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Covariant equations for the three-body bound state
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The covariant spectatgor Grosg equations for the bound state of three identical spin-1/2 patrticles, in which
two of the three interacting particles are always on shell, are developed and reduced to a form suitable for
numerical solution. The equations are first written in operator form and compared to the Bethe-Salpeter
equation, then expanded into plane wave momentum states, and finally expanded into partial waves using the
three-body helicity formalism first introduced by Wick. In order to solve the equations, the two-body scattering
amplitudes must be boosted from the overall three-body rest frame to their individual two-body rest frames,
and all effects which arise from these boosts, including the Wigner rotationg-apth decomposition of the
off-shell particle, are treateeixactly In their final form, the equations reduce to a coupled set of Faddeev-like
double integral equations with additional channels arising from the negati@n states of the off-shell
particle.[S0556-281@87)02311-X

PACS numbgs): 21.45+v, 11.10.St, 21.10.Dr

I. INTRODUCTION AND OVERVIEW equations. The derivation of these results is found in the
subsequent sections. In Sec. Il we begin the development by
The three-body spectatdor Gros$ equations were first writing the three-body equations in an operator form which
introduced and applied to scalar particles in 1982 This is independent of the basis states used to describe the three-
original paper included a treatment of nonidentical particledbody system. In Sec. Ill we introduce basis states and write
and an introductory discussion of the definition and role ofthe equations in momentum space. In this representation the
three-body forces in a relativistic context. Shortly afterward,physical content of the equations is clear, but the equations
in lectures given at the University of Hanno\@i, the equa-  are not in a form most convenient for numerical solution. To
tions for three identical Spin-1/2 particles were written dOWﬂ,50|Ve the equations numerica”y it is convenient to use a
but many details needed for a practical solution of the equapartial wave decomposition based on the helicity states origi-
tions were never worked out. In this paper we complete thq>]a||y introduced(in a three-body contexiby Wick [5] and
development by expanding the amplitudes into partial waveg,is’is developed in detail in Sec. IV. The evaluation of the

and reducing the equations to a compact form suitable fope . tation operator, which interchanges particles between

tnhuemsgscsl\;ﬁgﬁ'?ﬂéTt?]?egi\)/g:joprgg:(a'ﬁncargrid lﬁﬂég”gggognteractions and permits us to express the equation in terms

) - . y g amp - ot only one amplitude, is discussed in detail in Sec. V, and
obtained by iterating successive two-body interactions, 9l of the results are collected together and the final equations
that the three-body forces of relativistic origin discussed in 9 q

the original papef1] are neglected. However, because Ourgiven in _Sec._ VL. There are three appendices which discuss
covariant equations include the negative energy part of th§°Me Points in detail.

Dirac propagator of the off-shell nucleon, many contribu-
tions are automatically included which would arise from
three-body forces in a nonrelativistic context.

The bound state equations we present in this paper have The first realistic nonrelativistic calculations of the triton
already been solved numerically for a variety of cases, anttinding energy were completed in the 1976% Later it was
some results have already been publishgéd]. From this  shown that different methods arrived at the same results, and
experience we know that the general development presentddat the binding energy could be calculated to a numerical
here is a suitable basis for a practical solution of the covariaccuracy of a few keV by considering all nucleon-nucleon
ant three-body problem. (NN) partial waves up tg=4 [7]. Today, if three-body

In the remainder of this section we give a brief summaryforces (3BF’s) are not considered, a discrepancy of about
of the current status of nonrelativistic calculations of the0.5-1.0 MeV remains between the experimentally observed
binding energy of the three-nucleon bound state, and a resalue of —8.48 MeV and values obtained from realistic non-
view of previous work on the relativistic three-body prob- relativistic NN potentials. Calculations of the contribution of
lem. Then we will give a brief summary of the physics un-the A resonance to the 3BF find that the net effect ofshis
derlying our spectator equations, and present the finadmall[8,9]. State-of-the art calculations often include in ad-

dition also 3BF’s based on meson-nucleon interaction pro-
cesses other thaA excitation[10]. When the strength of
*Present address. phenomenological 3BF’s is adjusted to give the correct triton

A. Brief history of the three-body bound state problem
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FIG. 1. Diagrams from the infinite class of successive two-body
scatteringgrepresented by the ovalahich contribute to scattering 18 2 | i
of the three-body system. We use the convention that the initial = = * ’ : * :

state is on the right and the final state on the left in each diagram.
The X labels internal spectators, which are put on shell in the
spectator formalism. In this example, all of the diagrams but the FIG. 2. Diagrammatic representation of the Faddeev equations
first contribute to the subamplitudE'® where particle ongon the  for the amplitudesT*'. Note that the spectator is identified by the
top) is the last spectator and particle thr@m the bottom is the  solid dot.

first spectator. The first diagram contributes to the subamplitude

T body scatterings, as shown diagrammatically in Fig. 1. This
o ) ) summation can be organized into Faddeev-like equations,
binding energy, an excellent value is also obtained for thgnown diagrammatically in Fig. 2. When the three particles
“He binding energyand to a lesser extent other light nuclei are identical, the different Faddeev subamplitudes can be ob-
up toA=7) [11]. _ tained from each other by interchange of variables, leading
Howe_ver_, relativistic effects should make a contributionyg g single equation for a single subamplitude represented
to the binding energy at the level of several hundred keVgjagrammatically in Fig. 3. It is necessary to know the two-
Using a mean momentum of about 200 M@énsistent with o4y scattering amplitude before the equation shown in Fig.
nonrelativistic estimatgsve expect to see corrections of the 3 ¢can pbe solved. More specifically, the two-body scattering
order of (v/c)?=(p/m)?=4%. If this is 4% of the binding  amplitude must be known in the rest frame of theee-body
energy, then it amounts to about 300 keV. However, if relasystem(or any other frame independent of the internal vari-
tivity has a greater effect on the attractireexchange part of ables.
the force(as it does in nuclear matter calculations using the The two-body amplitude is usually calculated in its own
Walecka model[12]) then we might obtain an effect 10 rest frame, so it must bioostedo the three-body rest frame
times larger. before it can be used in the Faddeev equations. The velocity
Interest in relativistic three-body equations goes back tqf this boost depends on the momentum of the spectator,
1965, when Alessandrini and Omneisl3] used the which is one of the dynamical variables of the problem, and
Blankenbecler-Sugar equatipt4] to describe the scattering hence the boost must be known for all velocities. In the
of three particles, and Basdevant and Krgifs applied their  nonrelativistic case this is trivial because the two-body am-
ideas to a description of the three-pion system. Tall&l  piitude is invariant under Galilean boosts. However, in the
discussed the application of the Bethe-Salpeter equBlioh  relativistic case this may present a problem, depending on
to three-body systems in 1966. In 1968 Aaron, Amado, anghe type of formalism used. Here, for the purposes of discus-
Young [18] introduced three-body scattering equations insjon, we distinguish two fundamentally different ways to ap-
which all the particles were on shell. Later, Garcilazo and higyroach relativistic calculations. In one approach, which will
collaboratorg 19] treated three-body bound states using thepe referred to as Hamiltonian dynami@scluding light-cone
Blankenbecler-Sugar equation, and Garcil20] applied  methods [25], some of the Poincargenerators include the
Wick’s helicity formalism to the three-body problem, and interactions, and therefore relativistic effects from either
used it to treat therNN system relatiViStica”y[Zl]. Re- boosts or rotations are norma”y treated approxima@s@e’
cently, the size of relativistic effects were estimated by Rupmhowever, the paper by Gdle, Lee, and CoestgR5)). In a
and Tjon[22] using a separable kernel in the Bethe-Salpetesecond method, which we will refer to as manifestly covari-
equation, by Sammarruca, Xu, and Machlefd8] using  ant dynamicg26], the generators are all kinematic, and all
minimal relativity and the BIankenbecIer-Sugar equation,boosts and rotations can be dmcﬂy The Specta’[or equa-
and by the Urbana grouf24] using a relativisitc kinetic tions developed in this paper are an example of the latter

energy operator with boost corrections to the potential ofnethod; we will reduce the three-body equations to a prac-
order @/c)?. All of these calculations include some contri-

butions coming from relativistic kinematics, but none treats
the Dirac structure of the nucleons to all ordersana)?, or 1
investigates effects which might arise from a realistic rela-
tivistic treatment of theNN dynamics

]
N
N

B. The physics behind the spectator equations ) ) )
FIG. 3. Diagrammatic representation of the bound state specta-

In the absence of three-body forces, the three-body scator equation for three identical particles. Spectators are identified by
tering amplitude(and the three-body bound state vertexthe solid dots, and on-shell particles by tkie Note the interchange
functiong can be obtained by summing all successive two-of particles one and two.
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tical form by exploiting our ability to boost the two-body
amplitudes to their rest frame

The Bethe-Salpete(BS) formalism shares the property
that the two-body amplitudes can be boosted exactly to their
rest frame, and we will therefore compare the spectator equa-
tions with the corresponding BS equations. Both approaches
conserve total four-momentum. This leaves an integration
over all independent internal four-momenta, which are two
for the three-body problem. The three-particle Bethe-
Salpeter equation does not restrict any of these eight inde-
pendent components, and after a partial wave decomposition
there still remain four integrations, leading to coupfedr-
dimensional Faddeev equations. Furthermore, these equa- FIG. 4. Diagrams showing the momenta in the two-body rest
tions contain singularities arising from the indefinite natureframe(left pane) and in the three-body rest frantgght panel. We
of the Minkowsky metric. In the spectator formalism the two chose the momenta of particle one to be in the direction, so the
time components of the internal four-momenta are elimi-hoost from the two- to three-body rest frames is the direction.
nated (or, more precisely, expressed in terms of the other

variableg by requiring that two of the three particles be fixed the last to interactwith particle 1 a spectatdrthe two-body
to their positive energy mass shell. This reduces the numbg{mplitudeM® describes the scattering of the 23 p&# is
of independent variables to OnQX, and after a partial wave the propagator for the 23 pair, aﬂqz is a permutation op-
decomposition one obtains couplédo-dimensional equa- erator interchanging particles 1 and 2. These are labeled in
tions with a Faddeev structure. The three-body spectatqrig, 3. The factor of 2 comes from the contribution B,
equations therefore have the same structure as nonrelativistjghich equals the one ;,. The permutation operator rear-
equations, and this is one of their most significant adVa”ranges the particles so that the same equation sums up the
tages. o scattering ofall pairs: 12, 23, and 13.
A particle is put on shell when it is apectatorto the The three-body spectator equations have the same struc-
interaction of two other particles. When this is done systemyyre as Eq(1.1), but incorporate the additional feature that
atically, two of the threeparticles are always on shell. The the spectator is restricted to its positive energy mass shell in
particle which is off shell is théunique particle which has )| intermediate states. With the conventions implied above,
just interacted and is about to interact agdina topological,  consistency also requires that particle 2 be on shell, so that
not time-ordered, sengeas illustrated in Fig. 1. two particles are always on shell. As already stated above,
It is natural to assume that reStI’iCting particles to theirwe think of these constraints as a reorganization of(Eq_)
mass shell represents an approximation to the BS equatioghich will, in some cases, improve its convergence. The

but it can be shown that it is equivalent to a reorganization otonstraints are manifestly covariant, and lead to the follow-
the perturbation series of all ladder and crossed ladder diang equation:

grams which, in some cases, sums these diagrams more ef-
ficiently [1,27].

In summary, the spectator equation is used becélise
some cases it sums the infinite series of all ladder and
crossed ladder interactions efficientlgij) it reduces the where the lower index labels the second on-shell particle.
number of independent variables to a minimum, making thélence only particle 3, théunique particle which has just
covariant three-body problem tractable, diiid it permits us  left one interaction and is about to enter another one, is off
to boost the two-body amplitudes to their rest frame andshell in Eq.(1.2).
calculate relativistic effects exactly. To prepare Eq(1.2) for numerical evaluation, we take

Before we turn to the details of the derivation of the spec-matrix elements of the operators using three-particle states.
tator equations, we present the equations in their final fornBoth p-spin stategwherep= + is theu spinor positive en-

IT3)=2M3,G3P1iT'3), (1.2

in the next subsection. ergy state ang=— is thev spinor negative energy statef
the off-shell particle must be treated. First we reduce the
C. Spectator equations for three spin-1/2 particles equation using states with definite particle helicities, similar

to those defined by Wicl&]. These three-body states will be

In the absence of 3BF’s the three-body scattering ampliyitten in the abbreviated formu1(23)p), whered is the
tude is obtained from a sum of all successive two-body scat;

. , ; ) otal angular momentum of the state,the p spin of the
terings. Because the three particles are identical, each WQt_shell particle, ={q,\,} (whereq and\, are the mag-
body scattering differs from the others only by a ! 1 !

: nitude of the three-momentum and the helicity of the spec-
permutation, and they can therefore all be summed by one . ~ .
operator equation of the form tator in the three-body c.ip.and (23){p,j,m, 5, \3}

(wherep is the magnitude of the relative three-momentum
'Yy=2MIGP,,I'Y, 1.1 of Fhe 23.syster.n; Qndm are thf—) angular momentum of the
T ™) @9 pair and its projection in the direction of, and\, and A5
are the helicities of particles 2 and 8] defined in the rest
where|T'!) is a vertex function describing the contribution to frame of the 23 pajr The momenta are defined in Fig. 4,
the bound state from all processes in which the 23 pair wawhich also shows the relation between the rest frames of the
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two- and three-body systems. The three particles have maskfference between them should be clear from the context.
m, and the total mass of the three-body bound state is ddJsing this notation, and suppressing isospin, the final form
noted byM,. (We use the symboin to denote both the of the three-body spectator equation 1ot is given in Eq.
projection of the momentum and the particle mass, but thé€6.3). It can be written

Aerit

m & H H H non n
(J1(23p|TH=2> X q'qu’E—fo dxsiny(j(23)p|M*|j(2"3")p")
q/

i'mANGp”
AASAgp’
m " ~n "p’ nany 41/orar m rqriorany |1
><E—~gP (9,p") P, [1(2"3"),1'(2'3 )]E_~<J 1'(2'3")p'|TH), (1.3
p” p/

where (j(23)p|M*j(2"3")p") is the jth two-body partial ~ w, =0. At this critical spectator momenturtequal to
wave amplitude for the scattering of particles 2 and 3 in their_ 4°r”n/3: 1200 MeV), the two-body subsystem is recoiling at
own rest frame(precisely the amplitude obtained from the {he speed of light and the relativistic effects are enormous.
two body spectator theory as described in REZ8]),  One consequence of this is that the solutions of the three-
P, [1(2"3"),1'(2'3")] is the matrix element of the per- body equations go smoothly to zero @s» dlg (this is dis-
mutation operator, given in E¢L.6) below, andg”(q,p) the ~ cussed in detail in Sec. VI Contributions fromg'> ey,

3 P ; which come from two-body states witBpacelike four-
propagator of the off-shell particle in differeptspin states momenta, are suppressed both because of this zero and be-

cause the propagators for largeare small. Hence, even if

g (q,p)=———, g (q,p)=-— i (1.4  the spacelike two-body scattering amplitude is not small, we
2E;—W, W/ expect spacelike contributions to the overall three-body am-
. ) plitudes to be very much suppressed, and it seems sensible to
whereW, is the mass of the 23 pair, and dependsgon simply neglect the regiom’ =g and set the three-body
5 2. o amplitudes to zero there. This also removes the need to cal-
Wo=Mi+m"—2ME,, (1.9 culate two-body amplitudes for spacelike total four-

, _ momenta.
with Eq= ym“+q°. Note that Eq(1.3) includes a sum over Exchanging particles 1 and 2 implies that particle 2 be-

intermediate helicites and angular momentum quantumomes the spectator and now its momentum and helicity
numbers, and an integration over the internal spectator mgqyst pe expressed in the c.m. frame of the three-body sys-
mentumq’ and the anglee between the directions of and  tem, while the variables of particles 1 and 3 must be ex-
g. The momentg ' andp” depend org, q', andy, as given  pressed in the rest frame of the 13 pair. Boosting from one
in Eq. (5.17). frame to another introduces Wigner rotations of both the

The integration oveq’ has been limited to the finite in- single particle and two-body helicities. In the helicity basis,
terval [0,0.t], where gt is the root of the equation this exchange operator is

PP [1(23"),1(2'3)]=(- )™ M a2]+1y2) +1dy o 0odD(8dl ()
1 2 2 3

AN
m,)\l )\3

1/2) (1/2)

X dilxi(ﬁl)dxgxé( _32)/\/igié(q,Q’,)(), (1.6

an( B) are the Wigner rotation matrices, a.nq’g’;;(q,q’ ,Xx) describeexactlythe Wigner rotations of
the off-shell particle 3, as well as the nontrivial matrix elements between the differgpihorsu andv of particle 3 as they
appear in the rest frames of the 23 pair and the 13 pair. The matisdefined in Eq(6.2), the anglesé’ and 6" in Eq.
(5.17), and the Wigner rotation anglgd, and 8, in Egs.(5.24) and (5.27).

For practical calculations it is more convenient to expresq E) in terms of states with definite isospin and parity. These
states will be denoteld j"(m\) p), where we suppress reference to the total angular momentum andBa#ity/2*, T=0 or
1 andr ==*=1 are the isospin and parity of the 23 pair, and\,—A3=1/2— 3. As discussed in Sec. VID, the states of good
parity are superpositions of positive and negative helicity stidee Eq.(6.17)], so that the two-body subspace is fully
described by adopting the conventipp= + 1/2, and identifying the states by their pantyand helicity difference. =0 or 1.
In this basis Eq(1.2) becomes

2

where the functionsl{’
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. Aerit
(Ti'mMpITH= X X
J r’ )\‘” "
m T/ )\/ ’

m s
’de’—E J dxsiny(Tj"(mA) p|M*T|Tj"(mA")p")
q’ 0

><E—g” "(q,p") P [Ti (M\)p", T'j"" (m'\")p ]—(T’J’r (m'\")p' T3, (1.7)
p” p

where the permutation operatBt,?’ is given in Eqs(6.27  Yields the scattering operatdet'. _
and(6.30. Note that Eq(1.7) includes a sum over the inter- A bqund state of the three-body system can_be defln_ed as
mediate isospiT’. the residue of a pole of the three-body scattering amplitude
This concludes our brief introduction; we now turn to a 7 Forzthe triton we denote the position of the pole as
detailed derivation of the three-body equatiofis3 and P°=M{, whereP=k;+kp+k; is the total four-momentum
(1.7) given above. of the system and thk; are single-particle four-momenta.
One can write7 " as the sum of a pole term and a p&H

2_Nn2.
Il. THREE-BODY EQUATIONS IN OPERATOR FORM regular atP*=Mg:

We start with a derivation of Faddeev-type Bethe-Salpeter - [Ty
equations and introduce the spectator equations afterwards =———+RY, (2.9
by substituting a new propagator and repeating the derivation M{-P
with all necessary modifications.

where|T'') are the partial vertex amplitudes for the bound
state. Insertion into Eq2.3), multiplication by M2— P?),
and performing the IimiP2—>Mt2 yields

The total scattering amplitude for the three-nucleon sys-
tem 7 can be decomposed into three pafts

3
T= _Zl T (2.1

A. Bethe-Salpeter equations

|F‘)=—MiG‘BSJE#i Ty, (2.6

These are the Bethe-Salpeter equations for the partial bound
. state vertex amplitudes.

The partial amplitudeZ' sums up all diagrams in which Up to this point the equations are very general and apply
particlei is the spectator during the “last” interactigim the ~ to systems of any three distinguishable particles. Now we
sense of “leftmost” in the diagrams of Fig).1Each ampli- want to specialize to the case of three identical particles. We
tude 7" is further split into subamplitude§™", this time  define the transpositiors;; of two particlesi andj as fol-
according to which particle does not participate in thelows:

“first” (or “rightmost”) two-body interaction,

P1jabc)=|bac),

3
Ti:jzl il (2.2) Prdabc)=|cba). 2.7

Note thatP; interchanges the quantum numbers of the par-
ticles in theith andjth locations in the state ket. The sym-
metry of the scattering amplitude under particle interchange
Tii :iﬁijMiGi_l_MiGiBsg, TH. (2.3  can be expressed as

1

The amplitudesT' satisfy the integral equation

PijT: §T,
W_here Gi is the propagator of aingle off-shell particlei,
bs= Gps® 1i=—iG; i®G®1; is the free two-body propa- TP;=(T, (2.9
gator for the{j,k} palr andM'= M'®1; is the two-body
scattering operator acting in the two- body subspace of pamwhere{=+1 for bosons and-1 for fermions, andr is the
ticlesj andk, with 1; the identity operator for the spectator symmetrized version df. If we introduce the combined am-
particlei. In our notationG; is real, and any overall factor of plitude
i which emerges when the operator expressions are repre-
sented by Feynman diagrams is included in the propagator i
Bs- If VI=V'®1, represents the sum of all irreducible dia- |F>:§1 ™, (2.9
grams describing the interaction of the two partigleendk
with particlei a spectator, the Bethe-Salpeter equation then the symmetry2.8) of T carries over tdI'), i.e.,

M=V = VIGiM' 2.9 Pl =¢[T),



56 COVARIANT EQUATIONS FOR THE THREE-BOKY ... 2401

(1“|73ij =(T|. (2.10 Using the relation$2.16—(2.19 together with the fact that
Ggs commutes withP,; we can write the Faddeev equations
These relations can be used to derive the permutatiof2.15 in the following simple form:
properties of the individual vertex factof§'). If the par-

ticles are identical, then the two-body scattering operators ITY) = — MIGLY(Pro+ PasPiaPas) | T
and propagators acting in each two-body subspace are iden-
tical, and this is expressed formally by the relations =—(MIGE(1+ (P PidT'h)
PMIP =M, =—2{MIGLPJTY). (2.20
PijGiBSPij =Glg, (2.1)  To reduce these equations to a practical form, it is sufficient

to evaluate the permutation operaf®y,.
whereM is a symmetrized version oM. Using these, and

the fact thatPizj =1, we obtain B. Spectator equations

Now we turn to the spectator equations. We begin by

Pyl = —PM' P, PG>, IT) replacing the two-body propagatdBss®1;, which de-
k#i . . R BS
. scribes the propagation of particleandk (both not equal to
— MJGJBsPij(|F>— 1)) i) in Eq. (2.6), by a new propagator,

= -MIGL((IT)-PyTT)). (212 Ghs® 11— G Q@ 1;, (2.2

Comparing with whereQ, is aprojection operatowhich places particl& on

j i~ j the positive energy mass shell, and, as in the BS s
{r)=—-MIGEg({|T) = ¢[T)) (213 the propagator of a single off-shell partigleChoosing par-

ticle k to be the spectator during the “previous” interaction

one obtains immediately gives the unclosed form of the spectator Faddeev equations

Py|TTy=¢|T). (2.14
ry=-— MIG; Qy|T*), 2.2
Thus the three-body equations for identical particles can be ') k;ﬂ QA (2.2
written

i P i where the sum is ovdrandj with i fixed and no two indices
[Th=—Mm Ges(Pyj + P, (2.19 equal. Explicitly, Eq.(2.22 is shorthand for the following

. . . three equations:
The three equations for the three possible choices afe

equivalent. It is therefore sufficient to solve HEG.15 for,

N ymal 3 1 2
say,i=1, and calculatdI'?) and |I'®) by means of Eq. [T%)=—{M7G,Q4[I™) + M G3Q,|T%)},

(2.14.
Equation(2.15 can be simplified further if we take into IT2y=—{M2G3 QT+ M2G, Q4|T3)},
account the fact that the two-body amplitulle is symmet-
ric or antisymmetric under exchange of particles 2 and 3 for IT3) = —{M3G,0,]T2+M3G,0,[T1)}.  (2.23

the case of identical bosons or fermions, respectively. Thus

PrMi=MIP,= M1, (2.16 Note that the projection operat@; ensures that particle ig
on shell both as it leaves the partial amplity&ié) and as it

Using this relation, Eq(2.15 (with i=1) can be written enters the two-body scattering amplitukle. N
To make a closed set of equations from E222), it is

Pog T = — ¢ PpM 1(3és(7912+7>l3)|r1> necessary to place the final spectator particlen shell,
which then also forces one of the two interacting particles in
= — PMIGEg( Pt P T =¢|T'Y). the final state(denoted byk’) to be on shell. The spectator

2.17) scattering equations are shown diagrammatically in Fig. 2.
' The final bound state equations can be written algebraically

Next, using the definitions Eq2.7) note that in the following form:

PasP12P2dabc) =P,3P ach)=P,jcab)=|cha)

QOuITh== X QuMQG;QQITY), (2.29
=P13|abC>. (218) k#i#]

Hence, the operatdP,5 can be written where no summation over the indéxis implied, and we
used the projection proper@, Q= Q) andG; Q= Q\G; .
P13=Pr3P12Po3. (2.19 Alternatively, we may introduce the notation
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Ty=0,9T", we obtain

M:(,k= QuM'g®1;, PaaM 2= {M3,= M 35Ps;,

1 _ 1 _ gl

Gi=G,0@1;, (2.25 P2aM35= M 5= M3;Pos, (2.29
where {=+1 for bosons and-1 for fermions, as before.
(These are the operator forms of the symmetry relations dis-
cussed in Refl28]; note that, in the spectator formalism, the
exchange operator does not relate an amplitude to itself, but
to another amplitude with a different particle off shelVe
_ S will find it convenient to exploit the fact tha®;, =Py;, and
IF'k,>= - 2 ML,kGL|I‘!‘>. (2.2  always write relations like those above so that the initial and

ki final indices on both sides of the equation match. The spec-
tator and on shell interacting particle can also be inter-

We will use this notation in most of the remainder of this , ) ;
section, but will return to the definition&.25 later in the crilanged, leading to the following relations for the operators

paper. As an example, consider the cesd andk’=2: i

where the indices, j, andk are all different, and the lower
indices onM and I label which particles, apart from the
spectator, are on mass shell. In this notation R4 be-
comes

1 _ 2
P2)=—MzG3I' )~ MaGylly). (229 P12G2P=C1,

As discussed in Ref1], for distinguishable particles without P23G5P3,=Gs3. (2.30
three-body forces Eq2.26 becomes a coupled set eix
equations for the six amplitudg¥’;), instead of only three
: i )
equations for threqél“ ), as in the Bethe-Salpeter case. ProM 3P = M2,
We emphasize that an important difference between the
spectator su'bamplit'uqéﬁ}) and the Bet'he-SaIpeter subam- PraMiPa=M1,. (2.3
plitudes|T'') is that it is no longer possible to add the spec- . o .
tator subamplitudes together in order to construct a total amFurther relations can be founq by combmmg relatioh9
plitude, as we did in Eq2.9). This is because the amplitude and(2.31). One relation we will use below is
IT'3), for example, restricts particles 1 and 2 to the mass 1 o o
shell, while the amplitudél'3) restricts particles 1 and 3 to P1M2:ParPor= (M= MisPas. (2.32
the mass shell, and hence they are defined for different re- t js now easy to derive the effect of permutations on the
gions of phase space. Only operators or amzplltudes whicBpectator subamplitudes. For example, under the interchange
satisfy identical constraints, such H%) and|T'7), for ex-  of two particles in the interacting pair,
ample, can be combinedlo total three-body amplitude ex- L T L s
ists in the spectator formalism Paadl'2) = = PaM,G3|I']) — PaaM 25G3[ ')
For identical particles, Eq$2.26 can be further reduced _ 1 ~1y1a2 1 ~1je3 il
by using permutation operators. Using the fact that the op- == {M3G3|I') —IM3G3[ ') = ¢[T'3).
erator M! is symmetric under particle interchange, Eq. (2.33
(2.16), and the relation

The two-body amplitudes exhibit a similar symmetry

Using this, the interchange of the spectator with the on-shell
P32Qo=Q3Ps3, (2.289  particle in the interacting pair is

P1dT3) = = P1M55Po1P15G 3 ParPorl T2) = ProM 35PasParP1sP2sG3|3) = — M3,G P,y T'2) — M T3Py PG Pog T3
= = MZGIPT2) — MIGEP Py PP ) = — M%,GEP T2 — M IG5 P T})
=—MLGIPxTD — (MIGSITS), (2.34

where Eq.(2.19 (with 1+ 3) was used in the next to last Using these relations, we can obtain a single equation for
step. Comparison with the equation {dt?), IT3)

{ThH=—¢MEGITS) —IMEGHTS), (235
! e ! IT3)=—{M3,G3PxIT3) — P MG P13PA ')

implies = — (M 3,G5 P T'5) — {?M 33P35P2dG 3 P3Py T'3)
Pull5)={IT3). (2.36 =—2{M3,G;Px[T'3), (2.37)
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where Eq(2.19 was used in the next to last step. From nowis conserved. The Gross equation restricts two of the three
on we will only consider fermions, so that the three-bodyparticles to be on mass shell, which for the chdize&8 are
equation for the vertex functiohi3, which singles out par- particles 1 and 2, with particle 3 off mass shell. In the three-
ticle 1 as spectator in the “last” interaction and particle 2 asbody c.m. system

the interacting particle to be put on mass shell, becomes

o P=(My,0), (3.2
T'2)=2M2,G5P2|T'3). (2.38
] o ] ] o whereM; is the mass of the three-body system, the momenta
This equation is illustrated diagrammatically in Fig. 3. are
A more explicit form of Eq.(2.38), which expresseM3,
andG; as operators, and'3) as a vector in Dirac space, is ky=(Ey K1),
|F%>a,87: Z[M%2][3[31,yyl[G%]ﬁlﬁz,ylyz[PljI‘%>] aByyy K _(E K )
(239) 27 (Eky 2/
wheree, B, andy are Dirac indices for particles 1, 2, and 3 ks=(Kzg,k3)=(M;—E, —E,_,—k;—k>). (3.3
1 2

respectively, and summation over repeated Dirac indices is
implied. Note thatM and G operate on a two-body space

only; the third particle(the spectatgris unaffected by these is fixed by four-momentum conservation. It is obvious that

operators. . I the problem has only six independent momentum variables,
In the next section we will give a momentum space rep-

resentation of these equations just as in the nonrelativistic case.
q ’ The three-body basis states are direct products of a single-

particle state and a two-particle state,

In Eq. (3.3 the four-momentum of the off-shell particlk;,

IIl. MOMENTUM SPACE REPRESENTATION

We specialize to three identical particles with mass [kq(kok3))=k1)@|koK3), (3.9
spin 1/2, and four-momentq, k,, andks. The total momen-
tum where, by convention, the off-shell particle has a bar over its
momentum.
P=k;+kat+ks (3.9 Completeness and orthogonality relations are
|

<k1(k2k_3)|ki(kék_é)>:2Ek153(k1_ ki)2E,8%(kp—kp) 8*(P—P'), (3.9

1= da dakZd“Pk ko k) ) (ky(KyKs 3.6

=) 28, 2§, [ki(kzoks))(Ki(kaK3)|. (3.6)

Next, we specify the matrix elements of all operators in this momentum space basis. The propagator is

T ! I_I ’ ’ ’ (m+k3) !
<k1(k2k3)|[G%],BE’,7y’|k1(k2k3)>:2Eklé\g(kl_kl)ZEkzé\?(kZ_kz)‘S“(P_P )Zm[AJr(kz)]gg'Wzyiye, (3.7
K-
where A . (k) =(m=Kk)/2m are the positive and negative energy projection operators. The twoidodatrix is
(Ki(kok3)[[M %ﬂﬁy,ﬁ’y’|ki(kék_é)>: 2Ek153(k1_ k1) S*(P—P" )M g (Ko, ki3 P—ky), (3.9

whereP —k; is the total two-body four-momentum, and the relative momenta in the two-body space are denoted by
kij=7 (ki—kj). (3.9

Note thatk;; = —k;; . The two-body amplitudes in E¢3.8) are identical to those discussed in Sec. Il A of R28]. The partial
vertex amplitudes will be written

<kl(k2k_3)|F%>aEyZFaﬁy(kl=k21k3)a (3.10

where, by convention, it is understood that the last momentum is the one which is off shell. Therefore

(ky(kok3)| Py F%)aﬁy: - <k2(k1k_3)|1_‘%>ﬁay: — I gay(Kz Ky, K3). (3.1)

We can now obtain the momentum space representation of2B228). Inserting the completeness relati6) gives
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d3k} d3k; d3k] a3k,
L2 g4pr
2Ek’ 2Ek’ 2Ek” 2 H

(kKT 05,2 % 0P (K (ko) (Ml gy K3 (KK)

X (K} (koK) [ G315, g7y 1| Ka (KoK Y (KL (KoK | Pia T3 1 (3.12

Inserting the above expressions fdrandG, and carrying out all integrals gives

( +Ks),

raﬁy(kl,kz,kg)z—zf d3k2 Mg, 4y (Kaz, kg P—kp[A 4 (k3) 15 Ly 7_7 T prayr(ky ke k3),  (3.13

2

wherek;= P —k;—k;. This equation is manifestly covariant.
These equations may be further reduced by multiplyingvihmatrix and the three-body vertex functiofisoy the on-shell

spinorsu (for on-shell particles in the initial sta)temdu_(for on-shell particles in the final state
Ty pyr(Ke K2, Ks) = U oK A1) U g(Ka AT oy (K Kz K3),

szxé,w/(kzsykés; P—ky) :u_ﬁ(kZ!AZ)MBﬂ’,yy’(kZB!ké?:; P—kyug(ka\p), (3.14

whereu,(kq,A 1) is an on-shell Dirac spinor with three-momentlkmand helicityA ;. This gives us quantities with “mixed
indices;” a Dirac index on a matrix element is replaced by a helicity index when it is contracted wihiaor of that helicity

and with matching momentum. These amplitudes are still covariant, and simpler because the four-dimensional Dirac space is
replaced by a two-dimensional helicity space. If we then replace the on-shell projection operator by a sum overwn-shell
spinors

[A+(kp)lger =2 ulkah)u(kzhz), (3.19
2
and multiply Eq.(3.13 from the left by u,(ky, 1) U g(kx\5) We get

( kg) I
> dekz—Mw e s

2

Fxéxly"(ké,kl.ké). (3.16

Equation (3.16 is still manifestly covariant, but is not where here it is convenient to introduce the momentum
suitable for a numerical solution. The main reason is that thgj/= —k;. Next, the boost operatcﬂ;k1 is defined by the re-
two-body M matrix is given as a partial wave expansion in quirement
thetwo-body rest frameand not the three-body c.m. system,
as needed in the above equation. A related problem is that
the propagator for particle 3 depends on the angle between
the vectorsk; andk; and is therefore not diagonal with re-
spect to all angular momenta after a partial wave decompolhe square of the mass of thi23) pair is then
sition.

Ak1P23=523= (Wg,0). (3.18

In the nonrelativistic case, the first problem does not oc- W§='I5§3= pggz(Mt_Eq)Z_qZ
cur because the partial wave expansion is invariant under a 5
Galilean boost, and the second is solved by introducing Ja- =M{+m?—2ME,. (3.19

cobi coordinates. Because of the different energy-momentum

relations in special relativity, neither of these problems cam tilde on top of a variable always indicates that it is defined
be handled so simply here. in the two-body rest frame. We have, e.g.,

However, we can eliminate these problems here by ex-
ploiting the covariance of the formalism, and by explicitly

boosting the two-body subsystem to its rest frame. To pre- kZZA"lkZ'
pare the way, introduce the total four-momentum of the two-
body subsystem, k3 Ak Ks. (3.20

Pos=k,+k;=P—-k;=P+q, (3.17  We now define the relative momentumthrough
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1B = - = N
k2= 2Pzt P=(E5.P), UkA)S A =3 Ak @D Ry, (329
K3=3P—p=(Wg—E5.—p), (3.21)
where R, is the Wigner rotation accompanying the boost
and therefore that connects the momeriaand Ak (see Appendix & and
~ ~ ~ the Dirac indices have been suppressed. The propagator of
p=Ky=3(K,—kg)= (E i W,y ,IO) - (3822 the off-shell particle 3 in the three-body rest frame can there-

fore be expressed in terms of its form in the two-body rest

Next, we introduce the representation on the Dirac SPacqame using(3.23

S(A), of a Lorentz boost\ . These transform Dirac matrices

and spinors according to the following rules: (m+Ky)

—=S (A

(m+T€ )
STHA)Y*S(A)=A*y", (3.23 m?—k3—ie

g M) (320

AU(K,\) D1/2> Ry U(AK, ), 32 Similarly, the full two-bodyM matrix in the three-body sys-
S(Au( E (Rudu(Ak,u) (3.29 tem can be written

M,o(Kas, K3 P2g) = S5 T(Ay ) S5 H( Ak )M 24P, P’ i P2g) Sa( Ay ) Sa( Ay ), (3.27)

where the subscripts 2 and 3 are shorthand for pairs of Dirac indices on partgJg’ 2dtc) and on particle 3¢y’, etc), and

the two-body scattering amplitudd (p,p’; P, is a solution of the two-body Gross equations in the two-body c.m. frame.

(Do not confuseM, 3 with amplitudes likeM %3 used in the last subsection; here the subscripts refer to the Dirac indices, and

in the previous subsection they referred to which of the interacting particles was on shell. From now on we have made the
choice that particle 2 is on shell, and in the language of the previous subsection, all two-body amplitmézs)ar}sing Egs.

(3.24) and(3.25, we obtain the following expression for the mixed indéxmatrix:

r . — N R-D 172
Mang a(Kaa Kasi P29 = S (A ) DR (Ry, 1) M (PP P29 Dy (R, 1) Sl A, (3.28
where summation over all repeated indi¢gxluding helicities is implied. Substituting these relations into Eg.16) gives

T y(Ka Ko k)= —2 d3k’—S A )DY2* Ry ()M p.pPaD2(R (8D v
NN 'y( 1:R2, 3)_ 771( kl) )\2#2( Ak1k2) ,uzlu,é,'yl'yz(pvp ’ 23) Mé)\é( Aklké)mlz_'lz, g_

2

XS)’gY’(Akl)FAé)\l)"(ké’kl’ké)' (329)

This equation can be further reduced if we decompose of the propagator of the off-shell particle 3 into positive and negative
energy parts

(M+Ka)yy M

_Fg_iE EE A3

Uy(Fsy)\3)U_y'(’|23,)\3) B Uy(—Fsy)\s)U_y'(_’lz&M) _
2E;—Wy—ie Wq—ie

m
EE A3

Uy (—PAg) Uy (—P,Ag)
ZEE—Wq—Ie

0,(P AV, (PAg)
Wy—ie

, (3.30

where the second expression can be obtained from the first using the fact that the spinors depend only on the three-momentum
andk;=—p. At this point it is convenient to introduce spin by letting

u(p,n) if p=+,
p —
u(p,\) [U(_m) — (3.3)
Then the decompositio(8.30 becomes
(m+Ks3),,, m - SN
— = = — U= P Aa)g”(a,P)UT (B .ha), (3.32
—kz—ie Ep

where summation oves and ; is implied, and
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+ "™ =—
9" @)= e

= 1
g (q,p)——wq_ (3.33

ie’

Substituting Eq(3.32 into Eq. (3.25, multiplying from the left byu”(ks,\3), and using Eqs(3.24 and (3.25), give the
following reduced three-body equations:

2
(1/2)% (1/2)% pp’ ~~,. (1/2)
Dl Ry, i) D (R, )M (PP Wo)D, 1\ (Ry, i)

re
AiAohg Aoty Aghs Moy gk

- m
(kl,kz,k3)=—2f d3ké(E_

’R’/

! ’ !
M3 ANhg

XDy (RY 8" (BT, (K ks k), (334
1

whereR%, is the Wigner rotation for the spina®, and A. Construction of the states

The three-body states are constructed in three stages.
p _Tp First, we construct the state of particles 2 and 3 in its rest
TRiang(Kaoka ka) = U5ka hg) Ty (ke ko ks system, choosing the momenta so thaties in thexz plane
with k,, positive, as shown in Fig. 4. By convention, particle
op' . three is off shell, and requires bath(p=+) andv (p=—)
Mzﬂé,#wé(pvp ‘W) spinors to describe its Dirac structure. This degree of free-
o . dom is referred to as theg'spin” of the off-shell particle.
= uf’y("k's,m)Mﬂzﬂé (PP WUl (kg u3). (3.3 Next, we boost the(23) system to a frame with three-
momentumg= —K; in the positivez direction, and take the
direct product of this state with the state of particle one with

We have reduced the three-body equations to sixits three-momentunk, in the negativez direction. Finally,
dimensional integral equations for the coupled setb£26  we obtain the partial wave states by an angular average over
amplitudesl“ﬁl)\z)\a, which can be written the Euler angle§®,0, ¢}, as defined below. In shorthand,

this three-body state is denotét(23)), to remind us that
_ particles 2 and 3 are the pair which was boosted from their
IR ong(KaoKa ka) = (Kiha(kohokahg)p|T). (3.36  rest system.

Begin with the construction of the state for particle 2 with
momentum/k,|=p pointing in the positivez direction, and
with helicity \,. This state will be denoted HYE,O,O))\Z),
where the second two arguments in the parentheses are the
polar and azimuthal angles of the momentum. The state with
momentum pointing in an arbitrary direction can be obtained
éjy applying a rotation operatdR, 7 ,=e ' *ze” e 17

The new state$k1)\1(k2)\2k_3>\3)p> have simple complete-
ness and orthogonality relatioideveloped in the next sec-
tion) which make them a useful starting point for further
discussion.

This form (3.34) for the three-body equations displays the
Wigner rotations which appear when the two-body scatterin . .
amplitude is boosted from the overall three-body rest fram hrough Euler angles, 9, andy. For vectors W'thom. mter—.
to its two-body rest frame. For practical calculations thenal structure, we need only two angles, agd following Wick
equations will be further reduced by decomposing the ampli¢haracterize the states by the polar angtesnd ¢, and
tudes into partial waves, which will be discussed in the nexfepresent the rotations 1y, 5, so that

section. —_—— -
|(pv01¢)1A2>:R¢,’(;,O|(p7010)1)\2>' (41)

IV. ANGULAR MOMENTUM STATES Note that this differs by a phase from the convention adopted
in Jacob and WicK29] and used in Ref[28], where the
In this section we follow the conventions of Wi¢&] and  rotation was defined to bB4 7 — 4 instead ofRy5,0. The
define a basis of three-body partial wave helicity statesphase difference is
Completeness and orthogonality relations are defined and the
matri_x elements of 'Fhe propa_lgator and two-body scattering R¢,,§,,¢|(B,O,O),)\2>=ei ¢sz¢’;’o|(5,o,o)1)\2>_ 4.2
amplitude are obtained. Using these states, the operator
equations(2.39 are written directly in terms of the partial As discussed in WicK5], the new phase convention turns
wave states. To obtain the final equations, the matrix eleeut to have significant advantages for the treatment of the
ments of the permutation operator must be evaluated, anthree-body system, argives identical results i$=0, where
this is done in the following section. the two-body states were previously defif@a].
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_The state for particle 3, whichm the rgst system of the .e_i”53R7,w,o|(5,0,0),7\3p> (4.6)
pair has a momentum of the same magnitude but opposite in
direction, is defined =e 1mse” 1™yl ™(p,0,0), A 3p)
|(’5,’5|¢);)\3P>: R¢,§,O|(517T!7T)!)\3p>1 (43) :eiiW(537)\3)R0,7T,0|(’510!0)!)\3p>
— -\ "
wherep= = is the p-spin of the statéfor more details, see =(=1)% "R (p,0,0),A3p),

the discussion belo)/,va.nd the fO||OWing phafe convention is as used in Ref[zs] (According to our phase Conventionsy
incorporated into the definition of the state,, ), 3p): the value ofJ, is independent op; see Eq.(A9) of Ref.
[28].) The two-particle statéin its rest systemis now writ-

|(’5!7Tv77)1)\3p>:eiiﬁsst,ﬂTd(‘5!0!0)!)\3p>v (44) ten

P.60,6),Aoh3p)=Ry 750 (,0,0),A,\
wheres; is the spin of particle 3in our cases;=1/2). The (P, 8,8)A2hap) =Ry 5l (P.0.0) A2hap)

p_h_ase factoe™ "3 is preci_sely what is needed f_or the defi- = R¢'§'0(|(E,O,O),)\2>®|(B,7T,7T),)\3p)),
nition Eq. (4.3 to agree with the phase convention of Jacob
and Wick[29] for “particle 2,” which was used previously 4.7
in Ref.[28]. To see this, recall that where we emphasize that the phasé™: is included in the
i i im definition 0f|(5,77,7T),)\3p>, as given in Eq(4.4). Two par-
Rrzo=€ T Ty=e Tye™z (4.5 fticle states of definite total angular momentum and total he-
licity can be projected from these general two-particle states
and hence by integrating over the polar and azimuthal angles
~ 2 T - ()% - -
|pjm,)\2)\3p>: 7 J;) d(ﬁfo d 98|n0DnJ1’)\2_)\3(¢, 010)R¢,:§,0|( p,O,O),)\Z)\3p>, (48)

where we use the abbreviation

12

(2j+1

4ar

The next step is to boost the two-particle state in the direction of the pogitasés such that its total three-momentum
becomesy. The required boost operator will be deno@&g (it is equal toA;l of the last section and the(23) pair can be
treated like an elementary particle with momentgrim the positivez direction, with “spin” j and “helicity” m, and a mass
W, given bny]:(P—kl)Z. The boosted state of the pair is no longer an eigenstate of the single-particle helicities, because
a boost which is not in the direction of a particle’s momentum mixes helicities. The three-body helicity state is then con-
structed by taking a direct product of the boost28) pair and the state of the single particle 1 with a momentum of magnitude
g in the negativer direction. For consistency, the same phase convention is used to define the state of particle 1 that was used
before to define particle 3, i.e.,

|(ai T, 77)1)\1> = eiiﬂ-isﬂ',ﬂ',Ol(qvoio)i)\l> . (410
This gives a three-body helicity state with total three-momentum zero and the momentum of the pair in thepds#istion:

(0,0,0), Pim, A 1(A2A3)p)=1(0,0,0), A1) ® | Pjm, Nz 3p). (4.11

Following the convention for rotation of states first introduced in @ql), the state in which the momentum of the pair is in
an arbitrary direction is obtained from E@t.11) by applying the rotatiorR¢ ¢ o

[(0,0,@),pim,\1(A;\3)p)=Rg.0.0(d,0,0), pim,A1(As)3)p). (4.12
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Finally, the three-body helicity states with fixed total angular momeniuamd projectionM are obtained from the states
(4.12 by the angular average

~ 2 T ) ~
|aIM, pjm,N1(Aoh3)p)= mfo d<1>f0 dOsin®Dy'y_, (9,0,0)(q,0,®),p,jm,\1(\2\35)p)

27 T 27 T . —_~
=37, fo dcpfo d@sin@fo d¢f0 dOsind Dy, (®,0,00D0) _, (4,6,0

XRg.0.of| (0, 7,7), M) ®ZRy 5.0/(P,0,0), A oA 3p)}, (4.13

where; is obtained from Eq(4.9 by replacingj with J . Note that this expression contains the two-body partial wave states
(4.8), and if we denote the rotatioRy ¢ o by Ry, and

27 T
f dU=J dCI)J dOsin®,
0 0

D (©,0,0=Di% (),

we have

|gIM, pim, A1 (Ah3)p)= ’/Jf dUD(,j?%,M(U)RUﬂ(q,W,77),)\1>®Zq|5jm,)\2)\3p>}. (4.14

Another useful form of Eq(4.13 is obtained by exploiting the fact that a rotation aboutztexis commutes with a boost
in z direction, so that the operation of the rotations on (2® pair can be written

Ra.0,0ZqR6,7,0= Ro,0,0R0,06ZqR07,0= Ra,0,6ZqR07,0- (4.19
On the other hand, the rotation of particle 1 can be written
Re.0.0=Ra.0.6R00-s—Ra.0.48 ™, (4.1

where the last step is obtained by lettiRg,_ , operate orj(q,,7),\1), and recalling that this state is an eigenstatd,of
with projection —\ 4. Finally, noting that

Dy, (©,.0.0D0%, , (¢,6.0=e™Dy%_, (2,0,4)DLY , (06,0=e™D%s | (,0,¢)dh,, , (6)

(4.17
shows that the factors @ *1* cancel, and that Eq4.13 can be written
[aIM, pjm N1 (A2h3)p)= 757, f dSDy -1, (S) fo dsingd(), -, (O)RgIkIA1(KIN k3N 3)p), (4.18
where
|k(1))\1(kg)\2k_g)\3)ﬁ’>: |(q,7T,77)’)\1>®ZqR0,~0,o|(’5,0,0)3\2)\3P> (4.19

is the three-body state in itmnonical configuratiorin the xz plane with special four—moment@,ko, andk?, as shown in Fig.
4, Rs=Rg, 0,4 is the rotation which carries the three-body system from its canonical configuration to the most general
orientation described by Euler anglés®, and ¢, and

2 ™ 2m
f dSIJ d(I)f d@sin@f do,
0 0 0

Dt 2, (9 =Diihn,,(2,0,4). (4.20

Equation(4.19 shows that the canonical three-body configuration is constructed by starting from a two-body state in the

two-body rest frame where the relative momentum of the two particles is restricted xa fiiene with polar angld, then
boosting this state in the positiwedirection, and finally adding the spectatparticle J with momentum along the negative
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z axis. Since the most general rotatigg is performedafter the boosZ,, the Wigner rotations that accompany the boost are

all rotations about thg axis, which greatly simplifies the calculation.
The resultg4.14) and(4.18 are equivalent, and either may be used to evaluate matrix elements.

B. Representation of the states

In the previous subsection we showed how the states
ki1 (ko 2K 3\ 3) p) = Re[KIN 1 (KON k3N 3) ), (4.2

introduced abstractly in E¢3.36), are to be constructed. These states can also be written as a direct product of the momentum
space plane wave states introduced in B4 and Dirac helicity spinors:

|kih1(koh oK sha) py =€ 183 Ky (koK 3)) @ RS([ Ry o UG A1) 1w ZgRo7.0lUs(P ARy - o?(PA2)],)), (4.22

wherea, B, andy are the Dirac indices of particles 1, 2, and 3, respectively, and all rotations are displayed explicitly, so that
all spinor states in Eq4.22 are “particle 1" stategin the sense of Jacob and W)clExplicitly

cosh #/2) —2\sinh 5/2)
U(p,k)=( _ )X()\), v(p,k)=( x(N\), (4.23
2\sinh 5/2) cosh 5/2)
with
={o): x--[3

X(E)_ 0/ X(_ 5)_ 1) (424)
and

tanhn= - (4.29

anhp= £ .

p

Since the helicity spinors depend only on thmeagnitude of the three momentunp, we have used the notation
v(p,A)=v(—p,\), so that the correspondence given in E331) now becomes

u(p,\) if p=+,
WM ifp=—. 426

All of these conventions are consistent with our previous weHeck Eq.(A9) of Ref.[28] with i=1].
Using the representatiod.22), and the orthogonality relatior(8.5) we obtaingeneralizedorthogonality relations for the
three-particle helicity state@.21)

(1(2'3")p'|11(23)p) = (Kih (koA 5kih5)p’ [Kik 1 (Koh oK sk g) p) = (Ki (Kpk3) [Kq (KoK 3))
X[u(q’ A DR L RS RsRy, 7 (A A D I[U(P' AHRy 5, Zo Rs"RsZqRo7.0u(P.A2)]
X[U?' (B AR, L Ro7 Zo Re RsZqRoF R, 0" (P.A3)]
=2E, 8°(ky—k1)2Ey, 8% (ka— K3) 3*(P—P") Sy 15, S [ U (B ADU(PNG)]. (4.27)

Note that the states ar®t orthogonal inp space. Using Eq4.23 gives

[u?’ (P AUP(P.A3)]= 81,0, 5(P.N3), (4.28
where, if p= + is the first column angp= — the second, the matrix representationQpfs
1 —2\sinhy )
Op’p(pv)\): —2\sinhy -1 :(Ts)p’p_Z)\SlnhW(Tl)p’p' (4.29

where sinly=p/m. It is also useful to express the covariant produEtkp?’(kz—ké) in the rest frame of the two-body
subsystem, wherk,=p depends on the polar anglésand ¢. Hence the generalized orthogonality relation will be written
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(1'(2'3")p’|1(23)p) = (KA1 (kpAKENS)p' [Kak a(Koh 2K gk ) p) = 8y O, OO (P N3)2E 8% (kg —ky)
X 2E;8%(p'—p)s*(P' —P). (4.30

Even though the stat€4.21) are not orthogonal, the matr@(p,\) has a simple property which will enable us to carry out
the calculation much as it was. From HE¢.29 we obtain

E2
[O(p,\)O(P,N)],p= 6, ,cO8K =5, —2. (4.3))

Using this we can show that the completeness relation for the states can be written

d3k d3p m?
LT dP D |1(23)p7)0, (P A3)(1(23)p]

1EQa/aQ ’ 5/ :f
pe 2B, 1 2E5 EN AidgAgp'p

d3k, d3p m’ — - _
fZE —d*P X |kahi(kohokaha)p )0, (P N3){(kih1(koh ok 3N 3)pl, (4.32
ky 2Ep E~ MiAohgp'p

whereQ,=Q,,, is the positive energy projection operator for particlgvith Dirac indicesa andea') introduced in Sec. 11 B.
Equation(4.32) tells us that the states span only the positive energy sectors of particles 1(a@h@R is sufficient but they
span the entire four-dimensional Dirac space for the off-shell particle 3.

We will only describe the emergence of the fac&y, in the derivation of the completeness relatid@n32. To see how
this factor emerges, evaluate the sum averp, andp’ explicitly using Eq.(4.23:

m? b —
22 #.(PA3)0,,(P.Aa) UL(P, 9=z [;pu (P Ag)Ul(P.Ag) —sinhy > zxsu’;,<p,x3>u';(pm3>]

E~>\3p P ° Ag.p#p’
ml 1 — r3sinhy m2sinhy| sinhy 73 m? ~
==z .~ —z | =8,,—5coslty
Es| masinhy 1 oy ES —73 sinhy oy ES
=5,,. (4.33

Subsequent operations by the rotations and boosts leave this factor invariant. In the same way, the surasnover give
the projection operator®, and Q,.

We will now use these relations to work out the generalized orthogonality and completeness relations for the partial wave
amplitudes(4.18.

C. Generalized orthogonality and completeness relations

Using the generalized orthogonality relatiods30), the definition(4.21), and the notation
3'1"(2"3")p)=1q"3'M", D"} 'm";NT(N5N5)p), (4.39

we obtain
(3717(2'3)p"|31(23)p)=(q'I’M", "' M’ ;N1 (A55)p" [qIM, Pim; N 1(Ao)3) p) = 7y 7y mmf ds'D M, - \(S)
xf SO (S)J dd'sing’ d(',)\, v (0’ )f dasingdy), _, (9)
X<1,(2'3,)Pl|1(23)P>:5>\1>\15>\é>\2 6>\é)\377J’77j’77J77jf dS'D mr % (S")
f 4SO, (S) fowdié'sinié'dgf?kﬂs(ié') joﬁdﬁsinﬁdg?xz_h(?o')

X 0,1,(P,\3)2E, 8°%(k; k1) 2E58%(p' —p) 8*(P' = P). (4.35

Writing the 5% functions in polar coordinates
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2B, 5%k, — k) 2E5%(p' — p)=2E, (—_q) 5(co’ —coP) 5(P' — D) 2E; (p_2—p) 5(cosh’ —cosh) 8(p' — ),
9°
(4.36

allows us to integrate easily ovellS' anddd’, giving S'=S and ' ="0. The remaining integrals ovetS andd@ can then
be easily done using the orthogonality properties of thandd functions. We obtain

5(q—q’) (p p )54(P, P)
q? '
(4.37)

Using Eq.(4.32 and the orthogonality of th® andd functions, the completeness relation for the partial wave states can
be derived

(317(2'3")p’ [31(23)p) = 8338 m 87 S mOn [, O pp, Or s Opr o PR 3) 2E

q2dq p2dp m?
2Eq 2E; E~

— d*P E 31(23)p)0, (P, \3)(I1(23)p)|

Xlxzxsp P

1= QaraQﬁlﬁ5777:

q%dq p?dp m? ~ , ~ ~
2E, og g2 0P 2 1aIMPIMAAP)O, (P R)(AIMPIMAI(NApl. (438
q p B JMjm

MiAohgp'p

Note that this is consistent with E¢4.37).

D. Reduction of the equations
The partial wave expanded three-body equations can now be obtained directly from the operator €2j38tidRestoring
the projection operator€, this equation is
Q1Q2F1=2Q2M1G3QZ[ Q:19,]P1d Q1Q5] ngzrl, (4.39

where we have made frequent use of the fact thabperates only in the space of particleand hence commutes with all
operators which operate only on particlesi, and the property; ;= Q;. Replacing the two termpQ,9,]® 1 with the
completeness relatio@.38, and using the relation

Q19,|91(23)p)=[J1(23)p), (4.40
we obtain
112d " HZd " m 12d /Zd m
(31(23)p|THy=2 D g "daq  pTap q’'“dq’ p'“dp’ n
3’ Mrerr )\rr)\rr)\gp4p3 2Eq// 2Ep// EB,
)\l)\ )\3p2p1

X(J1(23)p|M*G4]J1"(2"8")p)0,,,, (D" N5){I1"(273") 3| P14 3'1'(2'3)p2)O,,, (P’ A5)

X(J'1'(2'3")p|T). (4.42)
This result anticipates the overall conservation of the total four-momerRymand the conservation of the quantum numbers
J, M, j, andm by the operatoM'G;.

The matrix elements of the operat'G, are most easily evaluated using E4.14). Recalling thatM G operates only
in the two-body subspad@3), the matrix element is

(J1(23)p|M*G;|d'1" (23 )Pz)opzpl(p A\3)= 77J77J’f de du’ DM m-x, (U)D(J )m’ N (U")
X((q,’IT,’IT),)\1|RL_JlRUr|(q,7T,7T),7\1>
X(PIM\o\ap|RyZg *MIG3Zo Ryr [P/ M’ N5\ 502) 0, (P ND).

(4.42

The orthogonality relation for single-particle states is
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((a,m,m) N Ry "Ry [(a,7m,m) A1) =((9,0,8) A\1(0, 0", @)\ 1) = 6),,12Eq6® (q—q")

:5>\1>\’2E M5(005@ coP')S(P—-D'). (4.43
! q°

Inserting this, integrating ovedU’ (which fixesU’=U), noting that the boost operat@;, and the rotation operatdr,
commute withM1G;, and carrying out th& integration using the orthogonality of tie functlons gives

rqr rar YN (q q )
(IL(23)p|M*G3|3'1'(2'3")p2)O,,p, (P N3) = 833 Sum’ §jj Sy O 11 2Eq q—<l(23)P|Mle|l(2 3")p2)

X0p,,(P"A3), (4.44
where we have used the following shortened notation:
[1(2'3")p2)=[P" M, N3N 3p2) (4.45

and removed from the two-body matrix element\dtG; the factor 0fdjj mny - Now, including the projection operators, the
propagatoiG3 in Dirac space is

3 (m+k3) m YN SN P (RN
G3=G3Q—(M+ky)——————2mQ, —[u” (p’,A3)9” (q,p")u” (p",A3)], (4.49
m-—k3—ie Ep

where we inserted the decompositih32 with g°(qg, p) given in Eq.(3.33. The only dependence of the two-body helicity
statesj(2'3")p,) on p, and\; comes from the factan’2(p’,\3), which leads to the following properiyvhere there is no
sum overp’):

[u? (p" N UP (p' N91i(2'3")pa)=1i(2'3")p ) u? (P’ AGur2(p’ AH)]. (4.47)

Using Eqgs.(4.46 and(4.47), and recalling Eq(4.31), the two-body matrix element in E¢4.44) is reduced as follows:

2 (i(23p|M*G4[j(2'3")p2)0,, (P’ .\5)
P2

—om - S ((29pIMY (5 A5G (a,p)u? (p' A511j(2'3")p2)0,, . (P" N5

P’ p PNy

—om— S (j(23pIMY((2'3")p")g” (651U (B A UPA(p’ A3)10,,,. (P’ \p)

P’ p'poNy

—2m—— S (j(23)pIMY}(2'3")p')e" (0D ) S01n;0pp, (P 13) 0, (P N3)

P b "poNg
EE’ : 1) rar w7
=2m——(j(23)p|M*|j(2"3")p1)g"(q,p"). (4.48

Inserting this result into Eq4.41) gives finally

~n2 " /2 2
! p dp m p m n n n
(J1(23)pITH=2 X > q'2dq f f 25 Ez (i(23)p|M1]j(2"3")p3)g*(q,p")

J/Mrj/mr H // 2E‘p‘,, p,
)\17\2)\3132!’1

X(J1(2"3")p3|P12ld'1'(2'3")p2) 0, (P N3)(I'1'(23")py|T). (4.49
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k;° andk}® both be in the negative direction, and thak,’
andk’l’0 both lie in thexz plane with a positivexk component.
Any three-body configuration with canonical orientations
in the xz plane can be completely characterized by three
variables. For the vectors in Fig(&, these variables can be
chosen to bék;|=q’, |ky|=Pp’, and the anglg betweerk;
andk; (recall thatk}, is the vectok} in the c.m. of the pajt
For the configuration in Fig. (), the corresponding vari-
ables ardky|=q", |kj|=p", and the same angle. If the
total c.m. energy of the three-body system is fixed, then there
is a constraint between these three variables, leaving only
FIG. 5. (a) The momentak]° k;° ks in their canonical con- WO independent. I§” andp’ are specified, the angje can
figuration. (b) The canonical configuration of the momenta be determined, and this was the approach taken by one of us
k1% ks®, ks® which result from the interchange of particles one andPreviously[2]. However, the final equations are more trac-
two. (c) Figure showing hovk;® k3 k3® are rotated intck ko, ks table if " and y are specified, ang’ is determined by the
by the rotationRy, which equalsRy only whenk, ,k;,ks line up  constraints, and this is the approach we will take below.

precisely withk}%,k5°,ks°. Examination of the two configurations shown in Fig&)5
_ and §b) shows that the rotatioR,=R , o [not to be con-
In Appendix A we show that fused with the rotatiorRy, discussed below which carries

the configuration shown in Fig(B) into Fig. 5c)] will bring
them into alignment, or

E~E~H i ~ o~
i(23 Ml i(2"3" — pP—p MPP’J’J” (P, ”;P ,
(i(23)p|M*j(2"3") p3) 2y aonz gy (PP P23

(4.50 RvK;®=k;°,
where M‘;pij,, .(P.p";P2) are thetwo-body amplitudes
2N g ghg n0__y,10
previously determineftfom Ref.[28], Eq. (2.89. Rvkz"=kz",
To obtain the final three-body equations, the matrix ele-
ments of the permutation operator must be evaluated, which
ill be done in the following section.
W ! wing sect RUKO=K.C. (5.2

V. THE PERMUTATION OPERATOR Py,

In this section we will derive the matrix elements of the Furthermore, since the final momerita k;, andk; can be

L : btained either by rotating thek®)’s throughRg/, or the
operatorP;, which interchanges the states of particles 1 and? Oy s
2. Using the shorthand notation given in E4.34), the ac- K™)’s throughRs (because they are equaive have the

tion of the permutation operator is relation

7)12|"]:|'(23)p>: |‘]2(13)p>7 (51) kl: Rs/ kg: RS”kgliO: RS//Rvkio (53)

where the relation of the momenta of the individual particles

to the relative momentg and p, and to the quantum num- Which implies
bersj andm, is unambiguously determined by the order in

which the single-particle names are written. For example, the
state|J2(13)p) is one in which the second particle is the

spectator with momenturg, and particles 1 and 3 are the

pair with angular momenturnandm, and particle 1 has c.m.

momentum variablep and 6. More precisely, from the re- This rotationR, will eventually emerge from the derivation
sult(4.18), the statéJ1(23)p) is obtained by averaging over below.
rotations Ry of a state with the canonical configuration

ki k5% k5%, shown in Fig. %a), and the stat¢J2(13)p) is

obtained by averaging over rotatioRs, of a state with the
canonical configuratiork;®,k3%,k5°, shown in Fig. Bb). We now turn to the details of the evaluation of the matrix
Note that the two configurations are related by interchanginglement. Using the forni.18 for the three-body state, the
particles 1 and 2, but the definition of the states requires thanatrix element ofP;, can be written

RS' = RSN RV . (54)

A. Initial reduction of the matrix element
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(3'1(2'3")p"|P1IL(23)p)=(q'I'M",p'j'm’ N 1(AoN3)p’ | P1daIM, Pim, N1 (A2N3) p)
=(q'3'M",p’j’m’ N {(A;h3)p’[A"IM, D", N5(N1k5)p)

4 i ‘J ! /!
:r;J/anj/njdedeDﬁwm, N (S)Dr -\ (S)
X JO d'sing’ fo dd"sing"d")) g (B0 ()
X(kiON 1 (ks"A5k3ON5)p"|Rg Rer k5N (K1 O 1K5 N 5) p). (5.5

Hence the matrix element depends only on the rotdﬂéfg,,. This rotation will be equal t&ry after the constraints imposed
by the evaluation of thék’ °|k”®) matrix element have been realized, but until then this rotation will be derfyted Ry .5
HenceRg =Ry R;,lRS,,z Rg Ry, and using the group properties of the rotation matrices

Dlim-x,(8)= 2 DA (SR, (V), (5.6
The invariance of the group integration ensures that
f dS’zde’, (5.7
and the orthogonality relation for tHe functions,
f ds D) | (SHYDIE(S) =8y 18 O 2m (5.9
M’ =\ M,A MALVRY m—)\l,Angv .

allows the reduction of Eq5.5) to

rqr rar ’ ry(9)* ’ 7T~r'~r WNH' " I
(3'1'(2'3")p |7>12|J1(23)p>=2w5J,J5M,Mnj,y,jf dv Dfn,)_ki'm_kz(v )JO dd’sing fo d"sing df;,k, (@)

xdy y (B)RON (kSNSRI ) p' Ry [K5ON(KION 1K5ON 5) ). (5.9
We now define the vectors
Ry Kj°=k,,
Ry ks0=ks,
Ry k50=kj (5.10

(wherek; is not lined up along the negatiweaxis and equal tdxio until Ry, =Ry). This rotation of the vectork into the
vectorsk; is represented in Fig.(§). Guided by the discussion leading up to E§.2) and the representatiod.22) for the
three-body states, the matrix element involvRRg is a product of a plane wave momentum space matrix element and Dirac
space matrix elements

(KON S (k3ONSKEONE) ' Ry [KEON (KON 1K5ON5) p)
= (ki (k5 %kg0) [ Ry [K52(K;OK52)) X U= 2B, %) (ki —ky) 2By 8P (k52— kp) 89 (P = P, (5.1
where
U=[e'™1u(q’ AR % Ry ZgRo7 (P A ILe ™ ™2u(D’ ARy7: Zo RurRe 7 o(QN5)]
XL (B AR, 3 oRog) oZar Ry ZaRo R, m (P M) =1 UD U7, =((B" M50’ [B.A2(A1ha)p))
(5.12
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will be referred to as theeducedmatrix element of the permutation operator. Note tiyatlk,| andq’ = |k;| (as above The

matrix element(5.12) contains Wigner rotations which result from the fact that the helicfileg and{\;} are defined in
different frames.

We first turn to the evaluation of thé functions on the right-hand side of E¢.11.

B. Evaluation of the é functions

In Appendix B it is shown that the twé functions can be written

(p po) 6(p _po)

2B, 6¥(k;°—kq) 2E,, 0¥ (k% — ko) = 4E5 Ep: 8(B) 8l a—m)——=; 5(cosh— cosy) 8(cosh’ —cosby),
0 po
(5.13
with
Po=Po(A.9".x),  Po=Po(d’.d.x),
FéOZEO(q!q,vX)! ’b’(,):?éO(qI!Q!X)! (514)
and

~ M,—E,)E, +qq’ cosy|?
po(qu’:X)Z\/[( ‘ q)v‘j, T,

q
W,E, — (M= EQ)E5 (qar
~ q=q t 9/ =po(a,9",x)
cogBo(a.q", x)} = — (5.15
apo(a,9”,x)

The first twoé functions insure that the rotatidR, =R, s s is NOWR ,+ o, and theé functions inp andp’ fix the angle

x' to x. The angley will remain a variable, since we prefer to express the “allowed” magnitudes of the morpestal p’
as functions ofy rather than the other way around.

We now combine expressiofs.9), (5.11), and(5.13 and insert the result into the three-body equat®A9. In doing this
we must be careful to change the arguments of the matrix elenfentl), which is expressed in terms of

(p’,q’ )\1)\ N3P, N 1AM 3), to (p”, g, N NSNS |P’,q" A 1N5N5), SO as to agree with the labeling used in E549. Carrying
out thedp’ anddp integrations then gives

<J1(23)P|F1>=_2 V2j+1y2j'+1 Z JQ'qu —f dXS'nXd —Ng,m’— )\(X)
j'm’

H H

}\1)\2)\3172131
X(j(23)p|M*[j(2"3")p3)g*3(q,p") ™M M)d V i 0”)d“,w v (8")

2

m m ~ ~
XE__<<p A1(N5NDpal P/ No(N1N3)p2)) Oy (P N33 1 (23")p|T), (5.16
p// p,

where C. Wigner rotations and the reduced matrix element

It will be sufficient to define a Wigner rotation only for
P'=po(a,0.x), P"=Po(qa . x), the special case when a spinor with helickyand three-
momentum in the right half of thez plane is boosted in the
~ ~, ~ , positivez direction, as shown in Fig. 6. The boost is denoted
=060(Q",9,x), 0"=60(9,9".x), 517 py Z,, [defined in Eq.(B4)], the initial three-momentum of

_ _ the state byp (with magnitudep and polar angled), the
and ((p”", N 1(N5A3)pal P’ A 5(N1N3) po)) is the reduced ma- final three-momentum by (with magnitudep=q’ and polar
trix element defined in Eq(5.12. This matrix element is angle = 7— x), so that the Wigner rotatio®(q,q’,x) is
calculated in the next subsection. defined by the relation
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with
i~ — /B k
z |
L | ~ tanhy = (5.20
, P : P k
x
| : In Appendix C we show thaR is a pure rotation about the
axis,
(a)
® R(9,d",x)=Rogo> (5.2)

FIG. 6. () The canonical configuration of momentum for the and find the general equation for gss a function of

caICLIIIatltc:n_I?; the Wlfgner rotatlo? The helicity Hsd2 in thlsﬂex- A g, q', andy. Since 0=g=m, 8 is uniquely determined by
ample. (b) The transformation of momentum and spin after t €its cosine. Using the resul6.21), we have

boost in the+z direction. The spin is now no longer aligned with
the momentum, but rotated by angbewith respect to it.
Zgu(pN) =2 u(p,»)dF2(B). (522
Zqu(P,\) = ZgRo7,0L5U(0N) = Ro ok pR(0,0", X)U(ON), '
(5.18 We now are ready to evaluate each of the matrix elements

where the representation of the pure bodstgfor k=p or in Eq. (5.12, but we will make the substitution

p) in four-dimensional spacetime is (p',q" NASNAIP. G A 1A oN 5
coshy sinh —(P", A MAENE[P Q" NGNS
1
L= 1 , (5.19  so as to agree with the labeling used in E5.16). Noting

. that klzkio implies thatp’=q and 6’ + y= (see Fig. %
sinhn coshy the matrix element for particle 1 becomes

1 TSy ( - ~ =N\ — - 1/2
Uil)i:[e' Slu(q,)\l)Rw,lw,onZq'Ro,e',ou(p ApD]=€emy [U(q,7\1)Ro,i,oRo,X,oRo,e',ou )]d ( /31)

(1/2) (112)

=e™>, [u(gAyu(g,v )1d,\7 (B =e™d 0 (By), (5.23
where, using the functioB defined in Appendix C, Eq.C14),
B1=p(q",d,x). (5.24

Similarly, to evaluate the matrix element for particle 2 W8e=7—y, p”"=q’, and

Rﬂh @0 RO,’ZT, —an

R'n’,a,OZ RO,—a,ﬂ' ’ (523
which gives
Z/{(”)\’_[e lwszu(p" A )R 0"qu 1RVwaoU (q',A)]=e" ”TSZE [U(q V)R, 9"0 Rz x.0R=70u(q’ Az)]d(t\/’%(ﬁz)
e ™23 [U(a',)Roo-2,U(a" Ap)1d, 0 (By) =~ 2 h() —e T 2L (~ B), (526
where
B2=p(49,9",x)- (5.27

Calculation of the matrix element for particle 3 is complicated by the fact that its physical four-momentum is off shell,
while the four-momenta used in the definition of the spinors are on shell. However, as shown in E31), the four-
momentum of thaegative energgpinor is identical to the four-momentum of the on-shell particle in the interacting pair, and
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an efficient way to proceed is to first express both ofufiepinors in terms ofi~. Then it will turn out that the boosts of both
p-spin states can be evaluated in terms of quantities related to the on-shell particle in the interacting pair.

To this end, note that™ can be expanded in terms of andy°u~

ut(pA)=9° %4'2)\%75 u=(p.\), (5.28
where the matrix
5_(0 1)
Y7l1 0
commutes with all rotations and boosts. Then, using the fact that
Ro.m0= e T 2= —jySa,, (5.29

wherea, is the Dirac matrix, and using the explicit form of the spinors given in B3, we obtain
Razou” (P,N)=€"%8y°u"(p,—\). (5.30
Combining this with Eq(5.28 gives a simple formula foR, . qu*(p,\). These two relations will be summarized
Ry U’ (p,N) =€ N, (Mu(p,—\), (5.3)

whereu™ =u is implied and

E p
N+<p,x>=ﬁ+2x5f N_(p,A)=7". (5.32

These relations can now be used to evaluate the matrix eldd@nt

3 n n —
Jw =[u? (P" MYRE R Za “Rr.0Zq Ror R, m (D' A 5)]

=[u(p", ~ NN, (P" MR 7 Zg "R y.0ZaRor No(P' AHU(P’, —A5)]

—p! - —v,—

=2 (@, =¥ )Ro oy Ny (B" AN, A9)Rr s 0R07- ot = 11U (B2)d 0 (B,

(5.33
whereNp= yONp ¥° and, because we were able to write the sties ou” in terms of the positive energy on-shell spinars
using Eq.(5.31), the matrix elements of particle 3 have been expressed in terms of the Wigner rotations which already
appeared in the treatment of particles 1 and 2. Since\tiactors commute with the rotations, the matrix element can be
further simplified as follows:

g™ "2 €7 I8 (BDTU(A v IRo- o (BT NN,(P N3 u(@,— )]

—v,—

== e d) L (Bd0) (B0 (—X)[A b+ By ds], (539
where the matrix element$; andds are
[u(@',— v )Ro—you(a,—»1=d*? _ (=x)d;=d™2 _ (—x)(c'c—4v'vs's),
[u(@',— v )Ro—y0v° u(@,— ) 1=dY? _ (=x)ds=d™? _ (—=x)(2v's'c—2wc’s), (5.39
with
c=cosh ny/2), c'=coshnq/2),

s=sinh(74/2), s'=sinh(7q/2), (5.36
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and
sinhnqz%, sinhng, = qm . (5.37
From the explicit form of theN’s, we obtain
Ez/Exy E”B, p/’
pP"=p "y 1
—ANIN—— —2\—
m2 33 m2 3 m
AP’p: '5, y
_2)\ém -1
Ezip’ Ez/ p” =
r—P n—P p
m m
B, ,= - . (5.39
_ -0 0
m

The sum ovew and»’ in Eq. (5.34) can now be carried out if care is taken to remove all phases which dependrosn .
There are four possibilities, all of which occur. We may write the “standard” sum in a compact form

iy (102 2 i 2 2 il (12
> 1= e™dT) (B (- x0dDY (B =€ d)(Bo)d (< x)d (B =€ msd N (Br+ Be—x)
=e™ad(B1+ Bo— X)), (5.39

where symmetry properties of tilefunctions have been used, and for compactness}hé indices are suppressed in the final
result. By similar arguments, the remaining three sums give

> 4v'vI=€e™3d(By+ Bat X)),

’
vy

> 20" T=€e""3d(— B+ Bo+ x),

’
144

2 2vZ=€""%8d(— B+ Bo—x). (5.40

Using these identities, the matrix element for particle 3 finally becomes

3) _ AimAL pP3P2
Uit gy =8 ST o4
where the matrixt® * is
—[D,A+D5B] —(=1)Y2 25 &D —(-1 k%*Aép—”o
1 5 (—1) o Ds (-1 m D1
P _
gy~ c =, ! ©42
(_1)1/2_)\é|:Fp’D5+ %D1:| Dl

with the notation
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e (1/2)
Dl_d)\g)\é(lgl—"ﬁZ_X)C,C_d)\gxé(ﬁl_"lgz'i')()s,sy

(1/2) (1/2)
D5:dxgxé(_,31+324‘)()5’0—d)\g)\é(—,31+ﬁz—)()0'8,

A:A++ ’
B=2)\}B, . . (5.43

Combining the result$5.23, (5.26), and(5.41) gives the following expression for the reduced matrix element:

A AN TENT NN ! imns (172 12
((B" XN palD” A5 (M {N3)p2))=— € ™3 0 (B AL (— B) X7 (5.44

N
)\3}\3

D. Symmetries of the permutation operator

The reduced matrix elemef’.44) satisfies a symmetry condition which can be obtained from the following property of
scalar products:

(D" Ni(N5ND) pa P AN NS p2)y = (D" AH(N NS pal P N1 (NGNE) pa))*. (5.45

Because the permutation operator is Hermitian and the initial and final states are composed of identical nucleons, this equation

tells us that the matrix elements.9) must be identical under the substitutigr-q’ (which also impliesp”—p’, 6" 6’,
and 8, B,) and

jHj,v )\lH)\él
mem’,  AjeN7,
P3Pz, Nz A3. (5.46

Examination of the matrix elements shows that this implies

_ 1 ym—ry+r54(0) (172) (12, P3P2 _ 4 ym' A5 +NE (D) (172) (2 p2P3
( 1) ! 3dm_)‘1'm’_)‘é(X)d}‘l}‘i(lBl)d)‘,z’)‘é( BZ)X}\/?:)\:;_( 1) 2 3dm’_)‘é'm_)‘l(X)d)‘é)‘g(lBZ)d}‘i)\l( Bl)X)\é)\/?::

(5.47

which reduces to the condition

(—1)hahaxlare— P2 (5.48

AZAg AAG
However, the transformatiof5.46) givesA«< A, B —(—1)*37*3B, D« (—1)*3"*:D;, andDg — D5, showing that the
result(5.42 satisfies the symmetry conditiqb.48).

Another symmetry of the matrix elements of the permutation operator follows from the fad®thabmmutes with the
parity operatorP, which leads to the identity

P1o=P1P*=PP3P. (5.49

The action of the parity operator on the states defined in(£43 can be worked out, giving

PlaIM,pim, N1 (Aoha)p)=(—1)1"L(=1)7 71 Y2|qIM, pj —m, — Ay (— A= N3)p). (5.50
Hence the matrix elements @f;, must satisfy the identity
(@' IM"p'J'm" N (NN p' [Pl aIM, pim A1 (Noh3) p)
=(q'IM",p'j'm’ N{(AND)p! [ PP PIqIM, pim A1 (Aoh3)p)

=(—D)P pp(q'IM",p’ j =m’, =N {(—=N5—AH)p'|P1dqIM, pj—m, =Ny (—X—N3)p).  (5.51)
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For the triton, wherel=1/2, this means that under the sub- VI. FINAL EQUATIONS

stitutions In this final section we collect the previous results to-

gether, and explain how it is that integration over the spec-
tator momentumg’, is limited to a finite interval. Then we
describe the changes in the equations which are required by
isospin and the conservation of parity. Finally, we describe
how the three-body channels are classified and counted.

)\:,l.H_)\i' )\l(_)_)\l’
)\éH_)\éi )\ZH_)\Z!

)\éH_)\é, )\3<—>_)\3,
A. Spectator equations in angular momentum space

Using Eqgs.(5.42 and(4.29 gives the following compact
we should recover the same matrix element multiplied by desult:
factor of pp’.
To verify that the matrix eIemgnts G_?lz sa_tisfy this sym- > Pz 0,., (p’ Ny)=— Ep /\/p?,pl, ,
metry, return to the full expression given in Ed..6), and 0 Mgy P2 Aghg
use the identity

m——-m', me—m, (5.52

6.9

where the matrix\? ? is
d;]))\,(g):(_l))\ A d(J))\ 7)\,((9) (5.53 E-, p”
— = —2\4[D{B+D:sA
to obtain the condition D1~ 4)\3)\3 Ds 3Dy sA]

NP =
”p’ _ )\/1_)\/ o //pr AW _ ,
" ’_(_1) 3 3 N’i "1y (554) 373 — ’
h T ~2\3Ds 5.+ P b,
where/\/”,,", is defined in Eq(6.2) below. Examination of (6.2

this equatlon confirms that E¢5.54) is indeed satisfied. andA, B, D;, andD5 were defined in Eq(5.43.
In the next section we present our final results for the Combining Eqs(5.44 and(6.1) and substituting into Eq.
three-body equations. (5.16 gives

Uerit m (= .
(123pIr= 3 VEFL S [ adq’ [ Taysin 00
)\H)\H ” q'

NN

AAohgp

><<J(23>P|M1IJ(2”3")p">— 0" (@ P") oy (B0, (B (1)
p

(1/2)(/81)0' 1"’?( ﬁz)Ner <J 1/(2'3")p'|Th. (6.3

This is identical to the final result given in Sec. |, E¢5.3 As given in Eq.(3.19, the invariant mass of the two-body
and(1.6). It is a two-dimensional integral equation depend-subsystem decreases with increasing momentum of the spec-
ing on the variableg’ andy, where the integration over the tator,q, and at the value

angle y runs from 0 tos, independent of the value af, M2— m?

and the integration oveq’ has been limited to the finite 9= Q= t—m me (6.4)
interval [0,0.], as discussed in the next subsection. The 2My 3

momentap land P ;he an"gldesa a(;'d 0", ar)d thz W|gn§r the mass of the two-body subsystem is zero. This means it is
rotation angless, and 3, all depend org, g, andy, an recoiling with the speed of light, and under such circum-

are defined in Eq¥5.17), (5.24 and(5.27). The matrix\'is  gtances the relativistic effects are clearly enormous. Further-
defined in Eq(6.2). more, agy increases beyond the critical value, we pass from
a region where the two-body states are timelike into a region
where they are spacelike. The two-body scattering calcula-
tions are carried out in the rest frame of the two-body sys-
The physical reason for restricting thlg integration in  tem, which does not exist for spacelike states, and, more
Eq. (6.3 to the finite interval Gsq’ <q,;; will be discussed generally, it is unlikely that an effective theory designed to
now. describe timelike scattering would be useful in the spacelike

B. Removal of the spacelike region
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region. Furthermore, since the spacelike two-body states agere a product of the phase-(1)"i ! from the exchange of
pear only at rather high momentufabove 1200 MeY the isospin variables, and the phaseresulting from the
where the amplitudes are expected to be very small anywayyperation of';}ij _Hence

it would be sensible to simply neglect the regiqes qgit,

and set the three-body amplitudes to zero in this region. As it [=—1=u(-1D)Ti L (6.9
turns out, the three-body amplitudgs to zero automatically

at the critical value of ¢ permitting us to impose the condi- Even though( is always—1 for fermions, there are in gen-
tion that they are zero faq=q; without making the three- eral two possible values af corresponding to the two pos-

body amplitudes discontinuous in g sible isospin channels, and EQ.29 generalizes to
To see that the Faddeev amplitudgd (23)p|T'!)—0 as
g—0erit, Note that the functiompy(q,q’,x) [defined in Eq. P3M3,=UM3,=M3.Ps,,
(5.19] approaches infinity ag—qq;; (as long asq’>0,
which is true over the entire region of thﬁ_ integration PrMi=uMi,=M1,P,s. (6.10
except at the boundary where the integrand is ze3pecifi-
cally,

The vectorsﬂ“%) are also vectors in isospin space. Taking

5 o Eqr+q'c0sy) € matrix elements of Eq(2.38, and inserting 3| T)(T|,

P = (6.5 gives
q—Jcrit Wq Wq
and in this limit (TIT)=22 (T|PAT)M5G;PiAT'T3), (6.1
T/
19*(5”)N*”—> Ln (5"K+p)—>(Wq)1, where|T) are the isospin wave functions discussed below,
Epr 2p"? and(T|P;4) T’} is the matrix element of the permutation op-

erator in isospin space. The calculation of this matrix ele-
m o~ 1/ W, 0 ment is familiar from the nonrelativistic theory, but for com-
E_~9 (PN "FP—— AT A (6.6 pleteness we will briefly present it here.
p" d In more detail, the states in isospin space will be denoted

whereC andK.., are functions which are finite in the limit

asg—dqgi- Note that the possible W/, singularity from the T)=I[(t2ta) TL]TT,), (6.12
negative energy part of the propagator is canceled by the . , , o , ) )
m/E;» factor. Hence the Faddeev amplitudes go like wheret; is the isospin of particle, T is the isospin of the
pair, and7 and 7, are the total three-body isospin and its
(J1(23)p|TYy — Cp+(Wq)<np++1)+Cpf(wq)npf, projection. As the notation suggests, and t; are first
Wq—0 coupled toT, and thenT andt; are coupled toZ. These

(6.7 states form a complete, orthonormal basis

wheren,, andn,_ are powers with which the two-body ([(tota) T ITT [ () T/ 1,17 T,)
~ z
amplitudes(4.50 fall with momentum ag” —o°:
= 5t1ti5t2té5t3té5TT’ o7 5TZTZa

1\ Mers
(i(23)pIMYj(2"3")p3) — (:) . (69
P By, ([t TITEX[ (1ot THITE] =1
We conclude that the Faddeev amplitudes not only go to zero (6.13

asq— (i, but that they approach this limit smoothly.
The effect of Py, is to interchange particles 1 and 2:

C. Isospin

Since the main application of the three-body equations for Pl (tata) T' 1] 7T) =[[(t1ta) T't2]77,).  (6.14

Spin 1/2 particles W.'" be _the three-nucleon system, we haVei’he matrix element oP;, in isospin space reduces therefore
to incorporate the isospin degree of freedom. This can b?o a simple recoupling coefficient

done separately from the other degrees of freedom, as de- P pling '
scribed in this subsection. We will assume that isospin is

conserved by the equations. (TIPAT")y=([(tota) T4 1TT| Prol[ (t2t3) T't1177)

To lay the foundation we return to the discussion in Sec. =([(tot3) Tt 17T ((t1t3) T'ty) TT,)
Il. The exchange operatofg; are a product of a part which T
actsonly in isospin space, and a part which acts on all other t 13
—~ =—2T+1y2T'+1 . (6.1
coordinates, denoted by;; . If the ij pair has isospifT;; , ty, 7T T 6.13

the action ofP;; on the isospin part of the wave function will
be denoted simply by its eigenvalue {)"i 1. The phas¢ In the next subsection we complete the reduction of Eq.
which occurs in Eq(2.29 is —1 for fermions and is there- (6.11) by inserting a complete set of good parity eigenstates.
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D. Parity eigenstates should be distinguished from*. To carry out this construc-

The two-body scattering amplitudes which drive thetion, we first introduce the three-body states
three-body equations are separated into channels which are
eigenstates ofP! (the parity operator on the 23 subspace
and isospin. Isospin was just discussed in the previous sub- 1
section, and need not be revisited again until the next sub-  [Jj"A1(mA\)p)= T{|~J,im§?\1(?\z>\3)P>
section below where we explain how isosgor exchange 2

symmetry plays a role in the description and counting of the +rpeld, MmN (—N—N3)p)}
channels. The role of the conservation of parity, which has
not yet been taken into account, will be discussed in this 1 L
subsection. = 5(1“7’ )[3,im;N1(NoA3)p),
The helicity stategJ1(23)p) are neither eigenstates of
the full parity operatorP, nor of the two-body parity opera- (6.20

tor, PL. Since the two-body scattering amplitudes which
emerge from the two-body calculations are eigenstaté® of
the three-body equations must be reexpressed in terms afhere |J,jm;N1(Ao\3)p)=|J1(23)p) are the same three-
these states. This is not difficult because the eigenstates apedy states introduced in Sec. IV, E4.34), but with some
merely linear combinations of the states we have alreadyf the notation restored for clarity. The parity operatiion
obtained. these states yields

First we return to the two-body helicity states
[im(\oN3)p), where the relative momentuny is sup-
pressed because it will play no role in the discussion which  P|Jj"\;(m\)p)=7.r(—1)? 71751 Jj =\ (—m\)p),
follows. If we apply the operataP* (referred to simply a® (6.22)
in Ref.[28]) to this state we get

PLim(N,hz)p)=peljm(—A,—\3)p),  (6.16  and the three-body eigenstates of parity, with eigenvalue
IT== are therefore

wheree=(—1)"1. It is easy to see that the state
II;r — 1 ir
_ 1 ' 1 |3%) (m?\)P>=E{|JJ A1(m\)p)
|lr(m)\)P>EE(l“‘rpl)“m()\z)\s)m:E{“m()\z)ﬂ)ﬁ’)
+Ier (= 1)7 7175 3j =Ny (= mN\)p)}

+rpelim(—X2—\3)p)}, (6.17) L
= —(1+IIP)|Ij Ay (MA)p). (6.22
with A=\,— \5, is a normalized eigenstate &, V2
- L
P (mh)p)=r[j"(mX)p). (618 | this case we adopt the conventipp= -+ and letm vary,

subject to the condition that
If we replace the individual particle helicities, and A 3 .

on the RHS of Eq(6.17 by —\, and —\3, we obtain the

same state, apart from a phase factor. We should therefore 1

include in our new basi$6.17) only states that are not re- |m—)\1|=‘m— _‘gJ_ (6.23
lated to each other by changing the sign of both helicities. 2

We choose the conventiox,= + 3 and label the states by

the difference\. With this convention\ can be 0 or 1, and Nucleon one is always in a positive-energy state, and

the parityr can be+ and —, and we have again four inde- therefore 7, =1 ands; = 1. The triton is characterized by
11

pendent states, just as before when each of the individu 14

helicities were allowed to be- 3. The selection rule =3 . Three-body states with these quantum numbers are

INoa—Ns|<] (6.19 1
%*,jr(mh)m:E{l%jr z2(m\)p)
excludes\ =1 for states withj=0.

For the construction of three-body parity eigenstates we —relii"— L(—mn)p)).  (6.29
can proceed in precisely the same way, treating the two-body
subsystem as one elementary particle with gpimelicity m,
and(now well-definedl intrinsic parityr. The parity operator Expanding these three-body parity eigenstates in terms of the
which acts in the three-body space will be denofédand  original three-body helicity statgg.34) gives
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13717 (MN)py=3{|3 .im;N1(NoN3)p) + T pel5 ,im;N1(—No—N3)p) —T |5 ,j —mM; = N1(No\3)p)
—pl5.i—mM=Ni(—Na=A3)p)}= 3 (L+P)(1+rPY |3, imN1(AN3)p). (6.29

We now return to Eq(6.11) and take the remaining spin-momentum matrix elements of the operators using the basis of

good parity states, Eq6.25. For simplicity, we represent the states |8y j"(m\)p)=|j"(m\)p), and the direct product
states by T)®|j"(m\)p)=|Tj"(m\)p). Then, in our abbreviated notation,

Cl'lt
(Tifmp|TH= > >
] r! )\H "
m'T" \N'p’

m T
a2’ 2 [ Taxsine(Ti ) p MHTT (A ")p)
q’ 0

><E— 9”"(q,p")PL [Ti"(m\")p", T'j"" (m'\")p’ ]—<T’J” (m'\")p'|[T7), (6.26
p” p

where(Tj"(m\) p|MIT|Tj"(m\") p")y= Mzz,’,’(Tj’) is the two-body scattering amplitude for thih partial wave with parityr
and isospinT, and

PP LTI (MN) ", T (N ) p’ 1=(T| P T/ X (M) p” | Prd i (M )p Yy =(T|P T YX((P1p)).  (6.27)

Equation(6.26 is our final result. It expresses the three-body equations in terms of the physical states with definite parity and
isospin, driven by two- body amplltudeM ,,(TJ ) which have been previously calculated as described in [R&F.

The new matrix eIemer{t(P12>> is read|Iy obtained from the original matrix elements Ej5), which are, in the notation
of this section,

(P2)=(3.J'M" ;Ni(Ao\3)p" [ Pral 7, jmi N 1(A2N3)p). (6.28
From definition(6.25 we have
(Pr2)=5(3 0" M N NG p! [(1+1PH (14 P) P 1+ P)(1+ P[5 im k1A ah3)p)
= 32,0’ MNP (LT PHP( 1+ P)(L+rPH 3 ,im;h1(N2h3)p), (6.29
where we used the fact th@ commutes withP;,. Using Eqgs.(6.16), (6.21), and(5.51), we obtain
((P1)=3{(3 "M ;N (AAD P! [Pral Jmihai(Nohg)p)+17p €' (3 ) M A1 (—N5—N5)p'|Prd 3 . imiNi(Noh3)p)
+rpe(z,i" M N (NN )P [Pral 3 imiNa(—No—=Na)p) +1'rp pe’€(7 " M ;N 1(—=Ny3=N3)p’|
XPral 5 JMiNi(=N2=N3)p) = p(3 ) M ;N J(Noh3)p'[Prad 5 .j —mMi = N1(—N2—N3)p)
—t'p"pe’ (3,)' M INI(=No=N3)p'[Pidl3 . j =M =N i(= A= Ng)p)—re(3,j M ;N1(Aj\3)p'|

X Pz i =M= N1(Noh3)p)—r'rp € €(5,i' M ;N (= N5=N5)p | Prdl3 .j —m; = N1(N2h3)p)} (6.30

This is the correct form of the permutation operator to be S=E~ —Lw 6.3
used with the physical, good parity states. Po=5p,™ 2 Was 6.39

is the difference in the energies of the two particles in the
two-body rest framéwith particle two on shellandW,; the
We conclude this paper by counting and classifying therest frame energy of the two-body system. Note thts in
channels which contribute to the final three-body equationsgeneral not zero because particle three is off shell, and that
In order to clarify the following discussion we restore we continue to suppress explicit reference to the magnitude
some of the notation which we previously suppressed, angdf the three component of the relative momentim,be-
denote the two-body helicity state8.17) with good parity,  cause it will play no role in the discussion which follows.

[i"(m\)p), by |Poj"(M\)p), where This state satisfies the relation

E. Three-body channels
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~ . -~ . TABLE I. Possible quantum numbers for three-body states with

Q2| Poj"(MA) p) =[Poj(MA) p), ©32 7 e aner _ Y _
J"=3" (for the triton. Virtual two-body states have been ne

where Q, is the projection operator introduced in Sec. Il glected.

which places particle two on shell, and is equivalent to the

identity when operating on states where particle two is ald A r u p m  Number of states
ready on shell. Note that the state with relative energqy, o 0o« _ + 0 4
has particle three on shell and hence =1 01 =+ 6 + o1 16

=1 0,1 —€ —€ * 0,1 8

Q3| —Poi"(MN)p)=|—Poi" (M\)p).  (6.33

In terms of the state.17), the interchange of space and
spin coordinategeverything but isospinhas the following
effect:

ensures that they are zero on shell. However, because the
two-body quantum numbens and u are not conservedn
three-body scattering, they can contribute to relativistic
three-body scattering and to the three-body bound state. In
the calculations completed thus fp4] we have neglected
these states, but we expect them to give a small contribution
This equation follows from the definitio6.17 and the re- of purely relativistic origin.

lation Neglecting the virtual states, and recalling the selection
rule (6.19 leads to the following counting rules:

P Poj (MN)p)=(rp) e[ =Doj" (M\)p).

Pad Poim(Aoh3)p)= €| —Poim(Nah,)p),  (6.35

which (except for notational changes Eq. (2.97) of Ref.

j=0: (A=0)X(p==*1)X(r==+1)x(u=—1)

[28]. =4 states,
Using Eq.(6.34, we can extend the discussion of the
previous subsection and introduce states Witth good par- j>0: (A=0,D)X(p=x1)X(r=x¢€)X(U=¢€)

ity and good exchange symmetry. Introduce the states
+(AN=0,)X(p=x1)X(r=—¢€)

1 - o~
fru - ir
I (mX)p>—ﬁ(l+ UP23)[Poj' (MN)p). (6.3 X(u=—€)=12 states.
These are normalized eigensta’[es of b@%mnd 7)23 The total number of tWO'bOdy states with angular momenta
_ . § =<Jmaxis thereforen,=4+12j ..
PYjM(mN)p)=r]j™(m\)p), In numerical calculations of the three-nucleon bound state
it has become customary to truncate the partial wave series

%23“ U(mn)p)=ulj™(m\)p). (6.37) according to the maximal included total pair angular momen-

tum j. Table | shows how many different three-body states
Sinceu=(—1)", which can be writterilT = (1—u)/2, these exist for a givenj. The pattern is simple: applying the selec-
states are also the correct spin-momentum states to use wition rule (6.23 for eachj >0 gives 24 possible states corre-
isospin. sponding to 12 two-body states with either=0 or 1, or

The counting and classifying of three-body states dependgx 12=24 states. Foj=0 onlym=0 is allowed, and hence

in part on the number and classification of the two-bodythere are only four different states. For each combination of
scattering states. Since bafti andﬁ23 are conserved by the quantum numbers there is one particular pair isospin consis-
two-body equations, two-body states can be classified by diftent with the Pauli principle. Since we have used exchange
ferent possible values of the quantum numberand u. symmetry to count the states, the inclusion of the isospin

There are four combinations: does not lead to any further increase in the number of chan-
_ nels. The total number of states up to a given maximal value
singlet r=—¢, u=e, j max IS thereforeng=4+24j ...
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APPENDIX A: OPERATOR FORM OF THE TWO-BODY M in Eq. (Al) is M3, because the “spectatorlif it were

EQUATIONS present would be particle three. To obtain a closed set of

In this appendix we present the operator form of the two- equations for Eq(AL), multiply by @4, giving

body equations, and their subsequent reduction to partial
waves. Using the notation of Sec. II B, the two-body equa-
tions for the scattering amplitude are

[QM]=[OV]-[2:1VG,Q;][ 91 M], (A2)

which shows that particle one is on shell throughout the in-

M=V-VG,0;M, (A1) teraction. _ _ .

The two-body partial wave equations can be obtained

whereV is the symmetrized kernel arid is the two-body from Eg. (A2) by inserting a complete set of the two-body
scattering amplitude describing the scattering of particles Angular momentum states defined in E48 (with the 23
and 2. Note that particle 1 in on shell in the intermediatepair relabeled 12 The completeness and generalized or-
state, in agreement with the conventions of H&B] (see thogonality relations for the two-body states, implied by the
Sec. IIB in that referengeIn the three-body language, the work in Sec. IIC, is

2 L YAONAT _ ~ ~5(B_B,)64 ,
(j'@z2hp |J(12)p>_5]"]5m’m5)\i)\16)\é)\20p’p(p!}\Z)ZEpT (P~ P12,

o~
p?dp m? ) ~ _

— d*P X [i(12p")0, (P A)(i(12)p], (A3)
2E E imp’p

NiAgAg

1= Qa’aﬁﬁ’ﬁ: f

where the shorthand notation defined in E445 has been used. Substituting the completeness relation intGABy gives

k?dk m?
(112pIM1i(1'2)p") =(1(12pIV(1'2)p") = 2 | Zg - Ea(I(126IVCII(12)p1) Oy (kA3
x{xg
X(j(1"2")paIM[j(1'2")p"). (A4)

The evaluation of the matrix element WG is identical to the evaluation &l 1G; carried out in Eq(4.48). Substituting this
into Eq. (A4) gives

m2
(i(12p|M[j(172")p"y=(j(12p|V|j(12")p")— 2 kzdk(](12)P|V|J'(1"2")P">E—ﬁgp (a,k)

/N

II)\ )\

X<J(1/72//)prl|M|J(172/)p1> (A5)

Multiplying both sides of the equation by °*m 2/EpEg , and introducing the amplitudes

(27T)3m2 i(12 Mli(1'2) o’ _MPP’j ~~/.P
H(J( )pIM[j(1727)p" ) =M\ (P PP,
(27)°m?

——(112pIVi(1'2)p") =V (BB P,
p=p’
2
ng(q,k)=g"(k), (A6)
gives the equation

Mi’;)\j”)\z)\'(pi 12) V)\ )\ A )\ (p p PlZ) 2 dk\/op)\” )\”(p k PlZ)gp (k)M)\ )\ )\ )\ (k!B,YPIZ) (A7)

//)\ )\
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This is identical to Eq(2.88 of Ref.[28], establishing the

relationship between this paper and previous work on the

two-body problem.

APPENDIX B: REDUCTION OF THE & FUNCTIONS
IN Py,

In this appendix we derive E@5.13 for the § functions

2By, 0 (k" k1) 2B, 07 (ky"~kz)  (BD)

ALFRED STADLER, FRANZ GROSS, AND MICHAEL FRANK

CEgv+Sp'cosp”
p"sing”
0
SE;/+Cp"cosp”

n0_ "o _

Now the vectors which appear in ti&functions(B1) are
ki, k52, kq, andk,. The second two of these are obtained by
applying the rotatiomRy to k;° andkj’, as illustrated in Fig.
5(c). Since the rotatioRy, does not change the length of the

which appear in the matrix element of the permutation opthree-vectors, the conditiok,’=k, imposed by one of the

erator, Eq.(5.1).

1. Radial é functions

First find the vectork;® andk;® shown in Fig. %a), and
k;° andkj® shown in Fig. %b). The vector;® andk® are

Eqy Eq
0
k0= K k0= o |’ (B2)
—q’ —q

where we anticipate thdk”}—{k} and hence usékj|=q
instead of|k3|=q". This agrees with the notation in Eqg.
(5.12. The vectork,” andk}° can be found by boosting the

vectorsk,? andk}° defined in the two-body rest frame:

EE/ EEH
_ P’sing’ _ P"sing”
10__ //O_
K 0 , kY 0 (B3)
P'cosd’ P"cosd”

The boost in thez direction for the configuration shown in
Fig. 5a) is

cC’" 0 0 ¢
0 1 0 O
Zy= o o1 ol (B4)
S 0 0 C'
where
M _E ! \/W /+q’2 !
cl=————%-_"1 L s=1 @y
W,/ W, W,

q q q

The boost for the configuration shown in Figbbis ob-
tained from Eq.B4) by replacingg’ by gq. Hence
C'E;+S'p’cosd’
- p’sing’
10_ 10_
k2 _Zq/k2 - 0 ’
S'Eg/+C'p’cosd’

(B6)

radial 6 functions becomes
q={'5’25ir12'5’+S’2E%,+C’2'5’Zco§'5’
+2C’S'p’Epicos0’ 12
={[C'Ej/+S'p’cosf’ |2~ m?}12 (B7)
Requiring thajcosé’|<1 gives the unique solution
Eq—C'Epr _ Wy Eq—(M—Eq)EG

cosf’ =cosfj= S
P

g

ap

!

(B8)

The radialé function can therefore be rewritten

dk, |

cosd’

8(ky?—kp) = &(cosf’ — coshy) ]

cosd’ :cos’ét’)
The derivative is

dk,

_s Eqp’
dcosh’

q ’

cosg’ = COQ(’)

giving finally

5(k5%—ks) 1 - ~

2 5 2= —— 5(cosh' —cosh)
k3 S'qEqp’

Wy ~ ~

=———=5(cosd’ —cosfy), (B9
qq'Eqp
where co®; was defined in Eq(BS).

The result for the other radiaf function follows imme-
diately by interchanging primed and unprimed variables.

2. Angular é functions

Evaluation of the angulaé functions requires explicit
consideration of the rotatioR,, =R, ,+ s Which rotates the
vectorsk;® andkj® into k; andk, as discussed in Sec. VA

and illustrated in Fig. &). First we consider thé function

8PD(k50—ky) = 8(coshs’— cost,) 8( 5°— bo),
(B10)
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where (¢,,¢,) and (65°,45°) are the polar and azimuthal where ¢;,4;) and (0;°,4;°) are the polar and azimuthal
angles ofk, andk.°, respectively. The three—vectkig0 was angles ofk; andk}°, respectlvely The vectdf1 is given in
given in Eq.(B6), andk, is Eq. (B2); the vectork; is
0 siny’ cosw Uy v,CO0PB
Ko=R, ﬁk”o ay gl O | =—qal sinx'sine | ki=R, . ﬁk"o axl O | =Ra ol vxSINB
—q cosy’ v, Uy,
(B11)

v,C05BCc0oSy + v ,Siny
Since ko, =k5)=0 andk,=kj2=0, the azimuthal part of _ v, Sing _ (B19)

Eqg. (B1 i
g. (B10) becomes v,COSBSINY — v ,COS¢

10__ _ _
Ny —da)=d(m—a). (B12) where
The polar part of thes function is — =
=p”sing”,
5(cosy"— cost,) = o ~[S' B, +C/ o' ]+ ) CEq—E
coY, —Co¥,) =S| — 5 co cosy’ |. - o~  —Ezn
2 27\t P P X ,=SE;+Cp'cosd’=—2—".  (B19)
(B13) S

If this & function is used to eliminate the', integration, one  Settingk; =k;° gives three equations:
is left with an integration ovelp’ with upper and lower
limits depending on the two external momenta and on the
second integration variable. This makes numerical solutions
of the resulting equations awkward. Becayseis the angle
between the momenigandq’, and is therefore symmetric
under interchange of initial and final states, it is more con-
venient to retainy’ as the indeplendent variable and elimi-  we will first use the left-hand set of Eq€820) to obtain
nate instead the integration over. The limits on thex’  the values of and p” which are fixed by theS functions
integration turn out to be independent of the other variablegB17). Then we will use the right-hand set to find the Jaco-
running over the expected range from OtoUsing Eq.(B8)  bian of the transformation from the variables 60, to the
to replace co@’, the § function becomes variablesp”, 3.

The angleB must be 0 orzr. Allowing for either possi-
bility, the first and third of Eqs(B20) give

0=v,c0sBcosy +v,Siny=q’sinf,cosp,,
0=wv,sinB=q’sind;sing,

g=v4C0sBsiny—v,cosy=—(q’' cOoH; . (B20)

/0 C'Eq—Ej,
o(cost,” —cosh,) = 8| ———— +Cosy |, (B14)
q g’'cosy=—v,. (B21)

with the solution Substituting this result back into the third equation gives

Ef=Ef,=C'E +S’qcos(—( t_Eq’)V'\E/q+qq C°$(, q’ sirx=vcoBsiny=p”sinf"cosBsiny. (B22)
a (B15) Since the sin of all angles under consideration is positive,

this equation shows that ¢8$s also and that therefoyg=0.

and, since thé,’=k, is now satisfied, we have replacgd  Finally, from Eq.(B21) we obtain

by x, as discussed in Sec. VA. It is easy to show that Eq. c

(B14) implies thatE;,=m for all values ofy, so that thes Eq—Ep

function (B14) places no additional restrictions on tfyein- coSx+ q'S =0 (B23)

tegration. Hence

which is the condition(B14), with g andq’ interchanged,

showing thatEy. satisfies Eq(B15) (with g andq’ inter-

changed We have shown that the second angudldnnction

dcosﬁ -t

8(cospy’—cost,) = 8(p’ — pg)

5’:5(’) is
_Sakg 82 (ki®~ky)=8(8) 8(p"~Po)J, (B24)
= 28(p'~pg). (B16)
Po where p, is p, with g and g’ interchanged and is the
The final angula function is Jacobian of tDe transformation from the variablestgas, to
the variableg”, 8.
82 (k;°—kq) = 8(cost;°— costy) 8( ;0 — 1), We return to the right-hand set of Eq&20) to calculate

(B17)  this Jacobian. Unlike the previous cases it is necessary to
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calculate a full Jacobian because the variables are all coupleghe radials functions have fixed ca in terms ofp”—p,
unless we go to the limit sth=0, which gives singular re- Eq. (B8) with a’ —q andB’ —B"— D1 and using this re-
sults. Postponing this limit until the end, we first eliminate I[at?o.rg Wé find '?hat q P’ P"=Pol, ¢
from Eqgs.(B20) and obtain,
v4SiNB=q’sind;sing,, @ - q\Nﬂ, (B27)
ap” qE;Osine”
v4,C0B=Qq’'[ sinf,cosp,cosy— cosh;siny]. (B25)

. L ) ) and hence the Jacobian is
Differentiating both of these equations with respect todgos

and ¢4, computing the Jacobian, arlen taking the limits q9'Ep, SUEj,

0,=m, $1=0, andB=0 gives — — (B28)
PoWq Po
B duy
o e 96, q'2 Combining Eq.(B9), its companion, Eqs(B16), (B24),
Xly= =—-cosy. (B26) and (B28), and anticipating the fact that th#functions fix
ap 9B vk | vx the rotation so thap”—p and 6”"— 8, we obtain our final
Jcosh;  JCOH; result

8(p'—pg) 8(p—"Po) 5

2B, 0¥ (k;°— kq) 2By, 83 (k50— ko) =4Ef Eg1 8(a— ) 8(B)—=+3 —— 3(cosf’ —cosdy)
0 Po Po
X 8(cosf — cosy). (B29)
[
APPENDIX C: WIGNER ROTATIONS where L, was defined in Eq(5.19 and m=(m,0) is the

four-momentum vector of a particle of massat rest. Hence

In this appendix the Wigner rotation angle for the stan- . : o
bp g g the Wigner rotation operator is given by

dard boost(5.18 that occurs in the matrix elements of the
permutation operator is derived. R(O)=(e 0L )17 e idy0] ~ c3
Consider a spin-1/2 particle with mass helicity A, and (Q=( @) "Zq P ©3
three-momentunp which lies in thexz plane (with the x ~ Assuming thaRR(Q) is a pure rotation about the axis, the
component positive, by conventiprinder the boosg, in equation reduces to the following set of equations involving

the +z direction the state transforms like B:
e*”vﬁLq,e*”yﬁzqu*”yz Lp. (C4)
Z B AV =R _ (112 1 _ We will solve these equa_tions using th_e Dirac representa-
alPM)=RQIPN) Ev [p.2)d,"(8), (€D tion for the operators. In this representation the pure boosts

in the z direction are

— adngl2— A1 ’

whereZ, will by used to denotdoththe boosiB4) in four- Ly =e®h=c'+s'a;, (€9
dimensional space-tim@nd its representation on the space where tanhyy =q'/Ey;, ¢’ =cosh(y,/2), ands’ =sinh(y,/2)
of states. Hen0@=ZqB. In agreement with the notation [these relations were previously defined in E§.36)]. The
used in Sec. IV, the magnitudp|=q’, and angle betweem  boostZ, has a structure similar to EC5) but with 7 —n,
and the+z axis is 6=7—y. We will show thatQ is a  where

rotation about they axis, and find the rotation angl@, in

terms ofq, g, andy. C= M~ Eq

As previously described, the helicity states are con- Wq

structed from rest states by first boosting in the direction, as in Eq.(B5), but with q’'—q. To simplify the notation in

and then rﬁcgtatmg _through th? p“’?er angle. For the St""te\;svhat follows, we denote the hyperbolic functionsmyf2 by
[p,\) and|p,\), this construction gives

ch=coshing/2), s,=sinh(n,/2). (C7)

=coslm,, S= Wiq=sinmq (Co)

|’5,)\>=efuy§|-5|l:ﬂ,>\>, The pure rotations about theaxis are
e Wy0=e 107°ay2= coq 9/2) —isin( 6/2) Yay. (C8)
[P, Ny=e" W0y [m,\), (C2  Hence Eq(C4) becomes
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[cog 0/2) —iyPaysin(0/2)][c’ +5' a,][cog BI2) —iyPa,siN( B12)]=[ Cp+ a,S,][ cOK 0/2) —i Y a,sin(6/2) ][ c,p+ az(sé]g)

Using{y°ay,a,}=0, Eq.(C9) becomes
{coq (0+ B)/2] i a,sin (8+ B)I2]}c' +{cog (6— B)12]—iYoaysin (6— B)/2]}S' a,
={CnCp+SnSpT @x(SnCp+ CnSp) 1O 0/2) —i{CCp—SpSp+ ax(SnCp—CnSp) } Y2, sin(/2). (C10
Equating the coefficients of the independent operators on each side of this equation gives four coupled equations
c'cog (6+ B)/2]=(CnCp+S,S,)CO 6/2),
c’'sin(0+ B)12]=(CoCp— SySp)sin(/2),
s'sin (60— B)/2]= (CySp—SnCp)Sin(0/2),
s'cog (0— B)12]=(CySp+SnCp)COL 6/2). (C11)

These are not all independent; squaring each of these and then adding the first two and subtracting the second two gives an
identity (1=1). Hence only three are independent, and given the quanties, and y=7— 6, these three independent
equations can be regarded as equations for the unknown quartitigsand 3.

We are only interested in an equation fr This is obtained by multiplying the first equation by the last equation, and
adding it to the product of the second equation and the third. The result is

Csinhy,+ Scoshy,cosd
cosB= (Al 75 . (C12
sinhyp’
To eliminate co#, we find an equation for it by summing the squares of each of the equations. This gives
~ coshy’—Ccos E, —CE;
cosf = W h”pz d P (C13

Ssinhy, Sp

Note that this is identical to E4B8) (with the primed and unprimed variables exchangstiowing that the calculations are
consistent. Substituting for cégives

% coshy,coshy’ —C W EGE, —m?(M—E,) a’(M;—Eq) +qEq cosy
coB=— — = — = .
sinhypsinhy Pq’ Wy \/q’2W§+ q2E§,+2qq’Eq/(Mt— Eq)cosy+(qq’ cosy)?
(C19
This is the formula for cd$(q,9",x)]-
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