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Deuteron lifetime in hot and dense nuclear matter near equilibrium

M. Beyer and G. Ro¨pke
FB Physik, Universita¨t Rostock, Universita¨tsplatz 1, 18051 Rostock, Germany

~Received 5 June 1997!

We consider deuteron formation in hot and dense nuclear matter close to equilibrium and evaluate the
lifetime of the deuteron fluctuations within the linear response theory. To this end we derive a generalized
linear Boltzmann equation where the collision integral is related to equilibrium correlation functions. In this
framework we then utilize finite temperature Green functions to evaluate the collision integrals. The elemen-
tary reaction cross section is evaluated within the Faddeev approach that is suitably modified to reflect the
properties of the surrounding hot and dense matter.@S0556-2813~97!01411-8#

PACS number~s!: 21.65.1f, 24.60.2k, 25.70.2z, 21.45.1v
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I. INTRODUCTION

The complicated dynamics of heavy-ion collisions pr
vides a great challenge for many-particle theory. In particu
at intermediate energies where the elementary ingredient
rather well known—in terms of constituents and their resp
tive interactions—the main problem arises from a suffici
description of the many-particle aspect. To provide sing
particle distribution functions such reactions can be sim
lated on the basis of kinetic equations as, e.g., supplied
the Boltzmann-Uhlenbeck-Uhling~BUU! approach ~see,
e.g., Refs.@1–6#!.

However, the formation of light clusters such as deut
ons, helium,a particles, etc., is an important phenomenon
heavy-ion collisions at intermediate energies: see, e.g.,
@7#. Empirical evidence, including recent experimental d
on cluster formation@8,9#, indicates that a large fraction o
deuterons can be formed in heavy-ion collisions of energ
below E/A<200 MeV. Also, during the expansion of th
system the density can drop below the Mott density of d
teron dissociation@10–12#.

The description of the formation of such bound sta
~clusters! during the expansion of hot and dense matter is
as well elaborated as the single-particle distribution. T
main obstacle is that the formation of bound states requ
the notion of few-body reactions within the medium. Ev
the simplest case, i.e., the abundances of deuterons tha
determined by the deuteron formation viaNNN→dN ~N
nucleon,d deuteron! and breakup,dN→NNN, reactions, re-
quires a proper treatment of the effective three-body pr
lem. Previous studies of the kinetics of deuteron product
have utilized the impulse approximation to calculate the
action cross section at energies above 200 MeV@13#. For
lower energies, viz.,E/A<200 MeV, the impulse approxi
mation fails badly and a full three-body treatment of t
scattering problem is necessary@14#. Furthermore, a consis
tent treatment of cluster formation in expanding hot a
dense matter requires the inclusion of medium effects
the respective elementary reaction cross sections as has
done in the nucleon nucleon (NN) case and proved to b
substantial in BUU simulations of heavy-ion reactions@6#.
Therefore we present an exact treatment of the three-b
problem including medium modifications in mean-field a
proximation.
560556-2813/97/56~5!/2636~10!/$10.00
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The cluster formation during the expansion of hot a
dense matter is driven by the collision term in the gene
ized linear Boltzmann equation~see, e.g., Refs.@15, 16#!.
Here we consider the fluctuations of the deuteron distri
tions in hot and dense nuclear matter in a near-equilibri
situation. One important question in this context is the tim
scale of formation and disintegration processes that gov
the evolution to chemical equilibrium. Within linear re
sponse theory we relate the reaction rates to the equilibr
correlation functions. To calculate the response coefficie
it is then possible to apply the method of finite temperat
Green functions@17–19#.

The essentials of the three-body problem for the isola
system are well known: see, e.g., Ref.@20#. In the following
we utilize the Alt-Grassberger-Sandhas~AGS! formalism
@21# suitably modified to treat the three-body problem with
nuclear matter. To derive the proper AGS-type equations
use the self-consistent random phase approximation@22# ex-
tended to finite temperatures. For a numerical solution
rely on a separable representation of theNN potential. This
choice simplifies the problem considerably. A systematic
vestigation of separable parametrizations of ‘‘realistic’’ p
tentials has been pursued, e.g., in Ref.@23#. We note that
solutions of the three-body problem using ‘‘realistic’’NN
potentials have been achieved, e.g., by the Bochum gr
@24# and the Bonn group in the framework of theW-matrix
approach@25#.

In the following section we present the formalism to tre
cluster formation in a linear approximation of the gener
ized Boltzmann equation. In Sec. III we introduce the fin
temperature Green function and derive a Faddeev-type e
tion that includes medium modifications due to Pauli bloc
ing and energy shifts. We relate the ‘‘in-medium’’ cross se
tion to the collision term in the Boltzmann equation. O
numerical results are presented in Sec. IV and we summa
and conclude in Sec. V.

II. QUANTUM KINETICS AND BOUND STATE
FORMATION

The Hamiltonian of the Fermi system in question is giv
in terms of creation and annihilation operators,
2636 © 1997 The American Physical Society
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H5(
118

H0~1,18!a1
†a181

1

2 (
121828

V2~12,1828!a1
†a2

†a28a18 ,

~1!

where a† and a satisfy the well-known commutation rela
tions. The indices 1,2, . . . collectively denote the quantum
numbers~e.g., momentum, spin, isospin, . . .! of the par-
ticles 1,2, . . . . Theobserved physical quantities will be ex
pressed in terms of reducedn-particle occupation matrice
~see, e.g., Refs.@16, 26#!,

f n~1 . . .n,18 . . . n8;t !5^an8
† . . . a18

† a1 . . . an&
t

[Tr$r~ t !an8
† . . . a18

† a1 . . . an%,

~2!

wherer(t) denotes the density matrix of the many-partic
system. In case of equilibrium (r(t)5r0) we use the nota-
tion f n

0(•••)5^•••&0 .
The reduced density matrices given above are particul

suited in the framework of a cluster decomposition@16#. If
clusters are treated in mean-field approximation we may
troduce cluster wave functionswn that in general depend
indirectly on time through the time dependence of the m
dium ~see the Green function treatment below!. We now use
bosonic~two-particle! operators that are given through

bn5(
12

a1a2^wnu12&, ~3!

and the H.c.b†. For the two-particle system of interest he
wn is given by the solution of the respective two-partic
Bethe-Salpeter equation with the eigenvaluesEn ~of bound
or scattering states! @11#. This way it is possible to write
e.g., f 2 in a cluster representation, viz.,

f 2~n,n8;t !5^bn8
† bn&

t. ~4!

For nuclear matter the conditions in the final stage o
heavy-ion collision may be such that formation of bou
states is possible. This is indeed the case when the dens
the system is below the Mott density, e.g., of the deutero
and formation will occur@10–12#. Following a general den
sity matrix approach as given in Ref.@27# the time evolution
of the distribution functions for nucleonsf 1(t)[ f N(p,t)
with momentump and deuteronsf 2(t)[ f d(P,t) with mo-
mentumP reads, for homogeneous matter,

] t f N~p,t !5Tr$r~ t !i @H,nNp#%52DN~p,t !1IN~p,t !,
~5!

] t f d~P,t !5Tr$r~ t !i @H,ndP#%52Dd~P,t !1Id~P,t !,
~6!

where nNp5aNp
† aNp and ndP5bdP

† bdP . The Vlasov terms
D(t) describe the reversible time evolution and are relate
time-dependent Hartree-Fock calculations as, e.g., expla
in Ref. @27#.

The collision termsI(t)5I E(t)1IR(t) correspond to the
irreversible behavior and describe elastic scattering~E! and
inelastic ~reaction! ~R! processes, respectively, between t
constituents of the system. The elastic processes do
ly

-

-

a
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s,

to
ed

ot

change the internal quantum numbers of the particles. T
determine the time scales for thermal relaxation. Howev
the inelastic processes that are related to excitation as we
to bound state formation and disintegration change the ab
dances of the components characterized by the internal q
tum numbers and determine the time scale of chem
equilibration. The reaction relevant for the energy dom
considered is due to photodisintegrationI gNN,d(p,t) and
nucleon deuteron breakupI NNN,Nd(p,t) ~and the reversed
ones!, i.e.,

IN
R~p,t !5I gNN,d~p,t !1I NNN,Nd~p,t !1••• , ~7!

I d
R~P,t !5I d,gNN~P,t !1I dN,NNN~P,t !1••• . ~8!

Further reaction channels represented by the dots are g
in Ref. @15#. Presently, we consider the three-particle p
cesses.

The collision integral that involves three-particle pr
cesses has been given in the Born approximation@27# or
evaluated in the impulse approximation@13#. In both cases
the influence of the surrounding medium on the element
cross section that enters into the collision integrals has b
neglected. This might not be sufficient for intermedia
energy heavy-ion reactions as has been shown, e.g., fo
NN collision rate in a BUU calculation of La on La@6#. The
approach presented here naturally respects medium mo
cation in the breakup cross sections. Furthermore, in view
the rather moderate energies reached, the effective th
body problem arising in this context is treated exactly
terms of properly generalized Faddeev-type equations.

To be more specific we consider the situation where
collision rate is sufficiently high compared to the reacti
rate, so that each component is close to its thermal equ
rium distributions. The small deviations of the chemic
composition from equilibrium are then treated within the li
ear response theory. The time scale of the relaxation
chemical equilibrium is set by the reaction processes
will be considered in the following. In this case

] t f N
R~p,t !5I N

R~p,t !, ~9!

] t f d
R~P,t !5I d

R~P,t !, ~10!

where we have introducedI N
R(p,t)5I NNN,Nd(p,t) and

I d
R(P,t)5I dN,NNN(P,t) for brevity. The collision terms on

the right-hand side~RHS! of Eqs.~9! and ~10! each contain
gain and loss terms due to deuteron breakup or forma
reactions. Collisions of higher clusters~e.g.,dd! that require
a suitable treatment of the effective four-body problem
left for further investigations. To evaluate the integr
I d

R(P,t) we use linear response theory~see Appendix A!,

I d
R~P,t !52 (

P8P9
^ṅdP ;ṅdP8&~ndP8 ;ndP9!

21d f d~P9,t !,

~11!

where d f d(P,t)5 f d(P,t)2 f d
0(P) denotes the fluctuation

from the equilibrium distribution. The Kubo scalar produ
(A;B) that appears in Eq.~11! is given in Eq.~A11! and its
Laplace transform, i.e., the correlation functio
^A(h→01);B&, in Eq. ~A12!. Following standard many-
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2638 56M. BEYER AND G. RÖPKE
body techniques~see, e.g., Refs.@15, 17, 28#! the correlation
function is evaluated using Green functions,

^A~h!;B&52
1

b E dv

2p

1

h1 iv

1

v

3@GAB~v1 i01!2GAB~v2 i01!#, ~12!

whereGAB(z) is the analytic continuation of the Matsuba
Green functionGAB(zm) that will be discussed in the nex
section.

For homogeneous matter wherêṅdP ;ṅdP8& and
(ndP8 ;ndP9) are diagonal in momentaP, the response equa
tion ~10! is given by

] t f d
R~P,t !5^ṅdP~h→01!;ṅdP&~ndP ;ndP!21d f d

R~P,t !

[
1

tdP
d f d

R~P,t !. ~13!

The limit h→01 implied through Eq.~13! has to be taken
after the thermodynamic limit. Here we have introduced
momentum-dependent lifetime~formation time! of the deu-
teron fluctuationstdP in the surrounding medium, which i
of central interest. Note that the disintegration~formation! of
deuterons requires the explicit treatment of three-part
equations in nuclear matter, which will be derived in t
following section.

III. FINITE TEMPERATURE GREEN FUNCTION
AND THREE-BODY EQUATIONS

In order to evaluate Eq.~13! by use of Eq.~12! we need to
define the finite temperature Green function. To considen
particles embedded in a medium then-particle Green func-
tion Gn(1•••n,18•••n8) for equilibrium is defined by

Gn
t2t8~1•••n,18•••n8!52 i ^TAn~ t !An8

†
~ t !&0 , ~14!

where T implies Wick time ordering. The oper
ators An(t) are n-particle operators, i.e., An(t)
5a1(t1)•••an(tn)u t15•••5tn5t taken at equal times, and in th
Heisenberg picture

A~ t !5exp~ iHt !A exp~2 iHt !. ~15!

The Green functions given in Eq.~14! satisfy a hierarchy of
equations, given, e.g., in Refs.@17–19#. To arrive at equa-
tions that are solvable in practice for then-particle problem,
one has to truncate the hierarchy, which is usually done
introducing suitable approximations for the (n11)st-particle
Green function. For the three-particle problem this has b
done, e.g., in Ref.@29# in special cases. Within the sel
consistent random phase approximation it is possible to
rive at equations that are already decoupled. This method
been used for zero temperatures in Ref.@22# and will be
extended to finite temperatures here. To simplify the nota
we use a matrix form in the following:

Gn
t2t85„Gn

t2t8~1•••n,18•••n8!…. ~16!

The time evolution of then-particle Green function is gov
erned by a Dyson equation@22#
e

le

y

n

r-
as

n

i ] tGn
t2t85d~ t2t8!N n

t 1E dt̄Mn
t2 t̄ Gn

t̄ 2t8 . ~17!

The mass matrixMn
t2 t̄ introduced in the above equation

given by

Mn
t2 t̄ 5d~ t2 t̄ !Mn,0

t 1Mn, irr
t2 t̄ , ~18!

with

~Mn,0
t Nn!~1•••n,18•••n8!5Tr$r0@@An ,H#,An8

†
#6%,

~19!

~Mn, irr
t2 t̄Nn8!~1•••n,18•••n8!

52 i Tr$r0T@An ,H# t@H,An8
†

# t̄ #% irr , ~20!

where the index ‘‘irr’’ indicates that all reducible part
should be omitted, where the index6 refers to odd~1! or
even~2! numbern of fermions. The first term refers to a
n-body cluster mean-field contribution@18,22# whereas the
second term is of dynamical origin and contains retardati
Up to the correlations of interest instantaneous and dyna
cal contributions are separated. The normalization is gi
by

Nn~1•••n,18•••n8!5Tr$r0@An ,An8
†

#6%. ~21!

In cluster mean-field approximation the termMn, irr will be
neglected. In the Matsubara-Fourier representation the G
function is given by

Gn
t2t85

1

2 ib (
m

eizm~ t2t8!Gn~zm!. ~22!

For a fermionic system considered herezm is a fermionic or
bosonic Matsubara frequency, depending on whethern is
odd or even, respectively, to preserve the Kubo-Mart
Schwinger boundary condition@17–19#.

Taking in Eq. ~17! for A35a1a2a3 and evaluating Eq.
~19! in the independent particle approximation leads to
following Bethe-Salpeter equation for the three-partic
Green function at finite temperatures and densities:

G3~zm!5G3
~0!~zm!1R3

~0!~zm!Ṽ3G3~zm!, ~23!

which is the central input to derive Faddeev-type equati
in a medium. The notation will be explained in the follow
ing. The proper symmetrization is treated separately. T
Green function of the noninteracting system is

G3
~0!~zm!5N3R3

~0!~zm!, ~24!

where

R3
~0!~123,182838;zm!5

d118d228d338
zm2«12«22«3

, ~25!
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N3~123,182838!5d118d228d338~ f 1f 2f 31 f̄ 1 f̄ 2 f̄ 3! ~26!

5d118d228d338~12 f i2 f j !

3@12 f k1g~« i1« j !#. ~27!

Note that Eq.~27! is identical to Eq.~26! for all permutations
of i jk 5123. We usef̄ 512 f , and the Fermi one-particle
function f 1[ f («1)5$exp@b(«12m)#11%21 and the Bose
function g(v)5$exp@b(v22m)#21%21 for the two-fermion
system. Hereb is the inverse temperature of the system a
m is the chemical potential. In the mean-field approximat
the single-quasiparticle energy«1 is given by

«15
k1

2

2m1
1SHF~1!, ~28!

SHF~1!5(
2

@V2~12,12!2V2~12,21!# f 2 . ~29!

Note that@N3 ,R3
(0)#50. The interaction kernel inṼ3 in Eq.

~23! is given by

Ṽ3~123,182838!5 (
k51

3

Ṽ3
~k!~123,182838!, ~30!

Ṽ3
~k!~123,182838!5~12 f i2 f j !V2~ i j ,i 8 j 8!dkk8 , ~31!

with i jk 5123 cyclic andṼ3ÞṼ3
† . If we introduce a poten-

tial V35N3
21Ṽ3 , we may instead of Eq.~23! write

G3~zm!5G3
~0!~zm!1G3

~0!~zm!V3G3~zm!, ~32!

which looks formally as the equation for the isolated ca
@20#. Using Eq.~27! we may write the potentialV35(kV3

(k)

in terms of~e.g.,k51!

V3
~1!~123,182838!5@12 f 11g~«21«3!#21

3V2~23,2838!d118 . ~33!

In Eq. ~30! we have already introduced the channel no
tion that is convenient to treat systems with more than t
particles@20#.

If the pair and the odd particle are uncorrelated in chan
g, we may define a channel Green functionG3

(g)(zm). In this
case only the interaction within the pair of channelg is taken
into account, viz.,

G3
~g!~zm!5

1

2 ib (
l

iG2~vl!G1~zm2vl!. ~34!

The summation is done over the bosonic Matsubara frequ
ciesvl , l even,vl5pl/(2 ib)12m. The equation for the
channel Green function is derived in the same way as for
total three-particle Green function given in Eqs.~23! and
~32!. The result is

G3
~g!~zm!5G3

~0!~zm!1G3
~0!~zm!V3

~g!G3
~g!~zm!. ~35!
d
n

e

-
o

el

n-

e

Introducing the notationV̄3
(g)5V32V3

(g) we arrive at the fol-
lowing equation forG3(zm) expressed through the chann
Green functionsG3

(g)(zm):

G3~zm!5G3
~g!~zm!1G3

~g!~zm!V̄3
~g!G3~zm!. ~36!

Now we have set the necessary equations, i.e., Eqs.~32!,
~35!, and~36!, to define a channel transition operatorUab for
finite temperature,

G3~zm!5dabG3
~a!~zm!1G3

~a!~zm!Uab~zm!G3
~b!~zm!.

~37!

In the zero density limit, this definition coincides with th
usual definition of the transition operator with the corre
reduction formula to calculate cross sections@30#. Inserting
this definition into Eq.~36! and using Eq.~35! leads to an
equation for the transition operator in medium, viz.,

Uab5~12dab!G3
~0!211 (

gÞa
V3

~g!G3
~g!Ugb . ~38!

This is a new AGS-type~or Faddeev-type! equation valid to
treat three-particle correlations at finite temperatures
densities in the mean-field approximation. Although th
equation looks formally equal to that for the isolated syste
we emphasize thatV3

(g) as well asG3
(g) , and henceUgb , is

different from the isolated system due to the finite tempe
ture and density of the surrounding matter, and theref
contains Pauli factors due to phase space occupation
self-energy shifts. This becomes transparent if the definiti
of the quantities appearing in this equation are inserted.
fore doing that we define a transition channel operatorT3

(g) ,

G3
~g!5G3

~0!1G3
~0!T3

~g!G3
~0! , ~39!

and inserting this equation into Eq.~35! leads to

T3
~g!5V3

~g!1G3
~0!V3

~g!T3
~g! ~40!

and toV3
(g)G3

(g)5T3
(g)G3

(0) . This way it is possible to write a
second, more useful version of the AGS-type equations:

Uab5~12dab!~N3R3
~0!!211 (

gÞa
T3

~g!N3R3
~0!Ugb .

~41!

Here we have written the Pauli factors occurring due to
surrounding matter explicitly. Note that, through Eq.~40!,
T3

(g) is also medium dependent. To compare with our pre
ous result@14#, we repeat the expressions for the low dens
case. In this case, we may assumeN3.0, and therefore write
an equation forUgb* 5N3

1/2UgbN3
1/2,

Uab* 5~12dab!R3
~0!211 (

gÞa
T3*

~g!R3
~0!Ugb* . ~42!

The equation for the transition channel opera
T3*

(g)5N3
1/2T3

(g)N3
1/2 ~and so forV3! is then

T3*
~g!5V3*

~g!1V3*
~g!R3

~0!T3*
~g! . ~43!
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2640 56M. BEYER AND G. RÖPKE
Inserting all definitions the explicit form of the effective po
tential arising in this equation reads

V3*
~3!~123,182838!5~12 f 12 f 2!1/2@12 f 3

1g~«11«2!#21/2V2~12,1828!

3d338@12 f 31g~«181«28!#
1/2

3~12 f 182 f 28!
1/2 ~44!

.~12 f 12 f 2!1/2V2~12,1828!

3~12 f 182 f 28!
1/2, ~45!

where Eq.~45! holds for f 2! f . Utilizing this approximation
Eq. ~42! has been solved numerically using a separable
satz for the strong nucleon-nucleon potential@14#.

We are now in the position to evaluate the correlat
function ^ṅ(h→01);ṅ& according to Eq.~12!. The Green
function needed in Eq.~12! is given by~see Appendix B!

GṅdPṅdP

~g! ~Vm!5
4

2 ib (
l

Tr$Ug0G3
~0!~Vm1zl!

3U0gG3,dP
~g! ~zl!%1~Vn↔2Vn!. ~46!

To perform the Matsubara summation that is present in
~46!, we now use the spectral representation of the Gr
functions that have been given for the quasiparticle appr
mation in Eqs.~24! and ~34!. The resulting expression fo
Gṅkṅp

(Vm) may be cast into the form

GṅdṅdP

~g! ~Vm!54i (
123c

^123uUg0ucwdP
~g!&^cwdP

~g!uU0gu123&

Vm1~EdP
~g!1«c!2E0

3@ f̄ 1 f̄ 2 f̄ 3f cg~EdP
~g!!2 f 1f 2f 3 f̄ c~11g~EdP

~g!!!#

1~Vn↔2Vn!, ~47!

with E05«11«21«3 and cP$182838% depending on the
channelgP$123%, respectively. The terms in brackets of E
~47! are usually referred to as Pauli factors of the gain a
loss terms. Since presently we are interested in the time s
of fluctuations, we may consider, e.g., the loss term. T
correlation function is then given by

^dṅdP
~g! ;dṅdP

~g!&54(
123c

u^123uU0guwdP
~g! ,c&u2

3 f̄ 1 f̄ 2 f̄ 3f cg~EdP
~g!!2pd~EdP

~g!1«c2E0!.

~48!

For identical particles that are considered here proper s
metrization has to be taken into account. To this end
connect the result given in Eq.~48! with the transition matrix
T0 , which is evaluated between properly symmetrized a
normalized statesf0 ,fd and again satisfies the equivale
three-body equation: see Refs.@20# for the isolated case. It is
given by

^f0uT0ufd&[&(
g

^123uU0guwdP
~g! ,c&. ~49!
n-

q.
n
i-

d
ale
e

-
e

d

To be more specific we also separate spin and momen
degrees of freedom and introduce amplitudes

^m1m2m3uM0~k1k2k3 ,kNP;E!umjmd&[^f0uT0ufd&.
~50!

Using this amplitudes the lifetime may be written in the fo
lowing way:

td
215

4

3! E d3kNE d3k1d3k2d3k3 Tr~M0r iM0
†!

3 f̄ 1 f̄ 2 f̄ 3f «2pd~E2E0!. ~51!

The total energy is given byE5P2/2md1«1Ed and
«5kN

2 /2m is the energy of the odd nucleon. The factor 1/
prevents overcounting due to the six possible ways of arra
ing the identical particles among the three momenta,
trace is over spin projections only, andr i is the initial spin
density matrix.

It is instructive to discuss several ways to recover
Born approximation and impulse approximations that ha
been used previously@13,31#. From Eq.~41! the lowest order
iteration for the~on-shell! breakup amplitudeUg0 is

Ug0. (
dÞg

T3
~d!. (

dÞg
V3

~d!5V̄3
~g! , ~52!

where the first term is referred to as impulse and the sec
as Born approximation. ReplacingUg0 by V̄3

(g) in Eq. ~46!
leads to

GṅdPṅdP

~g!Born~Vm!5
4

2 ib (
l

Tr$V̄3
~g!G3

~0!~Vm1zl!

3V̄3
~g!G3,dP

~g! ~zl!%1~Vn↔2Vn!. ~53!

A second possibility is to expand the Green functions in
the spectral representation. In Eq.~46! the spectral represen
tation of the Green functions leads to matrix eleme
^fdP

(g)uUg0uf0&. Then we may use the on-energy-shell re
tion

^f0uU0gufdP
~g!&5^f0uV̄~g!uCdP

~g!&~1 !→^f0uV̄~g!ufdP
~g!&,

~54!

which in turn after reinserting the spectral expansion le
again to Eq.~53!.

IV. RESULTS

Although formally rather simple the integration over th
momentaki of Eq. ~51! is rather tedious, since momen
dependences appear also in the Fermi functionsf̄ . In the low
density approximation we may as indicated at the end of S
III, use the definitionU5N3

21/2U* N3
21/2, which leads to

MM†5N3
21M*M* †N3

21, and

N3. f̄ 1 f̄ 2 f̄ 3 . ~55!

Hence the termf̄ 1 f̄ 2 f̄ 3 in Eq. ~51! will be absorbed in the
redefinition of M* . The additional Fermi functions
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56 2641DEUTERON LIFETIME IN HOT AND DENSE NUCLEAR . . .
( f̄ 1 f̄ 2 f̄ 3)21 appearing in theNd channel due to the replace
mentM0→M0* will be approximated in the following way
~note f 2! f !:

f «~ f̄ 1 f̄ 2 f̄ 3!21. f «~11 f 11 f 21 f 3!. f « . ~56!

We may now introduce the in-medium breakup cross s
tion s0* in the center-of-mass system, which coincides w
the usual in-vacuum definition in the zero density limit@14#.
It is given by

s0* ~E!5
~2p!3

uvd2vNu
1

3! E d3p8d3q8 Tr~M0* r iM0*
†!

32pd~E* 2E0* !. ~57!

The cross section is evaluated in the center-of-mass sys
introducing Jacobi coordinatesp8 andq8, anduvd2vNu is the
relative velocity of the incoming particles. The center-o
mass scattering energy isE* 53q2/4m* 1Ed* , where we
have used effective mass approximation for the nucleon s
energy@14#. As a result of the medium effects, the deuter
binding energy changes, which is calculated consiste
with the two-body input into the Faddeev equation that le
to the amplitudesM0* . To evaluate the lifetime of the deu
teron in medium we introduce the cross section defined
Eq. ~57! into Eq. ~51!. The remaining integration is over th
momentumkN of the odd nucleon. The equation for the life
time of the deuteron is then given by

tdP
215

4

~2p!3 E d3kNuvd2vNus0* ~E* ! f ~«* ! ~58!

and«* 5(3q/21P/2)2/2m* .
The cross section entering into Eq.~58! is given in Fig. 1

as a function of the laboratory energyElab ~i.e., P50! that is
useful to compare the breakup cross section with the isol
one. We restrict the two-body channels to the dominant o
i.e., 1S0 and 3S1-3D1 . For the separable ansatz we use
parametrization of Phillips@32#. The parameters are take
from Ref. @33#, which lead to a good overall description o

FIG. 1. Breakup cross section at temperatureT510 MeV. Free
cross section is shown as a solid line and reproduces the experi
tal data: see Ref.@14#. Other lines are for different nuclear densitie
see text.
c-

m,

lf-

ly
d

in

ed
s,
e

the elastic and breakup cross sections as well as the dif
ential elastic cross section up toElab550 MeV @14,34#. To
calculate the breakup cross section we use the optical th
rem.

The solid lines represent the isolated breakup cross s
tion. As shown previously it reproduces the experimen
data@14,34#. The dashed lines show the breakup cross s
tion, sn,T* (Elab) for densitiesn50.1,1,3,5,731023 fm23,
respectively, as a function of the laboratory energyElab. The
Mott transition occurs at the densityn.831023 fm23.

The medium effects significantly modify the isolate
breakup cross section. Two qualitative features are observ
First, the breakup threshold is shifted towards lower scatt
ing energies with increasing density of the nuclear matt
This kinematic effect is due to the decrease of the deute
binding energy with increasing density~see Fig. 2!. Second,
the cross section increases considerably with increasing d
sity. The maximum is enhanced by one order of magnitu
for the largest density value considered. For densities lar
than the Mott densities the deuteron disappears as a bo
state forP50.

Also, it is instructive to see how the medium-depende
cross section converges to the isolated one.
Elab5100 MeV the deviation of the in-medium cross sectio
from the free cross section in this model is in the order
10%. From inspection of Fig. 1 we conclude that the dom
nant changes in the cross section takes place at rather m
erate energies, i.e., where the impulse approximation fa
and the Faddeev technique has to be used.

In Fig. 2 the width of the deuteron atP50 fm21 is shown
as a function of nuclear density. Respecting the medium
fects in the cross section leads to a larger width of the de
teron of almost a factor of 2 near the Mott density. For com
parison also the medium-dependent deuteron binding ene
is shown in the same scale.

The resulting deuteron lifetime evaluated with Eq.~58! is

en-

FIG. 2. Width of the deuteron in hot and dense nuclear matter
T510 MeV depending on the nuclear density andP50 fm21. The
solid triangles show the full calculation: the open triangles show t
one that uses the vaccuum cross section for the breakup reac
free masses, and deuteron binding energy. The deuteron bind
energy is shown by the solid diamonds.
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2642 56M. BEYER AND G. RÖPKE
shown in Fig. 3. The influence of the medium modificati
through the cross section is substantial, in particular
small deuteron momenta. For higher momenta the dif
ences become smaller, as they should, since the medium
fects on the single-particle properties become smalle
higher momenta. Also, the differences between the Maxw
and Fermi distributions are shown that are comparably sm
for the densities considered.

V. SUMMARY AND CONCLUSIONS

As already expected from earlier results on theNN cross
section, we find that the deuteron breakup cross sec
(Nd→NNN) is also substantially modified at finite densiti
and temperatures compared to the isolated one. The den
and temperature chosen are expected to be typical value
the final stage of heavy-ion collisions at intermediate en
gies. To reach this conclusion we have extended the A
formalism to treat the effective three-nucleon problem in
environment of hot and dense nuclear matter. This has b
achieved using the finite temperature Green function met
within the Dyson approach. The three-body problem is th
formulated in the cluster mean-field approximation, and
resulting AGS equations are solved numerically for a se
rableNN potential. For the isolated system the experimen
data are reproduced within a few percent.

Within mean-field approximation the influence of the su
rounding matter leads~1! to a shift of the self-energy of the
nucleon and deuterons and~2! to additional phase space fa
tors due to Pauli blocking. These two effects are taken i
account consistently as the three-body equations are so

The influence of the medium on the breakup cross sec
is calculated in the center-of-mass frame for the thr
particle system. It shows three important features:~1! The
cross section increases with increasing densities,~2! the
threshold energy shifts due to the decreasing binding en
of the deuteron at increasing densities, and~3! the effect of

FIG. 3. Momentum-dependent lifetimetdP of the deuteron in
hot and dense nuclear matter atT510 MeV. Upper two curves are
without medium-modified cross section using the solid line of F
1 in Eq. ~58!, lower two lines with medium modifications for com
parison. Solid and dash-dotted lines use Fermi distributions:
long-dashed and short-dashed lines use classical distribution f
tions for f («).
r
r-
ef-
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gy

the medium becomes smaller at higher scattering energ
The influence of the medium is rather strong. Near the ma
mum and close to the Mott density the cross section
creases almost one order of magnitude compared to the
lated one. We argue that this modification is also import
in a complete treatment of the heavy-ion reaction~as found
for the NN case@6#!.

An important global quantity that governs the time sca
of the deuteron formation is the lifetime~i.e., width! of the
fluctuations in the deuteron distributions in hot and den
nuclear matter. We have calculated the lifetime of the d
teron fluctuations using either an isolated or mediu
dependent cross section in the collision integral. We find t
the lifetime strongly depends on the type of cross sect
included in the evaluation. The difference between the us
the isolated cross section versus the medium-dependen
amounts to almost a factor of 3 near the Mott density. Thi
in support of the statement that the medium modifications
the breakup cross section may lead to changes in the
outcome of the deuteron rate in heavy-ion collisions. The
fore the results presented here may be considered an im
tant input for transport equations that are used to describe
dynamics in a heavy-ion collision as done, e.g., in Ref.@13#.

The formalism presented here is capable of being
tended to effectiven-particle equations and therefore to tre
the formation of higher clusters than deuterons. In particu
the formation of helium, triton, or/anda particles is of spe-
cial interest. In this context, the inclusion of the total m
mentum dependence of the in-medium cross section is
essary.
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APPENDIX A: LINEAR RESPONSE
AND THE COLLISION INTEGRAL

In order to derive the exact relation for the collision int
gral with the full medium-dependent cross section given
terms of properly defined medium-dependent three-part
transition operators, we assume small fluctuations of
equilibrium distributions and utilize the linear respon
theory to treat the nonequilibrium aspect of the process.

To do so consider first equilibrium. In this case the tw
particle distribution function may be decomposed in the f
lowing way, reflecting the uncorrelated and the correla
part g2 :

f 2
0~12,1828!5 f 1

0~1! f 1
0~2!@d118d2282d128d218#

1g2
0~12,1828!, ~A1!

where in the cluster mean-field approximation,

g2
0~12,1828!5(

nP
@^12uwn&^wnu1828&

2dnP~12!dnP~1828!#exg~En!, ~A2!

.
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and dnP(12)5dP,k11k2
d (k12k2)/2,n , and @ #ex denotes inclu-

sion of exchange terms. Using Eqs.~A1! and~A2! leads to

f 2
0~n,n8!5g~En!dn,n8 ; ~A3!

i.e., f 2
0(n,n8) is diagonal in the indicesn that will be used in

the following.
In the framework of linear response the one- and tw

particle distributions may be characterized by the deviati
from the respective equilibrium distributionsf 0 via small
fluctuationsd f , viz.,

f 1~1;t !5 f 1
0~1!1d f 1~1;t !, ~A4!

f 2~n,n8;t !5 f 2
0~n,n8!1d f 2~n,n8;t !. ~A5!

The relevant statistical operator@35# properly including the
one- and two-particle distributions is given by the gener
ized Gibbs state,

r rel5
1

Z
expF2b~H2mN!2b(

1
F1~1,t !dn1~1!

2b(
n8n

F2~n,n8,t !dn2~n,n8!G , ~A6!

where the operators describing density fluctuations of
one- and two-particle distributions appearing in Eq.~A6! are
defined by

dn1~1!5a1
†a12^a1

†a1&05n1~1!2 f 1
0~1!, ~A7!

dn2~n,n8!5bn8
† bn2^bn8

† bn&05n2~n,n8!2 f 2
0~n,n8!.

~A8!

The Lagrange parametersF1(t) and F2(t) of Eq. ~A6! are
determined by the consistency relations

f k~ t !5Tr$r rel~ t !nk%, ~A9!

where k collectively denotes the quantum numbers of t
one- or two-particle operators. Linearizing Eqs.~A4! and
~A5!, respectively, with respect toFk(t) leads to

d f k~ t !5(
k8

bFk8~ t !~nk ;nk8!, ~A10!

where we have introduced the Kubo scalar product

~A;B!5
1

b E
0

b

dt Tr$r0A~2 i t!B%. ~A11!

Further on, we use the Laplace transform

^A~h!;B&5E
2`

0

dteht
„A~ t !;B…. ~A12!

For the case of the deuteron density fluctuation, Eq.~A5!
reads

dndP5bdP
† bdP2g~EdP!, ~A13!

so that
-
s

l-

e

^dndP& t5d f d
R~P,t !. ~A14!

For small fluctuationsd f d
R(P,t) the response paramete

FdP(t) are small so that after linearizing we obtain the e
plicit relation

d f d
R~P,t !5(

P8
bFdP8~ t !~dndP8 ;dndP!. ~A15!

The nonequilibrium statistical operator has the form~see,
e.g.,@26#!,

r~ t !5r rel~ t !2 lim
h→01

E dt8eh~ t82t !U~ t,t8!$ i @H,r rel~ t8!#

1] t8r rel~ t8!%U~ t8,t !. ~A16!

The occupation of the bound states tends to reach the e
librium value due to the reactions within the system. Aft
linearization with respect toFdP(t) and neglect of the ex-
plicit time dependence~Markov limit! in the integral, viz.,
r rel(t8).r rel(t), we obtain

] td f d
R~P,t !5^ i @H,ndP#& t5I dP

R ~ t !, ~A17!

where we have introducedI dP
R (t)[I dN,NNN(P,t) for brevity.

Evaluating Eq.~A17! leads to

I d
R~P,t !5Tr$r~ t !i @H,ndP#%

5(
P8

bFnP8~ t !@~ndP8 ;ṅdP!2^ṅdP8 ;ṅdP&#.

~A18!

Note that for homogeneous matter@ndP8 ,nnP#50, and that
(ndP8 ;ṅdP)50, which finally leads to Eq.~11! by using Eq.
~A15!.

APPENDIX B:
EVALUATION OF THE CORRELATION FUNCTION

For the one-particle occupationṅk5 i @H,nk# we get

ṅk5 i (
121828

^1uk&V2~k2,1828!a1
†a2

†a28a181H.c. ~B1!

In the three-particle space this leads to

ṅk
~g!5 (

123182838
^123uLk

~g!V̄3
~g!u182838&a1

†a2
†a3

†a38a28a18

1H.c., ~B2!

where we have introduced the third particle in the channeg
and replacedV2(12,1828)^3u38&→V̄3

(1)(123,182838) ~for
g51!, which has been defined in the previous section. F
ther we useV2(12,1828)52V2(21,1828), etc. The projec-
tion operatorLk

(g) is given by~e.g.,g51!

Lk
~1!5uk23&^k23u. ~B3!
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2644 56M. BEYER AND G. RÖPKE
The proper symmetrization of the final result will be treat
separately within the framework of the three-body form
ism.

For ndP
(g)5bdPbdP

† in channel g the time derivative is
given by

ṅdP
~g!52 i (

123182838
^123uLdP

~g!V̄3
~g!u182838&a1

†a2
†a3

†a38a28a18

1H.c., ~B4!

where we have introduced (g51)

LdP
~1!52u1wdP&^1wdPu. ~B5!

To keep the notation transparent, we introduce a parti
hole (ph) basis, i.e.,u123& ^ u1̄2̄3̄&, and extend the potentia
in the following way:

G6,a
~g!5La

~g!V̄3
~g!

^ I3 , G̃6,a
~g!5I3^ V̄3

~g!La
~g! , ~B6!

with a5$k,dP%.
As a result of the operators occurring in Eq.~B4!, the

correlation function̂ ṅ;ṅ& is related to the 12-point Gree
functionG6(Vm) via Eq.~12!. Using Eqs.~B1! and~B4! the
Green functionGṅkṅk

(Vm) reads

Gṅaṅa

~g! ~Vm!5Tr$G6,a
~g!G6~Vm!PphG̃6,a

~g!%1~Vn↔2Vn!,

~B7!

and Pph exchanges all particle with hole indices. The co
tribution with Vn↔2Vn is due to the~H.c.! that appears in
Eq. ~B4!. If only three-particle correlations are considere
the full 12-point Green function is given by

G6~Vm!5
1

2 ib (
l

G3~Vm1zl! ^ G3~zl!, ~B8!

where explicit Matsubara summation has been introduc
Then summation over the block indices can be performed
that the resulting traces are in three-particle space o
Equation~B7! simplifies to

Gṅaṅa

~g! ~Vm!5
1

2 ib (
l

Tr$La
~g!V̄3

~g!G3~Vm1zl!

3V̄3
~g!La

~g!G3~zl!%1~Vn↔2Vn!.

~B9!

In Eq. ~B9! the termLa
(g)G3(zl)La

(g) appears. Fora5k and,
e.g.,g51 this is given by

^123uLk
~1!G3Lk

~1!u182838&5G3~k23,k2838!. ~B10!

For a5dP we first considerG3LdP
(g) using Eq.~36!, i.e.,

G3LdP
~g!5G3

~g!LdP
~g!1G3V̄3

~g!G3
~g!LdP

~g! . ~B11!

To evaluate this expression we introduce the spectral dec
position ofG3

(g) ,
-

e-

-

,

d.
o

y.

m-

G3
~g!~zl!5(

n

ufn
~g!&^fn

~g!u

~zl2«g!2En
~g! @12 f g1g~En

~g!!#.

~B12!

The wave function given in Eq.~B12! is a direct product of
noninteracting wave functions of the pair and the odd p
ticle, e.g., ufn

(1)&5u1wn&. Through orthogonality, only the
bound state part with momentumP contributes. Similar ar-
guments hold for the projection from the left side. We w
denote this cluster Green function byG3,dP . Note that
through Eq.~B11!, etc., the full scattering solution is take
into account. Equation~B9! then reads

GṅdPṅdP

~g! ~Vm!5
1

2 ib (
l

Tr$V̄3
~g!G3,0~Vm1zl!

3V̄3
~g!G3,dP~zl!%1~Vn↔2Vn!.

~B13!

Since we are only interested in the breakup reaction we h
introduced an extended notation also for the second Gr
function appearing in Eq.~B13!, G3,0 denotes the full Green
function that describes the breakup situation. The related
gram is given in Fig. 5. The Born approximation is given
Fig. 4.

It is important to note that through Eq.~12! we are only
interested in the discontinuity ofGṅkṅk8

(z) on the real axis,
which leads to energy conservation. Therefore we eventu
need to consider only the on-energy-shell limit. It is no

FIG. 4. Pictorial demonstration of the Tr$•••% in Eq. ~B9!, if the
Born approximation is used forG3 @see also Eq.~53!#. For the
break-up case one of the two body Green functionsG2 are replaced
by the uncorrelated one,G2 , the other by the one describing th
bound state. The dots indicate the potentialV2 . Exchange and re-
arrangement channels have to be added for a full treatment.

FIG. 5. Pictorial demonstration of the Tr$•••% in Eq. ~B9! with a
full treatment of the intermediate three-particle Green functio
Exchange and rearrangment channels have to be added for a
treatment.
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possible to introduce the breakup operatorU0g given in the
Sec. III. Using the on-energy-shell requirements

U0gG3
g5V̄3

gG3,dP , ~B14!

Ug0G3
~0!5V̄3

gG3,0, ~B15!

these equations lead directly to Eq.~46! and Eq.~47!. For
small deviations from equilibrium we may consider, e.g.,
contribution of the loss term@first term in brackets of Eq
p

rt

l.

G

e
,

-

nd
e

~47!# to determine the scale of the lifetime of the fluctu
tions. The resulting expression for the deuteron distribut
in hot and dense nuclear matter is then given by

tdP
215^dṅdP ;dṅdP&g21~EdP!. ~B16!

Here we have used that in laddert-matrix approximation

~ndP ;ndP!5g~EdP!. ~B17!

This completes the deviation of Eq.~48!.
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@31# G. Röpke and H. Schulz, Nucl. Phys.A477, 472 ~1988!.
@32# A. C. Phillips, Nucl. Phys.A107, 209 ~1968!.
@33# J. Brunisma and R. van Wageningen, Nucl. Phys.A282, 1

~1977!.
@34# P. Schwarzet al., Nucl. Phys.A398, 1 ~1983!.
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