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We use a 4() shell-model calculation with a two-body effective interaction derived microscopically from
the Reid93 potential to calculate the isospin-mixing correction for'tBe-1°B superallowed Fermi transition.
The effective interaction takes into account the Coulomb potential as well as the charge dependende of
partial waves. Our results suggest the isospin-mixing corredien0.1%, which is compatible with previous
calculations. The correction obtained in those calculations, performed #i)aspace, was dominated by
deviation from unity of the radial overlap between the converted proton and the corresponding neutron. In the
present calculation this effect is accommodated by the large model space. The obtatwdection is about
a factor of 4 too small to obtain unitarity of the Cabibbo-Kobayashi-Maskawa matrix with the present experi-
mental data]S0556-28187)02011-9

PACS numbd(s): 21.60.Cs, 23.40.Hc, 27.26n

[. INTRODUCTION of Ref. [7]) and includes axial-vector interference terms
[9,10]. The second correction, which is the subject of this
Superallowed Fermi g transitons in nuclei, work, arises because of the presence of isospin-
(J™=0",T=1)—(J"=0",T=1), provide an excellent nonconservingINC) forces(predominantly Coulomkin nu-
laboratory for precise tests of the properties of the elecclei that lead to a renormalization of the Fermi matrix ele-
troweak interaction and have been the subject of intensgent. This correction is denoted Iy [2,3,12 and modifies
study for several decaddsf. Refs.[1-13]). According to  the Fermi matrix element b\Mg|?=|Mgo|2(1— 8¢), where
the conserved-vector-currefCVC) hypothesis, for pure Mgo=[T(T+ 1)—TziTzf]1/2 is the value of the matrix ele-

Fermi transitions the product of the partial half-lifand the ment under the assumption of pure isospin symmetry.
statistical phase-space factbrshould be nucleus indepen-  with the correctionség, Ar, and 8¢, a “nucleus-

dent and given by independent”Ft can be defined by
ft= —2—K 1
- G Mg @ F=Fft(1+ Sg+AR)(1—5¢) 3
where K/(#c)5=2m3 In 24/ (m,c?)5=8.120 270(12) and the CKM matrix elementq is given by[10]

X107 GeV*s, Gy is the vector coupling constant for
nuclear 8 decay, andMg is the Fermi matrix element 3 7
Me= (| T.|¢;). By comparing the decay rates for muon v d|2:77 n2 # — 2984.386) s
and nuclear Fermig decay, the Cabibbo-Kobayashi- ! Ft Ggmec F ’
Maskawa(CKM) mixing matrix elemen{6] betweenu and . ) ) )
d quarks ¢,4) can be determined and a precise test of thevhere the Fermi coupling constar is obtained from
unitarity condition of the CKM matrix under the assumption Muon 8 decay and includes radiative corrections. Currently,
of the three-generation standard model is possib)é. ft values_, for nine sup_erallowed transitions have been mea-
For tests of the standard model, two nucleus-dependerfred with an experimental precision of 0.2% or better
corrections must be applied to experimerftalvalues. The [4,14]. With these precise measurements an_d reliable esti-
first is a series of radiative corrections to the statistical phasenates for the corrections, the CVC hypothesis can be con-

4

space factor embodied in the factais andAg, giving[7—  firmed by checking the constancy of ttfé values for each
9] nucleus, while the unitarity condition of the CKM matrix is
tested by comparing the average value gf with the values
fr="f(1+6r+AR), (2)  determined fow,s=0.2199(17)[10] andv,,<<0.0075(90%
confidence level[15], i.e.,v?=v’4+vi+va=1.
where Sy is due to standard, electromagnetiiner”) ra- In the past, the nuclear structure correctién has been

diative correctiongcf. p. 45 in Ref[7]) andAR is what has  computed within the framework of the nuclear shell model
been referred to as the “outer” radiative correcti@h p. 47  [2,3,11-13. In general, the isospin-nonconserving compo-
nents of the nuclear Hamiltonian are small and can be treated
perturbatively. Due to computational limitations and uncer-
*Permanent address: Institute of Nuclear Physics, Academy dfainties associated with determining an effective Hamil-
Sciences of the Czech Republic, 250 68zRear Prague, Czech tonian, almost all calculations for nuclei with=10 have
Republic. been performed within a single major oscillator shell, e.g.,
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for 1°C the model space spanned by thps@ and (p,,  approximately 0.41)% or 0.31)% for the OB and THH cor-
orbitals (p shel). Within this context, two types of isospin rections, respectively. In addition, preliminary data from a
mixing must be accounted for. The first is due to the mixingrecent experiment fol°C [16] leads to an7t value that is
between states that lie within the shell-model configuratiorsignificantly smaller than that of Ref14], and has been
space. For example, féx= 10, there are two, seven, and one interpreted as possible evidence for an as yet unaccounted
p-shell configurations leading t#"=0* andT=0, 1, and 2, for correction that might lead to satisfying the unitarity con-
respectively. Because of its two-body nature, the INC interdition of the CKM matrix. In addition, it must be admitted
action is composed of isospin operators of rank Z&osca-  that the present separation between the configuration mixing
lar), one (isovectoy, and two(isotensoy and in the case of and radial overlap contributions ) is somewhat unsatis-
A=10 it is capable of mixing together al’=0" states. fying. A much better approach would be to perform a shell-
Traditionally, the configuration mixing correction is denoted Model calculation that includes several) excitations, so
asd,y and in Ref[11] it was shown that the best estimates that both corrections would be evaluated on the same footing
for 8,y are obtained using an INC interaction that correctlyand simultaneously. Because of recent improvements in
describes the Coulomb energy splittings of the binding enercomputational capabilities and the ability to determine an
gies between members of the isospin multiplet, e.g., thé&ffective model-space Hamiltonian based on realistic
J™=0", T=1 states inl°C, 198, and %Be. Of the two Nhucleon-nucleon interactions, it is now possible to perform

types of mixing, 8, is the smallest with a magnitude of such acaICL_JI_ation for the lightest of the nine accurately mea-
approximately 0.04—0.1 %. sured transitions. We report here the re.sulj[s of large-basis

In addition to the mixing between states contained withinShell-model calculations that include excitations up #d)4
the shell-model configuration space, mixing with states thafor A=10 nuclides, with an emphasis on evaluating the
lie outside the model space must also be accounted for. 0SPIN-mMixing corrections to the matrix element for the
particular, the Coulomb interaction can strongly mix one-Fermi decay of'°C.
particle—one-hole (A—1h) 2iQ excitations, e.g., The organization of the paper is as follows. First, in Sec.
0ps;—1pay, into the ground state. In previous works, ex- Il we discuss the shell-model Hamiltonian with a bpund cen-
citations of this type were accounted for by examining dif-ter of mass, the method used to derive the starting-energy-
ferences in the single-particle radial wave functions. Indeedindependent effective interaction, and the renormalization of
for closed-shell configurations, mixing withpilh states is the tran_sfer operator. Resplts of the Fermi mat_rlx—element
properly accounted for at the Hartree-Fock level. Hence thé&alculations are presented in Sec. lll and concluding remarks
second correction to the Fermi matrix element, denoted bjre given in Sec. IV.
Sro, Was estimated by evaluating the mismatch in the radial
overlap between the single-particle wave functions of the Il. SHELL-MODEL HAMILTONIAN
converted proton and the corresponding neutron. The explicit AND THE EFFECTIVE INTERACTION
details for the calculation ofzo, which involve a sum over ) )
intermediateA— 1 parent states that then determine the pro- N OUr calculation we use the one- plus two-body Hamil-
ton and neutron separation energy for the radial wave fundonian for theA-nucleon system, i.e.,
tion, are given in Refs[2,11]. For the most partdgo is A
found to be the larger of the two componentwith _ Pi L
dc=S6rot du) and has a magnitude of the order 0.1-0.8 %. H _;1 om* z Vn(ri=rj), ®)

At present, two methods for evaluatidg g are espoused.
The first, the Towner-Hardy-HarveifHH) method[2], uses  \\herem is the nucleon mass andy(f;—F;) the nucleon-
gr‘xgﬁasgﬁgxnrgg xz‘t’ﬁo‘:l;gtl'inlséan‘;:géh':eoi?ﬁgj' théucleon interaction, modified by adding the center-of-mass
wave functions are employed. Generally speaking, the twglarmonlc-o_scnlator potenha%AmQ?Rzl, R:(l/A)2f=lr"
methods yield approximately the same dependence o-ﬁh's potential does not mflugnce intrinsic properties of Fhe
nucleon numberA, but the HF values are systematically Mmany-body system. It provides, however, a mean field
smaller by 0.1% for the magnitude of the correction. The felt by each_nucle_on and aII_ows us to W(.)r.k with a conve-
reason for the difference lies in the HF mean field. The prinli€Nt harmonic-oscillator basis. The modified Hamiltonian,
cipal effect of the Coulomb interaction is to push the protondéPending on the harmonic-oscillator frequeri¢ymay be
wave functions out relative to the neutrons, hence providing@St into the form
a mismatch in the radial overlap. In Hartree-Fock method,
however, the proton and neutron mean fields are coupled and HO— E
the Coulomb interaction actually induces an attractive is- =
ovector mean field between the protons and neutrons. In ef-
fect, the Coulomb interaction pushes the protons out, but
because of the strong interaction, the protons pull the neu- +i§<:_
trons out with them, hence reducing the magnitude of the .
rad\l/\%gxz:&%gc\;i?oartr(éttionsv L6, An, Sno, andsyy | The one-body term of the Hamiltonia®) isghenﬁ;ewritten
are applied to the nine experimental dfald), it is found @s a sum of the center-of-mass terbh;,,= P¢,/2Am
that theZt values are essentially constant within the limits of + sAmQ?R?, P.,=3" ,5;, and a term depending on rela-
uncertainty but the unitarity limit is violated at the level of tive coordinates only. Shell-model calculations are carried
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out in a model space defined by a projed®orin the present

work, we will always use a completés Q) model space. The (aglk)=2 (aglw|ap)(ap|k). 9
complementary space to the model space is defined by the “P

projectorQ=1—P. In addition, from among the eigenstates | the dimension of the model spaceds, we may choose a
of the Hamiltonian(6), it is necessary to choose only those ggtxc of dp eigenevectors, for which the relatié8) will be

corresponding to the same center-of-mass energy. This Cafytisfied. Under the condition that tte x dp matrix (ap|K)
be achieved by projecting the center-of-mass eigenstatggy |k) e K is invertible, the operatow can be determined

with energies greater tha}’h_ﬂ upward in the energy spec- from Eq.(9). In the present application we select the lowest
trum. The shell-model Hamiltonian, used in the actual calcuxiates obtained in each channel. Once the opetaterde-

lations, takes the form termined the effective Hamiltonian can be constructed as
HO é\: P (5i_ﬁj)2+ mQZ(r»__r»_)z = (velHzedap)= > | (yplK)Er(klap)
PE 11 2Am 2A P Kek
A 2
m() + KYE, (k .

+2 P|V;— ——(F,—F)2| P QEQ (vplK)Ex |aQ><aQ|w|ap>

i< 2A o

Q (10

+BP(Hg— 21Q)P, (7)

This Hamiltonian, when diagonalized in a model-space basis,
reproduces exactly the sktof dp eigenvalueg, . Note that
SO I . . the effective Hamiltonian is, in general, quasi-Hermitian. It
The effective interaction introduced in E(f) should, in can be Hermitized by a similarity transformation determined

principle, exactly reproduce the full-space re_sults in thefrorn the metric operatoP,(1+'w)P,. The Hermitian
model space for some subset of states. In practice, the eﬁeﬁ'amiltonian is then given bj19]

tive interactions can never be calculated exactly as, in gen-
gral, for anA-nucleon system aA-body effective interaction Hy o= [ Po(1+ 0 ) Po]YH, o Po(1+ ' w)P,] Y2
is required. Consequently, large model spaces are desirable (12)
when only an approximate effective interaction is used. In
that case, the calculation should be less affected by any im- Finally, the two-body effective interaction used in the
precision of the effective interaction. The same is true for thepresent calculations is determined from the two-nucleon ef-
evaluation of any observable characterized by an operator. lfgctive Hamiltonian(11) as Ves=H, ¢—Hop. Note that we
the model space, renormalized effective operators are refistinguish the two-nucleon system projection operators
quired. The larger the model space, the less renormalizatiop, Q, from the A-nucleon system operatoBs Q.
is needed. To at least partially take into account the many-body ef-
Usually, the effective Hamiltonian is approximated by afects neglected when using only a two-body effective inter-
two-body effective interaction determined from a two- action, we employ the recently introduced multivalued effec-
nucleon system. In this study, we use the procedure as dgve interaction approacf20]. As a consequence, different
scribed in Ref[17]. To construct the effective interaction we effective interactions are used for differe®) excitations.
employ the Lee-Suzuki[18] similarity transformation The effective interactions then carry an additional index in-

method, which gives an interaction in the form dicating the sum of the oscillator quanta for the spectators
PoVeiPo=PoVP,+ P.VQwP,, with o the transformation Ngps defined by

operator satisfyingon=Q,wP,. The projection operators

where g is a sufficiently large positive parameter.

P,, Q,=1—P, project on the two-nucleon model and Ngps= Nsum— No— Nepsmir= Neum— N, — Nepsmine (12
complementary space, respectively. Our calculations start
with exact solutions of the Hamiltonian where Ng,, and N/, are the total oscillator quanta in the

initial and final many-body states, respectively, amngand

B2+p2 1 N, are the total oscillator quanta in the initial and final two-
HY=H{,+ VY= L =mOA(F24+F3)+V(F— ) nucleon statega) and|y), respectively Ngyominis the mini-
2m 2 mal value of the spectator harmonic-oscillator quanta for a
mQ2 given system. Here, foA= 10, Ng,smii=4. Different sets of
— (ﬁl—r2)2, (8) the effective interaction are determined for different model
2A spaces characterized Bs,s and defined by projection op-
erators
which is the shell-model Hamiltonia(6) applied to a two- ]
nucleon system. We construct the effective interaction di- 0 if N3+ Na=<Npa—Ngps
rectly from these solutions. Let us denote the two-nucleon Q2(Nspd = 1 otherwise, (133
harmonic-oscillator states that form the model spaceras
and those that belong to th@ space agag). Then the P2(Ngpd =1~ Qz(Ngp9. (13b

Q-space components of the eigenvedtior of the Hamil-
tonian(8) can be expressed as a combination offhspace In Egs. (13), N,.x Characterizes the two-nucleon model
components with the help of the operatar space. It is an input parameter chosen in relation to the size
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of the many-nucleon model space. This multivaluedThis is related to the many-nucleon model-space size and, in
effective-interaction approach is superior to the traditionalprinciple, is determined by that size. Traditionally, however,
single-valued effective interaction, as confirmed also in ahe Q=0 space used to determine tf& matrix does not

model calculatior]21]. necessarily coincide with the many-particle model space

Our goal in this study is to evaluate the Fermi matrix[26,27. In our calculation, the two-nucleon model space is

element characterized by a restriction on the number harmonic-
oscillator quanta  N;<Npax No=<Nax: and

(N;+Ny)<N, .- Here N;=2n;+1; is the harmonic-
oscillator quantum number for the nucleoni=1,2. This
type of restriction guarantees an orthogonal transformation
which is equal tov2 for an isospin-invariant system. Note petween the two-particle states and the relative and center-
that for a system with isospin breaking, the isospin-loweringyf-mass coordinate states. For the preseitt 4alculation,
operatorT _ should be renormalized in a similar way, as theiye choice oN =6 appears to be appropriate. However, it
interaction used for calculation of the eigenstates appearing,s peen observed in the p&E7,28,29 that when the Lee-

in Eq. (14). In fact, we can apply the formalism described in Suzuki procedure combined with thH@-matrix calculation
Ref. [22] to construct a two-body effective operatdr ()er according to Ref{26] (which is equivalent to the procedure

consistent with the two-body effective interaction derlved&\,e are usingis applied to calculate the two-body effective
above and exact for the two-nucleon system. Then we coul . o . i
Interaction, the resulting interaction may be too strong. This

use such an operator in tifebody calculation. We studied . . : . :
P y is in particular true when the multivalued approach is used.

such a possibility in a solvable-model calculation as deS | ible adiust A di d to deal with thi
scribed in Ref[21]. Here we did two-nucleon calculations everal possible adjustments were discussed to deal wi 1S

with the effectiveT _ operator. The observed renormalization Problém[17,28 and amounted to introducing an extra pa-
of the bare operator for the model spaces of the size used fitMeter. In the present calculations, we do not introduce any
our calculations was, however, insignificant compared to th&/€W parameter, but rather we trédf,,, as a free parameter
other effects as described further. Therefore, inAakody — @nd useNm,,=8 for the 4 calculations andNp,a,=6 for
calculations we used the bafe operator. the 28Q) calculations, respectively. With this choice we ob-

tain quite reasonable binding energies for the studied nuclei.
We have also performed severdl(2 test calculations with

Me=(1B,0"1|T_|*C,0"1), (14)

IIl. APPLICATION TO THE A=10 SYSTEM single-valued interactions that were derived following Ref.
WITH ISOSPIN BREAKING [30], as opposed to the multivalued interaction discussed in
Sec. Il. To obtain reasonable binding energies with the

In order to evaluate the Fermi matrix eleméBt. (14)],  single-valued interaction we do not have to changeNhg,
we apply the formalism outlined in Sec. Il fér=10 nuclei.  value from that corresponding to the many-nucleon space,
In the calculations we use the Reid93 nucleon-nucleon POe.g., Npa=4 for the ZQ calculation. This difference of
tential[23] and consider the following isospin-breaking con- yreatment of the two types of interactions follows from the

tributions. First, the Reid93 potential differs in the=1  ¢5¢¢ that the overall strength of the single-valued interaction
channels for proton-neutrorpf) and proton-proton gp), is weaker.

neutron-neutronr(n) systems, respectively. Second, we add  rjrg our results depend on the harmonic-oscillator fre-
the C°“'°”?b potential to thep Re|d93_pote_nt|al. Conse- guency(). We have studied this dependence by performing
quently, using _the Eq§(.9)—(11), we derive different two- calculations for the values() =14, 15.5, and 17 MeV.
body effective |nt(_eract|ons.for thpn, pp,_andnn systems. Let us also mention one important feature of the present
No other mechanisms for isospin breaking are considered. . .

approach. For both the multi-valued and the single-valued

As we derive the effective interaction microscopically . ¢ " lculati d ¢ break th i ¢
from the nucleon-nucleon interaction, the number of freeI))n eractions our calculations do not break the separation 0

adjustable parameters in the calculation is limited. the center of mass and the internal relative motion. In par-

First, we have the choice of the model-space size in thdcular, & variation of the parametgrintroduced in Eq(7)
shell-model diagonalization. That is, however, constrainedl0€s not change the eigenenergies and other characteristic of
by computer capabilities. The largest model space we werthe physical states. This is so due to the choice of a complete
able to use was the space allowing all% excitations rela- NA{ many-nucleon space and the triangular two-nucleon
tive to the unperturbed ground state. Most of the calculationghodel space for deriving the effective interaction as well as
were done in them scheme using the many-fermion- due to the procedure used to derive the effective interaction.
dynamics codd24] extended to allow the use of different  In Figs. 1, 2, and 3 we present the experimental and cal-
pn, pp, andnn interactions. We also performed some cal-culated spectra of%B for #Q =14, 15.5, and 17 MeV, re-
culations with theoxBasH shell-model codé25]. In them  spectively, for the 2Q and 4 model spaces. In general,
scheme, the dimensions associated wWitB and °C are  we observe an overall improvement in the spectra with the
581 740 and 430 137, respectively. To study the dependenamnlargement of the model space in all three cases. Also, the
on the model-space size, we performed calculations in thd#() calculations exhibit more stability with regard to
2nQ) space as well. In that space, the dimensions drop tehanges in the harmonic-oscillator frequency than do the
14 502 and 10 111, respectively. 2n0) results. The agreement with experiment improves when

Second, we have the choice of the two-nucleon modefjoing fromz Q=14 MeV to# Q=17 MeV, in particular for
space used for the evaluation of the effective interactionthe ground state and the lowest states. In fact, from Fig. 3 we
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FIG. 1. Experimental and calculated excitation spectrd 8t FIG. 3. Same as in Fig. 1 for the harmonic-oscillator energy of

The results corresponding to the model-space sizes@fahd Z.() hQ =17 MeV.
relative to the ground-state configurations are presented, respec-
tively. The harmonic-oscillator energy éf) =14 MeV was used.

The best agreement with experiment is achieved for
hQ =14 MeV, where the calculated rms point-proton radius

find that a very reasonable description of the spectra is obs also in agreement with the experimental value. On the
tained forzi (=17 MeV. o o other hand, the splitting between thé D states of'°C and

In Table I the overall behavior with respect#) is il- 108 \hijch is experimentally 2.69 MeV, is overestimated in
lustrated. In general, we observe a reasonable reproductiQ§yr calculations by 8%, 11%, and 14% for th@ = 14, 15.5,
of the binding energy, with a moderate decrease occurringng 17 MeV calculations, respectively. Since the correct
for increasingi{). Using free-nucleon effective charges, we 10c_10g¢ splitting is obtained foh Q=14 MeV, the excess
find that although the quadruple moment for the03state is i, the 19C-198 splitting suggests that the isospin breaking
underestimated considerably, the magnetic dipole moment ig e the strongr=1 force may be too large. One possible
well reproduced. In addition, the point-proton rms radius eX-gxplanation is that our approach for deriving the effective
hibits a fairly strong dependence and increases with decreagsieraction tends to exaggerate the differences between the
ing 7€). For the rms radius, we find that the best agreemeng, and nn, pp potentials. Such an artificial effect should
with experimen{32] is achieved fori () =14 I\qOeV. decrease with increasing model-space size. On the other

From the point of view of thes decay of ™C, a good hang, it is also possible that the Reid93 potential itself over-
description of thélT =1 states is important. From Figs. _1—3 estimates differences between e and pp,nn systems in
we can see that the calculaté®B T=1 states have the right the T=1 channel. For the most part, we find the best overall
relative positions and are reasonably stable with variations Oigreement for the rms point proton radius, binding energy,
both the model-space size afi@. We have also performed 514 coulomb energy splitting fgrQ =14 MeV. Given that
41 calculations for'®Be to study the splitting of the isospin  the isospin mixing is largely driven by the Coulomb interac-
analog states in the whole isospin-multipfC-'%B-'%e.  tion, which is then dependent on the size of the nucleus, we

The experimental ground-state spliting betweElC and  feel that the best value for the isospin-mixing correction to
1%Be is 4.66 MeV, while our calculated values are 4.68, 4.83the Fermi matrix element will be achieved for

and 4.94 MeV fori()=14, 15.5, and 17 MeV, respectively. 10 =14 MeV.

The most important results of our study are also summa-
rized in Table I in the last two rows. The calculated isospin-
IOB 50 =15.5 MeV mixing correctionsdc=1—|Mg?/2 (in %) are presented for
- all three choices of) and for both 4 and ZQ model
spaces. Again, a correlation between the radius and the
isospin-mixing correction is clearly observed, &g de-
creases with increasing radius. This is simply understood in
terms of a larger radius implying weaker Coulomb effects.
On the other hand, with an increase in the model-space size,
a significant increase in the isospin-mixing correction is ap-
parent. This is due to the fact that in the larger model space,
0“1 the excitation energies of thepilh 071 states decrease,
1*0 hence leading to greater mixing. For this reason, the more
30 realistic multivalued effective interaction is important. We
Exp 40 21Q have also performed test calculations with the single-valued
interaction in the 2 space and found; to be smaller by
FIG. 2. Same as in Fig. 1 for the harmonic-oscillator energy ofapproximately 30%.
A0 =15.5 MeV. Our 410 results suggest an isospin-mixing correction

271

40
270
271
30

E, [MeV]
D NN W R N %
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TABLE |. Experimental and calculated binding energiés, MeV), magnetic momentsin w,), and
quadrupole momentgin e fm?) of 1°B. Also the experimental and calculated binding energies in MeV and
the point proton radiugin fm) of 1°C are presented. The results correspond to #®@ dalculations. In
addition, the isospin-mixing correctiof. (in %) is shown as obtained in both thé@ calculations and the
2nQ) calculations. Results of three different calculations with the harmonic-oscillator parameter taken to be
nQ=14, 15.5, and 17 MeV, respectively, are presented. The effective interaction used was derived from the
Reid93 nucleon-nucleon potential. The experimental values are taken from[&egf2.

Property Expt. Q=14 MeV A =155 MeV Q=17 MeV
Es(1°B) 64.75 63.61 62.78 61.53
Q(3%0) 8.416) 5.85 5.64 5.52
1(370) 1.80 1.86 1.85 1.85
w(170) 0.6312 0.84 0.84 0.84
Es(*°C) 60.32 58.68 58.19 56.83
K2y 2.31+0.03 2.28 221 217
6c(4Q) (%) 0.084 0.091 0.097
6(210) (%) 0.055 0.061 0.067

8c~0.08-0.1%. This is compatible with the previously lation of this magnitude. However, from Table | we observe
published value of:~0.159)% by Ormand and Brown an increase o by ~0.03% between thefi@) and the 4
[13]. That value was a sum of two contributions. First, aboutcalculation. Therefore, we might expect an increase of simi-
0.04% came from the shell-model wave-function renormaldar magnitude for an increase of the model-space size beyond
ization due to the isospin mixing and was obtained im0 44(). Therefore, the more realistic value of the isospin-
shell-model calculation using phenomenological effective in-mixing correction from our calculation would be
teractions. Second, the amount 0.09% was due to the devid-~0.123)%, where the uncertainty is estimated from the
tion from unity of the radial overlap between the convertedchange indc obtained when using an increased model space.
proton and the corresponding neutron. This effect was attrib-
uted to the influence of states lying outside tH&)0space.
The radial wave functions were obtained in a Hartree-Fock
calculation using Skyrme-type interactions. Because we use
a multiconfiguration model space in the present calculation,
we should have both effects included consistently at the The effects of isospin mixing on the transition matrix el-
same time. ement for the superallowed Fergidecay of*°C were esti-
Another important factor in the calculation is the position mated within the context of a large-basis, shell-model calcu-
of the 2u() states. As discussed before, the position of thdation. The calculations were performed assuming no closed
1p-1h states influences the ground-state isospin mixing. Uneore and an effective interaction based on a realistic two-
fortunately, the excitation energy of these states is not knowbody nucleon-nucleon interaction, while including the Cou-
experimentally. However, in our calculations the multivaluedlomb interaction between protons. Contrary to previous esti-
effective interaction is used and a more realistic descriptionmates for the isospin corrections, this calculation was carried
of these states should be obtained, especially in #@ 4 out within a model space that included mdifQ excitations.
model space. On the other hand, in an analogous calculatiohs a consequence, the conventional configuration mixing
for “He, it was observed that a8 model space is needed and radial mismatch contributions were evaluated within a
to get the 2() dominated 0 state close to the experimental unified framework simultaneously and the usual separation
excitation energy17,20. There are states like'D at 5.18 was not necessary. With regard to parameters used within the
MeV in 1B or 0%1 at 6.18 MeV in®Be, which are believed calculation, we find a correlation between the isospin-mixing
to be 2p-2h, 24() excitations. We do not observe any such correction and the Coulomb splitting between the isotopic
states below 7.5 and 12 MeV, respectively, in our calculamultiplets, which in turn is governed by the nuclear size
tions. The first excited D1 state in'°Be obtained in the#()  through the oscillator parameter. Given that the isospin-
calculation withAQ =14 MeV lies at 9.8 MeV. It is, how- mixing correction is primarily a Coulomb effect, the best
ever, predominately a7 state. There can be two reasons value for §¢ is taken to coincide with the oscillator param-
why we do not get such states. First, these states have not yefer that correctly reproduces the Coulomb splittings. With
converged in the Lanczos procedure. Second, and mot@gard to the model-space size, a clear improveni@nan
likely, the 4.0 model space is too small for the right de- indication towards convergenci most observables is evi-
scription of the 2() excitation states. Therefore, it would be dent when the size of the model space is increased frioéh 2
desirable to extend the present calculations to a larger, e.gq 44}, but é¢ is found to increase by only 0.03%»n mag-
6702, model space. Unfortunately, due to the computationahitude in this case. Hence our final estimate # is taken
limitations, it is not possible at this time to perform a calcu-to be 0.123)% (where the 4Q result has been increased by

IV. CONCLUSION
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