum numbers and determine the time scale of chemical
numbers(e.g., momentum, spin, isospin, .). of the par- equilibration. The reaction relevant for the energy domain
ticles 1,2... . Theobserved physical quantities will be ex- considered is due to photodisintegratidpyy,q(p,t) and
pressed in terms of reducedparticle occupation matrices nucleon deuteron breakukynnna(P.t) (and the reversed
(see, e.g., Ref416, 26q), ones, i.e.,

fn(l...n,l’...n’;t)=<a2,...a1,a1...an>t ZR(PO) = ana(P. D)+ Innnna(P )+ (7)
=Tr{p()a},...a}.a;...a,}, Z(P.t)=lg (P Flagnn(P D+ . (8)

2 Further reaction channels represented by the dots are given
in Ref. [15]. Presently, we consider the three-particle pro-
cesses.
. 0 The collision integral that involves three-particle pro-
tion fo(---)=(-"")o. _ _ _ cesses has been given in the Born approximal@# or
.The.reduced density matrices given above are particularlyy sjuated in the impulse approximatifh3]. In both cases
suited in the framework of a cluster decomposit[ds]. If ~ yhe influence of the surrounding medium on the elementary
clusters are treated in mean-field approximation we may ingross section that enters into the collision integrals has been
troduce cluster wave functiong, that in general depend peglected. This might not be sufficient for intermediate-

indirectly on time through the time dependence of the Meenergy heavy-ion reactions as has been shown, e.g., for the
dium (see the Green function treatment beJowe now use NN collision rate in a BUU calculation of La on L&]. The
bosonic(two-particlg operators that are given through approach presented here naturally respects medium modifi-
cation in the breakup cross sections. Furthermore, in view of
b,=>, ajay(¢,|12), (3 the rather moderate energies reached, the effective three-
12 body problem arising in this context is treated exactly in
terms of properly generalized Faddeev-type equations.

To be more specific we consider the situation where the
collision rate is sufficiently high compared to the reaction
rate, so that each component is close to its thermal equilib-
rium distributions. The small deviations of the chemical
composition from equilibrium are then treated within the lin-
fo(v,0':t)= Tt ear response theory. The time scale of the relaxation to

o(v,v";t)=(b_ ,b )" (4) ; e . )
v chemical equilibrium is set by the reaction processes that

For nuclear matter the conditions in the final stage of aVill be considered in the following. In this case

where p(t) denotes the density matrix of the many-particle
system. In case of equilibriunp(t) =p,) we use the nota-

and the H.cb'. For the two-particle system of interest here
¢, is given by the solution of the respective two-particle
Bethe-Salpeter equation with the eigenval&es(of bound

or scattering statg¢qd11]. This way it is possible to write,
e.g.,f, in a cluster representation, viz.,

heavy-ion collision may be such that formation of bound afR(p.)=1R(p,b) 9)
states is possible. This is indeed the case when the density of tIN(P, NP,
the system is below the Mott density, e.g., of the deuterons, &th(P,t)=I§(P,t), (10)

and formation will occuf10-12. Following a general den-
sity matrix approach as given in R¢R7] the time evolution
of the distribution functions for nucleons;(t)="fy(p,t)
with momentump and deuterong,(t)=f4(P,t) with mo-
mentumP reads, for homogeneous matter,

where we have introduced ﬁ(p,t)=INNN,Nd(p,t) and
IE(P,t)zIdN,NNN(P,t) for brevity. The collision terms on
the right-hand sidéRHS) of Egs.(9) and(10) each contain
gain and loss terms due to deuteron breakup or formation

— i - reactions. Collisions of higher clustefes.g.,dd) that require
NP O =THpITH o]} == DPr(p.O) +In(p.L, (5)  a suitable treatment of tr?e effectivee( f(?ur-bgdy probqlem are

left for further investigations. To evaluate the integral
af4(P.1Y=Tr{p(t)i[H,ngp]} = — Dy(P,t) + Z4(P,t), IR(P,t) we use linear response thedgee Appendix A
(6)

R g . . — "

where ny,=ayanp and ngp="blpbgp. The Viasov terms Id(Pvt):_PZP” (NgpiNgpr)(Ngpr sNgpr) ~L8F4(P",1),
D(t) describe the reversible time evolution and are related to (12)
time-dependent Hartree-Fock calculations as, e.g., explained
in Ref.[27]. where 8f4(P,t)=f4(P,t)—f3(P) denotes the fluctuations

The collision termg(t) = Z5(t) + ZR(t) correspond to the from the equilibrium distribution. The Kubo scalar product
irreversible behavior and describe elastic scattefligand  (A;B) that appears in Eq11) is given in Eq.(A11l) and its
inelastic (reaction (R) processes, respectively, between theLaplace transform, i.e., the correlation functions
constituents of the system. The elastic processes do n¢A(7—07);B), in Eq. (A12). Following standard many-
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body techniguessee, e.g., Ref$15, 17, 28) the correlation , ==
function is evaluated using Green functions, i0,G, ' = 5(t—t’)M1+f dtM Gyt (17)
1 do 1 1 —
(Alm):B)==2 | o>~ e The mass matrixM} " introduced in the above equation is
given by
X[Gpg(@+i0") = Gpg(w—i0")], (12

whereGp(2) is the analytic continuation of the Matsubara My =8t =) My ot My (18)
Green functionGag(z,) that will be discussed in the next
section. with

For homogeneous matter wheréngp;ngp:) and
(ngpr ;ngpr) are diagonal in momentA, the response equa- (/\/ﬂ]’o/\fn)(1~--n,1’-~n’)=Tr{p0[[An ,H],A:,]i},
tion (10) is given by (19

IfG(P.t)=(Ngp(7—07)iNgp)(Ngp;Ngp) 1 SFF(P,1) (ML}ENnr)(l"-n,l’---n’)

1

= - o). (13 = =i Tr{poT[An HIH. AL T, (20
The limit »—0" implied through Eq(13) has to be taken where the index “irr” indicates that all reducible parts
after the thermodynamic limit. Here we have introduced theshould be omitted, where the index refers to odd(+) or
momentum-dependent lifetim@ormation time of the deu- even(—) numbern of fermions. The first term refers to an
teron fluctuationsryp in the surrounding medium, which is n-body cluster mean-field contributidi8,22] whereas the
of central interest. Note that the disintegratiéormation of  second term is of dynamical origin and contains retardation.
deuterons requires the explicit treatment of three-particléJp to the correlations of interest instantaneous and dynami-
equations in nuclear matter, which will be derived in thecal contributions are separated. The normalization is given
following section. by

lIl. FINITE TEMPERATURE GREEN FUNCTION Niy(1n,2 0" ) =Tr{p[An, AT 1.}, (21)
AND THREE-BODY EQUATIONS

In order to evaluate Eq13) by use of Eq(12) we need to In cluster mean-field approximatipn the tevmn,m_ will be
define the finite temperature Green function. To consider neglected. In the Matsubara-Fourier representation the Green
particles embedded in a medium theparticle Green func- function is given by

tion G,(1---n,1'---n") for equilibrium is defined by 1
, t—t/ _ iz, (t—t")
gt (1~--n,1’---n’)=—i(TAn(t)AI,(t)>0, (14) Gn Zig < er Gn(z,). (22

where T implies Wick time ordering. The oper-

ators  Aq(t) are n-particle operators,. €., A“(t) bosonic Matsubara frequency, depending on whethés
:alll(tl)'"an(_tn)|t1:"':tn:t taken at equal times, andinthe 44 or even, respectively, to preserve the Kubo-Martin-
Heisenberg picture Schwinger boundary conditigri7—-19.
. . Taking in Eqg.(17) for Ay=a,a,a; and evaluating Eq.
A(t) =exp(iHDA exp(—iHt). (15 (19 in the independent particle approximation leads to the
following Bethe-Salpeter equation for the three-particle
Green function at finite temperatures and densities:

For a fermionic system considered hergis a fermionic or

The Green functions given in E¢l4) satisfy a hierarchy of
equations, given, e.g., in Refsl7-19. To arrive at equa-
tions that are solvable in practice for theparticle problem, -
one has to truncate the hierarchy, which is usually done by Ga(z,)=GY(z,) +RY(2,)V3G3(z,), 23
introducing suitable approximations for the 1) st-particle

Green function. For the three-particle problem this has beewhich is the central input to derive Faddeev-type equations
done, e.g., in Ref[29] in special cases. Within the self- in a medium. The notation will be explained in the follow-
consistent random phase approximation it is possible to aling. The proper symmetrization is treated separately. The
rive at equations that are already decoupled. This method h&reen function of the noninteracting system is

been used for zero temperatures in R&2] and will be

extended to finite temperatures here. To simplify the notation G<30>(z#) = N3R(3°)(z#), (24)

we use a matrix form in the following:

—t! ! where
G, ' =@, " (1-n2---n")). (16)

. . . S 011/ 0201 033
The time evolution of ther-particle Green function is gov- RO(123,12'3";7,) = i S (25)

erned by a Dyson equatid22] Z,7 €17 &2 &3
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N3(123,12'3")= 811/ 8oy 833 (f1f,f 5+ F1f,f3) (26)  Introducing the notatioh/_(37)=V3—V(37) we arrive at the fol-
lowing equation forGs(z,) expressed through the channel

= 511/ 522/ 533/(1_ fi — fj) Green funCtioniGgy)(Z’u):
X[1-f+g(ei+e)]. (27) G3(2,)=GY(2,)+ G (2,)VyGs(z,).  (36)
Note that Eq(27) is identical to Eq(26) for all permutations Now we have set the necessary equations, i.e., B@5.

of ijk=123. We usef=1—f, and the Fermi one-particle (35), and(36), to define a channel transition operaltby, for
function f,=f(e,)={exdB(e;—w)]+1} ! and the Bose finite temperature,

function g(w) ={exg B(w—2u)]—1} ! for the two-fermion

system. Herg3 is the inverse temperature of the system and ~ Gs(2,) = 8,5G5”(2,) + G5”(2,)U ,4(2,) G (z,,).

u is the chemical potential. In the mean-field approximation (37

the single-quasiparticle energy is given by o . . o .
In the zero density limit, this definition coincides with the
i usual definition of the transition operator with the correct
81=H+2HF(1), (28 reduction formula to calculate cross sectigB6]. Inserting
1 this definition into Eq.(36) and using Eq(35) leads to an

equation for the transition operator in medium, viz.,

SHR(1)=2 [Va(12,12-V,(12,2D1f,. (29
2 Uap=(1-8,)G5" "+ 2 VI'GLU,5. (39)
YF @

Note that[Ng,RgO)]=0. The interaction kernel iVv5 in Eq.
(23) is given by This is a new AGS-typéor Faddeev-typeequation valid to
treat three-particle correlations at finite temperatures and
- 35 densities in the mean-field approximation. Although this
V3(123,12'3")= Z V§9(123,12'3"), (300  equation looks formally equal to that for the isolated system,
k=t we emphasize that§” as well asG$”, and hencdJ 4, is
different from the isolated system due to the finite tempera-
ture and density of the surrounding matter, and therefore
o ) ~ ) contains Pauli factors due to phase space occupation and
with ijk =123 cyclic andV;# V3. If we introduce a poten-  gelf-energy shifts. This becomes transparent if the definitions
tial V3=N3 V3, we may instead of E¢23) write of the quantities appearing in this equation are inserted. Be-
fore doing that we define a transition channel operiéd},

V§(123,12'3") = (1= ;= f))V,(ij,i']") b, (3D)

Ga(2,) =G (2,)+GY(2,)VsGa(z,), (32
GY=GY+GPT1Y'GY, (39
which looks formally as the equation for the isolated case
[20]. Using Eq.(27) we may write the potentia¢;=3,V{?  and inserting this equation into E(B5) leads to
in terms of(e.g.,k=1)
g T =V + GOVOITY (40)
V§H(123,12'3")=[1—f,+g(sp,+835)] *
3 )=l1-fatoleates)] and toV{' G =TYGY . This way it is possible to write a
X V5(23,23") 611 - (33)  second, more useful version of the AGS-type equations:

In Eq. (30) we have already introduced the channel nota- _ (011 (I o(0)
tion that is convenient to treat systems with more than two Uap= (1~ 38ap) (N3R5™) +;a T3 N3R3"U .
particles[20]. (41)

If the pair and the odd particle are uncorrelated in channel
v, we may define a channel Green funct@”(zﬂ). Inthis  Here we have written the Pauli factors occurring due to the
case only the interaction within the pair of chanmés taken  surrounding matter explicitly. Note that, through Ed40),
into account, viz., Tg” is also medium dependent. To compare with our previ-
ous resulf14], we repeat the expressions for the low density
case. In this case, we may assule>0, and therefore write

*

1
(v) = i —
Gy(2)= 275 2 IGa(@)Guz,m @) 34 L equation folUts=NY2U, ,N22,

ciesw, , A even,w, =w\/(—iB)+2u. The equation for the 3 yEa

channel Green function is derived in the same way as for the
total three-particle Green function given in Eq83) and The equation for the transition channel operator
(32). The result is T (W=NI?T{NY? (and so forvs) is then

The summation is done over the bosonic Matsubara frequen- U:zﬁz(l_ 501/3)R(O)71+ E T§(”R(3°)U’;B. (42

GY(2,)=G(z,)+GY(z,)Vy'G(z,). (39 TV =i+ v IRYTEY (43)
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Inserting all definitions the explicit form of the effective po- To be more specific we also separate spin and momentum

tential arising in this equation reads degrees of freedom and introduce amplitudes
V33(123,12'3")=(1—f,— ) Y114 (mymomg| Mo(K1KoKz, kP E)|[mymg) =(¢o| Tol ba)-
+g(e1+e)] YAV,(12,12") 50
1 Using this amplitudes the lifetime may be written in the fol-
X 83g[1—f3+g(er +ez)] lowing way:
X (1—fp—fy)2 (44) 4
T4t= a7 d3ka d3k,d3k,d3k, Tr(Mopng)
~(1—f,—f)Y2/,(12,72") 3!
X(1—fy—f,)12 (45) X f1f,f5f . 2m8(E—Ep). (51)

where Eq(45) holds forf2<f. Utilizing this approximation The total energy is given byE=P?2my+e+E4 and
Eqg. (42) has been solved numerically using a separable anezkﬁ,/Zm is the energy of the odd nucleon. The factor 1/3!
satz for the strong nucleon-nucleon potentid]. prevents overcounting due to the six possible ways of arrang-
We are now in the position to evaluate the correlationing the identical particles among the three momenta, the
function (n(»—07");n) according to Eq(12). The Green trace is over spin projections only, apgis the initial spin
function needed in Eq12) is given by(see Appendix B density matrix.
4 It is instructive to discuss several ways to recover the
(v _ 0 Born approximation and impulse approximations that have
napige! i) = —iB Y TrH{U50G5" (4 2) been used previous[y13,31]. From Eq.(41) the lowest order

iteration for the(on-shel) breakup amplitudeéJ, is
XU, GYp(z)}+(Q,—Q,). (46)

. . . - 3) 8) _\/C
To perform the Matsubara summation that is present in Eq. U)/O_(; TS )—; Ve=vy, (52
(46), we now use the spectral representation of the Green 7 ’
functions that have been given for the quasiparticle approXiyhere the first term is referred to as impulse and the second

mation in Eqgs.(24) and (34). The resulting expression for L . o)
thhp(ﬂﬂ) may be cast into the form as Born approximation. Replacirngd,q by V3” in Eq. (46)

leads to
123U 0lcogp){(ceih| U,/ 123 4 —
(7) — 4 < v0 dP dP Oy (7)B B 0
G“d“dP(Q“) 4|1;35 QM—F(EEVP)-I-SC)—EO Gthhzr:(Qu)___iBE)\: Tr{ng)G(S )(Q#+Z>\)
X[f1fof5f Q(EGD) — f1fof5f(1+9(EG))] XVYGYe(2)} + (0, — Q). (53)

+(Q,-—9Q,), (47) A second possibility is to expand the Green functions into

the spectral representation. In E46) the spectral represen-
tation of the Green functions leads to matrix elements
é¢§,§|uyo|q§0). Then we may use the on-energy-shell rela-

with Eg=e,+e,+e3 and ce{1'2'3'} depending on the
channelye {123, respectively. The terms in brackets of Eq.
(47) are usually referred to as Pauli factors of the gain an
loss terms. Since presently we are interested in the time scal®"
of fluctuations, we may consider, e.g., the loss term. The

(My = Ve () v (7)
correlation function is then given by (ol Uo,ldio) = (ol VW) = (ol V7| hip),
(54)
((ShE,‘Q;5?1&{,)):41%b (123U, o7 c)|? which in turn after reinserting the spectral expansion leads

again to Eq(53).
X 1F,f 3 G(EGR) 2 S(EGR + £~ Eo).
(48)

IV. RESULTS

Although formally rather simple the integration over the
For identical particles that are considered here proper synmomentak; of Eq. (51) is rather tedious, since momenta
metrization has to be taken into account. To this end wealependences appear also in the Fermi functforia the low
connect the result given in EG48) with the transition matrix  density approximation we may as indicated at the end of Sec.
Ty, which is evaluated between properly symmetrized andll, use the definitionU=N3"2U*N;¥?, which leads to
normalized stategby, 4 and again satisfies the equivalent MM‘r:NglM*M*TNgl, and
three-body equation: see Reff20] for the isolated case. It is

given by Ny=f,f,f;. (55

T =3 123U ) ). 49 Hence the ternf f,f5 in Eq. (51) will be absorbed in the
(ol Tol ¢a) E‘y (129 07"’0‘”’ ) “9 redefinition of M*. The additional Fermi functions
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FIG. 1. Breakup cross section at temperaflire10 MeV. Free 0.000 0.002 0.004 0.006 0.008
cross section is shown as a solid line and reproduces the experime nlfim’]
tal data: see Ref14]. Other lines are for different nuclear densities:
see text. FIG. 2. Width of the deuteron in hot and dense nuclear matter at

T=10 MeV depending on the nuclear density @0 fm™1. The

solid triangles show the full calculation: the open triangles show the
one that uses the vaccuum cross section for the breakup reaction,
free masses, and deuteron binding energy. The deuteron binding
energy is shown by the solid diamonds.

(f,f,f3) ! appearing in theNd channel due to the replace-
ment.M,— Mg will be approximated in the following way
(note f2<f ):

Tlef (14 fytfy)=T,. ; i i

fo(fafols) "= Tyt Totfg) =1, 8 ihe elastic and breakup cross sections as well as the differ-
We may now introduce the in-medium breakup cross secéntial elastic cross section up B,,=50 MeV [14,34. To

tion o in the center-of-mass system, which coincides withcalculate the breakup cross section we use the optical theo-

the usual in-vacuum definition in the zero density lifdig].  ®M o .
It is given by The solid lines represent the isolated breakup cross sec-

tion. As shown previously it reproduces the experimental

(2m)°® 1 )3 : data[14,34]. The dashed lines show the breakup cross sec-
US(E)ng J’ d°p'd*q" Tr(MgpiMg') tion, o (E) for densitiesn=0.1,1,3,5,7<102 fm 3,
¢ N respectively, as a function of the laboratory enelgy,. The
X2 S(E* —Ef). (57)  Mott transition occurs at the density=8x10"2 fm~2,

The medium effects significantly modify the isolated

The cross section is evaluated in the center-of-mass systemseakup cross section. Two qualitative features are observed.
introducing Jacobi coordinatgs andq’, and|vg—vy| isthe  First, the breakup threshold is shifted towards lower scatter-
relative velocity of the incoming particles. The center-of-ing energies with increasing density of the nuclear matter.
mass scattering energy B* =3qg%4m*+E}, where we This kinematic effect is due to the decrease of the deuteron
have used effective mass approximation for the nucleon selbinding energy with increasing densifyee Fig. 2 Second,
energy[14]. As a result of the medium effects, the deuteronthe cross section increases considerably with increasing den-
binding energy changes, which is calculated consistentlgity. The maximum is enhanced by one order of magnitude
with the two-body input into the Faddeev equation that leador the largest density value considered. For densities larger
to the amplitudes\(§ . To evaluate the lifetime of the deu- than the Mott densities the deuteron disappears as a bound
teron in medium we introduce the cross section defined irstate forP=0.
Eq. (57) into Eq.(51). The remaining integration is over the  Also, it is instructive to see how the medium-dependent
momentumnky of the odd nucleon. The equation for the life- cross section converges to the isolated one. At
time of the deuteron is then given by Ej.p=100 MeV the deviation of the in-medium cross section
from the free cross section in this model is in the order of
10%. From inspection of Fig. 1 we conclude that the domi-
nant changes in the cross section takes place at rather mod-
erate energies, i.e., where the impulse approximation fails,
ande* = (3q/2-+ P/2)%/2m* . and the Faddeev technique has to be used.

The cross section entering into E&8) is given in Fig. 1 In Fig. 2 the width of the deuteron &=0 fm~! is shown
as a function of the laboratory enerBy,, (i.e., P=0) thatis  as a function of nuclear density. Respecting the medium ef-
useful to compare the breakup cross section with the isolateféécts in the cross section leads to a larger width of the deu-
one. We restrict the two-body channels to the dominant oneseron of almost a factor of 2 near the Mott density. For com-
i.e., 1S, and 3S;-3D; . For the separable ansatz we use theparison also the medium-dependent deuteron binding energy
parametrization of Phillip§32]. The parameters are taken is shown in the same scale.
from Ref.[33], which lead to a good overall description of  The resulting deuteron lifetime evaluated with EB@) is

4
TdPl:W f dkn|va—vnlof (E*)f(s*) (58
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80 - T the medium becomes smaller at higher scattering energies.
The influence of the medium is rather strong. Near the maxi-
mum and close to the Mott density the cross section in-
] creases almost one order of magnitude compared to the iso-
lated one. We argue that this modification is also important
in a complete treatment of the heavy-ion reactias found

for the NN case[6]).

An important global quantity that governs the time scale
of the deuteron formation is the lifetimge., width of the
fluctuations in the deuteron distributions in hot and dense
E nuclear matter. We have calculated the lifetime of the deu-
teron fluctuations using either an isolated or medium-
dependent cross section in the collision integral. We find that
- ' the lifetime strongly depends on the type of cross section

0.0 1.0 2.0 3.0 included in the evaluation. The difference between the use of
Plfm"'] the isolated cross section versus the medium-dependent one
amounts to almost a factor of 3 near the Mott density. This is

FIG. 3. Momentum-dependent lifetime;p of the deuteron in iy sypport of the statement that the medium modifications of
hot and dense nuclear matterTat 10 MeV. Upper two curves are  ipe breakup cross section may lead to changes in the final
without medium-modified cross section using the solid line of Fig'outcome of the deuteron rate in heavy-ion collisions. There-
1in Eq.(58), lower two lines with medium modifications for com- ¢, the results presented here may be considered an impor-
parison. Solid and dash-dotted lines use Fermi distributions: thg, i i1t for transport equations that are used to describe the
long-dashed and short-dashed lines use classical distribution fun%- . h _ion collision as done. e in ke8]
tions for f(z). ynamics in a heavy _ , e.0., ).

The formalism presented here is capable of being ex-
tended to effectiven-particle equations and therefore to treat

shown in Fig. 3. The influence of the medium modification he formation of higher clusters than deuterons. In particular
through the cross section is substantial, in particular forI . 9t . . NP
the formation of helium, triton, or/and particles is of spe-

small deuteron momenta. For higher momenta the differ-,

ences become smaller, as they should, since the medium &al interest. In this context, the inclusion of the total mo-

fects on the single-particle properties become smaller a@sesr:rum dependence of the in-medium cross section is nec-
higher momenta. Also, the differences between the Maxwelf Y-
and Fermi distributions are shown that are comparably small

for the densities considered. ACKNOWLEDGMENTS
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section, we find that the deuteron breakup cross section
(Nd—NNN) is also substantially modified at finite densities APPENDIX A: LINEAR RESPONSE
and temperatures compared to the isolated one. The densities AND THE COLLISION INTEGRAL
and temperature chosen are expected to be typical values for ] ) o
the final stage of heavy-ion collisions at intermediate ener- [N order to derive the exact relation for the collision inte-
gies. To reach this conclusion we have extended the Aggral with the full medium-dependent cross section given in
formalism to treat the effective three-nucleon problem in arf€ms of properly defined medium-dependent three-particle
environment of hot and dense nuclear matter. This has bedf@nsition operators, we assume small fluctuations of the
achieved using the finite temperature Green function metho8auilibrium distributions and utilize the linear response
within the Dyson approach. The three-body problem is ther{h€ory to treat the nonequilibrium aspect of the process.
formulated in the cluster mean-field approximation, and the 10 do so consider first equilibrium. In this case the two-
resulting AGS equations are solved numerically for a Sepapar'qcle distribution _functlon may be decomposed in the fol-
rableNN potential. For the isolated system the experimentalowing way, reflecting the uncorrelated and the correlated

V. SUMMARY AND CONCLUSIONS

data are reproduced within a few percent. partg;:
Within mean-field approximation the influence of the sur-
rounding matter leadgl) to a shift of the self-energy of the £2(12,1'2")=f9(1)f2(2)[ 811 8o — 810 821/
nucleon and deuterons af@) to additional phase space fac- o o
tors due to Pauli blocking. These two effects are taken into +0,(12,12"), (A1)

account consistently as the three-body equations are solved.
The influence of the medium on the breakup cross sectiolwhere in the cluster mean-field approximation,
is calculated in the center-of-mass frame for the three-
particle system. It shows three important feature) The 0 o o
cross section increases with increasing densitigs, the 02(12,12 )Z; [(12,)(¢,|1'2")
threshold energy shifts due to the decreasing binding energy
of the deuteron at increasing densities, #Bdthe effect of —6,p(126,p(1'2")]9(E,), (A2)
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and §,p(12)= Op Kk +ky Ok, — ko) 12,0 and [ ]« denotes inclu-
Using E¢A1) and(A2) leads to

sion of exchange terms.

10,0 ) =g(E,)8,,,1 (A3)

ie., fg(v,v’) is diagonal in the indices that will be used in

the following.

In the framework of linear response the one- and two-
particle distributions may be characterized by the deviations

from the respective equilibrium distributiorf® via small
fluctuationsésf, viz.,
f1(1;0)=13(1)+ 6f1(1;1), (A4)

fZ(V,V';t)Ifg(V,V')-f—§f2(v,v’;t). (A5)

The relevant statistical operatf85] properly including the

2643

(6ngp)i=6fR(P,1). (A14)

For small fluctuationséfE(P,t) the response parameters
F4p(t) are small so that after linearizing we obtain the ex-
plicit relation

STR(P.)=2 BFap(1)(SNgpridngp).  (AL5)
P!

The nonequilibrium statistical operator has the fqee,

p(0)=pro()— lim f dt’ e ULt {i[H,praft) ]

n—07"

+dppre(t’)FU(L,1). (A16)

one- and two-particle distributions is given by the general-

ized Gibbs state,

1
pre.=zexp[—ﬁ<H—uN>—B§ Fa(L)dny(1)

—,6’2 Fo(v,v',t)ony(v,v') |, (AB)

where the operators describing density fluctuations of th

one- and two-particle distributions appearing in E86) are
defined by

sny(1)=ala;—(aja;)o=ny(1)—12(1), (A7)

Sny(v,v)=b",b,—(b",b,Yo=n(v,v")— (v, 1").
(A8)

The Lagrange parameteFs5(t) and F,(t) of Eq. (A6) are
determined by the consistency relations

fK(t):Tr{prel(t)nK}’ (Ag)

where k collectively denotes the quantum numbers of the

one- or two-particle operators. Linearizing Ed#&4) and
(Ab), respectively, with respect t6,(t) leads to

8f (=2 BF (NN, (A10)

where we have introduced the Kubo scalar product

1 (8
(A;B)=E f d7 Tr{poA(—i7)B}. (A11)
0
Further on, we use the Laplace transform
0
(A(7);B)= f dte™(A(t);B). (A12)

For the case of the deuteron density fluctuation, &)
reads
Sngp=Dblpbap—9(Egp), (AL3)

so that

The occupation of the bound states tends to reach the equi-
librium value due to the reactions within the system. After
linearization with respect t&4p(t) and neglect of the ex-
plicit time dependencéMarkov limit) in the integral, viz.,
pre(t’) =prei(t), we obtain

38 §(P,)=(i[H,ngp])'=15p(1), (AL7)

here we have introducdt‘fp(t)zIdN,NNN(P,t) for brevity.
valuating Eq.(A17) leads to

I§(P.O=Tr{p()i[H,ngp]}

=2, BF e (D[ (Ngpr ;Ngp) — (Ngpr ;Ngp) .
P’
(A18)

Note that for homogeneous matiferyp, ,n,p]=0, and that
(ngp ;Ngp) =0, which finally leads to Eq(11) by using Eq.
(A15).

APPENDIX B:

EVALUATION OF THE CORRELATION FUNCTION

For the one-particle occupation=i[H,n,] we get
ne=i >, (1|k)V,(k2,1'2")alala,a; +H.c. (Bl)

1212’
In the three-particle space this leads to
=S
12312'3’

+H.c.,

(123A'VY|12'3"Yalalalaga, 8,

(B2)

where we have introduced the third particle in the channel
and replacedV,(12,12")(3|3")—V{)(123,12'3") (for
v=1), which has been defined in the previous section. Fur-
ther we useV,(12,1'2')=-V,(21,12"), etc. The projec-
tion operatorA (" is given by(e.g.,y=1)

AP =k23)(k23. (B3)
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The proper symmetrization of the final result will be treated

separately within the framework of the three-body formal-
ism.

For ndP
given by

bgpblip in channel y the time derivative is

(Y)Z_i
dP

>

12312'3'

+H.c.,

(123A0VY|1'2'3"Yalalalag a0y,
(B4)
where we have introducedy& 1)

§p=2l1e4p)(1eqp|-

To keep the notation transparent, we introduce a particle-
hole (ph) basis, i.e.|123 ®|123), and extend the potential
in the following way:

(B5)

TR=AYVYel;, TR=1,oVY'AY,  (86)
with a={k,dP}.

As a result of the operators occurring in E@4), the
correlation function{n;n) is related to the 12-point Green
function Gg({2,) via Eq.(12). Using Eqs(B1) and(B4) the

Green functiorthhk(Qﬂ) reads

G (Q,)=THT2Ge(Q )Tl +(Q = Q,),
(B7)

andIl,, exchanges all particle with hole indices. The con-
tribution with Q < — , is due to thgH.c.) that appears in
Eq. (B4). If only three-particle correlations are considered,
the full 12-point Green function is given by

Ge(Q,)=—— E Gs(Q,+2,)®Gs(z,), (BY)

M. BEYER AND G. RCPKE

FIG. 4. Pictorial demonstration of the{Fr-} in Eq. (B9), if the
Born approximation is used foG; [see also Eq(53)]. For the
break-up case one of the two body Green functiGnsare replaced
by the uncorrelated oné;,, the other by the one describing the
bound state. The dots indicate the potential Exchange and re-
arrangement channels have to be added for a full treatment.

|7 (S|

() = — (7)
Gy(z)=2 e (1T oE)]

(B12)

The wave function given in EqB12) is a direct product of
noninteracting wave functions of the pair and the odd par-
ticle, e.g.,|#")=|1¢,). Through orthogonality, only the
bound state part with momentul contributes. Similar ar-
guments hold for the projection from the left side. We will
denote this cluster Green function Wg;4p. Note that
through Eq.(B11), etc., the full scattering solution is taken
into account. EquatiofB9) then reads

(7
NgpNap

(Q)=—75 > THVY G Q,+72,)

XVEGagp(z)}+ (0, — Q).
(B13)

Since we are only interested in the breakup reaction we have
introduced an extended notation also for the second Green

where explicit Matsubara summation has been introducedunction appearing in EqB13), G3 denotes the full Green
Then summation over the block indices can be performed snction that describes the breakup situation. The related dia-
that the resultlng traces are in three- partlcle space Onhgram is g|Ven in F|g 5. The Born approx|mat|0n is g|ven by

Equation(B7) simplifies to
=T ; TH{AYVY'G4(Q,+2,)

XVYIAY Ga(2)} + (0, —0,).

(B9)

In Eq. (BY) the termA (Y G4(z,) A" appears. Foa=k and,

e.g.,y=1 this is given by
(123AG3AM[17273")=G4(k23k2'3").  (B10)

For a=dP we first consideiG;A () using Eq.(36), i.e.,

GaAP=GYAD+GVY'GYAY. (Bl

Fig. 4.

It is important to note that through E@L2) we are only
interested in the discontinuity dﬁhkhk,(z) on the real axis,
which leads to energy conservation. Therefore we eventually
need to consider only the on-energy-shell limit. It is now

G,

G,

FIG. 5. Pictorial demonstration of the{Fr-} in Eq. (B9) with a
full treatment of the intermediate three-particle Green functions.

To evaluate this expression we introduce the spectral decongxchange and rearrangment channels have to be added for a full

position of G§”,

treatment.
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possible to introduce the breakup operadthy, given in the
Sec. lll. Using the on-energy-shell requirements

U0,GJ=V3Gsap, (B14)
UyoGéO):V_gGs,oa (B19

these equations lead directly to E46) and Eq.(47). For

AND DENSE NUCLER ... 2645

(47)] to determine the scale of the lifetime of the fluctua-

tions. The resulting expression for the deuteron distribution

in hot and dense nuclear matter is then given by

et =(8ngp: SNgp)g H(Egp). (B16)

Here we have used that in laddematrix approximation

(B17)

(Ngp;Ngp) =9(Egp).

small deviations from equilibrium we may consider, e.g., the
contribution of the loss ternfifirst term in brackets of Eq. This completes the deviation of E(8).
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