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Scaling-model analysis of nuclear breathing modes in view
of a realistic relativistic mean-field parametrization

T. v. Chossy and W. Stocker
Sektion Physik, UniversitaMunchen, Am Coulombwall 1, D-85748 Garching, Germany
(Received 6 May 1997

We calculate breathing-mode energies in the scaling model for several parameter sets that are under discus-
sion in nuclear relativistic mean-field theory. The relativistic Hartree approximation is used together with a
schematic approach for the surface incompressibility. Empirical data can only be reproduced reasonably with
parameter sets that lead to a nuclear matter compressibility modulus not higher than 230 MeV.
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PACS numbds): 21.60.Jz, 21.30.Fe, 21.65f, 21.10.Re

The relativistic mean-field approa¢éRMF) in the form of  small amplitude density oscillations around the saturated
the nonlinears— w— p model is in full practical use for the ground state are a good testing field for the RMF approach.
description of nuclear properties. Despite a well founded=rom its ansatz RMF should be superior to SHF and GHF in
field-theoretical background it still has some phenomenothe description of breathing modes of nuclei, and, therefore,
logical aspects, in particular from the nonlinear terms in itstheir RMF investigation should help to determine reliable
Lagrangian density: unigue RMF parameters.

The present short RMF study of nuclear breathing modes
starts from a previous investigati¢g], which was based on
the scaling model introduced by Blaizet al. [10,11]. The

1 ) 1, main deficiency of this earlier investigation came from the
+ 5(0M§D5“¢—ma¢2)+ 5 My, 0= 7 F R crude treatment of the surface incompressibility with an es-

timated uncertainty of around 30%. We use now a method

L= (i 7#0,~M+8,0— 0,70, 9,7"7-0,) ¥

1 - - 1. - 1 3 that—although based again on a model description of the

+ Empbu'b”_ 4 G G = §Mb(ga€") nuclear compression—does much more take into consider-
ation the dynamic§12]. In particular, it can account for the

1 4 coupling of bulk and surface vibrations. It has been worked

- Zc(gu‘P) ' 1) out and used in nonrelativistic dynamics of breathing modes

[13]. It is based on an approximate ground-state energy den-
- . L . sity functional that can also be regarded as an approximate
whereF,,=d,0,~d,0, andG,,=d,b,—d,b,, inwhich  relativistic representation.
b, denotes an isovector. Mainly in order to introduce notations we repeat first
The related parameters are fitted mainly to nucleasome basic quantities and relations necessary for the use of
ground-state properties. Some older approved parameter séte scaling model. Following the scaling model and Blaizot
are still under discussiofil—3] together with more recent [11], we first define a finite-nucleus incompressibility for a
ones[4,5], so that there is a request for convergence of thewucleus of mass numbek and asymmetryl=(N—2Z)/A
parameter sets with an overall efficiency as already reachettirough:
by nonrelativistic Skyrme-Hartree-Fock (SHP and
Gogny-HF (GHF) approaches. The latter are still in vogue, Mo,
e.g., as a reliable basis to extrapolate to exotic nyégi, K(A, )= gﬂr )Ebrs 2
despite their much more phenomenological basis.
After some promising attempts no characteristic nucleaghere(r2) denotes the rmmatterradius. Next we make the
property seems to remain that is only describable in thgeptodermous expansion:
framework of RMF. In principle, spin-orbit effects in nuclei
could be such candidates since the spin-orbit energy density k(A 1)=K,+ KA~ 3+ K 2+ K ouZ?A~ 4B+ |
in RMF depends on gradients of the meson fields, and in 3
SHF, differently, on the density gradient. This distinction
might take effect on the spin-orbit splitting of high-lying where, in the scaling-model approximation,
single-particle states with the consequence of a change in the
shell structure. However, recently, RMF spin-orbit potentials
were shown to be reasonably well reproduced also by the Ks=
Skyrme ansatf8].
The RMF approach describes the nuclear saturation ,
mechanlsm realistically as a consequence of a gharacterlstlc Kys=Keym+ L(— - 6) , (5)
interplay between scalar and vector meson fields. Thus, Ky

!
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\
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and tions given above are valid regardless of the choice of theo-
retical methods, in particular they hold also for RMF
305 (K’ approaches.
coul:5_ro K, (6) The crucial quantityr in Eq. (4) is defined as the double

derivative of the surface tensienof compressed symmetric

One sees the possibility of fitting E(B) directly to the data, SINM with respect to the asymptotic densjiy, taken at the
and extracting empirical values fdt,, along with all the Saturation densityy,. o depends also on how the surface
other coefficients. However, it is impossible to extract aitself is compressed even if the basic structure of the nucleus
unique value ofK, from the measuredE,, in this way  With a bulk and a surface part remains unchanged.
[14,15, all values over the range 100—400 Méxhd maybe The assumption of the scaling model is that at all stages
over an even wider rangéeing compatible with the Gronin- during the dynamical compressional oscillations the nuclear
gen datg16—18. Thus there is no alternative to the generaldensity undergoes scaling. By microscopic random-phase-
strategy pioneered by Blaizot, Gogny, and Grammatico@pproximationRPA) calculationd11] it has been found that
[10], i.e., to simply trying out different proposed interaction at least for medium heavy and heavy nuclei breathing modes
schemes. In our present RMF investigation we start thereforare well represented by scaled densities. In a nonrelativistic
from a microscopic Lagrangiafl), with parameter sets in hydrodynamical modef13] the scaling prescription turned
current use that give a good reproduction of nuclear groundout to be practically exact for values fro’A=125 to
state properties. Then we calculate the scaling-model valued= 130; even®*®Pb is well reproduced. This is corroborated
of the coefficients of the leptodermous expansi@ih and by careful RPA calculationgl0,11].
obtainK (A, 1) values that are compared to the experimental A recent nonrelativistic microscopic analy$@0] based
data extracted via Eq2) from the breathing-mode energies on realistic finite range Gogny effective interactions comes
E, for several nuclei using the experimental values(fd). to .the conclusion thaF the microscopic metho_ds are a more
The quantitieX’, Kgym, L, o, andpgo, like J andK,, reliable tool to describe nuclear monopole vibrations than
are defined with respect to infinite nuclear mati&M), as  phenomenological liquid-drop-type expansions fO(A,l)
follows. If we express the energy per nucleen,of INM as as given in the ansa(B) which, however, remain useful for
a function of the total baryon densiyand the asymmetry @ first initial analysis. There are also expansions¢A,1)
8=(pn—pp)!p, Wherep, andp,, refer to neutron and proton S|m|Iar_to the leptodermous expansi@®) based, however, _
densities, respectively, ang= p,+ p,, then the above coef- ©n a picture where the structure of a compressed nucleus is

ficients appear in the expansifhd: obtained by constraining its radiysee e.g., Ref{21]). A
liquid-drop-type expansion d€(A,1) is also obtained. How-

1 1 ever, the leading term differs by value from the correspond-
e(p,8)=|a,* EKVGZ— 1—62K'63+ e ing term in Eq.(3). All terms together nevertheless seem to
end up in a value foK(A,l) comparable to the total value of
1 1 Eq. (3). Also the generator coordinate method was useg
+8% I+ glet 1_8Ksym€2+ o]+, (7)) Ref.[22)) to describe relativistically the breathing modes. In

this method—similar to that of Ref21]—the nucleus does
not exhibit a separation into a bulk and a surface part during
oscillation, and therefore it cannot be compared directly with
the scaling model.

For the determination of, Eq. (4) in a full relativistic
Thomas-Ferm{RTF) or Hartree(RH) calculation one would
have to perform calculations of over a range of nonsaturat-
ing densities where the external pressure must be simulated
by a constraint depending on the baryon densities, and even
on meson densities. In an attempt this complicated problem
was circumvented in Ref9] by using a pocket expression
. _ for o where RH ground-state quantities could be inserted.
erl P(2)=pc=poo- ©  This preliminary formula was based on a general ground-

state energy density functioné@hat therefore could be even
That is, deep beneath the surface the local properties of synﬁ(—elatw'sw' However, it was derived for the compressed

metric SINM tend towards those of saturated symmetricStat'C state that is lowest in energy compared to other com-

INM. A specific surface energy for symmetric SINM is now pression modes of the su_rface. Since th_e breathing mode cor-
defiﬁed according to responds rather to a scaling of the density the formula has the

tendency to givenagnitudef o (o always being negatiye
" that are too large by up to 30%, as compared to the scaling
UOOZJ {&(2)—ayp(z)}dz, (100  value (see Refs[23] and [24] for the nonrelativistic and
—o relativistic cases, respectively
This error in o was the largest source of error in the
whereé&(z) is the local energy density in SINM argg is the  calculation ofK(A,l) in Ref.[9] compared to pure scaling
energy per nucleon in symmetric INM at saturation, as decalculations. Another source of error—also in the present
fined in EqQ.(7). Thenag=4mr304. We note that the rela- calculation—concerned the higher-order terms that are ne-

wheree= (p— pog)/ pog, iN Which we denote by, the equi-
librium (saturation density in the symmetric casé=0. We
also define the charge-radius constant lpy: (3/4mpg) *°.

The remaining quantitiesas; and o, refer to symmetric
semi-infinite nuclear mattdSINM) with the limiting behav-
ior:

lim p(z)=0, (8)

z—»
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TABLE I. RMF parameter set€C?=g?(M/m;)?, i=0,0,p.

NL-Z [1] NL1 [1] NLC [2] NL3 [4] NL-RA [5]  NL-SH[3]
M (MeV)  938.90 938.00 939.00 939.00 939.00 939.00
m, (MeV) 488.67 492.25 500.80 508.194 515.00 526.059
m,, (MeV)  780.00 795.36 783.00 782.501 782.60 783.00
m, (MeV)  763.00 763.00 770.00 763.00 763.00 763.00
c? 373.2479 373.1760 334.3711 356.3846 308.08 347.533
c? 241.4392 245.4580 214.1854 238.4424 204.00 240.997
c? 35.6700 37.4175 27.8800 30.3161 31.00 29.0954
b 0.0027922 0.0024578 0.0028703 0.0020553 0.0019 0.0012747
c —0.0039347 —0.0034334 —0.0036849 —0.0026508 —0.0019 —0.0013308

glected in Eq(3). An nonrelativistic analysis based on Refs.
[25] and[26] shows that the magnitude of the net contribu-
tion of these terms t&(A,l) is of the order of 10 MeV or

A comparison of the value af in the recent approach for
the energetically lowest static compression mode with the
old formula of Ref.[9] suggests an uncertainty of less than

less. Finally, there is the question of the validity of the scal-8%. In view of the fact that the basic quantity in our

ing model, which is implicit in Eq.(3) itself, and in the
calculation of its coefficients according to Eq4)—(6). By
comparing with RPA calculations it has been fod2d] that
the scaling model overestimatiégA,1) slightly, but by not
more than 10 MeV.

In the present analysis we are now following the im-
proved formalism of Refg[12, 13 that takes into account
the scaling behavior of the density so that the characteristi
deficiencies of Ref[9] can be avoided. Starting from a
simple model energy density functional, that should also b
able to simulate roughly the relativistic one, an analytical
treatment of a one-parameter class of compression mo
could be carried through. The formula thus obtaineddfan
the scaling mode is

(dzo) 19K, 1y
o= - [ — ,
dpg 81 poo

Pc=Poo

dé¥

breathing-mode analysis I§(A,1) with K, as leading term,
such an error would not much affect our conclusions, since
the values ofK(A,l) would only be modified by about 10
MeV. Realistic Skyrme-extended Thomas-Fermi calculations
confirmed the basic analytical model almost quantitatively
(see Ref[12]).

The pocket formulg1l) may be a basis to estimake;
Eq. (4) for more complicated interactions. A symmetric

é:ermi function reproducing in the best way the exact density

gives the equivalen& parameter in Eq(11). To check the
oposed method we refer to the exact scaki{d\,|) values
(90<A=<208) following from Ref.[26] for the zero-range
Skyrme interactions SllI, Ska, and SKMWith the a param-
eters of Ref[28] we gotK(A,l) values that approximate the
exact ones within 2%sSlIl), 6% (Ska, and 10% (SkM). As
expected from the derivation of E(L1) the agreement was
the better the smaller the asymmetry of the density was.
Therefore, the model approach based on(&d). will be a

wherew is the surface diffuseness parameter of a symmetrigood first approximation to the RMF values K{A, 1), the

Fermi density.

more since the RMF nuclear densities for the standard RMF

TABLE Il. INM und SINM coefficients for the parameter sets of Tablésée text for explanation of quantitjes

NL-Z NL1 NLC NL3 NL-RA NL-SH

a, (MeV) ~16.18 —16.42 —15.77 —16.24 ~16.25 —16.35

poo (fM™3) 0.1508 0.1518 0.1485 0.1482 0.1570 0.1460
ro (fim) 1.17 1.16 1.17 1.17 1.15 1.18

K, (MeV) 172.8 211.1 224.5 271.5 320.5 355.3

K’ (MeV) 4225 327 278.1 —203.0 ~216.2 ~601.6

J (MeV) 41.72 43.46 35.02 37.40 38.90 36.12

L (MeV) 133.91 140.07 107.97 118.53 119.09 113.64
Keym (MeV) 140.20 142.68 76.91 100.88 62.11 79.77
oo (MeV fm?) 1.038 1.098 1.021 1.069 1.169 1.092
ag (MeV) 17.71 18.66 17.61 18.47 19.43 19.04

a (fm) 0.5279 0.5160 0.4763 0.4546 0.4289 0.4125
& (MeV fm?) —141.9 —168.4 —168.9 —-195.4 —205.3 —2355

K (MeV) ~192.9 -188.3 —234.1 —233.0 —303.4 —304.6

Kys (MeV) ~335.9 -676.1 —437.1 ~698.9 ~732.8 ~7945

K coul (MeV) —-4.12 ~5.83 ~4.99 ~6.45 ~6.52 ~-7.11
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FIG. 2. Finite  nucleus scaling incompressibility
K(A=208,1=0.211) of 2%%Pb as a function oK, for the RMF
parameter sets of Table I. The experimental value with its error bar
is indicated by the box near the vertical axis. The straight line is a
linear least-squares fiK(208,0.211} —20.07 Me\+0.69K,, .

FIG. 1. Finite nucleus incompressibilitg(A,1) for several nu-
clei calculated with the RMF parameter sets given in Tab]S&e
Ref. [9] for experimental values df(A,l)].

parameter sets come nearer to symmetric Fermi functions
than most SHF densities.

In Table | the RMF parameter sets used in the prese
investigation are arranged in order of increasing values o
K, . Table Il gives the values of all INM coefficients entering
into the expansion Ed7) of the energy per nucleog This
table also shows the RH values of the SINM quargity, of
the surface tensiomy, Eq. (10), and of thea parameter of
the Fermi function obtained by a fit to the numerical SINM
density. Thea parameter is known from experiment quite
precisely to be (0.580.03) fm[29]. Thus this quantity has
to be regarded also as a significant criterion for RMF param
eter sets. The value of derived from Eq(11) as well as the
values ofK,,, K,s, andK o, obtained from Eqsi4)—(6) are
given in Table Il in addition.

Figure 1 displays the calculated values KfA,l), and
compares with the experimental valug, extracted from
Refs.[16—18 using Eq.(2). A sufficient correspondence be-
tween the scaling predictions and experiment is achievega
only for the parameter sets NL-Z, NL1, and NLC, having a
value ofK, lower than 230 MeV.

Neither the slope oK(A,l) for increasing mass numbers
A nor the dependence on the neutron ex¢esm® reproduced

very well by any parameter set of_TabIe I. These deficiencie%ith a microscopic Skyrme RPA approag0]. One also
are expected to be reduced if higher-order terms are take%ould note that the parameter sets vithgreater than 230

into account in Eq.(3) (se_e Re_f.[26]). In particular, the MeV give surface thicknesses that are out of the experimen-
higher-order terms for the isospin and curvature dependenc[g\IIy acceptable regiofcf. Table 1)

of K(A,l) are expected to change the slope of the curve that
can be drawn through corresponding points in Fig. 1 in order

here RPA analyses show small amplitude motion and scal-
g to be well fulfilled (see Refs[10, 20), are plotted as a
unction ofK,, for the six parameter sets under investigation.
The experimental region for the value kf,(>°%b) is indi-
cated on the vertical axis, and again the conclusion akgut

is supported. The six parameter sets are all obtained by fits to
special ground-state properties, in particular nuclear binding
energies and radii. The ground-state density fall off in the
surface region was not taken systematically into account.
One might call these Lagrangians ground-state equivalent.
With a view to this property Fig. 2 enforces a linear relation
between calculate{ ,(*°%b) values and the corresponding
K, . Obviously,K, cannot be determined in a unique way
from the ground-state properties that are involved. The inclu-
sion of compressibility properties, however, should fix this
K, value better.

To summarize, despite all remaining uncertainties in our
Iculations, we conclude that RMF parameter sets being
compatible with the measured breathing-mode energies
should not have a value &€, higher than about 230 MeV.
This is in agreement with a recent nonrelativistic analysis
based on Skyrme scaling model calculatip88] as well as

to guide the eyes. However, the absolute changes introduced ACKNOWLEDGMENTS
by relatively small higher-order terms in E¢3) do not
change our conclusion sinég(A,l) is dominated by, . We wish to thank J. M. Pearson and P.-G. Reinhard for

In Fig. 2 theK(A,1)-scaling values calculated f&”®Pb,  valuable comments and helpful discussions.



2522 T. v. CHOSSY AND W. STOCKER 56

[1] P.-G. Reinhard, Rep. Prog. Phy2, 439 (1989. A. van der Woude, and M. N. Harakeh, Phys. Re\B&>2562

[2] B. D. Serot, Rep. Prog. PhyS5, 1855(1992. (1988.

[3] M. M. Sharma, M. A. Nagarajan, and P. Ring, Phys. Lett. B[18] W. T. A. Borghols, S. Brandenburg, J. H. Meier, J. M. Schip-
312 377(1993. pers, M. M. Sharma, A. van der Woude, M. N. Harakeh, A.

[4] G. A. Lalazissis, J. Koig, and P. Ring, Phys. Rev. &5, 540 Lindholm, L. Nilsson, S. Crona, A. Hansson, L. P. Ekstro,
(1997). N. Olsson, and R. de Leo, Nucl. Phys504, 231 (1989.

[5] M. Rashdan, Phys. Lett. B95, 141 (1997. [19] W. D. Myers and W. J. Swiatecki, Ann. Phy@\.Y.) 55, 395

[6] W. Nazarewicz, J. Dobaczewski, T. R. Werner, J. A. Maruhn, (1969. ) i )
P.-G. Reinhard, K. Rutz, C. R. Chinn, A. S. Umar, and M. R. [20] J. P. Blaizot, J. F. Berger, J. Dechargid M. Girod, Nucl.

Strayer, Phys. Rev. G3, 740 (1996; J. Dobaczewski, W. o1 ghst'JAsgl_’ 435(13?.D Jack Ph 141(198
Nazarewicz, T. R. Werner, J. F. Berger, C. R. Chinn, and J[ | B. K. Jennings and A. D. Jackson, Phys. Ré. ( 0.

[22] M. V. Stoitsov, M. L. Cescato, P. Ring, and M. M. Sharma, J.

[7] EeCRhui;geh;lblclgesnitazrsqrg(éii?nlich T. Schilling, P.-G. Rein- Phys. G20, L1 (,1994); Lalazissis, Kaig, and Ring[4].
) T T T o [23] M. Farine, J. Cte, J. M. Pearson, and W. Stocker, Z. Phys. A
hard, J. A. Maruhn, and W. Greiner, Phys. Rev56; 2338 309, 151 (1982.
(1997. [24] W. Stocker and M. M. Sharma, Z. Phys.389, 147 (1991).
[8] M. Onsi, R. C. Nayak, J. M. Pearson, H. Freyer, and W.[o5] 3 M. pearson, M. Farine, and F. Tondeur Piroceedings of
Stocker, Phys. Rev. 65, 3166(1997. 6th International Conference on Nuclei far from Stability,
[9] D. Von-Eiff, J. M. Pearson, W. Stocker, and M. K. Weigel, Bernkastel-Kues, 199dited by R. Neugart and A. {to
Phys. Rev. C50, 831(1994. (Institute of Physics Publishing, London, 1998. 857.
[10] J. P. Blaizot, D. Gogny, and B. Grammaticos, Nucl. Phys.[26] R. C. Nayak, J. M. Pearson, M. Farine, P. Gleissl, and M.
A265, 315(1976. Brack, Nucl. PhysA516, 62 (1990.
[11] J. P. Blaizot, Phys. Ref64, 171(1980. [27] 3. P. Blaizot and B. Grammaticos, Nucl. Phys355, 115
[12] M. Brack and W. Stocker, Nucl. PhyA388, 230 (1982. (1981).
[13] M. Brack and W. Stocker, Nucl. PhyA406, 413 (1983. [28] M. Brack, C. Guet, and H. B. Hansson, Phys. Reft23 275
[14] J. M. Pearson, Phys. Lett. B71, 12 (199)). (1985.
[15] S. Shlomo and D. H. Youngblood, Phys. Rev.4Q, 529 [29] A. Bohr and B. R. MottelsonNuclear Structure(Benjamin,
(1993. New York, 1969, Vol. I; R. C. Barret, Rep. Prog. Phy37, 1
[16] S. Brandenburg, W. T. A. Borghols, A. G. Drentje, L. P. Ek- (1974; W. D. Myers, Droplet Model of Atomic NuclefPle-
stram, M. N. Harakeh, A. van der Woude, A. Kansson, L. num, New York, 197, H. de Vries, C. W. de Jager, and C. de
Nilsson, N. Olsson, M. Pignanelli, and R. de Leo, Nucl. Phys. Vries, At. Data Nucl. Data Table36, 495 (1987).
A466, 29 (1987). [30] M. Farine, J. M. Pearson, and F. Tondeur, Nucl. P#&L5,

[17] M. M. Sharma, W. T. A. Borghols, S. Brandenburg, S. Crona, 135(1997.



