
PHYSICAL REVIEW C NOVEMBER 1997VOLUME 56, NUMBER 5
Covariant equations for the three-body bound state
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The covariant spectator~or Gross! equations for the bound state of three identical spin-1/2 particles, in which
two of the three interacting particles are always on shell, are developed and reduced to a form suitable for
numerical solution. The equations are first written in operator form and compared to the Bethe-Salpeter
equation, then expanded into plane wave momentum states, and finally expanded into partial waves using the
three-body helicity formalism first introduced by Wick. In order to solve the equations, the two-body scattering
amplitudes must be boosted from the overall three-body rest frame to their individual two-body rest frames,
and all effects which arise from these boosts, including the Wigner rotations andr-spin decomposition of the
off-shell particle, are treatedexactly. In their final form, the equations reduce to a coupled set of Faddeev-like
double integral equations with additional channels arising from the negativer-spin states of the off-shell
particle.@S0556-2813~97!02311-X#

PACS number~s!: 21.45.1v, 11.10.St, 21.10.Dr
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I. INTRODUCTION AND OVERVIEW

The three-body spectator~or Gross! equations were firs
introduced and applied to scalar particles in 1982@1#. This
original paper included a treatment of nonidentical partic
and an introductory discussion of the definition and role
three-body forces in a relativistic context. Shortly afterwa
in lectures given at the University of Hannover@2#, the equa-
tions for three identical spin-1/2 particles were written dow
but many details needed for a practical solution of the eq
tions were never worked out. In this paper we complete
development by expanding the amplitudes into partial wa
and reducing the equations to a compact form suitable
numerical solution. The development is carried out only
the case when the three-body scattering amplitude can
obtained by iterating successive two-body interactions,
that the three-body forces of relativistic origin discussed
the original paper@1# are neglected. However, because o
covariant equations include the negative energy part of
Dirac propagator of the off-shell nucleon, many contrib
tions are automatically included which would arise fro
three-body forces in a nonrelativistic context.

The bound state equations we present in this paper h
already been solved numerically for a variety of cases,
some results have already been published@3,4#. From this
experience we know that the general development prese
here is a suitable basis for a practical solution of the cov
ant three-body problem.

In the remainder of this section we give a brief summa
of the current status of nonrelativistic calculations of t
binding energy of the three-nucleon bound state, and a
view of previous work on the relativistic three-body pro
lem. Then we will give a brief summary of the physics u
derlying our spectator equations, and present the fi

*Present address.
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equations. The derivation of these results is found in
subsequent sections. In Sec. II we begin the developmen
writing the three-body equations in an operator form wh
is independent of the basis states used to describe the t
body system. In Sec. III we introduce basis states and w
the equations in momentum space. In this representation
physical content of the equations is clear, but the equati
are not in a form most convenient for numerical solution.
solve the equations numerically it is convenient to use
partial wave decomposition based on the helicity states or
nally introduced~in a three-body context! by Wick @5# and
this is developed in detail in Sec. IV. The evaluation of t
permutation operator, which interchanges particles betw
interactions and permits us to express the equation in te
of only one amplitude, is discussed in detail in Sec. V, a
all of the results are collected together and the final equat
given in Sec. VI. There are three appendices which disc
some points in detail.

A. Brief history of the three-body bound state problem

The first realistic nonrelativistic calculations of the trito
binding energy were completed in the 1970s@6#. Later it was
shown that different methods arrived at the same results,
that the binding energy could be calculated to a numer
accuracy of a few keV by considering all nucleon-nucle
(NN) partial waves up toj 54 @7#. Today, if three-body
forces ~3BF’s! are not considered, a discrepancy of abo
0.5–1.0 MeV remains between the experimentally obser
value of28.48 MeV and values obtained from realistic no
relativisticNN potentials. Calculations of the contribution o
theD resonance to the 3BF find that the net effect of theD is
small @8,9#. State-of-the art calculations often include in a
dition also 3BF’s based on meson-nucleon interaction p
cesses other thanD excitation @10#. When the strength of
phenomenological 3BF’s is adjusted to give the correct tri
2396 © 1997 The American Physical Society
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56 2397COVARIANT EQUATIONS FOR THE THREE-BODY . . .
binding energy, an excellent value is also obtained for
4He binding energy~and to a lesser extent other light nucl
up to A.7) @11#.

However, relativistic effects should make a contributi
to the binding energy at the level of several hundred ke
Using a mean momentum of about 200 MeV~consistent with
nonrelativistic estimates! we expect to see corrections of th
order of (v/c)2.(p/m)2.4%. If this is 4% of the binding
energy, then it amounts to about 300 keV. However, if re
tivity has a greater effect on the attractives exchange part of
the force~as it does in nuclear matter calculations using
Walecka model@12#! then we might obtain an effect 1
times larger.

Interest in relativistic three-body equations goes back
1965, when Alessandrini and Omnes@13# used the
Blankenbecler-Sugar equation@14# to describe the scatterin
of three particles, and Basdevant and Kreps@15# applied their
ideas to a description of the three-pion system. Taylor@16#
discussed the application of the Bethe-Salpeter equation@17#
to three-body systems in 1966. In 1968 Aaron, Amado, a
Young @18# introduced three-body scattering equations
which all the particles were on shell. Later, Garcilazo and
collaborators@19# treated three-body bound states using
Blankenbecler-Sugar equation, and Garcilazo@20# applied
Wick’s helicity formalism to the three-body problem, an
used it to treat thepNN system relativistically@21#. Re-
cently, the size of relativistic effects were estimated by Ru
and Tjon@22# using a separable kernel in the Bethe-Salpe
equation, by Sammarruca, Xu, and Machleidt@23# using
minimal relativity and the Blankenbecler-Sugar equatio
and by the Urbana group@24# using a relativisitc kinetic
energy operator with boost corrections to the potential
order (v/c)2. All of these calculations include some contr
butions coming from relativistic kinematics, but none tre
the Dirac structure of the nucleons to all orders in (v/c)2, or
investigates effects which might arise from a realistic re
tivistic treatment of theNN dynamics.

B. The physics behind the spectator equations

In the absence of three-body forces, the three-body s
tering amplitude~and the three-body bound state vert
functions! can be obtained by summing all successive tw

FIG. 1. Diagrams from the infinite class of successive two-bo
scatterings~represented by the ovals! which contribute to scattering
of the three-body system. We use the convention that the in
state is on the right and the final state on the left in each diagr
The 3 labels internal spectators, which are put on shell in
spectator formalism. In this example, all of the diagrams but
first contribute to the subamplitudeT 13 where particle one~on the
top! is the last spectator and particle three~on the bottom! is the
first spectator. The first diagram contributes to the subamplit
T 11.
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body scatterings, as shown diagrammatically in Fig. 1. T
summation can be organized into Faddeev-like equatio
shown diagrammatically in Fig. 2. When the three partic
are identical, the different Faddeev subamplitudes can be
tained from each other by interchange of variables, lead
to a single equation for a single subamplitude represen
diagrammatically in Fig. 3. It is necessary to know the tw
body scattering amplitude before the equation shown in F
3 can be solved. More specifically, the two-body scatter
amplitude must be known in the rest frame of thethree-body
system~or any other frame independent of the internal va
ables!.

The two-body amplitude is usually calculated in its ow
rest frame, so it must beboostedto the three-body rest fram
before it can be used in the Faddeev equations. The velo
of this boost depends on the momentum of the specta
which is one of the dynamical variables of the problem, a
hence the boost must be known for all velocities. In t
nonrelativistic case this is trivial because the two-body a
plitude is invariant under Galilean boosts. However, in t
relativistic case this may present a problem, depending
the type of formalism used. Here, for the purposes of disc
sion, we distinguish two fundamentally different ways to a
proach relativistic calculations. In one approach, which w
be referred to as Hamiltonian dynamics~including light-cone
methods! @25#, some of the Poincare´ generators include the
interactions, and therefore relativistic effects from eith
boosts or rotations are normally treated approximately~see,
however, the paper by Glo¨ckle, Lee, and Coester@25#!. In a
second method, which we will refer to as manifestly cova
ant dynamics@26#, the generators are all kinematic, and
boosts and rotations can be doneexactly. The spectator equa
tions developed in this paper are an example of the la
method; we will reduce the three-body equations to a pr

y
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.

e
e
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FIG. 2. Diagrammatic representation of the Faddeev equat
for the amplitudesT 1i . Note that the spectator is identified by th
solid dot.

FIG. 3. Diagrammatic representation of the bound state spe
tor equation for three identical particles. Spectators are identified
the solid dots, and on-shell particles by the3. Note the interchange
of particles one and two.
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2398 56ALFRED STADLER, FRANZ GROSS, AND MICHAEL FRANK
tical form by exploiting our ability to boost the two-bod
amplitudes to their rest frame.

The Bethe-Salpeter~BS! formalism shares the propert
that the two-body amplitudes can be boosted exactly to t
rest frame, and we will therefore compare the spectator eq
tions with the corresponding BS equations. Both approac
conserve total four-momentum. This leaves an integra
over all independent internal four-momenta, which are t
for the three-body problem. The three-particle Beth
Salpeter equation does not restrict any of these eight in
pendent components, and after a partial wave decompos
there still remain four integrations, leading to coupledfour-
dimensional Faddeev equations. Furthermore, these e
tions contain singularities arising from the indefinite natu
of the Minkowsky metric. In the spectator formalism the tw
time components of the internal four-momenta are elim
nated ~or, more precisely, expressed in terms of the ot
variables! by requiring that two of the three particles be fixe
to their positive energy mass shell. This reduces the num
of independent variables to onlysix, and after a partial wave
decomposition one obtains coupledtwo-dimensional equa-
tions with a Faddeev structure. The three-body spect
equations therefore have the same structure as nonrelativ
equations, and this is one of their most significant adv
tages.

A particle is put on shell when it is aspectatorto the
interaction of two other particles. When this is done syste
atically, two of the threeparticles are always on shell. Th
particle which is off shell is the~unique! particle which has
just interacted and is about to interact again~in a topological,
not time-ordered, sense!, as illustrated in Fig. 1.

It is natural to assume that restricting particles to th
mass shell represents an approximation to the BS equa
but it can be shown that it is equivalent to a reorganization
the perturbation series of all ladder and crossed ladder
grams which, in some cases, sums these diagrams mor
ficiently @1,27#.

In summary, the spectator equation is used because~i! in
some cases it sums the infinite series of all ladder
crossed ladder interactions efficiently,~ii ! it reduces the
number of independent variables to a minimum, making
covariant three-body problem tractable, and~iii ! it permits us
to boost the two-body amplitudes to their rest frame a
calculate relativistic effects exactly.

Before we turn to the details of the derivation of the sp
tator equations, we present the equations in their final fo
in the next subsection.

C. Spectator equations for three spin-1/2 particles

In the absence of 3BF’s the three-body scattering am
tude is obtained from a sum of all successive two-body s
terings. Because the three particles are identical, each
body scattering differs from the others only by
permutation, and they can therefore all be summed by
operator equation of the form

uG1&52M1G1P12uG1&, ~1.1!

whereuG1& is a vertex function describing the contribution
the bound state from all processes in which the 23 pair
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the last to interact~with particle 1 a spectator!, the two-body
amplitudeM1 describes the scattering of the 23 pair,G1 is
the propagator for the 23 pair, andP12 is a permutation op-
erator interchanging particles 1 and 2. These are labele
Fig. 3. The factor of 2 comes from the contribution ofP13
which equals the one ofP12. The permutation operator rea
ranges the particles so that the same equation sums up
scattering ofall pairs: 12, 23, and 13.

The three-body spectator equations have the same s
ture as Eq.~1.1!, but incorporate the additional feature th
the spectator is restricted to its positive energy mass she
all intermediate states. With the conventions implied abo
consistency also requires that particle 2 be on shell, so
two particles are always on shell. As already stated abo
we think of these constraints as a reorganization of Eq.~1.1!
which will, in some cases, improve its convergence. T
constraints are manifestly covariant, and lead to the follo
ing equation:

uG2
1&52M22

1 G2
1P12uG2

1&, ~1.2!

where the lower index labels the second on-shell parti
Hence only particle 3, the~unique! particle which has just
left one interaction and is about to enter another one, is
shell in Eq.~1.2!.

To prepare Eq.~1.2! for numerical evaluation, we take
matrix elements of the operators using three-particle sta
Both r-spin states~wherer51 is theu spinor positive en-
ergy state andr52 is thev spinor negative energy state! of
the off-shell particle must be treated. First we reduce
equation using states with definite particle helicities, simi
to those defined by Wick@5#. These three-body states will b
written in the abbreviated formuJ1(23)r&, whereJ is the
total angular momentum of the state,r the r spin of the
off-shell particle, 15$q,l1% ~whereq and l1 are the mag-
nitude of the three-momentum and the helicity of the sp
tator in the three-body c.m.!, and (23)5$ p̃, j ,m,l2 ,l3%
~where p̃ is the magnitude of the relative three-momentu
of the 23 system,j andm are the angular momentum of th
pair and its projection in the direction ofq, andl2 and l3
are the helicities of particles 2 and 3,all defined in the rest
frame of the 23 pair!. The momenta are defined in Fig. 4
which also shows the relation between the rest frames of

FIG. 4. Diagrams showing the momenta in the two-body r
frame~left panel! and in the three-body rest frame~right panel!. We

chose the momenta of particle one to be in the2 ẑ direction, so the

boost from the two- to three-body rest frames is the1 ẑ direction.
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two- and three-body systems. The three particles have m
m, and the total mass of the three-body bound state is
noted by Mt . ~We use the symbolm to denote both the
projection of the momentum and the particle mass, but
e
e
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m

-

ss
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e

difference between them should be clear from the conte!
Using this notation, and suppressing isospin, the final fo
of the three-body spectator equation forG1 is given in Eq.
~6.3!. It can be written
^J1~23!ruG1&5 (
j 8m8

(
l29l39r9

l18l28l38r8

E
0

qcrit
q82dq8

m

Eq8
E

0

p

dxsinx^ j ~23!ruM1u j ~2939!r9&

3
m

Ep̃9

gr9~q, p̃9!P12
r9r8@1~2939!,18~2838!#

m

Ep̃8

^J818~2838!r8uG1&, ~1.3!
t
us.
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is,
where ^ j (23)ruM1u j (2939)r9& is the j th two-body partial
wave amplitude for the scattering of particles 2 and 3 in th
own rest frame~precisely the amplitude obtained from th
two body spectator theory as described in Ref.@28#!,

P12
r9r8@1(2939),18(2838)# is the matrix element of the per

mutation operator, given in Eq.~1.6! below, andgr(q, p̃) the
propagator of the off-shell particle in differentr-spin states

g1~q, p̃ !5
1

2Ep̃2Wq

, g2~q, p̃ !52
1

Wq8
~1.4!

whereWq is the mass of the 23 pair, and depends onq,

Wq
25Mt

21m222MtEq , ~1.5!

with Eq5Am21q2. Note that Eq.~1.3! includes a sum ove
intermediate helicities and angular momentum quant
numbers, and an integration over the internal spectator
mentumq8 and the anglex between the directions ofq8 and
q. The momentap̃8 and p̃9 depend onq, q8, andx, as given
in Eq. ~5.17!.

The integration overq8 has been limited to the finite in
terval @0,qcrit#, where qcrit is the root of the equation
ir

o-

Wqcrit
50. At this critical spectator momentum~equal to

.4m/3.1200 MeV!, the two-body subsystem is recoiling a
the speed of light and the relativistic effects are enormo
One consequence of this is that the solutions of the th
body equations go smoothly to zero asq→qcrit ~this is dis-
cussed in detail in Sec. VI!. Contributions fromq8.qcrit ,
which come from two-body states withspacelike four-
momenta, are suppressed both because of this zero an
cause the propagators for largeq are small. Hence, even i
the spacelike two-body scattering amplitude is not small,
expect spacelike contributions to the overall three-body a
plitudes to be very much suppressed, and it seems sensib
simply neglect the regionq8>qcrit and set the three-bod
amplitudes to zero there. This also removes the need to
culate two-body amplitudes for spacelike total fou
momenta.

Exchanging particles 1 and 2 implies that particle 2 b
comes the spectator and now its momentum and heli
must be expressed in the c.m. frame of the three-body
tem, while the variables of particles 1 and 3 must be
pressed in the rest frame of the 13 pair. Boosting from o
frame to another introduces Wigner rotations of both
single particle and two-body helicities. In the helicity bas
this exchange operator is
se

od
ly
P12
r9r8@1~2939!,18~2838!#5~21!m2l11l38A2 j 11A2 j 811dm2l1 ,m82l

28
~J!

~x!dm,l
292l

39
~ j !

~ ũ 9!dm8,l
182l

38
~ j 8!

~ ũ 8!

3d
l1l

18
~1/2!

~b1!dl
29l

28
~1/2!

~2b2!Nl
39l

38
r9r8 ~q,q8,x!, ~1.6!

where the functionsdm1 ,m2

(1/2) (b) are the Wigner rotation matrices, andN
l

39l
38

r9r8 (q,q8,x) describesexactlythe Wigner rotations of

the off-shell particle 3, as well as the nontrivial matrix elements between the differentr spinorsu andv of particle 3 as they
appear in the rest frames of the 23 pair and the 13 pair. The matrixN is defined in Eq.~6.2!, the anglesũ 8 and ũ 9 in Eq.
~5.17!, and the Wigner rotation anglesb1 andb2 in Eqs.~5.24! and ~5.27!.

For practical calculations it is more convenient to express Eq.~1.3! in terms of states with definite isospin and parity. The
states will be denoteduT jr(ml)r&, where we suppress reference to the total angular momentum and parityJP51/21, T50 or
1 andr 561 are the isospin and parity of the 23 pair, andl5l22l351/22l3. As discussed in Sec. VI D, the states of go
parity are superpositions of positive and negative helicity states@see Eq.~6.17!#, so that the two-body subspace is ful
described by adopting the conventionl2511/2, and identifying the states by their parityr and helicity differencel50 or 1.
In this basis Eq.~1.2! becomes
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^T jr~ml!ruGT
1&5 (

j 8r 8
m8T8

(
l9r9
l8r8

E
0

qcrit
q82dq8

m

Eq8
E

0

p

dxsinx^T jr~ml!ruM1TuT jr~ml9!r9&

3
m

Ep̃9

gr9~q, p̃9!P12
r9r8@T jr~ml9!r9,T8 j 8r 8~m8l8!r8#

m

Ep̃8

^T8 j 8r 8~m8l8!r8uGT
1&, ~1.7!
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where the permutation operatorP12
r9r8 is given in Eqs.~6.27!

and~6.30!. Note that Eq.~1.7! includes a sum over the inter
mediate isospinT8.

This concludes our brief introduction; we now turn to
detailed derivation of the three-body equations~1.3! and
~1.7! given above.

II. THREE-BODY EQUATIONS IN OPERATOR FORM

We start with a derivation of Faddeev-type Bethe-Salpe
equations and introduce the spectator equations afterw
by substituting a new propagator and repeating the deriva
with all necessary modifications.

A. Bethe-Salpeter equations

The total scattering amplitude for the three-nucleon s
tem T can be decomposed into three partsT i ,

T5(
i 51

3

T i . ~2.1!

The partial amplitudeT i sums up all diagrams in which
particlei is the spectator during the ‘‘last’’ interaction~in the
sense of ‘‘leftmost’’ in the diagrams of Fig. 1!. Each ampli-
tude T i is further split into subamplitudesT i j , this time
according to which particle does not participate in t
‘‘first’’ ~or ‘‘rightmost’’ ! two-body interaction,

T i5(
j 51

3

T i j . ~2.2!

The amplitudesT i j satisfy the integral equation

T i j 5 id i jMiGi
212MiGBS

i (
kÞ i
T k j, ~2.3!

where Gi is the propagator of asingle off-shell particle i ,
GBS

i 5GBS
i

^ 1i52 iG j ^ Gk^ 1i is the free two-body propa
gator for the$ j ,k% pair, andMi5Mi

^ 1i is the two-body
scattering operator acting in the two-body subspace of
ticles j andk, with 1i the identity operator for the spectato
particlei . In our notationGi is real, and any overall factor o
i which emerges when the operator expressions are re
sented by Feynman diagrams is included in the propag
GBS

i . If Vi5Vi
^ 1i represents the sum of all irreducible di

grams describing the interaction of the two particlesj andk
with particle i a spectator, the Bethe-Salpeter equation

Mi5Vi2ViGBS
i Mi ~2.4!
r
rds
n

-

r-

re-
or

yields the scattering operatorMi .
A bound state of the three-body system can be define

the residue of a pole of the three-body scattering amplit
T. For the triton we denote the position of the pole
P25Mt

2 , whereP5k11k21k3 is the total four-momentum
of the system and theki are single-particle four-momenta
One can writeT i j as the sum of a pole term and a partRi j

regular atP25Mt
2 :

T i j 52
uG i&^G j u

Mt
22P2

1Ri j , ~2.5!

where uG i& are the partial vertex amplitudes for the bou
state. Insertion into Eq.~2.3!, multiplication by (Mt

22P2),
and performing the limitP2→Mt

2 yields

uG i&52MiGBS
i (

j Þ i
uG j&. ~2.6!

These are the Bethe-Salpeter equations for the partial bo
state vertex amplitudes.

Up to this point the equations are very general and ap
to systems of any three distinguishable particles. Now
want to specialize to the case of three identical particles.
define the transpositionsPi j of two particlesi and j as fol-
lows:

P12uabc&5ubac&,

P13uabc&5ucba&. ~2.7!

Note thatPi j interchanges the quantum numbers of the p
ticles in thei th and j th locations in the state ket. The sym
metry of the scattering amplitude under particle interchan
can be expressed as

Pi j T5zT,

TPi j 5zT, ~2.8!

wherez511 for bosons and21 for fermions, andT is the
symmetrized version ofT. If we introduce the combined am
plitude

uG&5(
i 51

3

uG i&, ~2.9!

then the symmetry~2.8! of T carries over touG&, i.e.,

Pi j uG&5zuG&,
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^GuPi j 5z^Gu. ~2.10!

These relations can be used to derive the permuta
properties of the individual vertex factorsuG i&. If the par-
ticles are identical, then the two-body scattering opera
and propagators acting in each two-body subspace are i
tical, and this is expressed formally by the relations

Pi j M
iPi j 5M j ,

Pi j GBS
i Pi j 5GBS

j , ~2.11!

whereM is a symmetrized version ofM. Using these, and
the fact thatPi j

2 51, we obtain

Pi j uG i&52Pi j M
iPi jPi j GBS

i (
kÞ i

uGk&

52M jGBS
j Pi j ~ uG&2uG i&)

52M jGBS
j ~zuG&2Pi j uG i&). ~2.12!

Comparing with

zuG j&52M jGBS
j ~zuG&2zuG j&) ~2.13!

one obtains immediately

Pi j uG i&5zuG j&. ~2.14!

Thus the three-body equations for identical particles can
written

uG i&52zMiGBS
i ~Pi j 1Pik!uG i&. ~2.15!

The three equations for the three possible choices ofi are
equivalent. It is therefore sufficient to solve Eq.~2.15! for,
say, i 51, and calculateuG2& and uG3& by means of Eq.
~2.14!.

Equation~2.15! can be simplified further if we take into
account the fact that the two-body amplitudeM1 is symmet-
ric or antisymmetric under exchange of particles 2 and 3
the case of identical bosons or fermions, respectively. Th

P23M
15M1P235zM1. ~2.16!

Using this relation, Eq.~2.15! ~with i 51) can be written

P23uG1&52zP23M
1GBS

1 ~P121P13!uG1&

52z2M1GBS
1 ~P121P13!uG1&5zuG1&.

~2.17!

Next, using the definitions Eq.~2.7! note that

P23P12P23uabc&5P23P12uacb&5P23ucab&5ucba&

5P13uabc&. ~2.18!

Hence, the operatorP13 can be written

P135P23P12P23. ~2.19!
n

rs
n-

e

r
s

Using the relations~2.16!–~2.19! together with the fact tha
GBS

1 commutes withP23 we can write the Faddeev equation
~2.15! in the following simple form:

uG1&52zM1GBS
1 ~P121P23P12P23!uG1&

52zM1GBS
1 ~11zP23!P12uG1&

522zM1GBS
1 P12uG1&. ~2.20!

To reduce these equations to a practical form, it is suffici
to evaluate the permutation operatorP12.

B. Spectator equations

Now we turn to the spectator equations. We begin
replacing the two-body propagatorGBS

i
^ 1i , which de-

scribes the propagation of particlesj andk ~both not equal to
i ) in Eq. ~2.6!, by a new propagator,

GBS
i

^ 1i→GjQk^ 1i , ~2.21!

whereQk is aprojection operatorwhich places particlek on
the positive energy mass shell, and, as in the BS case,Gj is
the propagator of a single off-shell particlej . Choosing par-
ticle k to be the spectator during the ‘‘previous’’ interactio
gives the unclosed form of the spectator Faddeev equati

uG i&52 (
kÞ iÞ j

M iGjQkuGk&, ~2.22!

where the sum is overk and j with i fixed and no two indices
equal. Explicitly, Eq.~2.22! is shorthand for the following
three equations:

uG1&52$M1G2Q3uG3&1M1G3Q2uG2&%,

uG2&52$M2G3Q1uG1&1M2G1Q3uG3&%,

uG3&52$M3G1Q2uG2&1M3G2Q1uG1&%. ~2.23!

Note that the projection operatorQk ensures that particlek is
on shell both as it leaves the partial amplitudeuGk& and as it
enters the two-body scattering amplitudeMi .

To make a closed set of equations from Eq.~2.22!, it is
necessary to place the final spectator particlei on shell,
which then also forces one of the two interacting particles
the final state~denoted byk8) to be on shell. The spectato
scattering equations are shown diagrammatically in Fig
The final bound state equations can be written algebraic
in the following form:

QiQk8uG
i&52 (

kÞ iÞ j
Qk8M

iQkGjQkQi uGk&, ~2.24!

where no summation over the indexi is implied, and we
used the projection propertyQkQk5Qk andGjQk5QkGj .

Alternatively, we may introduce the notation
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uG j
i &5QiQj uG i&,

Mk8k
i

5Qk8M
iQk^ 1i ,

Gk
i 5GjQk^ 1i , ~2.25!

where the indicesi , j , andk are all different, and the lowe
indices onM and G label which particles, apart from th
spectator, are on mass shell. In this notation Eq.~2.24! be-
comes

uGk8
i &52(

kÞ i
Mk8k

i Gk
i uG i

k&. ~2.26!

We will use this notation in most of the remainder of th
section, but will return to the definitions~2.25! later in the
paper. As an example, consider the casei 51 andk852:

uG2
1&52M22

1 G2
1uG1

2&2M23
1 G3

1uG1
3&. ~2.27!

As discussed in Ref.@1#, for distinguishable particles withou
three-body forces Eq.~2.26! becomes a coupled set ofsix
equations for the six amplitudesuG j

i &, instead of only three
equations for threeuG i&, as in the Bethe-Salpeter case.

We emphasize that an important difference between
spectator subamplitudesuG j

i & and the Bethe-Salpeter subam
plitudesuG i& is that it is no longer possible to add the spe
tator subamplitudes together in order to construct a total
plitude, as we did in Eq.~2.9!. This is because the amplitud
uG2

1&, for example, restricts particles 1 and 2 to the m
shell, while the amplitudeuG3

1& restricts particles 1 and 3 t
the mass shell, and hence they are defined for differen
gions of phase space. Only operators or amplitudes wh
satisfy identical constraints, such asuG2

1& and uG1
2&, for ex-

ample, can be combined.No total three-body amplitude ex
ists in the spectator formalism.

For identical particles, Eqs.~2.26! can be further reduced
by using permutation operators. Using the fact that the
erator M1 is symmetric under particle interchange, E
~2.16!, and the relation

P32Q25Q3P32, ~2.28!
t

e

-
-

s

e-
h

-
.

we obtain

P32M22
1 5zM32

1 5M33
1 P32,

P23M33
1 5zM23

1 5M22
1 P23, ~2.29!

where z511 for bosons and21 for fermions, as before
~These are the operator forms of the symmetry relations
cussed in Ref.@28#; note that, in the spectator formalism, th
exchange operator does not relate an amplitude to itself,
to another amplitude with a different particle off shell.! We
will find it convenient to exploit the fact thatPjk5Pk j , and
always write relations like those above so that the initial a
final indices on both sides of the equation match. The sp
tator and on shell interacting particle can also be int
changed, leading to the following relations for the operat
Gj

i :

P12G2
1P215G1

2,

P23G3
1P325G2

1 . ~2.30!

The two-body amplitudes exhibit a similar symmetry

P12M22
1 P215M11

2 ,

P23M33
1 P325M22

1 . ~2.31!

Further relations can be found by combining relations~2.29!
and ~2.31!. One relation we will use below is

P12M23
1 P32P215zM11

2 5M13
2 P31. ~2.32!

It is now easy to derive the effect of permutations on t
spectator subamplitudes. For example, under the intercha
of two particles in the interacting pair,

P32uG2
1&52P32M22

1 G2
1uG1

2&2P32M23
1 G3

1uG1
3&

52zM32
1 G2

1uG1
2&2zM33

1 G3
1uG1

3&5zuG3
1&.

~2.33!

Using this, the interchange of the spectator with the on-s
particle in the interacting pair is
P12uG2
1&52P12M22

1 P21P12G2
1P21P21uG1

2&2P12M23
1 P32P21P12P23G3

1uG1
3&52M11

2 G1
2P21uG1

2&2M13
2 P31P12G2

1P23uG1
3&

52M11
2 G1

2P21uG1
2&2M13

2 G3
2P31P12P23uG1

3&52M11
2 G1

2P21uG1
2&2M13

2 G3
2P21uG1

3&

52M11
2 G1

2P21uG1
2&2zM13

2 G3
2uG2

3&, ~2.34!
for
where Eq.~2.19! ~with 1↔3) was used in the next to las
step. Comparison with the equation foruG1

2&,

zuG1
2&52zM11

2 G1
2uG2

1&2zM13
2 G3

2uG2
3&, ~2.35!

implies

P21uG1
2&5zuG2

1&. ~2.36!
Using these relations, we can obtain a single equation
uG2

1&

uG2
1&52zM22

1 G2
1P21uG2

1&2z2M23
1 G3

1P13P32uG2
1&

52zM22
1 G2

1P21uG2
1&2z2M23

1 P32P23G3
1P32P21uG2

1&

522zM22
1 G2

1P21uG2
1&, ~2.37!
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where Eq.~2.19! was used in the next to last step. From no
on we will only consider fermions, so that the three-bo
equation for the vertex functionG2

1, which singles out par-
ticle 1 as spectator in the ‘‘last’’ interaction and particle 2
the interacting particle to be put on mass shell, becomes

uG2
1&52M22

1 G2
1P21uG2

1&. ~2.38!

This equation is illustrated diagrammatically in Fig. 3.
A more explicit form of Eq.~2.38!, which expressesM22

1

andG2
1 as operators, anduG2

1& as a vector in Dirac space, i

uG2
1&abg52@M22

1 #bb1 ,gg1
@G2

1#b1b2 ,g1g2
@P12uG2

1&] ab2g2
,

~2.39!

wherea, b, andg are Dirac indices for particles 1, 2, and
respectively, and summation over repeated Dirac indice
implied. Note thatM and G operate on a two-body spac
only; the third particle~the spectator! is unaffected by these
operators.

In the next section we will give a momentum space re
resentation of these equations.

III. MOMENTUM SPACE REPRESENTATION

We specialize to three identical particles with massm,
spin 1/2, and four-momentak1, k2, andk3. The total momen-
tum

P5k11k21k3 ~3.1!
is

-

is conserved. The Gross equation restricts two of the th
particles to be on mass shell, which for the choice~2.38! are
particles 1 and 2, with particle 3 off mass shell. In the thre
body c.m. system

P5~Mt ,0!, ~3.2!

whereMt is the mass of the three-body system, the mome
are

k15~Ek1
,k1!,

k25~Ek2
,k2!,

k35~k30,k3!5~Mt2Ek1
2Ek2

,2k12k2!. ~3.3!

In Eq. ~3.3! the four-momentum of the off-shell particle,k3,
is fixed by four-momentum conservation. It is obvious th
the problem has only six independent momentum variab
just as in the nonrelativistic case.

The three-body basis states are direct products of a sin
particle state and a two-particle state,

uk1~k2 k̄ 3!&5uk1& ^ uk2 k̄ 3&, ~3.4!

where, by convention, the off-shell particle has a bar over
momentum.

Completeness and orthogonality relations are
^k1~k2 k̄ 3!uk18~k28k38!&52Ek1
d3~k12k18!2Ek2

d3~k22k28!d4~P2P8!, ~3.5!

15E d3k1

2Ek1

d3k2

2Ek2

d4Puk1~k2 k̄ 3!&^k1~k2 k̄ 3!u. ~3.6!

Next, we specify the matrix elements of all operators in this momentum space basis. The propagator is

^k1~k2 k̄ 3!u@G2
1#bb8,gg8uk18~k28k38!&52Ek1

d3~k12k18!2Ek2
d3~k22k28!d4~P2P8!2m@L1~k2!#bb8

~m1k” 3!gg8

m22k3
22 i e

, ~3.7!

whereL6(k)5(m6k” )/2m are the positive and negative energy projection operators. The two-bodyM matrix is

^k1~k2 k̄ 3!u@M22
1 #bg,b8g8uk18~k28k38!&52Ek1

d3~k12k18!d4~P2P8!Mbb8,gg8~k23,k238 ;P2k1!, ~3.8!

whereP2k1 is the total two-body four-momentum, and the relative momenta in the two-body space are denoted by

ki j 5
1
2 ~ki2kj !. ~3.9!

Note thatki j 52kji . The two-body amplitudes in Eq.~3.8! are identical to those discussed in Sec. II A of Ref.@28#. The partial
vertex amplitudes will be written

^k1~k2 k̄ 3!uG2
1&abg5Gabg~k1 ,k2 ,k3!, ~3.10!

where, by convention, it is understood that the last momentum is the one which is off shell. Therefore

^k1~k2 k̄ 3!uP12uG2
1&abg52^k2~k1 k̄ 3!uG2

1&bag52Gbag~k2 ,k1 ,k3!. ~3.11!

We can now obtain the momentum space representation of Eq.~2.38!. Inserting the completeness relation~3.6! gives
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^k1~k2 k̄ 3!uG2
1&abg52E d3k18

2Ek
18

d3k28

2Ek
28
d4P8

d3k19

2Ek
19

d3k29

2Ek
29
d4P9^k1~k2 k̄ 3!u@M22

1 #bb8,gg8uk18~k28k38!&

3^k18~k28k38!u@G2
1#b,b9,g8g9uk19~k29k39!&^k19~k29k39!uP12uG2

1&ab9g9 . ~3.12!

Inserting the above expressions forM andG, and carrying out all integrals gives

Gabg~k1 ,k2 ,k3!522E d3k28
m

Ek
28
Mbb8,gg8~k23,k238 ;P2k1!@L1~k28!#b8b9

~m1k” 38!g8g9

m22k38
22 i e

Gb9ag9~k28 ,k1 ,k38!, ~3.13!

wherek385P2k282k1. This equation is manifestly covariant.
These equations may be further reduced by multiplying theM matrix and the three-body vertex functionsG by the on-shell

spinorsu ~for on-shell particles in the initial state! and ū ~for on-shell particles in the final state!:

Gl1l2g~k1 ,k2 ,k3!5 ūa~k1,l1! ūb~k2,l2!Gabg~k1 ,k2 ,k3!,

Ml2l
28 ,gg8~k23,k238 ;P2k1!5 ūb~k2,l2!Mbb8,gg8~k23,k238 ;P2k1!ub8~k28,l28!, ~3.14!

whereua(k1,l1) is an on-shell Dirac spinor with three-momentumk1 and helicityl1. This gives us quantities with ‘‘mixed
indices;’’ a Dirac index on a matrix element is replaced by a helicity index when it is contracted with au spinor of that helicity
and with matching momentum. These amplitudes are still covariant, and simpler because the four-dimensional Dirac
replaced by a two-dimensional helicity space. If we then replace the on-shell projection operator by a sum over onu
spinors

@L1~k2!#bb85(
l2

u~k2,l2! ū~k2,l2!, ~3.15!

and multiply Eq.~3.13! from the left by ūa(k1,l1) ūb(k2,l2) we get

Gl1l2g~k1 ,k2 ,k3!522(
l28

E d3k28
m

Ek
28
Ml2l

28 ,gg8~k23,k238 ;P2k1!
~m1k” 38!g8g9

m22k38
22 i e

Gl
28l1g9~k28 ,k1 ,k38!. ~3.16!
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Equation ~3.16! is still manifestly covariant, but is no
suitable for a numerical solution. The main reason is that
two-body M matrix is given as a partial wave expansion
the two-body rest frame, and not the three-body c.m. system
as needed in the above equation. A related problem is
the propagator for particle 3 depends on the angle betw
the vectorsk1 andk28 and is therefore not diagonal with re
spect to all angular momenta after a partial wave decom
sition.

In the nonrelativistic case, the first problem does not
cur because the partial wave expansion is invariant und
Galilean boost, and the second is solved by introducing
cobi coordinates. Because of the different energy-momen
relations in special relativity, neither of these problems c
be handled so simply here.

However, we can eliminate these problems here by
ploiting the covariance of the formalism, and by explicit
boosting the two-body subsystem to its rest frame. To p
pare the way, introduce the total four-momentum of the tw
body subsystem,

P235k21k35P2k15P1q, ~3.17!
e
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where here it is convenient to introduce the moment
q52k1. Next, the boost operatorLk1

is defined by the re-
quirement

Lk1
P235 P̃235~Wq ,0!. ~3.18!

The square of the mass of the~23! pair is then

Wq
25 P̃23

2 5P23
2 5~Mt2Eq!22q2

5Mt
21m222MtEq . ~3.19!

A tilde on top of a variable always indicates that it is defin
in the two-body rest frame. We have, e.g.,

k̃25Lk1
k2 ,

k̃35Lk1
k3 . ~3.20!

We now define the relative momentump̃ through
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k̃25 1
2 P̃231 p̃5~Ep̃ ,p̃!,

k̃35 1
2 P̃232 p̃5~Wq2Ep̃ ,2 p̃!, ~3.21!

and therefore

p̃5 k̃235
1
2 ~ k̃22 k̃3!5~Ep̃2 1

2 Wq ,p̃! . ~3.22!

Next, we introduce the representation on the Dirac spa
S(L), of a Lorentz boostL. These transform Dirac matrice
and spinors according to the following rules:

S21~L!gmS~L!5Lm
ngn, ~3.23!

S~L!u~k,l!5(
m
Dml

~1/2!~RLk!u~Lk,m!, ~3.24!
e,

ū~k,l!S21~L!5(
m

ū~Lk,m!Dlm
~1/2!* ~RLk!, ~3.25!

whereRLk is the Wigner rotation accompanying the boo
that connects the momentak andLk ~see Appendix C!, and
the Dirac indices have been suppressed. The propagato
the off-shell particle 3 in the three-body rest frame can the
fore be expressed in terms of its form in the two-body r
frame using~3.23!

~m1k” 3!

m22k3
22 i e

5S21~Lk1
!

~m1 k”̃ 3!

m22 k̃3
22 i e

S~Lk1
!. ~3.26!

Similarly, the full two-bodyM matrix in the three-body sys
tem can be written
me.
, and
ade the

egative

omentum
M2,3~k23,k238 ;P23!5S2
21~Lk1

!S3
21~Lk1

!M2,3~ p̃, p̃8; P̃23!S2~Lk1
!S3~Lk1

!, ~3.27!

where the subscripts 2 and 3 are shorthand for pairs of Dirac indices on particle 2 (bb8, etc.! and on particle 3 (gg8, etc.!, and
the two-body scattering amplitudeM ( p̃, p̃8; P̃23) is a solution of the two-body Gross equations in the two-body c.m. fra
~Do not confuseM2,3 with amplitudes likeM23

1 used in the last subsection; here the subscripts refer to the Dirac indices
in the previous subsection they referred to which of the interacting particles was on shell. From now on we have m
choice that particle 2 is on shell, and in the language of the previous subsection, all two-body amplitudes areM22

1 .! Using Eqs.
~3.24! and ~3.25!, we obtain the following expression for the mixed indexM matrix:

Ml2l
28 ,3~k23,k238 ;P23!5S3

21~Lk1
!Dl2m2

~1/2!* ~RLk1
k2

!Mm2m
28 ,3~ p̃, p̃8; P̃23!Dm

28l
28

~1/2!
~RLk1

k
28
!S3~Lk1

!, ~3.28!

where summation over all repeated indices~including helicities! is implied. Substituting these relations into Eq.~3.16! gives

Gl1l2g~k1 ,k2 ,k3!522E d3k28
m

Ek
28
Sgg1

21 ~Lk1
!Dl2m2

~1/2!* ~RLk1
k2

!Mm2m
28 ,g1g2

~ p̃, p̃8; P̃23!Dm
28l

28
~1/2!

~RLk1
k

28
!

~m1 k”̃ 38!g2g3

m822 k̃ 8 3
22 i e

3Sg3g8~Lk1
!Gl

28l1g8~k28 ,k1 ,k38!. ~3.29!

This equation can be further reduced if we decompose of the propagator of the off-shell particle 3 into positive and n
energy parts

~m1 k”̃ 3!gg8

m22 k̃3
22 i e

5
m

Ep̃
(
l3

Fug~ k̃3,l3! ūg8~ k̃3,l3!

2Ep̃2Wq2 i e
2

vg~2 k̃3,l3! v̄ g8~2 k̃3,l3!

Wq2 i e G5
m

Ep̃
(
l3

Fug~2 p̃,l3! ūg8~2 p̃,l3!

2Ep̃2Wq2 i e

2
vg~ p̃,l3! v̄ g8~ p̃,l3!

Wq2 i e G , ~3.30!

where the second expression can be obtained from the first using the fact that the spinors depend only on the three-m
and k̃352 p̃. At this point it is convenient to introducer spin by letting

ur~p,l!5H u~p,l! if r51,

v~2p,l! if r52.
~3.31!

Then the decomposition~3.30! becomes

~m1 k”̃ 3!gg8

m22 k̃3
22 i e

5
m

Ep̃

ug
r~2 p̃,l3!gr~q, p̃ ! ūg8

r
~2 p̃,l3!, ~3.32!

where summation overr andl3 is implied, and
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g1~q, p̃ !5
1

2Ep̃2Wq2 i e
,

g2~q, p̃ !52
1

Wq2 i e
. ~3.33!

Substituting Eq.~3.32! into Eq. ~3.25!, multiplying from the left by ū r(k3,l3), and using Eqs.~3.24! and ~3.25!, give the
following reduced three-body equations:

Gl1l2l3

r ~k1 ,k2 ,k3!522E d3 k̃28S m

Ek̃
28
D 2

Dl2m2

~1/2!* ~RLk1
k2

!Dl3m3

~1/2!* ~RLk1
k3

r !Mm2m
28 ,m3m

38
rr8 ~ p̃, p̃8;Wq!Dm

28l
28

~1/2!
~RLk1

k
28
!

3Dm
38l

38
~1/2!

~R
Lk1

k
38

r8 !gr8~ p̃8,q!Gl
28l

18l
38

r8 ~k28 ,k1 ,k38!, ~3.34!
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whereRLk
r is the Wigner rotation for the spinorur, and

Gl1l2l3

r ~k1 ,k2 ,k3!5 ūg
r~k3,l3!Gl1l2g~k1 ,k2 ,k3!,

Mm2m
28 ,m3m

38
rr8 ~ p̃, p̃8;Wq!

5 ūg
r~ k̃3,m3!Mm2m

28 ,gg8~ p̃, p̃8;Wq!ug8
r8~ k̃38,m38!. ~3.35!

We have reduced the three-body equations to
dimensional integral equations for the coupled set of 24516
amplitudesGl1l2l3

r , which can be written

Gl1l2l3

r ~k1 ,k2 ,k3!5^k1l1~k2l2 k̄ 3l3!ruG&. ~3.36!

The new statesuk1l1(k2l2 k̄ 3l3)r& have simple complete
ness and orthogonality relations~developed in the next sec
tion! which make them a useful starting point for furth
discussion.

This form ~3.34! for the three-body equations displays t
Wigner rotations which appear when the two-body scatter
amplitude is boosted from the overall three-body rest fra
to its two-body rest frame. For practical calculations t
equations will be further reduced by decomposing the am
tudes into partial waves, which will be discussed in the n
section.

IV. ANGULAR MOMENTUM STATES

In this section we follow the conventions of Wick@5# and
define a basis of three-body partial wave helicity stat
Completeness and orthogonality relations are defined and
matrix elements of the propagator and two-body scatte
amplitude are obtained. Using these states, the ope
equations~2.38! are written directly in terms of the partia
wave states. To obtain the final equations, the matrix
ments of the permutation operator must be evaluated,
this is done in the following section.
-
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A. Construction of the states

The three-body states are constructed in three sta
First, we construct the state of particles 2 and 3 in its r
system, choosing the momenta so thatk2 lies in thexz plane
with k2x positive, as shown in Fig. 4. By convention, partic
three is off shell, and requires bothu (r51) andv (r52)
spinors to describe its Dirac structure. This degree of fr
dom is referred to as the ‘‘r spin’’ of the off-shell particle.
Next, we boost the~23! system to a frame with three
momentumq52k1 in the positivez direction, and take the
direct product of this state with the state of particle one w
its three-momentumk1 in the negativez direction. Finally,
we obtain the partial wave states by an angular average
the Euler angles$F,Q,f%, as defined below. In shorthand
this three-body state is denotedu1(23)&, to remind us that
particles 2 and 3 are the pair which was boosted from th
rest system.

Begin with the construction of the state for particle 2 wi
momentumu k̃2u5 p̃ pointing in the positivez direction, and
with helicity l2. This state will be denoted byu( p̃,0,0),l2&,
where the second two arguments in the parentheses ar
polar and azimuthal angles of the momentum. The state w
momentum pointing in an arbitrary direction can be obtain
by applying a rotation operatorRf, ũ ,g5e2 ifJze2 iuJye2 igJz

through Euler anglesf, u, andg. For vectors without inter-
nal structure, we need only two angles, and following Wi
characterize the states by the polar anglesũ and f, and
represent the rotations byRf, ũ ,0 , so that

u~ p̃, ũ ,f!,l2&5Rf, ũ ,0u~ p̃,0,0!,l2&. ~4.1!

Note that this differs by a phase from the convention adop
in Jacob and Wick@29# and used in Ref.@28#, where the
rotation was defined to beRf, ũ ,2f instead ofRf, ũ ,0 . The
phase difference is

Rf, ũ ,2fu~ p̃,0,0!,l2&5eifl2Rf, ũ ,0u~ p̃,0,0!,l2&. ~4.2!

As discussed in Wick@5#, the new phase convention turn
out to have significant advantages for the treatment of
three-body system, andgives identical results iff50, where
the two-body states were previously defined@28#.
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The state for particle 3, whichin the rest system of th
pair has a momentum of the same magnitude but opposit
direction, is defined

u~ p̃, ũ ,f!,l3r&5Rf, ũ ,0u~ p̃,p,p!,l3r&, ~4.3!

wherer56 is ther-spin of the state~for more details, see
the discussion below!, and the following phase convention
incorporated into the definition of the stateu( p̃,p,p),l3r&:

u~ p̃,p,p!,l3r&5e2 ips3Rp,p,0u~ p̃,0,0!,l3r&, ~4.4!

wheres3 is the spin of particle 3~in our cases351/2). The
phase factore2 ips3 is precisely what is needed for the de
nition Eq. ~4.3! to agree with the phase convention of Jac
and Wick @29# for ‘‘particle 2,’’ which was used previously
in Ref. @28#. To see this, recall that

Rp,p,05e2 ipJze2 ipJy5e2 ipJyeipJz ~4.5!

and hence
in
e2 ips3Rp,p,0u~ p̃,0,0!,l3r& ~4.6!

5e2 ips3e2 ipJyeipJzu~ p̃,0,0!,l3r&

5e2 ip~s32l3!R0,p,0u~ p̃,0,0!,l3r&

5~21!s32l3R0,p,0u~ p̃,0,0!,l3r&,

as used in Ref.@28#. „According to our phase convention
the value ofJz is independent ofr; see Eq.~A9! of Ref.
@28#.… The two-particle state~in its rest system! is now writ-
ten

u~ p̃, ũ ,f!,l2l3r&5Rf, ũ ,0u~ p̃,0,0!,l2l3r&

5Rf, ũ ,0~ u~ p̃,0,0!,l2& ^ u~ p̃,p,p!,l3r&),

~4.7!

where we emphasize that the phasee2 ips3 is included in the
definition of u( p̃,p,p),l3r&, as given in Eq.~4.4!. Two par-
ticle states of definite total angular momentum and total
licity can be projected from these general two-particle sta
by integrating over the polar and azimuthal angles
m

ecause
n con-

tude
as used

in
u p̃ jm,l2l3r&5h jE
0

2p

dfE
0

p

d ũ sinũDm,l22l3

~ j !* ~f, ũ ,0!Rf, ũ ,0u~ p̃,0,0!,l2l3r&, ~4.8!

where we use the abbreviation

h j5S 2 j 11

4p D 1/2

. ~4.9!

The next step is to boost the two-particle state in the direction of the positivez axis such that its total three-momentu
becomesq. The required boost operator will be denotedZq ~it is equal toLq

21 of the last section!, and the~23! pair can be
treated like an elementary particle with momentumq in the positivez direction, with ‘‘spin’’ j and ‘‘helicity’’ m, and a mass
Wq given byWq

25(P2k1)2. The boosted state of the pair is no longer an eigenstate of the single-particle helicities, b
a boost which is not in the direction of a particle’s momentum mixes helicities. The three-body helicity state is the
structed by taking a direct product of the boosted~23! pair and the state of the single particle 1 with a momentum of magni
q in the negativez direction. For consistency, the same phase convention is used to define the state of particle 1 that w
before to define particle 3, i.e.,

u~ q̃ ,p,p!,l1&5e2 ips1Rp,p,0u~q,0,0!,l1&. ~4.10!

This gives a three-body helicity state with total three-momentum zero and the momentum of the pair in the positivez direction:

u~q,0,0!, p̃ jm,l1~l2l3!r&5u~q,0,0!,l1& ^ u p̃ jm,l2l3r&. ~4.11!

Following the convention for rotation of states first introduced in Eq.~4.1!, the state in which the momentum of the pair is
an arbitrary direction is obtained from Eq.~4.11! by applying the rotationRF,Q,0

u~q,Q,F!, p̃ jm,l1~l2l3!r&5RF,Q,0u~q,0,0!, p̃ jm,l1~l2l3!r&. ~4.12!
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Finally, the three-body helicity states with fixed total angular momentumJ and projectionM are obtained from the state
~4.12! by the angular average

uqJM, p̃ jm,l1~l2l3!r&5hJE
0

2p

dFE
0

p

dQsinQDM ,m2l1

~J!* ~F,Q,0!u~q,Q,F!, p̃, jm,l1~l2l3!r&

5hJh jE
0

2p

dFE
0

p

dQsinQE
0

2p

dfE
0

p

d ũ sinũDM ,m2l1

~J!* ~F,Q,0!Dm,l22l3

~ j !* ~f, ũ ,0!

3RF,Q,0$u~q,p,p!,l1& ^ ZqRf, ũ ,0u~ p̃,0,0!,l2l3r&%, ~4.13!

wherehJ is obtained from Eq.~4.9! by replacingj with J . Note that this expression contains the two-body partial wave st
~4.8!, and if we denote the rotationRF,Q,0 by RU , and

E dU5E
0

2p

dFE
0

p

dQsinQ,

DM ,m2l1

~J!* ~F,Q,0!5DM ,m2l1

~J!* ~U !,

we have

uqJM, p̃ jm,l1~l2l3!r&5hJE dUDM ,m2l1

~J!* ~U !RU$u~q,p,p!,l1& ^ Zqu p̃ jm,l2l3r&%. ~4.14!

Another useful form of Eq.~4.13! is obtained by exploiting the fact that a rotation about thez axis commutes with a boos
in z direction, so that the operation of the rotations on the~23! pair can be written

RF,Q,0ZqRf, ũ ,05RF,Q,0R0,0,fZqR0,ũ ,05RF,Q,fZqR0,ũ ,0 . ~4.15!

On the other hand, the rotation of particle 1 can be written

RF,Q,05RF,Q,fR0,0,2f→RF,Q,fe2 ifl1, ~4.16!

where the last step is obtained by lettingR0,0,2f operate onu(q,p,p),l1&, and recalling that this state is an eigenstate ofJz
with projection2l1. Finally, noting that

DM ,m2l1

~J!* ~F,Q,0!Dm,l22l3

~ j !* ~f, ũ ,0!5eil1fDM ,m2l1

~J!* ~F,Q,f!Dm,l22l3

~ j !* ~0,ũ ,0!5eil1fDM ,m2l1

~J!* ~F,Q,f!dm,l22l3

j ~ ũ !

~4.17!

shows that the factors ofeil1f cancel, and that Eq.~4.13! can be written

uqJM, p̃ jm,l1~l2l3!r&5hJh jE dSDM ,m2l1

~J!* ~S!E
0

p

d ũ sinũ dm,l22l3

~ j ! ~ ũ !RSuk1
ol1~k2

ol2k3
ol3!r&, ~4.18!

where

uk1
0l1~k2

0l2k3
0l3!r&5u~q,p,p!,l1& ^ ZqR0,ũ ,0u~ p̃,0,0!,l2l3r& ~4.19!

is the three-body state in itscanonical configurationin thexz plane with special four-momentak1
0 ,k2

0 , andk3
0, as shown in Fig.

4, RS5RF,Q,f is the rotation which carries the three-body system from its canonical configuration to the most g
orientation described by Euler anglesF,Q, andf, and

E dS5E
0

2p

dFE
0

p

dQsinQE
0

2p

df,

DM ,m2l1

~J!* ~S!5DM ,m2l1

~J!* ~F,Q,f!. ~4.20!

Equation~4.19! shows that the canonical three-body configuration is constructed by starting from a two-body state
two-body rest frame where the relative momentum of the two particles is restricted to thexz plane with polar angleũ , then
boosting this state in the positivez direction, and finally adding the spectator~particle 1! with momentum along the negativ
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z axis. Since the most general rotationRS is performedafter the boostZq , the Wigner rotations that accompany the boost
all rotations about they axis, which greatly simplifies the calculation.

The results~4.14! and ~4.18! are equivalent, and either may be used to evaluate matrix elements.

B. Representation of the states

In the previous subsection we showed how the states

uk1l1~k2l2 k̄ 3l3!r&5RSuk1
0l1~k2

0l2k3
0l3!r&, ~4.21!

introduced abstractly in Eq.~3.36!, are to be constructed. These states can also be written as a direct product of the mom
space plane wave states introduced in Eq.~3.4! and Dirac helicity spinors:

uk1l1~k2l2 k̄ 3l3!r&5e2 ip~s11s3!uk1~k2 k̄ 3!& ^ RS~@Rp,p,0 u~q,l1!#a ZqR0,ũ ,0$ub~ p̃,l2!@Rp,p,0u
r~ p̃,l3!#g%!, ~4.22!

wherea, b, andg are the Dirac indices of particles 1, 2, and 3, respectively, and all rotations are displayed explicitly,
all spinor states in Eq.~4.22! are ‘‘particle 1’’ states~in the sense of Jacob and Wick!. Explicitly

u~p,l!5S cosh~h/2!

2lsinh~h/2!
D x~l!, v~p,l!5S 22lsinh~h/2!

cosh~h/2!
D x~l!, ~4.23!

with

x~ 1
2 !5S 1

0D , x~2 1
2 !5S 0

1D , ~4.24!

and

tanhh5
p

Ep
. ~4.25!

Since the helicity spinors depend only on themagnitude of the three momentump, we have used the notatio
v(p,l)5v(2p,l), so that the correspondence given in Eq.~3.31! now becomes

ur~p,l!5H u~p,l! if r51,

v~p,l! if r52.
~4.26!

All of these conventions are consistent with our previous work@check Eq.~A9! of Ref. @28# with i 51#.
Using the representation~4.22!, and the orthogonality relations~3.5! we obtaingeneralizedorthogonality relations for the

three-particle helicity states~4.21!

^18~2838!r8u1~23!r&5^k18l18~k28l28k38l38!r8uk1l1~k2l2 k̄ 3l3!r&5^k18~k28k38!uk1~k2 k̄ 3!&

3@ ū~q8,l18!Rp,p,0
21 RS8

21RSRp,p,0u~q,l1!#@ ū~ p̃8,l28!R0,ũ 8,0
21

Zq8
21RS8

21RSZqR0,ũ ,0u~ p̃,l2!#

3@ ū r8~ p̃8,l38!Rp,p,0
21 R0,ũ 8,0

21
Zq8

21RS8
21RSZqR0,ũ ,0Rp,p,0u

r~ p̃,l3!#

52Ek1
d3~k12k18!2Ek2

d3~k22k28!d4~P2P8!dl
18l1

dl
28l2

@ ū r8~ p̃,l38!ur~ p̃,l3!#. ~4.27!

Note that the states arenot orthogonal inr space. Using Eq.~4.23! gives

@ ū r8~ p̃,l38!ur~ p̃,l3!#5dl
38l3

Or8r~ p̃,l3!, ~4.28!

where, ifr51 is the first column andr52 the second, the matrix representation ofO is

Or8r~p,l!5S 1 22lsinhh

22lsinhh 21 D 5~t3!r8r22lsinhh~t1!r8r , ~4.29!

where sinhh5p/m. It is also useful to express the covariant product 2Ek2
d3(k22k28) in the rest frame of the two-body

subsystem, wherek25 p̃ depends on the polar anglesũ andf. Hence the generalized orthogonality relation will be writte
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^18~2838!r8u1~23!r&5^k18l18~k28l28k38l38!r8uk1l1~k2l2 k̄ 3l3!r&5dl
18l1

dl
28l2

dl
38l3

Or8r~ p̃,l3!2Ek1
d3~k12k18!

32Ep̃d3~ p̃82 p̃ !d4~P82P!. ~4.30!

Even though the states~4.21! are not orthogonal, the matrixO( p̃,l) has a simple property which will enable us to carry o
the calculation much as it was. From Eq.~4.29! we obtain

@O~p,l!O~p,l!#r8r5dr8rcosh2h5dr8r

Ep
2

m2 . ~4.31!

Using this we can show that the completeness relation for the states can be written

1[Qa8aQb8bdg8g5E d3k1

2Ek1

d3 p̃

2Ep̃

m2

Ep̃
2 d4P (

l1l2l3r8r

u1~23!r8&Or8r~ p̃,l3!^1~23!ru

5E d3k1

2Ek1

d3 p̃

2Ep̃

m2

Ep̃
2 d4P (

l1l2l3r8r

uk1l1~k2l2 k̄ 3l3!r8&Or8r~ p̃,l3!^k1l1~k2l2 k̄ 3l3!ru, ~4.32!

whereQ15Qa8a is the positive energy projection operator for particle 1~with Dirac indicesa anda8) introduced in Sec. II B.
Equation~4.32! tells us that the states span only the positive energy sectors of particles 1 and 2~which is sufficient! but they
span the entire four-dimensional Dirac space for the off-shell particle 3.

We will only describe the emergence of the factordg8g in the derivation of the completeness relation~4.32!. To see how
this factor emerges, evaluate the sum overl3, r, andr8 explicitly using Eq.~4.23!:

m2

Ep̃
2 (

l3r8r

ug8
r8~ p̃,l3!Or8r~ p̃,l3! ūg

r~ p̃,l3!5
m2

Ep̃
2 H(l3r

r ug8
r

~ p̃,l3! ūg
r~ p̃,l3!2sinhh̃ (

l3 ,rÞr8
2l3ug8

r8~ p̃,l3! ūg
r~ p̃,l3!J

5
m2

Ep̃
2F 1 2t3sinhh̃

t3sinhh̃ 1
G

g8g

1
m2sinhh̃

Ep̃
2 F sinhh̃ t3

2t3 sinhh̃
G

g8g

5dg8g

m2

Ep̃
2 cosh2h̃

5dg8g . ~4.33!

Subsequent operations by the rotations and boosts leave this factor invariant. In the same way, the sums overl1 andl2 give
the projection operatorsQ1 andQ2.

We will now use these relations to work out the generalized orthogonality and completeness relations for the part
amplitudes~4.18!.

C. Generalized orthogonality and completeness relations

Using the generalized orthogonality relations~4.30!, the definition~4.21!, and the notation

uJ819~2939!r&5uq9J8M 8, p̃9 j 8m8;l19~l29l39!r&, ~4.34!

we obtain

^J818~2838!r8uJ1~23!r&5^q8J8M 8, p̃8 j 8m8;l18~l28l38!r8uqJM, p̃ jm;l1~l2l3!r&5hJ8h j 8hJh jE dS8DM8,m82l
18

~J8!
~S8!

3E dSDM ,m2l1

~J!* ~S!E
0

p

d ũ 8sinũ 8dm8,l
282l

38
~ j 8!

~ ũ 8!E
0

p

d ũ sinũ dm,l22l3

~ j ! ~ ũ !

3^18~2838!r8u1~23!r&5dl
18l1

dl
28l2

dl
38l3

hJ8h j 8hJh jE dS8DM8,m82l1

~J8!
~S8!

3E dSDM ,m2l1

~J!* ~S!E
0

p

d ũ 8sinũ 8dm8,l22l3

~ j 8!
~ ũ 8!E

0

p

d ũ sinũ dm,l22l3

~ j ! ~ ũ !

3Or8r~ p̃,l3!2Ek1
d3~k12k18!2Ep̃d3~ p̃82 p̃ !d4~P82P!. ~4.35!

Writing the d3 functions in polar coordinates
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2Ek1
d3~k12k18!2Ep̃d3~ p̃82 p̃ !52Eq

d~q82q!

q2
d~cosQ82cosQ!d~F82F!2Ep̃

d~ p̃82 p̃ !

p̃2
d~cosũ 82cosũ !d~f82f!,

~4.36!

allows us to integrate easily overdS8 andd ũ 8, giving S85S and ũ 85 ũ . The remaining integrals overdS andd ũ can then
be easily done using the orthogonality properties of theD andd functions. We obtain

^J818~2838!r8uJ1~23!r&5dJ8JdM8Md j 8 jdm8mdl
18l1

dl
28l2

dl
38l3

Or8r~ p̃,l3!2Eq

d~q2q8!

q2
2Ep̃

d~ p̃2 p̃8!

p̃2
d4~P82P!.

~4.37!

Using Eq.~4.32! and the orthogonality of theD andd functions, the completeness relation for the partial wave states
be derived

1[Qa8aQb8bdg8g5E q2dq

2Eq

p̃2d p̃

2Ep̃

m2

Ep̃
2 d4P (

JM jm
l1l2l3r8r

uJ1~23!r8&Or8r~ p̃,l3!^J1~23!ru

5E q2dq

2Eq

p̃2d p̃

2Ep̃

m2

Ep̃
2 d4P (

JM jm
l1l2l3r8r

uqJM, p̃ jm;l1~l2l3!r8&Or8r~ p̃,l3!^qJM, p̃ jm;l1~l2l3!ru. ~4.38!

Note that this is consistent with Eq.~4.37!.

D. Reduction of the equations

The partial wave expanded three-body equations can now be obtained directly from the operator equation~2.38!. Restoring
the projection operatorsQ, this equation is

Q1Q2G152Q2M1G3Q2@Q1Q2#P12@Q1Q2#Q1Q2G1, ~4.39!

where we have made frequent use of the fact thatQi operates only in the space of particlei , and hence commutes with a
operators which operate only on particlesj Þ i , and the propertyQiQi5Qi . Replacing the two terms@Q1Q2# ^ 1 with the
completeness relation~4.38!, and using the relation

Q1Q2uJ1~23!r&5uJ1~23!r&, ~4.40!

we obtain

^J1~23!ruG1&52 (
J8M8 j 8m8

(
l19l29l39r4r3

l18l28l38r2r1

E q92dq9

2Eq9

p̃92d p̃9

2Ep̃9

m2

Ep̃9
2 E q82dq8

2Eq8

p̃82d p̃8

2Ep̃8

m2

Ep̃8
2

3^J1~23!ruM1G3uJ19~2939!r4&Or4r3
~ p̃9,l39!^J19~2939!r3uP12uJ818~2838!r2&Or2r1

~ p̃8,l38!

3^J818~2838!r1uG1&. ~4.41!

This result anticipates the overall conservation of the total four-momentum,P, and the conservation of the quantum numb
J, M , j , andm by the operatorM1G3.

The matrix elements of the operatorM1G3 are most easily evaluated using Eq.~4.14!. Recalling thatM1G3 operates only
in the two-body subspace~23!, the matrix element is

^J1~23!ruM1G3uJ818~2838!r2&Or2r1
~ p̃8,l38!5hJhJ8E dUE dU8DM ,m2l1

~J! ~U !DM8,m82l
18

~J8!*
~U8!

3^~q,p,p!,l1uRU
21RU8u~q,p,p!,l1&

3^ p̃ jm,l2l3ruRU
21Zq

21M1G3Zq8RU8u p̃8 j 8m8,l28l38r2&Or2r1
~ p̃8,l38!.

~4.42!

The orthogonality relation for single-particle states is
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^~q,p,p!,l1uRU
21RU8u~q,p,p!,l1&5^~q,Q,F!,l1u~q8,Q8,F8!,l18&5dl1l

18
2Eqd~3!~q2q8!

5dl1l
18
2Eq

d~q2q8!

q2
d~cosQ2cosQ8!d~F2F8!. ~4.43!

Inserting this, integrating overdU8 ~which fixesU85U), noting that the boost operatorZq and the rotation operatorRU
commute withM1G3, and carrying out theU integration using the orthogonality of theD functions gives

^J1~23!ruM1G3uJ818~2838!r2&Or2r1
~ p̃8,l38!5dJJ8dMM8d j j 8dmm8dl1l

18
2Eq

d~q2q8!

q2
^ j ~23!ruM1G3u j ~2838!r2&

3Or2r1
~ p̃8,l38!, ~4.44!

where we have used the following shortened notation:

u j ~2838!r2&5u p̃8 jm,l28l38r2& ~4.45!

and removed from the two-body matrix element ofM1G3 the factor ofd j j 8dmm8. Now, including the projection operators, th
propagatorG2

3 in Dirac space is

G2
35G3Q2→~m1k” 2!

~m1k” 3!

m22k3
22 i e

→2mQ2

m

Ep̃8

@ur8~ p̃8,l39!gr8~q, p̃8! ū r8~ p̃8,l39!#, ~4.46!

where we inserted the decomposition~3.32! with gr(q, p̃) given in Eq.~3.33!. The only dependence of the two-body helici
statesu j (2838)r2& on r2 andl38 comes from the factorur2( p̃8,l38), which leads to the following property~where there is no
sum overr8):

@ur8~ p̃8,l39! ū r8~ p̃8,l39!#u j ~2838!r2&5u j ~2839!r8&@ ū r8~ p̃8,l39!ur2~ p̃8,l38!#. ~4.47!

Using Eqs.~4.46! and ~4.47!, and recalling Eq.~4.31!, the two-body matrix element in Eq.~4.44! is reduced as follows:

(
r2

^ j ~23!ruM1G3u j ~2838!r2&Or2r1
~ p̃8,l38!

52m
m

Ep̃8
(

r8r2l39
^ j ~23!ruM1@ur8~ p̃8,l39!gr8~q, p̃8! ū r8~ p̃8,l39!#u j ~2838!r2&Or2r1

~ p̃8,l38!

52m
m

Ep̃8
(

r8r2l39
^ j ~23!ruM1u j ~2839!r8&gr8~q, p̃8!@ur8~ p̃8,l39! ū r2~ p̃8,l38!#Or2r1

~ p̃8,l38!

52m
m

Ep̃8
(

r8r2l39
^ j ~23!ruM1u j ~2839!r8&gr8~q, p̃8!dl

39l
38
Or8r2

~ p̃8,l38!Or2r1
~ p̃8,l38!

52m
Ep̃8
m

^ j ~23!ruM1u j ~2838!r1&g
r1~q, p̃8!. ~4.48!

Inserting this result into Eq.~4.41! gives finally

^J1~23!ruG1&52 (
J8M8 j 8m8

(
l29l39r3

l18l28l38r2r1

E q82dq8
m

Eq8
E p̃92d p̃9

2Ep̃9

m

Ep̃9
E p̃82d p̃8

2Ep̃8

m2

Ep̃8
2 ^ j ~23!ruM1u j ~2939!r3&g

r3~q, p̃9!

3^J1~2939!r3uP12uJ818~2838!r2&Or2r1
~ p̃8,l38!^J818~2838!r1uG1&. ~4.49!
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In Appendix A we show that

^ j ~23!ruM1u j ~2939!r3&5
Ep̃Ep̃9

~2p!3m2
M

l2l
29 ,l3l

39

rr3 j
~ p̃, p̃9;P23!,

~4.50!

where M
l2l

29 ,l3l
39

rr3 j
( p̃, p̃9;P23) are thetwo-body amplitudes

previously determinedfrom Ref. @28#, Eq. ~2.88!.
To obtain the final three-body equations, the matrix e

ments of the permutation operator must be evaluated, w
will be done in the following section.

V. THE PERMUTATION OPERATOR P12

In this section we will derive the matrix elements of th
operatorP12 which interchanges the states of particles 1 a
2. Using the shorthand notation given in Eq.~4.34!, the ac-
tion of the permutation operator is

P12uJ1~23!r&5uJ2~13!r&, ~5.1!

where the relation of the momenta of the individual partic
to the relative momentaq and p̃, and to the quantum num
bers j andm, is unambiguously determined by the order
which the single-particle names are written. For example,
state uJ2(13)r& is one in which the second particle is th
spectator with momentumq, and particles 1 and 3 are th
pair with angular momentumj andm, and particle 1 has c.m
momentum variablesp̃ and ũ . More precisely, from the re
sult ~4.18!, the stateuJ1(23)r& is obtained by averaging ove
rotations RS8 of a state with the canonical configuratio
k18

0 ,k28
0 ,k38

0, shown in Fig. 5~a!, and the stateuJ2(13)r& is
obtained by averaging over rotationsRS9 of a state with the
canonical configurationk19

0 ,k29
0 ,k39

0, shown in Fig. 5~b!.
Note that the two configurations are related by interchang
particles 1 and 2, but the definition of the states requires

FIG. 5. ~a! The momentak18
0 ,k28

0 ,k38
0 in their canonical con-

figuration. ~b! The canonical configuration of the momen
k19

0 ,k29
0 ,k39

0 which result from the interchange of particles one a
two. ~c! Figure showing howk19

0,k29
0,k39

0 are rotated intok1 ,k2 ,k3

by the rotationRV8 which equalsRV only whenk1 ,k2 ,k3 line up
precisely withk18

0 ,k28
0 ,k38

0.
-
ch

d

s

e

g
at

k18
0 andk29

0 both be in the negativez direction, and thatk28
0

andk19
0 both lie in thexz plane with a positivex component.

Any three-body configuration with canonical orientatio
in the xz plane can be completely characterized by th
variables. For the vectors in Fig. 5~a!, these variables can b
chosen to beuk18u5q8, u k̃28u5 p̃8, and the anglex betweenk18

andk28 ~recall thatk̃28 is the vectork28 in the c.m. of the pair!.
For the configuration in Fig. 5~b!, the corresponding vari-
ables areuk29u5q9, u k̃19u5 p̃9, and the same anglex. If the
total c.m. energy of the three-body system is fixed, then th
is a constraint between these three variables, leaving o
two independent. Ifq8 and p̃8 are specified, the anglex can
be determined, and this was the approach taken by one o
previously @2#. However, the final equations are more tra
table if q8 andx are specified, andp̃8 is determined by the
constraints, and this is the approach we will take below.

Examination of the two configurations shown in Figs. 5~a!
and 5~b! shows that the rotationRV5Rp,x,0 @not to be con-
fused with the rotationRV8 discussed below which carrie
the configuration shown in Fig. 5~b! into Fig. 5~c!# will bring
them into alignment, or

RVk19
05k18

0 ,

RVk29
05k28

0 ,

RVk39
05k39

0 . ~5.2!

Furthermore, since the final momentak1 , k2 , andk3 can be
obtained either by rotating the (k80)’s through RS8, or the
(k90)’s throughRS9 ~because they are equal!, we have the
relation

k15RS8k1
05RS9k19

05RS9RVk18
0 ~5.3!

which implies

RS85RS9RV . ~5.4!

This rotationRV will eventually emerge from the derivatio
below.

A. Initial reduction of the matrix element

We now turn to the details of the evaluation of the mat
element. Using the form~4.18! for the three-body state, th
matrix element ofP12 can be written
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^J818~2838!r8uP12uJ1~23!r&5^q8J8M 8, p̃8 j 8m8,l18~l28l38!r8uP12uqJM, p̃ jm,l1~l2l3!r&

5^q8J8M 8, p̃8 j 8m8,l18~l28l38!r8uq9JM, p̃9 jm,l2~l1l3!r&

5hJ8hJh j 8h jE dS8E dS9DM8,m82l
18

~J8!
~S8!DM ,m2l2

~J!* ~S9!

3E
0

p

d ũ 8sinũ 8E
0

p

d ũ 9sinũ 9dm8,l
282l

38
~ j 8!

~ ũ 8!dm,l12l3

~ j ! ~ ũ 9!

3^k18
0l18~k28

0l28k38
0l38!r8uRS8

21RS9uk29
0l2~k19

0l1k39
0l3!r&. ~5.5!

Hence the matrix element depends only on the rotationRS8S9
21 . This rotation will be equal toRV after the constraints impose

by the evaluation of thêk80uk90& matrix element have been realized, but until then this rotation will be denotedRV85Ra,x8,b .
HenceRS95RS8RS8

21RS95RS8RV8, and using the group properties of the rotation matrices

DM ,m2l2

~J!* ~S9!5(
L
DM ,L

~J!* ~S8!DL,m2l2

~J!* ~V8!. ~5.6!

The invariance of the group integration ensures that

E dS95E dV8, ~5.7!

and the orthogonality relation for theD functions,

E dS8DM8,m82l
18

~J8!
~S8!DM ,L

~J!* ~S8!5dJ8JdM8Mdm82l
18 ,L

2p

hJ
2

, ~5.8!

allows the reduction of Eq.~5.5! to

^J818~2838!r8uP12uJ1~23!r&52pdJ8JdM8Mh j 8h jE dV8Dm82l
18 ,m2l2

~J!*
~V8!E

0

p

d ũ 8sinũ 8E
0

p

d ũ 9sinũ 9dm8,l
282l

38
~ j 8!

~ ũ 8!

3dm,l12l3

~ j ! ~ ũ 9!^k18
0l18~k28

0l28k38
0l38!r8uRV8uk29

0l2~k19
0l1k39

0l3!r&. ~5.9!

We now define the vectors

RV8k19
05k1 ,

RV8k29
05k2 ,

RV8k39
05k3 ~5.10!

~wherek1 is not lined up along the negativez axis and equal tok18
0 until RV85RV). This rotation of the vectorski9 into the

vectorski is represented in Fig. 5~c!. Guided by the discussion leading up to Eq.~5.2! and the representation~4.22! for the
three-body states, the matrix element involvingRV8 is a product of a plane wave momentum space matrix element and D
space matrix elements

^k18
0l18~k28

0l28k38
0l38!r8uRV8uk29

0l2~k19
0l1k39

0l3!r&

5^k18
0~k28

0k38
0!uRV8uk29

0~k19
0k39

0!&3U52Ek1
d~3!~k18

02k1!2Ek2
d~3!~k28

02k2!d~4!~P82P!U, ~5.11!

where

U5@eips1 ū~q8,l18!Rp,p,0
21 RV8ZqR0,ũ ,0u~ p̃,l1!#@e2 ips2 ū~ p̃8,l28!R0,ũ 8,0

21
Zq8

21RV8Rp,p,0u~q,l2!#

3@ ū r8~ p̃8,l38!Rp,p,0
21 R0,ũ 8,0

21
Zq8

21RV8ZqR0,ũ ,0Rp,p,0u
r~ p̃,l3!#5U

l
18l1

~1! U
l

28l2

~2! U
l

38r8,l3r
~3!

5^^ p̃8,l18~l28l38!r8u p̃,l2~l1l3!r&&

~5.12!
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will be referred to as thereducedmatrix element of the permutation operator. Note thatq5uk1u andq85uk18u ~as above!. The
matrix element~5.12! contains Wigner rotations which result from the fact that the helicities$l i8% and $l i% are defined in
different frames.

We first turn to the evaluation of thed functions on the right-hand side of Eq.~5.11!.

B. Evaluation of the d functions

In Appendix B it is shown that the twod functions can be written

2Ek1
d~3!~k18

02k1!2Ek2
d~3!~k28

02k2!54Ep̃0
Ep̃

08
d~b!d~a2p!

d~ p̃2 p̃0!

p̃0
2

d~ p̃82 p̃0!

p̃08
2

d~cosũ 2cosũ 0!d~cosũ 82cosũ 0!,

~5.13!

with

p̃05 p̃0~q,q8,x!, p̃085 p̃0~q8,q,x!,

ũ 05 ũ 0~q,q8,x!, ũ 085 ũ 0~q8,q,x!, ~5.14!

and

p̃0~q,q8,x!5AF ~Mt2Eq!Eq81qq8cosx

Wq
G2

2m2,

cos$ ũ 0~q,q8,x!%5
WqEq82~Mt2Eq!Ep̃0~q,q8,x!

q p̃0~q,q8,x!
. ~5.15!

The first twod functions insure that the rotationRV85Ra,x8,b is now Rp,x8,0 , and thed functions in p̃ and p̃8 fix the angle
x8 to x. The anglex will remain a variable, since we prefer to express the ‘‘allowed’’ magnitudes of the momentap̃ and p̃8
as functions ofx rather than the other way around.

We now combine expressions~5.9!, ~5.11!, and~5.13! and insert the result into the three-body equation~4.49!. In doing this
we must be careful to change the arguments of the matrix element~5.11!, which is expressed in terms o
^p8,q8,l18l28l38up,q,l1l2l3&, to ^p9,q,l1l29l39up8,q8,l18l28l38&, so as to agree with the labeling used in Eq.~4.49!. Carrying

out thed p̃8 andd p̃ integrations then gives

^J1~23!ruG1&5 (
j 8m8

A2 j 11A2 j 811 (
l29l39r3

l18l28l38r2r1

E q82dq8
m

Eq8
E

0

p

dxsinxdm2l1 ,m82l
28

~J!
~x!

3^ j ~23!ruM1u j ~2939!r3&g
r3~q, p̃9! eip~m2l1!dm,l

292l
39

~ j !
~ ũ 9!dm8,l

182l
38

~ j 8!
~ ũ 8!

3
m

Ep̃9

m2

Ep̃8
2 ^^ p̃9,l1~l29l39!r3u p̃8,l28~l18l38!r2&&Or2r1

~ p̃8,l38!^J818~2838!r1uG1&, ~5.16!
-

r

ed
f

where

p̃85 p̃0~q8,q,x!, p̃95 p̃0~q,q8,x!,

ũ 85 ũ 0~q8,q,x!, ũ 95 ũ 0~q,q8,x!, ~5.17!

and ^^ p̃9,l1(l29l39)r3u p̃8,l28(l18l38)r2&& is the reduced ma
trix element defined in Eq.~5.12!. This matrix element is
calculated in the next subsection.
C. Wigner rotations and the reduced matrix element

It will be sufficient to define a Wigner rotation only fo
the special case when a spinor with helicityl and three-
momentum in the right half of thexz plane is boosted in the
positivez direction, as shown in Fig. 6. The boost is denot
by Zq @defined in Eq.~B4!#, the initial three-momentum o
the state byp̃ ~with magnitudep̃ and polar angleũ ), the
final three-momentum byp ~with magnitudep5q8 and polar
angleu5p2x), so that the Wigner rotationR(q,q8,x) is
defined by the relation
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Zqu~ p̃,l!5ZqR0,ũ ,0L p̃u~0,l!5R0,u,0LpR~q,q8,x!u~0,l!,
~5.18!

where the representation of the pure boostsLk ~for k5p or
p̃) in four-dimensional spacetime is

Lk5S coshhk sinhhk

1

1

sinhhk coshhk

D , ~5.19!

FIG. 6. ~a! The canonical configuration of momentum for th
calculation of the Wigner rotation. The helicity is1 1

2 in this ex-
ample. ~b! The transformation of momentum and spin after t

boost in the1 ẑ direction. The spin is now no longer aligned wit
the momentum, but rotated by angleb with respect to it.
with

tanhhk5
k

Ek
. ~5.20!

In Appendix C we show thatR is a pure rotation about they
axis,

R~q,q8,x!5R0,b,0 , ~5.21!

and find the general equation for cosb as a function of
q, q8, andx. Since 0>b>p, b is uniquely determined by
its cosine. Using the result~5.21!, we have

Zqu~ p̃,l!5(
n

u~p,n!dnl
~1/2!~b!. ~5.22!

We now are ready to evaluate each of the matrix eleme
in Eq. ~5.12!, but we will make the substitution

^p8,q8,l18l28l38up,q,l1l2l3&

→^p9,q,l1l29l39up8,q8,l18l28l38&

so as to agree with the labeling used in Eq.~5.16!. Noting
that k15k18

0 implies thatp85q and u81x5p ~see Fig. 5!
the matrix element for particle 1 becomes
shell,

and
U
l1l

18
~1!

5@eips1 ū~q,l1!Rp,p,0
21 RVZq8R0,ũ 8,0u~ p̃8,l18!#5eips1(

n
@ ū~q,l1!R0,p,0

21 R0,x,0R0,u8,0u~p8,n!#dnl
18

~1/2!
~b1!

5eips1(
n

@ ū~q,l1!u~q,n!#dnl
18

~1/2!
~b1!5eips1d

l1l
18

~1/2!
~b1!, ~5.23!

where, using the functionb defined in Appendix C, Eq.~C14!,

b15b~q8,q,x!. ~5.24!

Similarly, to evaluate the matrix element for particle 2 useu95p2x, p95q8, and

Ra,p,05R0,p,2a ,

Rp,a,05R0,2a,p , ~5.25!

which gives

U
l

29l
28

~2!
5@e2 ips2 ū~ p̃9,l29!R0,ũ 9,0

21
Zq

21RVRp,p,0u~q8,l28!#5e2 ips2(
n

[ ū~q8,n!R0,u9,0
21 Rp,x,0Rp,p,0u~q8,l28!]dnl

29
~1/2!

~b2!

5e2 ips2(
n

@ ū~q8,n!R0,0,22pu~q8,l28!#dnl
29

~1/2!
~b2!5e2 ip~s222l28!d

l
28l

29
~1/2!

~b2!5e2 ip~s222l28!d
l

29l
28

~1/2!
~2b2!, ~5.26!

where

b25b~q,q8,x!. ~5.27!

Calculation of the matrix element for particle 3 is complicated by the fact that its physical four-momentum is off
while the four-momenta used in the definition of theur spinors are on shell. However, as shown in Eq.~3.31!, the four-
momentum of thenegative energyspinor is identical to the four-momentum of the on-shell particle in the interacting pair,
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an efficient way to proceed is to first express both of theur spinors in terms ofu2. Then it will turn out that the boosts of bot
r-spin states can be evaluated in terms of quantities related to the on-shell particle in the interacting pair.

To this end, note thatu1 can be expanded in terms ofu2 andg5u2

u1~p,l!5g5FEp

m
12l

p

m
g5Gu2~p,l!, ~5.28!

where the matrix

g55S 0 1

1 0D
commutes with all rotations and boosts. Then, using the fact that

R0,p,05e2 ipg5a2/252 ig5a2, ~5.29!

wherea2 is the Dirac matrix, and using the explicit form of the spinors given in Eq.~4.23!, we obtain

Rp,p,0u
2~p,l!5eips3g5u1~p,2l!. ~5.30!

Combining this with Eq.~5.28! gives a simple formula forRp,p,0u
1(p,l). These two relations will be summarized

Rp,p,0u
r~p,l!5eips3 Nr~l!u~p,2l!, ~5.31!

whereu15u is implied and

N1~p,l!5FEp

m
12l

p

m
g5G , N2~p,l!5g5. ~5.32!

These relations can now be used to evaluate the matrix elementU(3)

U
l

39r8,l
38r

~3!
5@ ū r8~ p̃9,l39!Rp,p,0

21 R0,ũ 9,0
21

Zq
21Rp,x,0Zq8R0,ũ 8,0Rp,p,0u

r~ p̃8,l38!#

5@ ū~ p̃9,2l39!Ñr8~ p̃9,l39!R0,ũ 9,0
21

Zq
21Rp,x,0Zq8R0,ũ 8,0Nr~ p̃8,l38!u~ p̃8,2l38!#

5(
nn8

@ ū~q8,2n8!R0,p2x,0
21 Ñr8~ p̃9,l39!Nr~ p̃8,l38!Rp,x,0R0,p2x,0u~q,2n!#d

2n8,2l
39

~1/2!
~b2!d

2n,2l
38

~1/2!
~b1!,

~5.33!

whereÑr5g0Nr g0 and, because we were able to write the statesRp,p,0u
r in terms of the positive energy on-shell spinorsu

using Eq.~5.31!, the matrix elements of particle 3 have been expressed in terms of the Wigner rotations which a
appeared in the treatment of particles 1 and 2. Since theN factors commute with the rotations, the matrix element can
further simplified as follows:

U
l

39r8,l
38r

~3!
52(

nn8
eipn8d

2n8,2l
39

~1/2!
~b2!d

2n,2l
38

~1/2!
~b1!@ ū~q8,2n8!R0,2x,0Ñr8~ p̃9,l39!Nr~ p̃8,l38!u~q,2n!#

52(
nn8

eipn8d
2n8,2l

39
~1/2!

~b2!d
2n,2l

38
~1/2!

~b1!d2n8,2n
~1/2!

~2x!@Ar8rd11Br8rd5#, ~5.34!

where the matrix elementsd1 andd5 are

@ ū~q8,2n8!R0,2x,0 u~q,2n!#5d2n8,2n
~1/2!

~2x!d15d2n8,2n
~1/2!

~2x!~c8c24n8ns8s!,

@ ū~q8,2n8!R0,2x,0g
5 u~q,2n!#5d2n8,2n

~1/2!
~2x!d55d2n8,2n

~1/2!
~2x!~2n8s8c22nc8s!, ~5.35!

with

c5cosh~hq/2!, c85cosh~hq8/2!,

s5sinh~hq/2!, s85sinh~hq8/2!, ~5.36!



al

2418 56ALFRED STADLER, FRANZ GROSS, AND MICHAEL FRANK
and

sinhhq5
q

m
, sinhhq85

q8

m
. ~5.37!

From the explicit form of theN’s, we obtain

Ar8r5S Ep̃9Ep̃8

m2
24l39l38

p̃9 p̃8

m2 22l39
p̃9

m

22l38
p̃8

m
21

D ,

Br8r5S 2l38
Ep̃9 p̃8

m2
22l39

Ep̃8 p̃9

m2

Ep̃9
m

2
Ep̃8
m

0
D . ~5.38!

The sum overn andn8 in Eq. ~5.34! can now be carried out if care is taken to remove all phases which depend onn or n8.
There are four possibilities, all of which occur. We may write the ‘‘standard’’ sum in a compact form

(
nn8
I[(

nn8
eipn8d

2n8,2l
39

~1/2!
~b2!d2n8,2n

~1/2!
~2x!d

2n,2l
38

~1/2!
~b1!5eipl38(

nn8
d

l
39n8

~1/2!
~b2!dn8n

~1/2!
~2x!dnl

38
~1/2!

~b1!5eipl38d
l

39l
38

~1/2!
~b11b22x!

5eipl38d~b11b22x!, ~5.39!

where symmetry properties of thed functions have been used, and for compactness thel39l38 indices are suppressed in the fin
result. By similar arguments, the remaining three sums give

(
nn8

4n8nI5eipl38d~b11b21x!,

(
nn8

2n8I5eips3d~2b11b21x!,

(
nn8

2nI5eips3d~2b11b22x!. ~5.40!

Using these identities, the matrix element for particle 3 finally becomes

U
l

39r3 ,l
38r2

~3!
5eipl38X

l
39l

38

r3r2 , ~5.41!

where the matrixX r8r is

X
l

39l
38

r8r
5S 2@D1A1D5B# 2~21!1/22l38FEp̃9

m
D52~21!l392l38

p̃9

m
D1G

~21!1/22l38FEp̃8
m

D51
p̃8

m
D1G D1

D , ~5.42!

with the notation
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D15d
l

39l
38

~1/2!
~b11b22x!c8c2d

l
39l

38
~1/2!

~b11b21x!s8s,

D55d
l

39l
38

~1/2!
~2b11b21x!s8c2d

l
39l

38
~1/2!

~2b11b22x!c8s,

A5A11 ,

B52l38B11 . ~5.43!

Combining the results~5.23!, ~5.26!, and~5.41! gives the following expression for the reduced matrix element:

^^ p̃9,l1~l29l39!r3u p̃8,l28~l18l38!r2&&52eipl38d
l1l

18
~1/2!

~b1!dl
29l

28
~1/2!

~2b2!X
l

39l
38

r3r2 . ~5.44!

D. Symmetries of the permutation operator

The reduced matrix element~5.44! satisfies a symmetry condition which can be obtained from the following propert
scalar products:

^^ p̃9,l1~l29l39!r3u p̃8,l28~l18l38!r2&&5^^ p̃8,l28~l18l38!r2u p̃9,l1~l29l39!r3&&* . ~5.45!

Because the permutation operator is Hermitian and the initial and final states are composed of identical nucleons, this
tells us that the matrix elements~5.9! must be identical under the substitutionq↔q8 ~which also impliesp̃9↔ p̃8, ũ 9↔ ũ 8,
andb1↔b2) and

j↔ j 8, l1↔l28 ,

m↔m8, l29↔l18 ,

r3↔r2 , l39↔l38 . ~5.46!

Examination of the matrix elements shows that this implies

~21!m2l11l38dm2l1 ,m82l
28

~J!
~x!dl1l

18
~1/2!

~b1!dl
29l

28
~1/2!

~2b2!X
l

39l
38

r3r2 5~21!m82l281l39dm82l
28 ,m2l1

~J!
~x!dl

28l
29

~1/2!
~b2!dl

18l1

~1/2!
~2b1!X

l
38l

39

r2r3 ,

~5.47!

which reduces to the condition

~21!l382l39X
l

39l
38

r3r2 5X
l

38l
39

r2r3 . ~5.48!

However, the transformation~5.46! givesA↔A, B↔2(21)l392l38B, D1↔(21)l392l38D1, andD5↔2D5, showing that the
result ~5.42! satisfies the symmetry condition~5.48!.

Another symmetry of the matrix elements of the permutation operator follows from the fact thatP12 commutes with the
parity operatorP, which leads to the identity

P125P12P25PP12P. ~5.49!

The action of the parity operator on the states defined in Eq.~4.13! can be worked out, giving

PuqJM, p̃ jm,l1~l2l3!r&5~21! j 21~21!J2 j 21/2ruqJM, p̃ j 2m,2l1~2l22l3!r&. ~5.50!

Hence the matrix elements ofP12 must satisfy the identity

^q8JM8, p̃8 j 8m8,l18~l28l38!r8uP12uqJM, p̃ jm,l1~l2l3!r&

5^q8JM8, p̃8 j 8m8,l18~l28l38!r8uPP12PuqJM, p̃ jm,l1~l2l3!r&

5~21!2J21rr8^q8JM8, p̃8 j 82m8,2l18~2l282l38!r8uP12uqJM, p̃ j 2m,2l1~2l22l3!r&. ~5.51!
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For the triton, whereJ51/2, this means that under the su
stitutions

l18↔2l18 , l1↔2l1 ,

l28↔2l28 , l2↔2l2 ,

l38↔2l38 , l3↔2l3 ,

m8↔2m8, m↔2m, ~5.52!

we should recover the same matrix element multiplied b
factor of rr8.

To verify that the matrix elements ofP12 satisfy this sym-
metry, return to the full expression given in Eq.~1.6!, and
use the identity

dl,l8
~ j !

~u!5~21!l2l8d2l,2l8
~ j !

~u! ~5.53!

to obtain the condition

N
l

39l
38

r9r85~21!l392l38r9r8N2l
392l

38
r9r8 , ~5.54!

whereN
l

39l
38

r9r8 is defined in Eq.~6.2! below. Examination of

this equation confirms that Eq.~5.54! is indeed satisfied.
In the next section we present our final results for

three-body equations.
d
e

h

a

e

VI. FINAL EQUATIONS

In this final section we collect the previous results t
gether, and explain how it is that integration over the sp
tator momentum,q8, is limited to a finite interval. Then we
describe the changes in the equations which are require
isospin and the conservation of parity. Finally, we descr
how the three-body channels are classified and counted.

A. Spectator equations in angular momentum space

Using Eqs.~5.42! and~4.29! gives the following compact
result:

(
r2

X
l

39l
38

r3r2 Or2r1
~ p̃8,l38!52

Ep̃8
m
N

l
39l

38

r3r1 , ~6.1!

where the matrixNr8r is

N
l

39l
38

r8r
5S Ep̃9

m
D124l39l38

p̃9

m
D5

22l38@D1B1D5A#

22l38D5
Ep̃8
m

D11
p̃8

m
D5

D ,

~6.2!

andA, B, D1, andD5 were defined in Eq.~5.43!.
Combining Eqs.~5.44! and~6.1! and substituting into Eq.

~5.16! gives
^J1~23!ruG1&5 (
j 8m8

A2 j 11A2 j 811 (
l29l39r9

l18l28l38r8

E
0

qcrit
q82dq8

m

Eq8
E

0

p

dxsinxdm2l1 ,m82l
28

~J!
~x!

3^ j ~23!ruM1u j ~2939!r9&
m

Ep̃9

gr9~q, p̃9! dm,l
292l

39
~ j !

~ ũ 9!dm8,l
182l

38
~ j 8!

~ ũ 8!~21!m2l11l38

3d
l1l

18
~1/2!

~b1!dl
29l

28
~1/2!

~2b2!Nl
39l

38
r9r8 m

Ep̃8

^J818~2838!r8uG1&. ~6.3!
y
pec-

it is
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her-
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like
This is identical to the final result given in Sec. I, Eqs.~1.3!
and ~1.6!. It is a two-dimensional integral equation depen
ing on the variablesq8 andx, where the integration over th
anglex runs from 0 top, independent of the value ofq8,
and the integration overq8 has been limited to the finite
interval @0,qcrit#, as discussed in the next subsection. T

momentap̃8 and p̃9, the anglesũ 8 and ũ 9, and the Wigner
rotation anglesb1 andb2 all depend onq, q8, andx, and
are defined in Eqs.~5.17!, ~5.24! and~5.27!. The matrixN is
defined in Eq.~6.2!.

B. Removal of the spacelike region

The physical reason for restricting theq8 integration in
Eq. ~6.3! to the finite interval 0<q8<qcrit will be discussed
now.
-

e

As given in Eq.~3.19!, the invariant mass of the two-bod
subsystem decreases with increasing momentum of the s
tator,q, and at the value

q5qcrit5
Mt

22m2

2Mt
.

4

3
m ~6.4!

the mass of the two-body subsystem is zero. This means
recoiling with the speed of light, and under such circu
stances the relativistic effects are clearly enormous. Furt
more, asq increases beyond the critical value, we pass fr
a region where the two-body states are timelike into a reg
where they are spacelike. The two-body scattering calc
tions are carried out in the rest frame of the two-body s
tem, which does not exist for spacelike states, and, m
generally, it is unlikely that an effective theory designed
describe timelike scattering would be useful in the space
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region. Furthermore, since the spacelike two-body states
pear only at rather high momentum~above 1200 MeV!
where the amplitudes are expected to be very small anyw
it would be sensible to simply neglect the regionq>qcrit ,
and set the three-body amplitudes to zero in this region. A
turns out, the three-body amplitudesgo to zero automatically
at the critical value of q, permitting us to impose the cond
tion that they are zero forq>qcrit without making the three
body amplitudes discontinuous in q.

To see that the Faddeev amplitudes^J1(23)ruG1&→0 as
q→qcrit , note that the functionp̃0(q,q8,x) @defined in Eq.
~5.15!# approaches infinity asq→qcrit ~as long asq8.0,
which is true over the entire region of theq8 integration
except at the boundary where the integrand is zero!. Specifi-
cally,

p̃9 →
q→qcrit

qcrit~Eq81q8cosx!

Wq
5

C

Wq
, ~6.5!

and in this limit

m

Ep̃9

g1~ p̃9!N1r→
m

2 p̃92
~ p̃9K1r!→~Wq!1,

m

Ep̃9

g2~ p̃9!N2r→2
1

Wq
S Wq

mCDK2r→~Wq!0, ~6.6!

whereC andK6r are functions which are finite in the limi
asq→qcrit . Note that the possible 1/Wq singularity from the
negative energy part of the propagator is canceled by
m/Ep̃9 factor. Hence the Faddeev amplitudes go like

^J1~23!ruG1& →
Wq→0

cr1~Wq!~nr111!1cr2~Wq!nr2,

~6.7!

where nr1 and nr2 are powers with which the two-bod
amplitudes~4.50! fall with momentum asp̃9→`:

^ j ~23!ruM1u j ~2939!r3& →
p̃9→`

S 1

p̃9
D nrr3

. ~6.8!

We conclude that the Faddeev amplitudes not only go to z
asq→qcrit , but that they approach this limit smoothly.

C. Isospin

Since the main application of the three-body equations
spin 1/2 particles will be the three-nucleon system, we h
to incorporate the isospin degree of freedom. This can
done separately from the other degrees of freedom, as
scribed in this subsection. We will assume that isospin
conserved by the equations.

To lay the foundation we return to the discussion in S
II. The exchange operatorsPi j are a product of a part which
actsonly in isospin space, and a part which acts on all ot
coordinates, denoted byP̃i j . If the i j pair has isospinTi j ,
the action ofPi j on the isospin part of the wave function wi
be denoted simply by its eigenvalue (21)Ti j 21. The phasez
which occurs in Eq.~2.29! is 21 for fermions and is there
p-

y,

it

e

ro

r
e
e
e-

is

.

r

fore a product of the phase (21)Ti j 21 from the exchange of
the isospin variables, and the phaseu, resulting from the
operation ofP̃i j . Hence

z5215u~21!Ti j 21. ~6.9!

Even thoughz is always21 for fermions, there are in gen
eral two possible values ofu corresponding to the two pos
sible isospin channels, and Eq.~2.29! generalizes to

P̃32M22
1 5uM32

1 5M33
1 P̃32,

P̃23M33
1 5uM23

1 5M22
1 P̃23. ~6.10!

The vectorsuG2
1& are also vectors in isospin space. Taki

matrix elements of Eq.~2.38!, and inserting 15(TuT&^Tu,
gives

^TuG2
1&52(

T8
^TuP12uT8&M22

1TG2
1P̃12̂ T8uG2

1&, ~6.11!

where uT& are the isospin wave functions discussed belo
and^TuP12uT8& is the matrix element of the permutation o
erator in isospin space. The calculation of this matrix e
ment is familiar from the nonrelativistic theory, but for com
pleteness we will briefly present it here.

In more detail, the states in isospin space will be deno

uT&5u@~ t2t3!Tt1#TTz&, ~6.12!

where t i is the isospin of particlei , T is the isospin of the
pair, andT and Tz are the total three-body isospin and i
projection. As the notation suggests,t2 and t3 are first
coupled toT, and thenT and t1 are coupled toT. These
states form a complete, orthonormal basis

^@~ t2t3!Tt1#TTzu@~ t28t38!T8t18#T8Tz8&

5d t1t
18
d t2t

28
d t3t

38
dTT8dTT8dTzTz8,

(
t1t2t3TTTz

u@~ t2t3!Tt1#TTz&^@~ t2t3!Tt1#TTzu51.

~6.13!

The effect ofP12 is to interchange particles 1 and 2:

P12u@~ t2t3!T8t1#TTz&5u@~ t1t3!T8t2#TTz&. ~6.14!

The matrix element ofP12 in isospin space reduces therefo
to a simple recoupling coefficient,

^TuP12uT8&5^@~ t2t3!Tt1#TTzuP12u@~ t2t3!T8t1#TTz&

5^@~ t2t3!Tt1#TTzu~~ t1t3!T8t2!TTz&

52A2T11A2T811H t2 t3 T

t1 T T8
J . ~6.15!

In the next subsection we complete the reduction of E
~6.11! by inserting a complete set of good parity eigenstat
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D. Parity eigenstates

The two-body scattering amplitudes which drive t
three-body equations are separated into channels which
eigenstates ofP1 ~the parity operator on the 23 subspac!
and isospin. Isospin was just discussed in the previous
section, and need not be revisited again until the next s
section below where we explain how isospin~or exchange
symmetry! plays a role in the description and counting of t
channels. The role of the conservation of parity, which h
not yet been taken into account, will be discussed in t
subsection.

The helicity statesuJ1(23)r& are neither eigenstates o
the full parity operator,P, nor of the two-body parity opera
tor, P1. Since the two-body scattering amplitudes whi
emerge from the two-body calculations are eigenstates ofP1,
the three-body equations must be reexpressed in term
these states. This is not difficult because the eigenstate
merely linear combinations of the states we have alre
obtained.

First we return to the two-body helicity state
u jm(l2l3)r&, where the relative momentum,p̃ is sup-
pressed because it will play no role in the discussion wh
follows. If we apply the operatorP1 ~referred to simply asP
in Ref. @28#! to this state we get

P1u jm~l2l3!r&5reu jm~2l22l3!r&, ~6.16!

wheree5(21) j 21. It is easy to see that the state

u j r~ml!r&[
1

A2
~11rP1!u jm~l2l3!r&5

1

A2
$u jm~l2l3!r&

1rreu jm~2l22l3!r&%, ~6.17!

with l[l22l3, is a normalized eigenstate ofP1,

P1u j r~ml!r&5r u j r~ml!r&. ~6.18!

If we replace the individual particle helicitiesl2 andl3
on the RHS of Eq.~6.17! by 2l2 and 2l3, we obtain the
same state, apart from a phase factor. We should there
include in our new basis~6.17! only states that are not re
lated to each other by changing the sign of both heliciti
We choose the conventionl251 1

2 and label the states b
the differencel. With this conventionl can be 0 or 1, and
the parityr can be1 and2, and we have again four inde
pendent states, just as before when each of the individ
helicities were allowed to be6 1

2. The selection rule

ul22l3u< j ~6.19!

excludesl51 for states withj 50.
For the construction of three-body parity eigenstates

can proceed in precisely the same way, treating the two-b
subsystem as one elementary particle with spinj , helicity m,
and~now well-defined! intrinsic parityr . The parity operator
which acts in the three-body space will be denotedP, and
re

b-
b-

s
is

of
are
y

h

re

.

al

e
dy

should be distinguished fromP1. To carry out this construc-
tion, we first introduce the three-body states

uJ j rl1~ml!r&5
1

A2
$uJ, jm;l1~l2l3!r&

1rreuJ, jm;l1~2l22l3!r&%

5
1

A2
~11rP1!uJ, jm;l1~l2l3!r&,

~6.20!

where uJ, jm;l1(l2l3)r&5uJ1(23)r& are the same three
body states introduced in Sec. IV, Eq.~4.34!, but with some
of the notation restored for clarity. The parity operationP on
these states yields

PuJ j rl1~ml!r&5h1r ~21!J2 j 2s1uJ j r2l1~2ml!r&,
~6.21!

and the three-body eigenstates of parity, with eigenva
P56 are therefore

uJP j r~ml!r&[
1

A2
$uJ j rl1~ml!r&

1Ph1r ~21!J2 j 2s1uJ j r2l1~2ml!r&%

5
1

A2
~11PP!uJ j rl1~ml!r&. ~6.22!

In this case we adopt the conventionl151 1
2 and letm vary,

subject to the condition that

um2l1u5Um2
1

2U<J. ~6.23!

Nucleon one is always in a positive-energy state, a
thereforeh151 and s15 1

2. The triton is characterized by

JP5 1
2

1. Three-body states with these quantum numbers

u 1
2

1, j r~ml!r&5
1

A2
$u 1

2 j r 1
2 ~ml!r&

2r eu 1
2 j r2 1

2 ~2ml!r&%. ~6.24!

Expanding these three-body parity eigenstates in terms o
original three-body helicity states~4.34! gives
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u 1
2

1 j r~ml!r&5 1
2 $u 1

2 , jm;l1~l2l3!r&1rreu 1
2 , jm;l1~2l22l3!r&2r eu 1

2 , j 2m;2l1~l2l3!r&

2ru 1
2 , j 2m;2l1~2l22l3!r&%5 1

2 ~11P!~11rP1!u 1
2 , jm;l1~l2l3!r&. ~6.25!

We now return to Eq.~6.11! and take the remaining spin-momentum matrix elements of the operators using the b

good parity states, Eq.~6.25!. For simplicity, we represent the states byu 1
2

1 j r(ml)r&5u j r(ml)r&, and the direct produc
states byuT& ^ u j r(ml)r&5uT jr(ml)r&. Then, in our abbreviated notation,

^T jr~ml!ruGT
1&5 (

j 8r 8
m8T8

(
l9r9
l8r8

E
0

qcrit
q82dq8

m

Eq8
E

0

p

dxsinx^T jr~ml!ruM1TuT jr~ml9!r9&

3
m

Ep̃9

gr9~q, p̃9!P12
r9r8@T jr~ml9!r9,T8 j 8r 8~m8l8!r8#

m

Ep̃8

^T8 j 8r 8~m8l8!r8uGT
1&, ~6.26!

where^T jr(ml)ruM1TuT jr(ml9)r9&5M rr9
ll9(T jr) is the two-body scattering amplitude for thej th partial wave with parityr

and isospinT, and

P12
r9r8@T jr~ml9!r9,T8 j 8r 8~m8l8!r8#5^TuP12uT8&3^ j r~ml9!r9uP̃12u j 8r 8~m8l8!r8&5^TuP12uT8&3^^P12&&. ~6.27!

Equation~6.26! is our final result. It expresses the three-body equations in terms of the physical states with definite pa

isospin, driven by two-body amplitudesM rr9
ll9(T jr) which have been previously calculated as described in Ref.@28#.

The new matrix element̂̂ P12&& is readily obtained from the original matrix elements Eq.~5.5!, which are, in the notation
of this section,

^^P12&&5^ 1
2 , j 8m8;l18~l28l38!r8uP12u

1
2 , jm;l1~l2l3!r&. ~6.28!

From definition~6.25! we have

^^P12&&5 1
4 ^ 1

2 , j 8m8;l18~l28l38!r8u~11r 8P1!~11P!P12~11P!~11rP1!u 1
2 , jm;l1~l2l3!r&

5 1
2 ^ 1

2 , j 8m8;l18~l28l38!r8u~11r 8P1!P12~11P!~11rP1!u 1
2 , jm;l1~l2l3!r&, ~6.29!

where we used the fact thatP commutes withP12. Using Eqs.~6.16!, ~6.21!, and~5.51!, we obtain

^^P12&&5 1
2 $^ 1

2 , j 8m8;l18~l28l38!r8uP12u
1
2 , jm;l1~l2l3!r&1r 8r8e8^ 1

2 , j 8m8;l18~2l282l38!r8uP12u
1
2 , jm;l1~l2l3!r&

1rre^ 1
2 , j 8m8;l18~l28l38!r8uP12u

1
2 , jm;l1~2l22l3!r&1r 8rr8re8e^ 1

2 , j 8m8;l18~2l282l38!r8u

3P12u
1
2 , jm;l1~2l22l3!r&2r^ 1

2 , j 8m8;l18~l28l38!r8uP12u
1
2 , j 2m;2l1~2l22l3!r&

2r 8r8re8^ 1
2 , j 8m8;l18~2l282l38!r8uP12u

1
2 , j 2m;2l1~2l22l3!r&2r e^ 1

2 , j 8m8;l18~l28l38!r8u

3P12u
1
2 , j 2m;2l1~l2l3!r&2r 8rr8e8e^ 1

3 , j 8m8;l18~2l282l38!r8uP12u
1
2 , j 2m;2l1~l2l3!r&%. ~6.30!
b
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This is the correct form of the permutation operator to
used with the physical, good parity states.

E. Three-body channels

We conclude this paper by counting and classifying
channels which contribute to the final three-body equatio

In order to clarify the following discussion we resto
some of the notation which we previously suppressed,
denote the two-body helicity states~6.17! with good parity,
u j r(ml)r&, by u p̃0 j r(ml)r&, where
e

e
s.

d

p̃05Ep̃0
2 1

2 W23 ~6.31!

is the difference in the energies of the two particles in
two-body rest frame~with particle two on shell! andW23 the
rest frame energy of the two-body system. Note thatp̃0 is in
general not zero because particle three is off shell, and
we continue to suppress explicit reference to the magnit
of the three component of the relative momentum,p̃, be-
cause it will play no role in the discussion which follow
This state satisfies the relation
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Q2u p̃0 j r~ml!r&5u p̃0 j r~ml!r&, ~6.32!

whereQ2 is the projection operator introduced in Sec.
which places particle two on shell, and is equivalent to
identity when operating on states where particle two is
ready on shell. Note that the state with relative energy2 p̃0
has particle three on shell and hence

Q3u2 p̃0 j r~ml!r&5u2 p̃0 j r~ml!r&. ~6.33!

In terms of the states~6.17!, the interchange of space an
spin coordinates~everything but isospin! has the following
effect:

P̃23u p̃0 j r~ml!r&5~rr!le~12l!u2 p̃0 j r~ml!r&.
~6.34!

This equation follows from the definition~6.17! and the re-
lation

P̃23u p̃0 jm~l2l3!r&5eu2 p̃0 jm~l3l2!r&, ~6.35!

which ~except for notational changes! is Eq. ~2.97! of Ref.
@28#.

Using Eq. ~6.34!, we can extend the discussion of th
previous subsection and introduce states withbothgood par-
ity and good exchange symmetry. Introduce the states

u j ru~ml!r&[
1

A2
~11uP̃23!u p̃0 j r~ml!r&. ~6.36!

These are normalized eigenstates of bothP1 andP23

P1u j ru~ml!r&5r u j ru~ml!r&,

P̃23u j ru~ml!r&5uu j ru~ml!r&. ~6.37!

Sinceu5(21)T, which can be writtenT5(12u)/2, these
states are also the correct spin-momentum states to use
isospin.

The counting and classifying of three-body states depe
in part on the number and classification of the two-bo
scattering states. Since bothP1 andP̃23 are conserved by the
two-body equations, two-body states can be classified by
ferent possible values of the quantum numbersr and u.
There are four combinations:

singlet r 52e, u5e,

triplet r 52e, u52e,

coupled r 5e, u5e,

virtual r 5e, u52e.

The last set of states, referred to asvirtual statesin Ref. @28#,
do not contribute to physical two-body scattering. This
because, in the positiver-spin sector, their parity assignme
would require thatj 5l 61, which in turn requires a tota
spin S51. These assignments are consistent with an
change symmetry ofu52e only if these states areodd un-

der change of sign of the relative energy variable p˜
0, which
e
l-

ith

ds
y

if-

x-

ensures that they are zero on shell. However, because
two-body quantum numbersr and u are not conservedin
three-body scattering, they can contribute to relativis
three-body scattering and to the three-body bound state
the calculations completed thus far@4# we have neglected
these states, but we expect them to give a small contribu
of purely relativistic origin.

Neglecting the virtual states, and recalling the select
rule ~6.19! leads to the following counting rules:

j 50: ~l50!3~r561!3~r 561!3~u521!

54 states,

j .0: ~l50,1!3~r561!3~r 56e!3~u5e!

1~l50,1!3~r561!3~r 52e!

3~u52e!512 states.

The total number of two-body states with angular mome
j < j max is thereforen254112j max.

In numerical calculations of the three-nucleon bound st
it has become customary to truncate the partial wave se
according to the maximal included total pair angular mom
tum j . Table I shows how many different three-body sta
exist for a givenj . The pattern is simple: applying the sele
tion rule ~6.23! for eachj .0 gives 24 possible states corr
sponding to 12 two-body states with eitherm50 or 1, or
2312524 states. Forj 50 only m50 is allowed, and hence
there are only four different states. For each combination
quantum numbers there is one particular pair isospin con
tent with the Pauli principle. Since we have used excha
symmetry to count the states, the inclusion of the isos
does not lead to any further increase in the number of ch
nels. The total number of states up to a given maximal va
j max is thereforen354124j max.
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TABLE I. Possible quantum numbers for three-body states w

JP5
1
2

1 ~for the triton!. Virtual two-body states have been ne
glected.

j l r u r m Number of states

0 0 6 2 6 0 4
>1 0,1 6 e 6 0,1 16
>1 0,1 2e 2e 6 0,1 8
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APPENDIX A: OPERATOR FORM OF THE TWO-BODY
EQUATIONS

In this appendix we present the operator form of the tw
body equations, and their subsequent reduction to pa
waves. Using the notation of Sec. II B, the two-body equ
tions for the scattering amplitude are

M5V2VG2Q1M , ~A1!

whereV is the symmetrized kernel andM is the two-body
scattering amplitude describing the scattering of particle
and 2. Note that particle 1 in on shell in the intermedia
state, in agreement with the conventions of Ref.@28# ~see
Sec. II B in that reference!. In the three-body language, th
-
ial
-

1
e

M in Eq. ~A1! is M3, because the ‘‘spectator’’~if it were
present! would be particle three. To obtain a closed set
equations for Eq.~A1!, multiply by Q1, giving

@Q1M #5@Q1V#2@Q1VG2Q1#@Q1M #, ~A2!

which shows that particle one is on shell throughout the
teraction.

The two-body partial wave equations can be obtain
from Eq. ~A2! by inserting a complete set of the two-bod
angular momentum states defined in Eq.~4.8! ~with the 23
pair relabeled 12!. The completeness and generalized
thogonality relations for the two-body states, implied by t
work in Sec. II C, is
^ j 8~1828!r8u j ~12!r&5d j 8 jdm8mdl
18l1

dl
28l2

Or8r~ p̃,l2!2Ep̃

d~ p̃2 p̃8!

p̃2
d4~P128 2P12!,

1[Qa8adb8b5E p̃2d p̃

2Ep̃

m2

Ep̃
2 d4P (

jmr8r
l1l2l3

u j ~12!r8&Or8r~ p̃,l2!^ j ~12!ru, ~A3!

where the shorthand notation defined in Eq.~4.45! has been used. Substituting the completeness relation into Eq.~A2! gives

^ j ~12!ruM u j ~1828!r8&5^ j ~12!ruVu j ~1828!r8&2 (
r1r2

l19l29

E k2dk

2Ek

m2

Ek
2^ j ~12!ruVGu j ~1929!r1&Or1r2

~k,l29!

3^ j ~1929!r2uM u j ~1828!r8&. ~A4!

The evaluation of the matrix element ofVG is identical to the evaluation ofM1G3 carried out in Eq.~4.48!. Substituting this
into Eq. ~A4! gives

^ j ~12!ruM u j ~1828!r8&5^ j ~12!ruVu j ~1828!r8&2 (
r9l19l29

E k2dk^ j ~12!ruVu j ~1929!r9&
m2

Ek
2 gr9~q,k!

3^ j ~1929!r9uM u j ~1828!r8&. ~A5!

Multiplying both sides of the equation by (2p)3m2/Ep̃Ep̃8, and introducing the amplitudes

~2p!3m2

Ep̃Ep̃8

^ j ~12!ruM u j ~1828!r8&5M
l1l

18 ,l2l
28

rr8 j
~ p̃, p̃8;P12!,

~2p!3m2

Ep̃Ep̃8

^ j ~12!ruVu j ~1828!r8&5V
l1l

18 ,l2l
28

rr8 j
~ p̃, p̃8;P12!,

k2

~2p!3 gr~q,k!5gr~k!, ~A6!

gives the equation

M
l1l

18 ,l2l
28

rr8 j
~ p̃, p̃8;P12!5V

l1l
18 ,l2l

28
rr8 j

~ p̃, p̃8;P12!2 (
r9l19l29

E dkV
l1l

19 ,l2l
29

rr9 j
~ p̃,k;P12!g

r9~k!Ml
19l

18 ,l
29l

28
r9r8 j

~k, p̃8;P12!. ~A7!
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This is identical to Eq.~2.88! of Ref. @28#, establishing the
relationship between this paper and previous work on
two-body problem.

APPENDIX B: REDUCTION OF THE d FUNCTIONS
IN P12

In this appendix we derive Eq.~5.13! for the d functions

2Ek1
d~3!~k18

02k1!2Ek2
d~3!~k28

02k2! ~B1!

which appear in the matrix element of the permutation
erator, Eq.~5.11!.

1. Radial d functions

First find the vectorsk18
0 andk28

0 shown in Fig. 5~a!, and
k19

0 andk29
0 shown in Fig. 5~b!. The vectorsk18

0 andk29
0 are

k18
05S Eq8

0

0

2q8

D , k29
05S Eq

0

0

2q

D , ~B2!

where we anticipate that$k9%→$k% and hence useuk29u5q
instead of uk29u5q9. This agrees with the notation in Eq
~5.12!. The vectorsk28

0 andk19
0 can be found by boosting th

vectors k̃28
0 and k̃19

0 defined in the two-body rest frame:

k̃28
05S Ep̃8

p̃8sinũ 8

0

p̃8cosũ 8

D , k̃19
05S Ep̃9

p̃9sinũ 9

0

p̃9cosũ 9

D . ~B3!

The boost in thez direction for the configuration shown i
Fig. 5~a! is

Zq85S C8 0 0 S8

0 1 0 0

0 0 1 0

S8 0 0 C8

D , ~B4!

where

C85
Mt2Eq8

Wq8

5
AWq8

2
1q82

Wq8

, S85
q8

Wq8

. ~B5!

The boost for the configuration shown in Fig. 5~b! is ob-
tained from Eq.~B4! by replacingq8 by q. Hence

k28
05Zq8 k̃28

05S C8Ep̃81S8 p̃8cosũ 8

p̃8sinũ 8

0

S8Ep̃81C8 p̃8cosũ 8

D , ~B6!
e

-

k19
05Zqk̃19

05S CEp̃91S p̃9cosũ 9

p̃9sinũ 9

0

SEp̃91C p̃9cosũ 9

D .

Now the vectors which appear in thed functions~B1! are
k18

0, k28
0, k1, andk2. The second two of these are obtained

applying the rotationRV8 to k19
0 andk29

0, as illustrated in Fig.
5~c!. Since the rotationRV8 does not change the length of th
three-vectors, the conditionk28

05k2 imposed by one of the
radial d functions becomes

q5$ p̃82sin2 ũ 81S82Ep̃8
2

1C82 p̃82cos2 ũ 8

12C8S8 p̃8Ep̃8cosũ 8%1/2

5$@C8Ep̃81S8 p̃8cosũ 8#22m2%1/2. ~B7!

Requiring thatucosũ8u,1 gives the unique solution

cosũ 85cosũ 085
Eq2C8Ep̃8

S8 p̃8
5

Wq8Eq2~Mt2Eq8!Ep̃8

q8 p̃8
.

~B8!

The radiald function can therefore be rewritten

d~k28
02k2!5d~cosũ 82cosũ 08!U dk2

dcosũ 8
U

cosũ 85cosũ
08

21

.

The derivative is

U dk2

dcosũ 8
U

cosũ 85cosũ
08

5
S8Eqp̃8

q
,

giving finally

d~k28
02k2!

k2
2

5
1

S8qEqp̃8
d~cosũ 82cosũ 08!

5
Wq8

qq8Eqp̃8
d~cosũ 82cosũ 08!, ~B9!

where cosũ08 was defined in Eq.~B8!.
The result for the other radiald function follows imme-

diately by interchanging primed and unprimed variables.

2. Angular d functions

Evaluation of the angulard functions requires explicit
consideration of the rotationRV85Ra,x8,b which rotates the
vectorsk19

0 andk29
0 into k1 andk2 as discussed in Sec. V A

and illustrated in Fig. 5~c!. First we consider thed function

d~2!~k28
02k2!5d~cosu28

02cosu2!d~f28
02f2!,

~B10!
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where (u2 ,f2) and (u28
0 ,f28

0) are the polar and azimutha
angles ofk2 andk28

0, respectively. The three-vectork28
0 was

given in Eq.~B6!, andk2 is

k25Ra,x8,bk29
05Ra,x8,bS 0

0

2q
D 52qS sinx8cosa

sinx8sina

cosx8
D .

~B11!

Since k2y5k2y8
050 and k2x5k2x8

0>0, the azimuthal part of
Eq. ~B10! becomes

d~f28
02f2!5d~p2a!. ~B12!

The polar part of thed function is

d~cosu28
02cosu2!5dS 1

q
@S8Ep̃81C8 p̃8cosũ 8#1cosx8D .

~B13!

If this d function is used to eliminate thex8, integration, one
is left with an integration overp̃8 with upper and lower
limits depending on the two external momenta and on
second integration variable. This makes numerical soluti
of the resulting equations awkward. Becausex8 is the angle
between the momentaq andq8, and is therefore symmetri
under interchange of initial and final states, it is more co
venient to retainx8 as the independent variable and elim
nate instead the integration overp̃8. The limits on thex8
integration turn out to be independent of the other variab
running over the expected range from 0 top. Using Eq.~B8!

to replace cosũ8, thed function becomes

d~cosu28
02cosu2!5dS C8Eq2Ep̃8

S8q
1cosx D , ~B14!

with the solution

Ep̃85Ep̃
08
5C8Eq1S8qcosx5

~Mt2Eq8!Eq1qq8cosx

Wq8

,

~B15!

and, since thek28
05k2 is now satisfied, we have replacedx8

by x, as discussed in Sec. V A. It is easy to show that
~B14! implies thatEp̃8>m for all values ofx, so that thed
function ~B14! places no additional restrictions on thex in-
tegration. Hence

d~cosu28
02cosu2!5d~ p̃82 p̃08!Udcosu28

0

d p̃8
U

p̃85 p̃
08

21

5
S8qEp̃

08

p̃08
d~ p̃82 p̃08!. ~B16!

The final angulard function is

d~2!~k18
02k1!5d~cosu18

02cosu1!d~f18
02f1!,

~B17!
e
s

-

s,

.

where (u1 ,f1) and (u18
0 ,f18

0) are the polar and azimutha
angles ofk1 andk18

0, respectively. The vectork18
0 is given in

Eq. ~B2!; the vectork1 is

k15Rp,x,bk19
05Rp,x,bS vx

0

vz

D 5Rp,x,0S vxcosb

vxsinb

vz

D
52S vxcosbcosx1vzsinx

vxsinb

vxcosbsinx2vzcosx
D . ~B18!

where

vx5 p̃9sinũ 9,

vz5SEp̃91C p̃9cosũ 95
CEq82Ep̃9

S
. ~B19!

Settingk15k18
0 gives three equations:

05vxcosbcosx1vzsinx5q8sinu1cosf1 ,

05vxsinb5q8sinu1sinf1 ,

q5vxcosbsinx2vzcosx52q8cosu1 . ~B20!

We will first use the left-hand set of Eqs.~B20! to obtain
the values ofb and p̃9 which are fixed by thed functions
~B17!. Then we will use the right-hand set to find the Jac
bian of the transformation from the variables cosu2,f2 to the
variablesp̃9,b.

The angleb must be 0 orp. Allowing for either possi-
bility, the first and third of Eqs.~B20! give

q8cosx52vz . ~B21!

Substituting this result back into the third equation gives

q8sin2x5vxcosbsinx5 p̃9sinũ 9cosbsinx. ~B22!

Since the sin of all angles under consideration is positi
this equation shows that cosb is also and that thereforeb50.
Finally, from Eq.~B21! we obtain

cosx1
CEq82Ep̃9

q8S
50 ~B23!

which is the condition~B14!, with q and q8 interchanged,
showing thatEp̃9 satisfies Eq.~B15! ~with q and q8 inter-
changed!. We have shown that the second angulard function
is

d~2!~k18
02k1!5d~b!d~ p̃92 p̃0!J, ~B24!

where p̃0 is p̃08 with q and q8 interchanged andJ is the
Jacobian of the transformation from the variables cosu2,f2 to
the variablesp̃9,b.

We return to the right-hand set of Eqs.~B20! to calculate
this Jacobian. Unlike the previous cases it is necessar
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calculate a full Jacobian because the variables are all cou
unless we go to the limit sinu150, which gives singular re-
sults. Postponing this limit until the end, we first eliminatevz
from Eqs.~B20! and obtain,

vxsinb5q8sinu1sinf1 ,

vxcosb5q8@sinu1cosf1cosx2cosu1sinx#. ~B25!

Differentiating both of these equations with respect to cou1
and f1, computing the Jacobian, andthen taking the limits
u15p, f150, andb50 gives

U ]vx

] p̃9
UJ5U ]b

]f1

]vx

]f1

]b

]cosu1

]vx

]cosu1

U5
q82

vx
cosx. ~B26!
n
e

e
n

n

at
ledThe radiald functions have fixed cosũ9 in terms of p̃9→ p̃0

@Eq. ~B8! with q8→q and p̃8→ p̃9→ p̃0#, and using this re-
lation we find that

]vx

] p̃9
52

q8Wqcosx

qEp̃0
sinũ 9

, ~B27!

and hence the Jacobian is

J5
qq8Ep̃0

p̃0Wq

5
Sq8Ep̃0

p̃0

. ~B28!

Combining Eq.~B9!, its companion, Eqs.~B16!, ~B24!,
and ~B28!, and anticipating the fact that thed functions fix
the rotation so thatp̃9→ p̃ and ũ 9→ ũ , we obtain our final
result
2Ek1
d~3!~k18

02k1!2Ek2
d~3!~k28

02k2!54Ep̃0
Ep̃

08
d~a2p!d~b!

d~ p̃82 p̃08!

p̃08
2

d~ p̃2 p̃0!

p̃0
2

d~cosũ 82cosũ 08!

3d~cosũ 2cosũ 0!. ~B29!
ing

ta-
sts
APPENDIX C: WIGNER ROTATIONS

In this appendix the Wigner rotation angle for the sta
dard boost~5.18! that occurs in the matrix elements of th
permutation operator is derived.

Consider a spin-1/2 particle with massm, helicity l, and
three-momentump̃ which lies in thexz plane ~with the x
component positive, by convention!. Under the boostZq in
the 1z direction the state transforms like

Zqu p̃,l&5R~Q!up,l&5(
n

up,n&dn,l
~1/2!~b!, ~C1!

whereZq will by used to denoteboth the boost~B4! in four-
dimensional space-time,and its representation on the spac
of states. Hencep5Zqp̃. In agreement with the notatio
used in Sec. IV, the magnitudeupu5q8, and angle betweenp
and the1z axis is u5p2x. We will show thatQ is a
rotation about they axis, and find the rotation angle,b, in
terms ofq, q8, andx.

As previously described, the helicity states are co
structed from rest states by first boosting in the1z direction,
and then rotating through the proper angle. For the st
up,l& and u p̃,l&, this construction gives

u p̃,l&5e2 iJy ũL p̃um̂,l&,

up,l&5e2 iJyuLq8um̂,l&, ~C2!
-

-

es

where Lk was defined in Eq.~5.19! and m̂5(m,0) is the
four-momentum vector of a particle of massm at rest. Hence
the Wigner rotation operator is given by

R~Q!5~e2 iJyuLq8!
21Zqe2 iJy ũL p̃ . ~C3!

Assuming thatR(Q) is a pure rotation about they axis, the
equation reduces to the following set of equations involv
b:

e2 iJyuLq8e
2 iJyb5Zqe2 iJy ũ L p̃ . ~C4!

We will solve these equations using the Dirac represen
tion for the operators. In this representation the pure boo
in the z direction are

Lq85eazhq8/25c81s8az , ~C5!

where tanhhq85q8/Eq8, c85cosh(hq8/2), ands85sinh(hq8/2)
@these relations were previously defined in Eq.~5.36!#. The
boostZq has a structure similar to Eq.~C5! but with hq8→nq
where

C5
Mt2Eq

Wq
5coshnq , S5

q

Wq
5sinhnq ~C6!

as in Eq.~B5!, but with q8→q. To simplify the notation in
what follows, we denote the hyperbolic functions ofnq/2 by

cn5cosh~nq /2!, sn5sinh~nq /2!. ~C7!

The pure rotations about they axis are

e2 iJyu5e2 iug5ay/25cos~u/2!2 isin~u/2!g5ay . ~C8!

Hence Eq.~C4! becomes



gives an
t

and

e

56 2429COVARIANT EQUATIONS FOR THE THREE-BODY . . .
@cos~u/2!2 ig5aysin~u/2!#@c81s8az#@cos~b/2!2 ig5aysin~b/2!#5@cn1azsn#@cos~ ũ /2!2 ig5aysin~ ũ /2!#@cp1azsp#.
~C9!

Using $g5ay ,az%50, Eq. ~C9! becomes

$cos@~u1b!/2#2 ig5aysin@~u1b!/2#%c81$cos@~u2b!/2#2 ig5aysin@~u2b!/2#%s8az

5$cncp1snsp1az~sncp1cnsp!%cos~ ũ /2!2 i $cncp2snsp1az~sncp2cnsp!%g5aysin~ ũ /2!. ~C10!

Equating the coefficients of the independent operators on each side of this equation gives four coupled equations

c8cos@~u1b!/2#5~cncp1snsp!cos~ ũ /2!,

c8sin@~u1b!/2#5~cncp2snsp!sin~ ũ /2!,

s8sin@~u2b!/2#5~cnsp2sncp!sin~ ũ /2!,

s8cos@~u2b!/2#5~cnsp1sncp!cos~ ũ /2!. ~C11!

These are not all independent; squaring each of these and then adding the first two and subtracting the second two
identity ~151!. Hence only three are independent, and given the quantitiesq, q8, and x5p2u, these three independen
equations can be regarded as equations for the unknown quantitiesũ , p̃, andb.

We are only interested in an equation forb. This is obtained by multiplying the first equation by the last equation,
adding it to the product of the second equation and the third. The result is

cosb5
Csinhhp1Scoshhpcosũ

sinhh8
. ~C12!

To eliminate cosũ, we find an equation for it by summing the squares of each of the equations. This gives

cosũ 5
coshh82Ccoshhp

Ssinhhp
5

Eq82CEp̃

S p̃
. ~C13!

Note that this is identical to Eq.~B8! ~with the primed and unprimed variables exchanged!, showing that the calculations ar
consistent. Substituting for cosũ gives

cosb5
coshhpcoshh82C

sinhhpsinhh8
5

WqEp̃Eq82m2~Mt2Eq!

p̃q8Wq

5
q8~Mt2Eq!1qEq8cosx

Aq82Wq
21q2Eq8

2
12qq8Eq8~Mt2Eq!cosx1~qq8cosx!2

.

~C14!

This is the formula for cos@b(q,q8,x)#.
N
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