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Competition among particle evaporation, temperature gradient, and flow is investigated in a phenomeno-
logical manner, based on a simultaneous analysis of quantum statistical correlations and momentum distribu-
tions for a nonrelativistic, spherically symmetric, three-dimensionally expanding, finite source. The parameters
of the model emission function are constrained by fits to neutron and proton momentum distributions and
correlation functions in intermediate-energy heavy-ion collisions. The temperature gradient is related to the
momentum dependence of the radius parameters of the two-particle correlation function, as well as to the
momentum-dependent temperature parameter of the single particle spectrum, while a long duration of particle
evaporation is found to be responsible for the low relative momentum behavior of the two-particle correlations.
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PACS numbdps): 25.70—-z, 24.10.Pa

[. INTRODUCTION for protons and neutrons, and test the resulting model on data
atE=30 MeV/nucleon. Analytic approximations are also de-
It has been shown recently that for nonrelativistic, threetived in order to gain improved insight into the influences of
dimensionally expanding systems the quantum statisticahe competing effects. These analytic results are not directly
correlations measure only part of the particle source and thatpplicable to nucleon correlations. However, they may be
the effective temperature of the momentum distribution isapplicable to study pion correlation functions and spectra in
obtained as a combination of the freezeout temperature arglich reactions where a spherical nonrelativistic source may
of the “geometrical temperature,” a term due to expansionbe assumed.
and to the finite geometrical siz€s]. The expansion makes At high energies a relativistic analog modd] has been
the effective radius parameters of the two-particle correlatiorsuccessful in describing the available ddf. Although
functions smaller than the geometrical size of the sourcenany models, containing microscopic dynamics, exist at
even for nonrelativistic expanding systefrs. high energies, hydrodynamical descriptiairscluding phe-
Here we extend our study of nonrelativistic expandingnomenological parametrizationsave remained useful tools
particle sources to the case of a temperature gradient inside characterize the collective behavior of the strongly inter-
the source. Such an extension of the model of REf.is  acting matter. Quantities like average transverse flow and
motivated by data on momentum distribution of protons inmean freezeout temperature describe sufficiently the mea-
heavy-ion reactions in the nonrelativistic energy domainsured single-particle spectra, while the detailed structure of
which show deviations from the purely exponential spectrunthe flow profile plays a surprisingly small ro[6]. A simple
[2,3], although the neutron spectrum is well approximated bydescription that describes the qualitative trends in data may
a Boltzmann distribution. be useful not only in high-energy reactions but in the
The purpose of our paper is to investigate the features ahtermediate-energy domain, too. However there are impor-
nonrelativistic heavy-ion collisions at a phenomenologicaltant qualitative differences between relativistic heavy-ion
level, parametrizing the emission function assuming locakollisions at CERN SPS and those at nonrelativistic energies
thermal equilibrium, without attempting to describe the mi-from the point of view of particle sources. Low- and
croscopic mechanisms which lead to such a particle emissioimtermediate-energy reactions may create a very long-lived,
pattern. However, we include phenomenologically generaévaporative source, with characteristic lifetimes of a few 100
features like evaporation, cooling, temperature gradient anti/c, in contrast to the relatively short-lived systems of life-
flow as well as strong and Coulomb final-state interactiongimes not larger than a few 10 fmat CERN SPS. During
such long evaporation times, cooling of the source is un-
avoidable and has to be included into the model, while the
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pions dominating the final state at ultrarelativistic energies In terms of the emission function both the invariant mo-

(for recent reviews on nucleon interferometry see, for ex-mentum distributionIMD) and the quantum statistical cor-

ample, Refs[7-9)). relation function (QSCH are prescribed. The Fourier-
We would like to emphasize that it is not our purpose totransformed emission function is introduced as an auxiliary

reinvent a detailed microscopical description of nonrelativis-quantity

tic nuclear collisions. We are trying to develop a framework

to describe the particle emission patterns, i.e., a simultaneous AL — 4 . AL

description of the invariant momentum distribution and the S(akiK) J dxSOGK)exp(iAk-x), @

guantum statistical correlation function, from intermediate

energies up to the highest energies achievable. In this papeatere

we concentrate on the low part of the intermediate energy

range. For example, sophisticated microscopical transport P1tP2

descriptiong10], such as the Boltzmann-Uehling-Uhlenbeck Ak=p;=pz, K= 2 &)

(BUU) and the quantum molecular-dynami@@MD) mod-

els, are well known and believed to provide a reasonablénd Ak-x stands for the four-product of the four vectors.

picture of proton emission in central heavy-ion collisions Then the momentum distribution of the number of the emit-
from a few tenths up to hundreds of MeV per nucleon. How-ted particlesN,(p) is given by

ever, in Ref[11], the BUU model predicts too large corre-
lations and underpredicts the number of protons emitted with d3n
low energies, for the reactiof’Ar + 4°Sc atE=120 and Nl(DFW
160 MeV/nucleon. This indicates that the simultaneous de- PPy P
scription of two-particle correlations and single particle spec-, .. . - ; T
tra is a rather difficult task. For energies below a few tens 01Wh|Ch is normalized to the mean multiplicity as

MeV per nucleon, where long-lived evaporative particle

emission is expected to dominate, the measured two-proton f d3p|\|l(p)=<n>_ (4)
correlation functions were found to be consistent with

compound-nucleus model predictiori,13; however, a si-
multaneous analysis of proton and neutron single particl

spectra and two-particle correlation has not yet been pe . )
P P y P been normalized to unity. We also assume that the nonrela-

formed to the best of our knowledge. A £ th hould b lied
The basic model, including a temperature gradient, is prellV'Stic measure of the momentum space should be applied,

sented in Sec. Il A. Section Il B contains an extension of théjue to the nonrelativistic nature of the considered problem.

model to long emission times. Analytic approximations for " the plane-wave approximatiofi.e., neglecting final-
momentum distributions and correlation functions are deState interactionsthe Bose-Einstein or Fermi-Dirac correla-

rived in Sec. Ill, and applied in Sec. IV to situations wherelon functions are prescribed in terms of our auxiliary func-
final-state interactions can be ignored. Section V contain

=S(Ak=0K=p), ()

Note that this normalization condition is different from the
one used in Refl1] where the momentum distribution has

gon as

numerical applications to neutron and proton interferometry, - )
where final-state interactions are important. Finally, our re- c(K Ak)~1+|S(Ak’K)|
sults are summarized in Sec. VI, while Appendix A contains ST IS(0K)|2
additional material on analytical approximations for the mo-
mentum distribution.

®

where the+ sign stands for bosons and the sign for fer-

mions. This approximation involves an off-shell continuation
Il. THE MODEL of the on-shell emission functions, the significance of which
pas discussed in Reff14,14.

For central heavy-ion collisions at intermediate energies
the target and the projectile form a collective state which can
be described as a nonrelativistically expanding fluid within
the framework of hydrodynamical models. Due to the expan-
sion, the fluid cools and we assume that it then undergoes a
certain disintegration process. In case the information about

The emission is characterized by the emission function othe initial directions is lost, the final freezeout stage becomes
source functionS(x,p) which is the probability that a par- approximately spherically symmetric.
ticle is produced at a giver=(t,r)=(t,ry,ry,r,) pointin We assume along the lines of Rét] that the emission
space time with the four-momentump=(E,p)=(E,p,,p,,  function is characterized by a distribution of production
p,), where the particle is on mass shet?’=E?—p?. The points I(r) and by a distribution of the particle emission
guantum-mechanical analogy to the classical emission fundimes, H(t). The correlations between space time and mo-
tion is the time derivative of the nonrelativistic Wigner func- mentum space shall be introduced by a nonrelativistic mo-
tion [14] which is analogous to the covariant Wigner- mentum distribution. We assume that the expanding system
function of Ref.[15]. In this work the time derivative of the is dilute enough when the particles are emitted so that the
Wigner function will be approximated by classical emissionquantum statistical single particle distribution can be well
functions. approximated by a Boltzmann distribution,

The model presented in this section is based on the wor
of Ref.[1]. For clarity we briefly summarize the formalism
along the lines of Ref.1], together with a thorough descrip-
tion of the extensions.

A. Emission function with a temperature gradient
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ric and describes an expansion in all three directions with a
) [(x), (6) constant gradient. Thus the velocity around the mean freeze-

p( [p—mu(x)]?
e —

f(x;p)= X
(2m)® 2mT(x) out timet, is assumed to have the form
X
|(x)=exp(% . @ u(x)=b%, (14)

Hereg is the degeneracy factau(x) is the(nonrelativisti¢  which describes a scaling solution of the nonrelativistic hy-
flow velocity, the freezeout temperature is denoted'tgnd  drodynamical equations at the mean freezeout ttgéor
u(x) is the chemical potential. _ [r|<ty and b=1, Ref.[18]. Here we have introduced the
Thus the emission function is characterized as parameteb which controls the amount of flow. Fr=0 we
e recover the case without flow. The results given in R&f.
S(x K) =T K)H(). 8 are reobtained for the case=0 andb=1.

In order to simplify the results we shall keep only the mean_ M Ref. [1] it was implicitly assumed that the duration of
and the width of the source distributions, i.e., we shall applyin€ Particle emission is shorit<t,, since the flow field, the

the Gaussian approximations for the distribution functions og€0ometrical radius and the freezeout temperature were as-
t andr as follows: sumed not to change significantly during the time interval

At, centered oity. The duration of the particle emissiafut,

o r2 has thus to satisfy
I(x)= exp{ T_> exp( - —) : ©)

0 to tO

a'b 15

At<min(

1 (t—to)?
H(t)=—(2wmz)u2ex - oAL2 | (10) in order to warrant the model assumptions. If we have
a,b<1 thenAt~t, becomes possible, since we approach

[The expression in Eq(10) is not suitable for very long the static fireball case. o _
emission times and evaporative processes. Such scenariosWhen the above approximations for the emission function

will be treated and discussed in the next seciion. are valid, the auxiliary function can be rewritten as
In other words, we have the following ansatz for the
chemical potentiak(x): "s'(Ak,K)="H'(AE)f d3 exp(—ik-r)f(ty,r;K), (16)
p(x) po 12

(11 whereﬁ(AE) stands for the Fourier-transformed freezeout
time distribution. Within this approximation the freezeout
time distribution determines the energy-difference-dependent
part of the correlation function.

T(x) To 2RZ’

which is analogous to the ones used in Rgfs17].
We assume the following form of the local temperature

distribution: ) o
B. Extension to long emission times
B To For low- and intermediate-energy nuclear reactions the
T(r)_l+a2r2/2t2' (12 duration time for the particle emission can be quite long.
0

Evaporative modelgwith long duration times have been
The parametea controls the gradient of the local tempera- fairly successful in describing certain aspects of such reac-
ture at the last interaction point. We will in this work only tions[19,20. The model presented above can be extended to
treat the case when the temperature profile is decreasing a@i§0 include long emission times by introducing cooling of
function ofr, though expressiofil2) contains also increas- the source and by modifying the time distribution.
ing temperature profiles by takirg pure imaginary. Note, The effect of possible cooling of the source can be
that the particular choice of the temperature profile is no€2used, €.g., by the expansion and by the evaporation of the
influencing the leading order, approximate results: namelyParticles from the source. Although cooling can be consis-
we shall apply a saddle-point approximation and an expan€ntly incorporated in the model of Sec. Il #ased on hy-
sion of the inverse temperature profile aroundthed t=t, drodynamical resuljsit is very .dlffICU|t to estimate analyti-
point. Thus any other temperature profile, which leads td-@lly the effects for a long-lived, slowly cooling source,
similar expansion coefficients, shall lead to similar approxi-When particles are emitted during a large time interval. We
mate results. therefore instead choose to utilize a phenomenological cool-
We assume that the freezeout temperature at each emi@d Profile; i.e., we assume that the decrease of the local
sion point is much smaller than the mass of the particles if€mperature is given by
this nonrelativistic case,

T(r,t)=T(r)

T a
-, 1
T(r,t)<m. (13 t) .
We select a velocity of the three-dimensional expandingvhereT(r) is given by Eqg.(12) and we use values= 100
matter at space-time poirtso that it is spherically symmet- fm/c anda=1/3, motivated by a profile for isentropic three-
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dimensional expansion of an ideal gas. Note, that this forrmegligible. We want a model that can describe nucleon
may not be a good approximation for the initial stage of theemission as well as pion emission, and we want the model to
reaction since such a form cannot describe the initial rise obe simple enough so that certain analytic results can be de-
the temperature. However, we numerically found, that a longived. Thus when the model is applied near its low-energy
particle evaporation time is needed to get a simultaneoukmit (as in Sec. V, the extracted quantities like flow veloc-
description of particle spectra and correlations inity and source radius, will reflect time averages.
intermediate-energy heavy-ion collisions. Thus, most of the

particles are emitted much later than the initial stage of the . ANALYTIC APPROXIMATIONS

reaction and the approximate profile given by the above _

equation may be suitable to describe the fall of the tempera- The integral for the auxiliary functior5(Ak,K) in Eq.

ture during most of the particle emission. A more detailed(16), can be evaluated with the help of the saddle-point
temperature profile could be obtained by a fit to the localmethod, which is described in detail in Ref$7,22,23. At
temperature distribution of a microscopical simulation in-the saddle-point, the partial derivatives of the emission func-
cluding collective effectgrescatteringand particle evapora- tion with regard to either,, r, orr, vanish simultaneously.
tion. The saddle point, is found by assuming that|/ty<1.

The Gaussian time distribution in E(L.O) does not give a In this case one can expand the saddle point equations
good description for small times=0, whenAt is large, and aroundr=0 and one can solve the saddle point equations in
thus has to be modified. Closely related to the Gaussian agx linearized problem. Note that far=0 the method yields
proximation is a distorted Gaussian distribution, which van-exact results because the nonlinearity of the saddle-point

ishes for very small times. We assume the form equations is related to the nonvanishing values.ofince
5 we utilize an expansion fdr|/t,<1, all shapes of the tem-
Hr(t)=2td exp(—td)6(t), (18 perature profile which lead to the same second-order expan-

sion for small distances as E(.2) lead to the same results.

which has the mean emission time With the help of the above approximations, we may re-

1 = write the emission function as
()= —\ﬁ (19
2 Vd Soxp)=coex] — PSP re(p)?
with the variance ’ g 2mT(rs(p)) 2RZ
1 iy (r—ry(p))?
o¥(t)=(t?)=(t)’=5| 1- —)- (20 — = |H®, (29)
a4 2R (p)
This form is motivated by the fact that there must be angiy
initial rise in the particle emission followed by a long expo-
nential tail. Such a distribution is, for example, theistri- co= 9 xp(@) (22)
bution in t?, which contains two parameters. However, for O @emP T\ To)

very broad time distributions, the mean and the variance are

not very sensitive to independent tuning of these two paramIhe mean emission point coincides with the saddle point

eters. Thus considering the current precision of the tthtet  r's(P), being

is discussed in Sec.)Ywe have fixed the smallbehavior of

the Hy(t) curve to a linear rise, decreasing the number of _ p

free parameters by one and simplifying the numerical inte- rs(p)=bto a2E,( 2 2 2

K p)+b m+t0T0/RG

grations at the same time. Note that the analytic expressions

above for(t) and o%(t) are valid only when cooling is ex- where the kinetic energy is denoted B (p)=p?/(2m).

cluded. When cooling is included the mean emission timeThe following result is obtained fdRr, :

and the variance will be somewhat modifiéske also the

results and discussion in Sec).V 1 1 1
The source functiorS(x,p) with the time distribution, RZ( ):¥+ RZ( )’

Hy(t) in Eqg. (18), describes an expanding source with long (P G TP

duration of the particle emission, including cooling of the

source, Eq(17). It thus describes the gross features of par- 200\ 12 To

i . e R%(p)=t3 . (25

icle evaporation, which is believed to take place at low col- a’E,(p) +b’m

lision energies. However, as an evaporative model, some fea-

tures are only approximately treated. For example, quantitie®Vithin the above approximations, the auxiliary function con-

like flow velocity (u) and geometrical source sizR{) are  tains a momentum-dependent factor which shall enter the

taken as time independent, while in a more rigorous treatmomentum distribution only and another factor which is a

ment also such quantities would vary with the time. Ex-Fourier transform of a Gaussian and so easily integrable. The

amples of more refined evaporative models can be found iapproximations are self-consistent if the conditjog/to<1

Refs.[19,21]. Here, however, we want to utilize a rather is satisfied. We return to this point later.

simple model, containing few parameters, applicable in a The analytic results for the momentum distribution and

wide energy rangéat high energies particle evaporation is the quantum statistical correlation function are given as

(23

(24)
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N1(p) = cg(27RE (p))3? 1.000 F
M
cox - PZMUCSEDEE 1P| g  os500f
2mT(rs(p)) 2R3 |’ g
£ 0.200f
C(K,Ak)=1*exp(—R2(K)AK*—At?AE?). (27 2
- 0.100 }
The effects of final-state Coulomb and Yukawa interactions °
on the two-particle relative wave functions are neglected 2 0.050}
Sec. V final-state interactions are taken into accpunt 8
These expressions are generalizations of the momentum  §
distribution and correlation function obtained in Rgf] and o 0.020
reduce to those for=0 andb=1. The static fireball corre- ®
sponds to the case=b=0. An additional feature foa#0 & 0.010 _
is that the radius parameter of the QSCF becomes a decreas- . . . . N
ing function of the momentum and also the effective tem- 0‘0050 20 40 60 80 100 120

perature becomes momentum dependent.
Similarly to thea=0 andb=1 case[1], the effective
temperaturel , shall be determined by the maximum of the

local temperatureT,, and the geometrical temperature de- FIG. 1. Comparison of the numerically integrated energy distri-
fined as bution of protons(solid line) with a Boltzmann distribution of

T,=23.1 MeV (dashed ling and with analytical results for the
=T R_é (28) linearized saddle-point calculation, E(R6) as indicated by the
OR? dash-dotted line, for the parameter valuesnof 938.3 MeVE?,
Rg=7.6 fm, T;,=10.0 MeV, t,=45.0 fmt, a=1.0, andb=0.7.
The relationship is given by The energy distributionsf(E,)<Ny(p)/p?, are rescaled so that
1 f 1—f f(Ex o =1 for E, o=10 MeV. Note the characteristic bending down
— = (29 of both the solid and the dash-dotted line as compared to the Boltz-
T, TotTe To mann distribution.
b2
a’+b?

Kinetic energy E, [MeV]

Te

f (30 example, be pion distributions and correlations at Bevalac

energies, though the discussion in this section is quite gen-
Sral and could be applied also to other situations where final-
State interactions can be ignored. The qualitative discussion
in this section also serves as a preparation to Sec. V, where
final-state interaction is introduced as well. The presentation
will follow the lines of Ref.[1], since the results are very
similar.

which is analogous to the case obtained for the slope of th
momentum distribution at high energigs26]. In the case of
no temperature gradient,, will grow linearly with the par-
ticle mass. In case of no flow,, is independent of mass.
For a given mass, the effective temperattigeshall be con-

stzant Zonzly Zm a limited p 'me”?‘" Wh'Ch. IS given by The relative momentumik, which appears in the corre-
p<<m“b“/a“. Since the present investigation is limited to ,_.. . . : R .
lation function, is invariant under Galilei transformations,

e Tty reior, Tolows 1t he ecive v Gy Citence & not varan svn nder
sma?l temperature aradient sat)i/sfyia§< b2 As sogn as the nonrelativistic Galilei transformations. This can be reformu-

P - grac I . lated so that the specific directional dependence becomes
temperature gradient increases above dheb? region, a

SO ; .. more transparent. The energy difference is
characteristic high momentum suppression may appear in the P 9y

tail of the distribution, see Fig. 1, for example. 2_ .2
When fitting the model to data, we concentrate on the AE:pl P2 _
a’=0 case, since this is the case which may result in a 2m
suppression at high momentum—a phenomenon observed in
the momentum distribution of protons in intermediate-energyvhere we have introduced the mean velocity of the pair,
heavy-ion reaction§2,3]. vk =K/m.
A short discussion on the Va||d|ty of the Sadd|e_point ap- Let us define theut direction to be parallel to the mean
proximation is presented in the Appendix, together with sugVelocity of the pairy,, and theperpindex for the remaining
gested improvements of the approximation and alternativévo principal directions, both being perpendicular to thg

P1t+pP2
2

AK KAk
“m m

=Vk- Ak, (31)

approximation schemes. direction. This naming convention corresponds to the one
used in high-energy heavy-ion collisiofi®4,25.
IV. CORRELATIONS WITHOUT FINAL-STATE .I_3y this definition, the princip_al directipns, which v_viII be
INTERACTIONS utilized to evaluate the correlation function, are assigned to

the given mean momentum of a given particle pair aot
In this section the analytic results will be applied to mo-that of the fireball: by changing the mean momentum we
mentum distributions and correlation functions where final-change theut and theperp directions as well. In any given
state interactions can be neglected. Applications could, foframe, the relative momentum can be decomposed as
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Ak= QOut+ Qperp (32) 8 T T T T T

and the correlation function can be rewritten as

C(Qout: Qperp =1 exXp(—R3o (K) Qher= Ro(K) Q5. (33

R2(K)R2
R K) =R (K)= TR (34)

RE(K)+RZ
R2,(K)=R2(K)+VZAt2. (35

Thus the perpendicular components shall measure the effec-
tive radiusR, (K). What is the interpretation of this quan-
tity?

There are two length scales in the problem: the geometri-
cal length scald&kg and the thermal onBy, the latter being
generated by the flow gradiebfty, the central temperature 4 ! ! . . .
T, and the temperature gradieatt,. From the previous 0O 20 40 60 80 100 120
equation one can see that the effectiyg(K), measured by Kinetic energy E, [MeV]
the perpcomponent of the correlation function, is dominated
by the smaller of the two. In other words, for large and FIG. 2. Kinetic energy depende_nC(_e of_the_ effective radius pa-
relatively cold three-dimensionally expanding systems, thé@meterR, (E), Egs.(24—(25). Solid line indicatesk, (E,) for
whole source cannot be seen by quantum statistical correld€ parameter values of Fig. 1, dash-dotted line standa 2.0,
tions, but only a part of the whole system, which is charac-bzo‘l’ other parameters being the same as for the solid line.
terized by a thermal length scaRy(K). Note also that, un-
like in the case discussed in R¢f], the radius parameter correlation functions and from the deviation of the one-
R, (K) shall not be a constant but it will depend on the particle invariant momentum distributions from the purely
momentum of the particles. See Fig. 2 for illustration. thermal behavior.

From Eq.(39) it follows that the out component in gen-  For the special case when the measured QSCF’s are found
eral shall also be sensitive to the duration of the freezeowp be momentum independent and the IMD is well described
time distribution, since it contains a temﬁAtz. This term  py a Boltzmann momentum distribution, tlee=0 case is
vanishes in the center-of-mass fraeem.f) of the particle  concluded. In this case, we may measure the paraméters
pair, sinceAE=|vi|=0 in c.m.f. In this specific system, R andT, which are constants. The measurable parameters
R, andT, are determined by four model parameterg,,

To, tg, @andb. Thus the model parameters cannot be deter-
mined uniquely from the IMD and QSCF observables in the

is the invariant momentum difference. The correlation func-a:0 special case. Inequalities can be obtained, along the

tion in the considered case becomes symmetric, when evalljnes of Ref.[1], to restrict the values of the model param-
ated in the c.m. of the pair: eters in this special case. For example, we HBys T, and

Res=R, . Note that a similar degeneracy of andR, has
C(Q))=1*exp(— Ri(K)Qf) in c.m.f. of the pair. (37) been fqund in Ref[1] for thea=0 andb=1 special case,
where it was observed that the the same spectra and correla-
It is interesting to investigate another limiting case, tions can be obtained for different values of the three input
Re<Rr(K). In this case we reobtain the standard results; Parameters. _ _ o
The general results for the correlation function given in
erJerp: RZ, R2,=RZ+VZAt%, T,=T, (38  Egs.(33—(3Y) indicate structural similarity with the Bose-
Einstein correlation function parameters for a class of models
i.e., if the thermal length scale is larger than the geometricalvhich includes relativistic longitudinal flows, nonrelativistic
size in all three directions, the correlation measurement delransverse flows and a transverse temperature p{dfi].
termines the geometrical sizes properly, and the momenturhhe radius parameters of the correlation function are mo-
distribution will be determined by the freezeout temperaturgnentum dependent both for the nonrelativistic model pre-
being just a thermal distribution for a static source. In thissented here and for the model class discussed in Re2§|.
limiting case, the effective radius parameter as well as thdhe structural similarity implies that the effective duration
effective temperature become independent of the momentuparameteit; , defined as the coefficient of in Eqg. (35),
of the emitted particles. shall become momentum dependeat, =At, (K) if the
The nonrelativistic model presented in this work has sixcooling effects are switched on. This additional, momentum-
input parametersRs, to, At, T, a, andb, which determine dependent duration parameteat, (K) replaces the
two measurabléunctions This, in turn, implies that all these momentum-independerit duration parameter in the corre-
parameters can, in principle, be determined from the detailethtion function if the temporal changes of the temperature are
analysis of the momentum dependence of the two-particlsignificant.

Effective radius R,(E,) [fm]
o

Q7= Qbergt Qau— AEZ= Qherpt Q5 in c.m.f. of the [zair)
36
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TABLE |. Parameter values used for calculatingand p spectra and correlation functions.

Rg (fm) To (MeV) alty (fm/c) 1 b/ty (fm/c) ! d (fm/c) 2
Neutrons 4.0 3.0 0.0 0.018 %0a0°°
Protons 4.0 5.0 0.14 0.036 a0 °
V. APPLICATION TO NEUTRON etry at intermediate energies. The model contains a rather
AND PROTON INTERFEROMETRY small set of parameters, and by making simultaneous fits to

In Sec. IV it was discussed that the effective radius pa_andp single energy spectra, ameh andpp correlation func-

rameterR, (K) is not constant but depends on the momen_tions, rather hard constraints are put on the parameter set.
*

tum of the particles. Such an effect has indeed been seen {hus a qualitative and quantitative understanding of certain
the measured proton-proton correlation functions in the2SPects of the source can be extracted. .
2TAI(1“N,pp) reactions atE=75 MeV/nucleon[8,13: the The evolution of the particle emission in a heavy-ion col-
larger the momentum of the protons the smaller the effectivdision at intermediate energies may roughly be described as
source siz§8]. This feature is in qualitative agreement with Production of pre-equilibrium particles, expansion and pos-
the analytic results given in Sec. Ill, since the thermal radiusible freezeout of a compound source, and possible evapora-
R(K) is a decreasing function of the absolute value of thetion from an excited residue of the source. Note though, that
mean momentum|K|. The effective source size is domi- this separation is not very distinct and there is an overlap
nated by the smaller of the thermal and geometrical radiudyetween the different stages. The importance of the various
thus it is also a decreasing function of the mean momenturstages above also depends on the beam energy and the im-
of the particle pair. pact parameter of the collision. The model presented in this

The results presented in the previous sections contain theaper describes well the second stage above and, for long
essential ingredients which are needed to obtain @mission times, also part of the third stage. If these stages
momentum-dependent radius parameter in the nonrelativistigive the main contribution to the emission of nucleons, a
domain. However, to be utilized for nucleons emitted insatisfactory description of experimental data can be obtained.
intermediate-energy heavy-ion rea_ctlcﬁﬁl:s], also two other We have applied our model to the reactitfr + 197Au
important effects need to be considered, namely cooling of; 30 Mev/nucleon, to compare with experimental single
the squrce(se_e Sec. |l Bar_1d final-state mt_eract_lpr?s. Final- spectra and correlation functions from thp correlation ex-
state interactions can be included fop pairs utilizing the periments described in Refg3,27,28. With the parameter
Coulomb + strong interactions and Fermi-Dirac statistics, d in Table | we have obtained a simultaneous fit
the strong interactions and Fermi-Dirac statisticsrfarpairs set presentg n .

to n andp single spectra, as well asn and pp correlation

and the strong interactions only for th@ pairs, utilizing the functions. Thus we have used the same parameters for neu-
Wigner-function formalism developed by Pratt and collabo- : P
trons as for protons, except for the parameigysa, andb.

rators (see, e.g., Refs[8,14] for the description of the i ;
method. Essentially, this calculation includes the evaluationS discussed in Secs. | and Il the proton energy spectrum

of the two-particle relative wave function with the above deviates from the thermal spectr@3], although the neu-
Coulomb and/or strong interaction using the appropriatd’on spectrum is well approximated by a Boltzmann distribu-
quantum StatiStica(anti)symmetrization and averaging the tion. The Coulomb interaction makes a difference between
result over the particle distribution calculated from the modelProtons and neutrons, and this behavior is effectively ob-
in Sec. Il A. A Reid soft-core potential is used to take into tained within our framework for protons by allowing a tem-
account the strong final-state interactions. The essential cofperature gradient inside the source and a different flow pa-
sequences of the final-state interactions are that they conmiameter. Protons emitted from the middle of the source roll
pletely modify the short-range parts of the two-particle cor-down from a higher Coulomb potential than those from the
relations, and they create a peak at low relative momenturaurface, thus protons from the middle are emitted with a
in the correlation functions. In the case of proton pairs, thishigher kinetic energy than those emitted from the surface.
peak is suppressed by the Coulomb repulsion which createsTais qualitative feature is similar to a system which is hotter
hole centered at zero relative momentum in phecorrela-  in the middle than at the surface. Incorporating a temperature
tion function. gradient inside the source does effectively describe such an
Light particle interferometry at intermediate-energy effect.
heavy-ion collisions has been extensively studied, both ex- To keep the description as simple as possible in this at-
perimentally and theoretically. Many attempts, using differ-tempt to test the applicability of the model at intermediate
ent models have been put forward, for example: simpleenergies, we have ignored impact parameter averaging and
Gaussian source parametrizations, evaporation, and transp&@oulomb interaction with the source. An averaging over dif-
models such as QMD and BUsee Refs[8,9], and refer- ferent impact parameters could, for example, be done by al-
ences therein These models, containing different physical lowing the radius parameteRg, to vary with the geometri-
ingredients and information, have to different degrees beenal overlap of the projectile and target. However, such a
successful in describing the data. prescription also introduces an additional uncertainty, and
One of the purposes of this paper is to test if the modelhas therefore been ignored to keep the description simple.
presented in Sec. Il, is applicable nm and pp interferom-  Thus the extracted source size will reflect a “mean” source
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FIG. 3. Experimental and numerically calculated proton energy FIG. 4. Experimental and numerically calculateg correlation
spectrum. The filled circles represent preliminary inclusive protonfunction. The filled circles represent data from thg correlation
emission data Ref3] from thenp correlation experiment described experiment described in Rg27], the open squares the full numeri-
in Ref. [27], the open squares the full numerical simulation, while cal simulation. The parameter set in Table | was employed for the
analytic approximations are represented by a solid cliege(A2)], numerical calculations.
dashed curveEq. (Al)], and a dotted curviEqg. (26)], respectively.

The experimental data are preliminary, without fully estimated er-15<<q<40 MeV/c. Furthermore the sharp rise @(q) at
rors, thus we have estimated the errors from the fluctuations of thg~10 MeV/c is based on rather few events with neutron
data points. The parameter set in Table | was employed for thgjnetic energy smaller than about 10 Mé$ee Fig. &) of
numerical calculations. The energy distributiohd,) are rescaled Ref. [27]] close to detector energy threshold and acceptance
so thatf(Ex) =1 for E, =10 MeV. limits. The momentum uncertaintyAq, is smaller than 2
MeV/c. Considering these uncertainties the experimental
size (assumed to be averaged over the different impact pa<(q) is reproduced in an acceptable manner in Fig. 5.
rameters When performing the parameter fit we have found that it

When performing the calculations we have taken into acis not possible to simultaneously reprodut@ndp energy
count the experimental energy thresholds and the acceptanspectra, as well aan and pp correlation functions, unless
region of the experimental setup. the duration of the particle emission is taken lafgeveral

Experimental inclusive proton emission df8 (from the  hundreds of frr). The long duration is found to be respon-
np correlation experiment described in RE27]) are pre- sible for the low relative momentum behavior of the two-
sented in Fig. Jfilled circles together with our fitlopen particle correlations. Thus we have uddd(t) in Eqg. (18)
squares In addition we show the analytic approximate ex- for the time distribution. With the parameter set in Table |
pression in Eqs(26), (Al), and(A2) as a dotted, dashed, and we obtain numerically the mean emission tigte and dura-
solid curve, respectively. The neutron spectrum, not showrtjon o(t):
is purely thermal with an effective temperature of 856
MeV and is also well reproduced by our calculations.

Proton correlation functions are presented in Fig. 4 as a
function of the relative momentum=|p; —p,|/2, integrated
over the total pair momentump{+p,). The experimental
results are reproduced qualitatively, in some regions of the
momentum space even quantitatively. Considering an experi-
mental uncertainty i of 3.0<Aq<5.5 MeVk [28], which
is not taken into account in our calculations, and the known
difficulty to describe both the single-particle spectrum and
the correlations for protons and neutrons at the same time
[11], we think that our result is interesting. The discrepancy i
for q< 10-15 MeV¢ is partly due to the experimental un- Tr
certaintyAq. However, a discrepancy has also been seen in I
other modelgsee, e.g., Ref9]) and suggested explanations ) P S S T S
are the following: more than one source, Coulomb interac- 0 1020 30 40 50 60
tion with the source or pre-equilibrium emission. Relative momentum q (MeV/c)

The experimentahn correlation function contains some  g|G, 5. Experimental and numerically calculated correlation
uncertainties, namely cross talk between the detectors, angnction. The filled circles represent data from thg correlation
experimental cuts at low relative momentum. From simula-experiment described in RR27], the open squares the full numeri-
tions, the cross talksee Fig. 8e) of Ref. [27]] has been cal simulation. The parameter set in Table | was employed for the
found to mainly contribute to the “bump” around numerical calculations.
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(t)y~520 fmlc, o(t)~320 fm/. nomenologically including cooling and particle evaporation.
We have thus presented a generalization of the previous
(Note that(t) necessarily becomes large because of thavork [1] by introducing additional parameters. These param-
broad time distribution limited té>0.) This scenario is in  eters control the strength of the flow, the temperature gradi-
agreement with the general view of nuclear reactions in thent, the strength of cooling, and the duration of particle emis-
energy domain of a few tenths of MeV/nucleon, namely asion.
rather long-lived excited source emitting particles. Note We have observed structural similarity of this nonrelativ-
though that a pure evaporative source gives a worse descrifstic model to the relativistic expansion described in Refs.
tion of the experimentain andpp correlation functiongsee  [4,26], namely the effective radius parameters of the two-
Ref. [27]) and fails to reproduce the single particle energyparticle correlation functions and the effective slope param-
distribution. Thus the inclusion of the expansion seems to beters of the single particle spectra became momentum depen-
mandatory, although the extracted flow velocities are smalldent due to the interplay of the local thermal scales and the
The extracted geometrical source radiBg~4 fm is  geometrical scales. On this level, the model presented here is
guite reasonable considering that a Gaussian parametrizatiery similar to the relativistic one.
is used(instead of a Woods-Saxon distribution, usually em- The main effects of the temperature gradient are that it
ployed for the ground-state density distributioNote also introduces(i) a momentum-dependent effective temperature
that the extracted source size reflects an average over diffewhich is decreasing for increasing momentum, resulting in a
ent times and impact parameters. The effective radlys suppression at high momentum as compared to the Boltz-
seen in the correlation function is smaller thieg, 1.1-1.8 mann distribution; (i) a momentum-dependent effective
fm for protons(depending on momentynand 2.5 fm for  source size which decreases with increasing total momen-

neutrons. tum. These qualitative features have been seen in nonrelativ-
From the experimental energy spectra we know that théstic heavy-ion collisions.
effective temperature for neutrons should bez815MeV The model presented here, including final-state interac-
and for protons in the range 15-25 MeV depending on thdions, has been applied to measured correlation functions
energy. The parameter set in Table | gives and preliminary neutron and proton energy spectra in the
reaction“®Ar + 97Au at 30 MeV/nucleor]27]. Agreement
Ter=Tx~7.9 MeV with the experimental data is obtained only if the duration

for neutrons, and for protons, using the Taylor approxima-time of the particle emission is large. The obtained parameter
. . ’ . ! t . . _
tion in Eq. (A2), we obtain set reflects a moderately large systéBaussian radius pa

rameterRg=4.0 fm) at a moderate temperatuf&,(n)=3

Te~20.1 MeV, E,=10 MeV; MeV and To(p) =5 MeV] and small flow. Note, however,
that the agreement between the model and the data was ob-
Te~17.4 MeV, E,=100 MeV. tained only if the flow effect is included, i.e., within this

phenomenological picture the inclusion of some flow is
This is obtained with an input temperature™f = 3 MeV ~ needed.
for neutrons, and for protons with a temperature profile that In short, our results may be highlighted as follows:
decreases from 5 MeV at the center of the source to 4.3 MeV (i) We have performed a simultaneous analysis of corre-

atr=Rg and 3.1 MeV atr =2Rg;. lationsandsingle spectra foboth protonsand neutrons at 30
The parameter set also gives the flow velocities MeV/nucleon.
(i) We found a strong evidence for a weak, but nonvan-
u(n)~0.018c; u(p)~0.036c. ishing collective radial flow at this energy domain.

Th | din Figs. 3 btained with | (i) We have shown that a close analogy of models of
_'heresu ts preser)te In Figs. 3—5 are obtained wit 1 COO high-energy heavy-ion reactions can characterize certain as-
ing included according to Egq. 17. We have numerically

; : ects of heavy-ion reactions in the 30 MeV/nucleon ener
found that the results change only to a minor extent if thep y 9y

N . - . domain.
cooling is excluded. Thus the different approximations in
Egs. (26), (Al), and (A2) are useful also when cooling is
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APPENDIX: DETAILS OF ANALYTIC APPROXIMATIONS An approximate expression can also be obtained for small

We have examined the validity of the saddle-point ap-values of the parameter by making a Taylor expansion of
proximation, presented in Sec. I, both analytically and bythe emission function arouna=0. Within this approxima-
comparing with a numerically generated particle distribution.ion We obtain(identifying the integrated result as the first
The saddle-point approximation normally yields a good aperMs in an expansion of the exponential function

proximation for large values of the expansion parameter p( E 15a2R*
k *x 0

(herea). However, for some parameter sets the saddle-point Nl(p)~cg(2wRi(p))(3’2)eX
approximation is not a good approximation for laggealues
(and large momentg). This is because for large the emis-

X i ! 2 2 6
sion function can develop more than one maximum, and the _a EK[BR*O B SRy 0
second-order expansion around one of the maxima yields a Tota 2 RZ,R2
poor approximation. The range of values afand p for
which the saddle-point approximation is valid, depends orln the above expressions we have used the notation
the other parameters used. _ _ _ _ _ _

For the case of two well separated maxima the saddlex™0~ RT(P=0), Reo=Ry(p=0), and T,o=T.(p=0).

point approximation can be improved by summing up the Comparing these analytic approximations with numerical
contribution from the two maxima. Here we give the expres-calculated momentum distributions we have found that for
sion for the momentum distribution obtained in this approxi-most parameter sets a good agreement can be found with

Tio 43R,
a’E; R},

2:2 P2 p4
TOtO RTO RG

. (A2)

mation either of the approximations.
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