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Scaling-model analysis of nuclear breathing modes in view
of a realistic relativistic mean-field parametrization

T. v. Chossy and W. Stocker
Sektion Physik, Universita¨t München, Am Coulombwall 1, D-85748 Garching, Germany

~Received 6 May 1997!

We calculate breathing-mode energies in the scaling model for several parameter sets that are under discus-
sion in nuclear relativistic mean-field theory. The relativistic Hartree approximation is used together with a
schematic approach for the surface incompressibility. Empirical data can only be reproduced reasonably with
parameter sets that lead to a nuclear matter compressibility modulus not higher than 230 MeV.
@S0556-2813~97!00511-6#

PACS number~s!: 21.60.Jz, 21.30.Fe, 21.65.1f, 21.10.Re
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The relativistic mean-field approach~RMF! in the form of
the nonlinears2v2r model is in full practical use for the
description of nuclear properties. Despite a well found
field-theoretical background it still has some phenome
logical aspects, in particular from the nonlinear terms in
Lagrangian density:
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whereFmn[]mvn2]nvm andGW mn[]mbW n2]nbW m , in which

bW m denotes an isovector.
The related parameters are fitted mainly to nucl

ground-state properties. Some older approved parameter
are still under discussion@1–3# together with more recen
ones@4,5#, so that there is a request for convergence of
parameter sets with an overall efficiency as already reac
by nonrelativistic Skyrme-Hartree-Fock ~SHF! and
Gogny-HF ~GHF! approaches. The latter are still in vogu
e.g., as a reliable basis to extrapolate to exotic nuclei@6,7#,
despite their much more phenomenological basis.

After some promising attempts no characteristic nucl
property seems to remain that is only describable in
framework of RMF. In principle, spin-orbit effects in nucle
could be such candidates since the spin-orbit energy den
in RMF depends on gradients of the meson fields, and
SHF, differently, on the density gradient. This distinctio
might take effect on the spin-orbit splitting of high-lyin
single-particle states with the consequence of a change in
shell structure. However, recently, RMF spin-orbit potenti
were shown to be reasonably well reproduced also by
Skyrme ansatz@8#.

The RMF approach describes the nuclear satura
mechanism realistically as a consequence of a characte
interplay between scalar and vector meson fields. Th
560556-2813/97/56~5!/2518~5!/$10.00
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small amplitude density oscillations around the satura
ground state are a good testing field for the RMF approa
From its ansatz RMF should be superior to SHF and GHF
the description of breathing modes of nuclei, and, therefo
their RMF investigation should help to determine reliab
unique RMF parameters.

The present short RMF study of nuclear breathing mo
starts from a previous investigation@9#, which was based on
the scaling model introduced by Blaizotet al. @10,11#. The
main deficiency of this earlier investigation came from t
crude treatment of the surface incompressibility with an
timated uncertainty of around 30%. We use now a meth
that—although based again on a model description of
nuclear compression—does much more take into consi
ation the dynamics@12#. In particular, it can account for the
coupling of bulk and surface vibrations. It has been work
out and used in nonrelativistic dynamics of breathing mo
@13#. It is based on an approximate ground-state energy d
sity functional that can also be regarded as an approxim
relativistic representation.

Mainly in order to introduce notations we repeat fir
some basic quantities and relations necessary for the us
the scaling model. Following the scaling model and Blaiz
@11#, we first define a finite-nucleus incompressibility for
nucleus of mass numberA and asymmetryI[(N2Z)/A
through:

K~A,I !5
M

\2 ^r 2&Ebr
2 , ~2!

where^r 2& denotes the rmsmatterradius. Next we make the
leptodermous expansion:

K~A,I !5Kv1KsfA
21/31KvsI

21KcoulZ
2A24/31••• ,

~3!

where, in the scaling-model approximation,

Ksf5S 2222
K8

Kv
Dasf136pr 0

2r00
2 s̈, ~4!

Kvs5Ksym1LS K8

Kv
26D , ~5!
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and

Kcoul5
3qel

2

5r 0
S K8

Kv
28D . ~6!

One sees the possibility of fitting Eq.~3! directly to the data,
and extracting empirical values forKv , along with all the
other coefficients. However, it is impossible to extract
unique value ofKv from the measuredEbr in this way
@14,15#, all values over the range 100–400 MeV~and maybe
over an even wider range! being compatible with the Gronin
gen data@16–18#. Thus there is no alternative to the gene
strategy pioneered by Blaizot, Gogny, and Grammati
@10#, i.e., to simply trying out different proposed interactio
schemes. In our present RMF investigation we start there
from a microscopic Lagrangian~1!, with parameter sets in
current use that give a good reproduction of nuclear grou
state properties. Then we calculate the scaling-model va
of the coefficients of the leptodermous expansion~3!, and
obtainK(A,I ) values that are compared to the experimen
data extracted via Eq.~2! from the breathing-mode energie
Ebr for several nuclei using the experimental values for^r 2&.

The quantitiesK8, Ksym, L, r 0, andr00, like J andKv ,
are defined with respect to infinite nuclear matter~INM !, as
follows. If we express the energy per nucleon,e, of INM as
a function of the total baryon densityr and the asymmetry
d5(rn2rp)/r, wherern andrp refer to neutron and proton
densities, respectively, andr5rn1rp , then the above coef
ficients appear in the expansion@19#:

e~r,d!5S av1
1

18
Kve

22
1

162
K8e31••• D

1d2S J1
1

3
Le1

1

18
Ksyme21••• D1••• , ~7!

wheree5(r2r00)/r00, in which we denote byr00 the equi-
librium ~saturation! density in the symmetric case,d50. We
also define the charge-radius constant byr 05(3/4pr00)

1/3.
The remaining quantities,asf and s̈, refer to symmetric

semi-infinite nuclear matter~SINM! with the limiting behav-
ior:

lim
z→`

r~z!50, ~8!

lim
z→2`

r~z![rc5r00. ~9!

That is, deep beneath the surface the local properties of s
metric SINM tend towards those of saturated symme
INM. A specific surface energy for symmetric SINM is no
defined according to

s005E
2`

`

$E~z!2avr~z!%dz, ~10!

whereE(z) is the local energy density in SINM andav is the
energy per nucleon in symmetric INM at saturation, as
fined in Eq.~7!. Thenasf54pr 0

2s00. We note that the rela
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tions given above are valid regardless of the choice of th
retical methods, in particular they hold also for RM
approaches.

The crucial quantitys̈ in Eq. ~4! is defined as the double
derivative of the surface tensions of compressed symmetri
SINM with respect to the asymptotic densityrc , taken at the
saturation densityr00. s depends also on how the surfac
itself is compressed even if the basic structure of the nuc
with a bulk and a surface part remains unchanged.

The assumption of the scaling model is that at all sta
during the dynamical compressional oscillations the nucl
density undergoes scaling. By microscopic random-pha
approximation~RPA! calculations@11# it has been found tha
at least for medium heavy and heavy nuclei breathing mo
are well represented by scaled densities. In a nonrelativ
hydrodynamical model@13# the scaling prescription turne
out to be practically exact for values fromA5125 to
A5130; even208Pb is well reproduced. This is corroborate
by careful RPA calculations@10,11#.

A recent nonrelativistic microscopic analysis@20# based
on realistic finite range Gogny effective interactions com
to the conclusion that the microscopic methods are a m
reliable tool to describe nuclear monopole vibrations th
phenomenological liquid-drop-type expansions forK(A,I )
as given in the ansatz~3! which, however, remain useful fo
a first initial analysis. There are also expansions ofK(A,I )
similar to the leptodermous expansion~3! based, however
on a picture where the structure of a compressed nucleu
obtained by constraining its radius~see e.g., Ref.@21#!. A
liquid-drop-type expansion ofK(A,I ) is also obtained. How-
ever, the leading term differs by value from the correspo
ing term in Eq.~3!. All terms together nevertheless seem
end up in a value forK(A,I ) comparable to the total value o
Eq. ~3!. Also the generator coordinate method was used~see
Ref. @22#! to describe relativistically the breathing modes.
this method—similar to that of Ref.@21#—the nucleus does
not exhibit a separation into a bulk and a surface part dur
oscillation, and therefore it cannot be compared directly w
the scaling model.

For the determination ofs̈, Eq. ~4! in a full relativistic
Thomas-Fermi~RTF! or Hartree~RH! calculation one would
have to perform calculations ofs over a range of nonsatura
ing densities where the external pressure must be simul
by a constraint depending on the baryon densities, and e
on meson densities. In an attempt this complicated prob
was circumvented in Ref.@9# by using a pocket expressio
for s̈ where RH ground-state quantities could be insert
This preliminary formula was based on a general grou
state energy density functional~that therefore could be eve
relativistic!. However, it was derived for the compress
static state that is lowest in energy compared to other c
pression modes of the surface. Since the breathing mode
responds rather to a scaling of the density the formula has
tendency to givemagnitudesof s̈ ~s̈ always being negative!
that are too large by up to 30%, as compared to the sca
value ~see Refs.@23# and @24# for the nonrelativistic and
relativistic cases, respectively!.

This error in s̈ was the largest source of error in th
calculation ofK(A,I ) in Ref. @9# compared to pure scaling
calculations. Another source of error—also in the pres
calculation—concerned the higher-order terms that are
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TABLE I. RMF parameter sets.Ci
25gi

2(M /mi)
2, i 5s,v,r.

NL-Z @1# NL1 @1# NLC @2# NL3 @4# NL-RA @5# NL-SH @3#

M ~MeV! 938.90 938.00 939.00 939.00 939.00 939.00
ms ~MeV! 488.67 492.25 500.80 508.194 515.00 526.059
mv ~MeV! 780.00 795.36 783.00 782.501 782.60 783.00
mr ~MeV! 763.00 763.00 770.00 763.00 763.00 763.00
Cs

2 373.2479 373.1760 334.3711 356.3846 308.08 347.533
Cv

2 241.4392 245.4580 214.1854 238.4424 204.00 240.997
Cr

2 35.6700 37.4175 27.8800 30.3161 31.00 29.0954
b 0.0027922 0.0024578 0.0028703 0.0020553 0.0019 0.0012
c 20.0039347 20.0034334 20.0036849 20.0026508 20.0019 20.0013308
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glected in Eq.~3!. An nonrelativistic analysis based on Re
@25# and @26# shows that the magnitude of the net contrib
tion of these terms toK(A,I ) is of the order of 10 MeV or
less. Finally, there is the question of the validity of the sc
ing model, which is implicit in Eq.~3! itself, and in the
calculation of its coefficients according to Eqs.~4!–~6!. By
comparing with RPA calculations it has been found@27# that
the scaling model overestimatesK(A,I ) slightly, but by not
more than 10 MeV.

In the present analysis we are now following the im
proved formalism of Refs.@12, 13# that takes into accoun
the scaling behavior of the density so that the character
deficiencies of Ref.@9# can be avoided. Starting from
simple model energy density functional, that should also
able to simulate roughly the relativistic one, an analyti
treatment of a one-parameter class of compression m
could be carried through. The formula thus obtained fors̈ in
the scaling mode is

s̈[S d2s

drc
2 D

rc5r00

52
19

81

Kva

r00
, ~11!

wherea is the surface diffuseness parameter of a symme
Fermi density.
-

-
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A comparison of the value ofs̈ in the recent approach fo
the energetically lowest static compression mode with
old formula of Ref.@9# suggests an uncertainty of less th
8%. In view of the fact that the basic quantity in ou
breathing-mode analysis isK(A,I ) with Kv as leading term,
such an error would not much affect our conclusions, sin
the values ofK(A,I ) would only be modified by about 10
MeV. Realistic Skyrme-extended Thomas-Fermi calculatio
confirmed the basic analytical model almost quantitativ
~see Ref.@12#!.

The pocket formula~11! may be a basis to estimateKsf

Eq. ~4! for more complicated interactions. A symmetr
Fermi function reproducing in the best way the exact den
gives the equivalenta parameter in Eq.~11!. To check the
proposed method we refer to the exact scalingK(A,I ) values
(90<A<208) following from Ref.@26# for the zero-range
Skyrme interactions SIII, Ska, and SkM!. With thea param-
eters of Ref.@28# we gotK(A,I ) values that approximate th
exact ones within 2%~SIII!, 6% ~Ska!, and 10% (SkM!). As
expected from the derivation of Eq.~11! the agreement was
the better the smaller the asymmetry of the density was.

Therefore, the model approach based on Eq.~11! will be a
good first approximation to the RMF values ofK(A,I ), the
more since the RMF nuclear densities for the standard R
0

5

TABLE II. INM und SINM coefficients for the parameter sets of Table I~see text for explanation of quantities!.

NL-Z NL1 NLC NL3 NL-RA NL-SH

av ~MeV! 216.18 216.42 215.77 216.24 216.25 216.35
r00 (fm23) 0.1508 0.1518 0.1485 0.1482 0.1570 0.146
r 0 ~fm! 1.17 1.16 1.17 1.17 1.15 1.18
Kv ~MeV! 172.8 211.1 224.5 271.5 320.5 355.3
K8 ~MeV! 422.5 32.7 278.1 2203.0 2216.2 2601.6
J ~MeV! 41.72 43.46 35.02 37.40 38.90 36.12
L ~MeV! 133.91 140.07 107.97 118.53 119.09 113.64
Ksym ~MeV! 140.20 142.68 76.91 100.88 62.11 79.77
s00 (MeV fm22) 1.038 1.098 1.021 1.069 1.169 1.092
asf ~MeV! 17.71 18.66 17.61 18.47 19.43 19.04
a ~fm! 0.5279 0.5160 0.4763 0.4546 0.4289 0.412
s̈ (MeV fm4) 2141.9 2168.4 2168.9 2195.4 2205.3 2235.5
Ksf ~MeV! 2192.9 2188.3 2234.1 2233.0 2303.4 2304.6
Kvs ~MeV! 2335.9 2676.1 2437.1 2698.9 2732.8 2794.5
Kcoul ~MeV! 24.12 25.83 24.99 26.45 26.52 27.11
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parameter sets come nearer to symmetric Fermi funct
than most SHF densities.

In Table I the RMF parameter sets used in the pres
investigation are arranged in order of increasing values
Kv . Table II gives the values of all INM coefficients enterin
into the expansion Eq.~7! of the energy per nucleone. This
table also shows the RH values of the SINM quantityasf , of
the surface tensions00, Eq. ~10!, and of thea parameter of
the Fermi function obtained by a fit to the numerical SIN
density. Thea parameter is known from experiment qui
precisely to be (0.5360.03) fm @29#. Thus this quantity has
to be regarded also as a significant criterion for RMF para
eter sets. The value ofs̈ derived from Eq.~11! as well as the
values ofKv , Kvs, andKCoul obtained from Eqs.~4!–~6! are
given in Table II in addition.

Figure 1 displays the calculated values ofK(A,I ), and
compares with the experimental values@9#, extracted from
Refs.@16–18# using Eq.~2!. A sufficient correspondence be
tween the scaling predictions and experiment is achie
only for the parameter sets NL-Z, NL1, and NLC, having
value ofKv lower than 230 MeV.

Neither the slope ofK(A,I ) for increasing mass number
A nor the dependence on the neutron excessI are reproduced
very well by any parameter set of Table I. These deficienc
are expected to be reduced if higher-order terms are ta
into account in Eq.~3! ~see Ref.@26#!. In particular, the
higher-order terms for the isospin and curvature depende
of K(A,I ) are expected to change the slope of the curve
can be drawn through corresponding points in Fig. 1 in or
to guide the eyes. However, the absolute changes introd
by relatively small higher-order terms in Eq.~3! do not
change our conclusion sinceK(A,I ) is dominated byKv .

In Fig. 2 theK(A,I )-scaling values calculated for208Pb,

FIG. 1. Finite nucleus incompressibilityK(A,I ) for several nu-
clei calculated with the RMF parameter sets given in Table I.@See
Ref. @9# for experimental values ofK(A,I )].
ns
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where RPA analyses show small amplitude motion and s
ing to be well fulfilled ~see Refs.@10, 20#!, are plotted as a
function ofKv for the six parameter sets under investigatio
The experimental region for the value ofKA(208Pb) is indi-
cated on the vertical axis, and again the conclusion abouKv
is supported. The six parameter sets are all obtained by fi
special ground-state properties, in particular nuclear bind
energies and radii. The ground-state density fall off in t
surface region was not taken systematically into accou
One might call these Lagrangians ground-state equival
With a view to this property Fig. 2 enforces a linear relati
between calculatedKA(208Pb) values and the correspondin
Kv . Obviously, Kv cannot be determined in a unique wa
from the ground-state properties that are involved. The inc
sion of compressibility properties, however, should fix th
Kv value better.

To summarize, despite all remaining uncertainties in o
calculations, we conclude that RMF parameter sets be
compatible with the measured breathing-mode energ
should not have a value ofKv higher than about 230 MeV
This is in agreement with a recent nonrelativistic analy
based on Skyrme scaling model calculations@30# as well as
with a microscopic Skyrme RPA approach@20#. One also
should note that the parameter sets withKv greater than 230
MeV give surface thicknesses that are out of the experim
tally acceptable region~cf. Table II!.
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FIG. 2. Finite nucleus scaling incompressibilit
K(A5208,I 50.211) of 208Pb as a function ofKv for the RMF
parameter sets of Table I. The experimental value with its error
is indicated by the box near the vertical axis. The straight line i
linear least-squares fit:K(208,0.211)5220.07 MeV10.69Kv .
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