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Role of retardation in three-dimensional relativistic equations
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~Received 16 June 1997!

Equal-time Green’s function is used to derive a three-dimensional integral equation from the Bethe-Salpeter
equation. The resultant equation, in the absence of antiparticles, is identical to the use of time-ordered dia-
grams, and has been used within the framework off2s coupling to study the role of energy dependence and
nonlocality when the two-body potential is the sum ofs exchange and crosseds exchange. The results show
that nonlocality and energy dependence make a substantial contribution to both the on-shell and off-shell
amplitudes.@S0556-2813~97!00911-4#

PACS number~s!: 13.75.Cs, 11.10.St, 11.80.2m, 21.30.Cb
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I. INTRODUCTION

With the advent of quantum chromodynamics~QCD! as
the fundamental underlying theory of strong interaction
would be nice to relate the Lagrangian used in the nucle
nucleon interactions with a meson-baryon effective Lagra
ian extracted from QCD. Although it is not possible
present to write such an effective Lagrangian with all t
coupling of the meson to the baryon predetermined by QC
we can start with a Lagrangian that preserves the symme
of QCD, e.g., chiral symmetry. At this stage the coupli
constants will have physical significance in that they can
related to QCD parameters. On the other hand, a determ
tion of the coupling constants in an effective chiral Lagran
ian @1# from the experimental data, e.g., the nucleon-nucle
phase shifts, could be used to test models of QCD.

Modern nucleon-nucleon interactions@2,3# based on me-
son exchange have achieved the remarkable success of fi
the ‘‘experimental’’ phase shifts with ax2 per data of ap-
proximately 1@3#. These interactions invariably start with
Lagrangian that includes the coupling of the nucleon to a
of mesons, with the coupling constants of the mesons to
nucleon as parameters to be adjusted to fit the experime
data. To determine the phase shifts for a given Lagrang
we need to~i! define the two-body equation to be solved f
the scattering amplitude and~ii ! define the kernel or potentia
for this two-body equation. In an ideal world, to mainta
covariance, we need to solve the Bethe-Salpeter~BS! equa-
tion @4# with the kernel being the sum of all two-partic
irreducible Feynman diagrams for nucleon-nucleon scat
ing. In practice this is not simple, and the standard proced
has been~i! to replace the four-dimensional Bethe-Salpe
equation by a three-dimensional~3D! equation that reduce
to the Lippmann-Schwinger equation@5# in the nonrelativis-
tic limit, ~ii ! approximate the potential for this 3D equatio
by the sum of all single meson exchanges or one- plus t
meson exchanges, and~iii ! to use the resultant potential i
three or more nucleon systems~i.e., the Schro¨dinger equa-
tion!, reduce the momentum and energy dependence of
potential in order to generate a local coordinate space po
tial.

The aims of the present investigation are to test, in
scalar theory, the effect on the coupling constant of~i! re-
placing the Bethe-Salpeter equation by a corresponding
560556-2813/97/56~5!/2387~9!/$10.00
t
n-
-

,
es

e
a-
-
n

ing

et
e

tal
n,

r-
re
r

o-

he
n-

a

D

equation,~ii ! the subtraction of the antiparticles’ contribu
tions from the kernel, and~iii ! the removal of the nonlocality
and energy dependence in the potential to allow for a co
dinate space local potential. This will give us a qualitati
measure of the error in the coupling constant resulting fr
the standard approximation used in generating local nucle
nucleon potentials.

In principle there are an infinity of relativistic 3D equa
tions that satisfy the same unitarity conditions as the Bet
Salpeter equations@6#. However, in practice there are fou
equations most commonly used in nucleon-nucleon sca
ing. Three result as a direct reduction of the Bethe-Salp
equation. These are~i! the Blankenbecler-Sugar@7# equation
in which the relative energy is set to zero,~ii ! the Gross@8#
equation in which one of the particles is on-mass-shell, a
~iii ! the Klein @9# equation in which the relative energy
integrated out. This latter equation has been used in re
years in conjunction with time ordered perturbation theory
determine the two-meson exchange nucleon-nucleon po
tial. The difference between these three equations is the tr
ment of the off-mass-shell degree of freedom present in
BS equation. The fourth equation is based on Hamilton
dynamics@10# with the connection to the field theoretic La
grangian made via the Okubo projection method@11# as
implemented by Fuda@12#. In this equation the nucleons ar
on-mass-shell.

In Sec. II we will derive the Klein equation from th
equal-time Green’s function@13#, and in this way establish a
systematic procedure for improvement on the standard
tential in the Klein equation as suggested by Phillips a
Wallace@14#. Although we have reduced the dimensional
of the equation from 4D to 3D, the kernel still includes th
contribution from antiparticles. In Sec. III we examine th
kernel of the Klein equation. Here we find that the contrib
tion of antiparticles, at the level of one meson exchange,
be significant for sufficiently large coupling constants. At
coupling constant that gives a binding energy comparabl
that of the deuteron, the contribution from antiparticles c
be neglected. The neglect of the antiparticle contribution
duces the kernel of the Klein equation to that resulting fro
time-ordered perturbation theory as has been impleme
for the nucleon-nucleon system in both the Bonn a
Nijmegen potentials. We then proceed to define the poten
arising from the exchange of two mesons in the no-a
2387 © 1997 The American Physical Society
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2388 56A. D. LAHIFF AND I. R. AFNAN
particle ~NAP! approximation. In the Klein approach, wit
NAP, the one- plus two-meson exchange potential is b
nonlocal and energy dependent, and to derive the co
sponding local potential we need to remove these depen
cies. In Sec. IV we compare the results of the BS, Kle
NAP and the energy-independent potentials with differ
levels of nonlocality. We find that although the BS a
Klein-NAP are in reasonable agreement, the removal of n
locality and energy dependence could be too severe.
effect of these approximations and the introduction of a fo
factor on the value of the coupling constant and the off-sh
behavior of the potential is examined. Finally, in Sec. V w
discuss some of the possible implications of our results
the nucleon-nucleon interaction.

II. THEORY

To establish the relation between the BS and Klein eq
tions, we derive the Klein equation@9# from the equal-time
Green’s function@13#. In this way, we establish the relatio
between the four-dimensional Bethe-Salpeter equation@4#
and the three-dimensional Klein equation in the form
cently proposed by Phillips and Wallace@14# which allows
for a systematic improvement in the kernel of the Kle
equation to reproduce the result of the BS equation.

The two-body Green’s function or four-point function
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given in terms of the vacuum expectation value of the ti
ordered product of fields as@15#

G~x,y;x8,y8![^0uT~c~x!c~y!c̄~x8!c̄~y8!u0&. ~1!

The equal-time Green’s function is then defined as@13#

G~x0x,x0y;x08x8,x08y8![E dy0dy08d~x02y0!d~x082y08!

3G~x,y;x8,y8!, ~2!

where we have written the four-vectors using the notat
x5(x0 ,x). To simplify matters, we need to write the coo
dinate space Green’s function in terms of the moment
space Green’s function. This can be achieved by first in
ducing the relative and center-of-mass momenta as

k5
1

2
~p12p2!

and

P5p11p2 ~3!

then d4p1d4p25d4Pd4k.The equal-time Green’s function
can be now be written as
G~x0x,x0y;x08x8,x08y8!5E d4Pd3kd3k8eiP0~x02x08!e2 iP•[ ~x1y!/22~x81y8!/2]e2 ik•~x2y!G̃~k,k8;P!eik8•~x82y8!, ~4!
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where G̃(k,k8;P), the ‘‘equal-time’’ Green’s function in
momentum space, is given by

G̃~k,k8;P!5E
2`

1`

dk0dk08G~k0k,k08k8;P![^G&. ~5!

We note that this ‘‘equal-time’’ Green’s function isnot a
function of the ‘‘relative energy’’k0 , and has the potentia
of setting the framework for a three-dimensional integ
equation for both the Green’s function and the scatter
amplitude orT matrix.

The two-body Green’s function defined in Eq.~1! satisfies
the BS equation

G5G01G0KG5G01G0TG0 , ~6!

whereG0 is the free two-particle Green’s function, the pro
uct of the Feynman propagators for the two particles, anT
is theT matrix for two-particle scattering. In Eq.~6!, K is the
potential in the BS equation and consists of the sum of
two-particle irreducible Feynman diagrams that contribute
the Green’s function. Using the second expression in Eq.~6!
to iterate the integral equation forG, we can write the BS
equation for theT matrix as

T5K1KG0T. ~7!
l
g

ll
o

The aim of this section is to write an approximation to E
~7! that is an integral equation in three dimensions. There
an infinity of such equations@6#, and to find the optimum one
is not the aim of the present study.

The unique feature of the Klein equation is that the p
tential is assumed to be independent of the ‘‘relative’’ ene
k0 , and as a result the ‘‘relative’’ energy integration, in th
integral equation, can be carried through resulting in a
equation. This suggests that one may develop an approx
tion scheme based on the idea that the potentialK can be
divided in two parts@14#. The first partK1 is independent of
the ‘‘relative’’ energy, i.e.,

K1~k,k8;P!5K1~k,k8;P!, ~8!

and the rest,K25K2K1 , has all the ‘‘relative’’ energy de-
pendence. The problem now reduces to finding an optim
K1 such that the solution to the 3D integral equation is
good approximation to the solution of the BS equation, a
to define a systematic procedure for improving the results
the Klein equation.

Let us first assume thatK250, then the ‘‘equal-time’’
Green’s function can be written as

^G&5^G0&1^G0TG0&5^G0&1^G0K1G&, ~9!

where
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56 2389ROLE OF RETARDATION IN THREE-DIMENSIONAL . . .
^A&[Ã~k,k8;P![E
2`

1`

dk0dk08A~k,k8;P!. ~10!

However, sinceK1 does not depend on the ‘‘relative’’ en
ergy, it is simple to show that^G0K1G&5^G0&K1^G& and as
a result we can write

^G0TG0&5^G0&K1^G&5^G0&K1$^G0&1^G0TG0&%.
~11!

This allows us to write a 3D integral equation, the Kle
equation, in whichK1 is the potential, as

T15K11K1^G0&T1 , ~12!

where the amplitudeT1 is the ‘‘equal-time’’T matrix, and is
defined in terms of the BST matrix as

T1[^G0&
21^G0TG0&^G0&

21. ~13!

At this stage all we have established is that ifK1 is indepen-
dent of the relative energy, then we have the 3D equa
first proposed by Klein@9#.

The potential in the BS equation is the sum of all tw
particle irreducible diagrams that contribute to the amplitu
and in general this potential depends on the ‘‘relative’’ e
ergy. In this caseK2 is not zero, and we need to define a
optimum K1 . The Green’s function for the potentialK2 is
given by

GK2
5G01G0K2GK2

5G01G0~K2K1!GK2
, ~14!

and the corresponding ‘‘equal-time’’ Green’s function
given by

^GK2
&5^G0&1^G0KGK2

&2^G0&K1^GK2
&. ~15!

If we now defineK1 , the potential that is independent of th
‘‘relative energy,’’ in terms of the kernel of the BS equatio
as

K1[^G0&
21^G0KGK2

&^G0&
21, ~16!

then Eq.~15! can be solved for the ‘‘equal-time’’ Green’
function for the potentialK2 with the simple solution tha
^GK2

&5^G0&, i.e., the ‘‘equal-time’’ Green’s function for

the potentialK2 is identical to the ‘‘equal-time’’ free Green’s
function, providedK1 is defined as in Eq.~16!.

The Green’s function for the full BS kernelK can now be
written in terms ofK2 as

G5G01G0TG05GK2
1GK2

K1G, ~17!

with the corresponding ‘‘equal-time’’ Green’s function give
by

^G&5^G0&1^G0TG0&5^GK2
&1^GK2

K1G&. ~18!

We are now in a position to write the ‘‘equal-time’’ ampl
tude as
n

,
-

^G0TG0&5^GK2
K1G&5^GK2

&K1^G&

5^G0&K1$^G0&1^G0TG0&%. ~19!

This result again gives us the Klein equation as defined
Eq. ~12! with the potential in this case given by Eq.~16!.
Clearly, we cannot determine this potential for the full B
kernel with GK2

a solution of Eq.~14!. This would be
equivalent to solving the full BS equation with no approx
mations to the kernel. As a first approximation, we cou
expand the kernel of the BS equation in powers of the c
pling constant, and at the same time iterate Eq.~14! to keep
all terms of the same order as in the BS kernel. This w
effectively give us an expansion of the potential in the Kle
equation as a power series in the coupling constant. We
see in the next section, for Yukawa type coupling, that
order g2 this potential corresponds to single meson e
change, while to orderg4, K1 will include one- and two-
meson exchanges. The question then is how do the resul
this three-dimensional equation~the Klein equation! com-
pare with the results from the BS equation when the poten
is calculated to the same order?

The definition of the ‘‘equal-time’’ potential in Eq.~16!
allows for a systematic way of calculating the amplitu
within the framework of a three-dimensional equation.
addition, this equation includes both the positive and ne
tive energy component of the Feynman propagators. T
result is identical to that used by Phillips and Wallace for t
two-body bound state problem@14#. One can show that in the
absence of negative energy states, this expression for
potential is equivalent to the result of time-ordered pertur
tion theory @18,19#. Since theS matrix resulting Eq.~12!
with K1 defined in Eq.~16! is identical to theS matrix from
the original BS equation, we have maintained covarian
but it is not manifest covariance. Furthermore, since trun
tion in bothK andGK2

are carried through at the field theor
level, we expect covariance to be maintained.

Finally, to fourth order in the coupling constant, and
the absence of antiparticles, this potential is identical to t
used to include two pion exchange in the nucleon-nucle
interaction before any approximation is required to transfo
the potential to coordinate space@16,17#. This therefore can
form the basis of estimating the approximate magnitude
the errors made in going from the BS equation to a coo
nate space local potential used in the Schro¨dinger equation
for a given Lagrangian.

III. THE TWO-BODY POTENTIAL

To examine the approximations needed to reduce the
nel of the BS equation to a local potential in coordina
space, we need to define a Lagrangian. To avoid the p
lems with spin and isospin, especially at the BS level w
crossed meson exchange, we have considered af2s theory,
i.e., a Lagrangian of the form

L5
1

2
@]mf]mf2m2f2#1

1

2
@]ms]ms2m2s2#2gf2s.

~20!
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2390 56A. D. LAHIFF AND I. R. AFNAN
In the nucleon-nucleon interaction the kernel of the BS eq
tion is truncated to include the one pion exchange and
crossed two pion exchange. To compensate for this trun
tion one includes the exchange of all mesons with a m
less than 1 GeV. The motivation is that the heavy me
exchange will model all higher order diagrams that ha
been excluded@20#. With this approximation in mind, we
make use of the above Lagrangian to define the kernel of
BS equation in terms ofs exchange and the crosseds ex-
change. In addition, we will define the potential in the Kle
equation to be an approximation toK1 , and the order of this
approximation to be determined by our approximation to
kernel of the BS equation, i.e., the potential in both equati
is taken to the same order in the coupling constant. In
way we expect the mechanism included in both the BS
Klein equations to be the same, and the difference is
result of using a 3D equation in place of the 4D equation

With the above scheme in mind, we first consider t
potential in the Klein equation to orderg2. In this case we
th
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include the kernel of the BS equation to orderg2 and take
GK2

'G0 . This gives the singles-exchange potential as

K1
~2!5^G0&

21^G0I ~2!G0&^G0&
21, ~21!

whereI (2), thes-exchange amplitude as employed in the B
equation, is given by

I ~2!~k,k8!5
g2

~k2k8!22m21 i e
, ~22!

with the relative four-momentumk5(k0 ,k). To evaluate the
‘‘equal-time’’ matrix elements^G0& and ^G0I (2)G0&, we
need to perform the relative energy integration in both
initial and final states@see Eq.~10!#. For this we decompose
the product of the Feynman propagators for the twof fields,
in the center-of-mass, in terms of their positive and nega
energy components, i.e.,
G0~k,P!5
i

~2p!4

1

@~As/2!1k0#22Ek
21 i e

1

@~As/2!2k0#22Ek
21 i e

5G0
111G0

121G0
211G0

22 . ~23!
d
the
By performing the relative energy integration, we reduce
‘‘equal-time’’ free Green’s function to

^G0&5
1

~2p!3

1

Ek

1

s2~2Ek!
21 i e

5^G0
11&1^G0

22&,

~24!

where

^G0
11&5

1

~2p!3

1

~2Ek!
2

1

As22Ek1 i e
,

^G0
22&52

1

~2p!3

1

~2Ek!
2

1

As12Ek2 i e
. ~25!

We note here that the free ‘‘equal-time’’ Green’s function
a function s5P2 and not As as in a number of three
dimensional equations. It is only when we divide th
Green’s function into its positive and negative energy co
ponents, and neglect the negative energy component, d
get the dependence onAs.

To perform the relative energy integration on the Gree
function for s exchange~i.e., G0I (2)G0) we again take ad-
vantage of the decomposition of the Green’s function
terms of a positive and negative energy component to w

^G0I ~2!G0&5E
2`

1`

dk0dk08G0~k,P!I ~2!~k,k8!G0~k8,P!

5(
ab

(
gd

I ab;gd
~2! ~k,k8;P!, ~26!
e

-
we

s

e

where

I ab;gd
~2! ~k,k8;P!5^G0

abI ~2!G0
gd&, ~27!

with a,b,g,d51,2. Making use of the symmetry of the
integralsI ab;gd

(2) (k,k8;P) under the exchange of indices an
momenta to reduce the number of integrals, we can write
‘‘equal-time’’ Green’s function fors exchange as

^G0I ~2!G0&5@^G0
11&1D#d1@^G0

11&1D#

1@^G0
11&1D#d1@^G0

11&1D#

1@^G0
22&1D#d2@^G0

22&1D#

1@^G0
22&1D#d2@^G0

22&1D#

22^G0
11&d0^G0

22&22^G0
22&d0^G0

11&,

~28!

where

d1~k,k8!5
g2

2v

1

As2Ek2Ek82v1 i e
,

d2~k,k8!52
g2

2v

1

As1Ek1Ek81v2 i e
,

d0~k,k8!5
g2

2v

1

Ek1Ek81v
, ~29!

and
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D~k,k8!52
1

~2p!3

1

~2Ek!
2

1

Ek1Ek81v
. ~30!

This result is identical to that of Phillips and Wallace@14#.
We observe here that the elimination of the negative ene
components of the ‘‘equal-time’’ free Green’s function, i.e
^G0&→^G0

11& reduces the above expression for the ‘‘equ
time’’ Green’s function to terms witĥG0

11& only, i.e.,

^G0I ~2!G0&52^G0
11&d1^G0

11&. ~31!

As a result, the potential in the Klein equation reduces to
simple form used in time ordered perturbation theory

K1
~2!~k,k8;s!'

g2

v

1

As2Ek2Ek82v1 i e
. ~32!

We will refer to this approximation as the Klein potenti
with no antiparticles~Klein-NAP!. This major simplification
of the potential, in neglecting the negative energy compon
of the two-particle free Green’s function, can have a ma
reduction in the structure of the crossed twos exchange
contribution.

Before we proceed to the evaluation of potentialK1 to
orderg4, we need to estimate the contribution of the neg
tive energy component of thef-f Green’s function. To get
our scalar model to be a reasonable approximation to
nucleon-nucleon interaction with pion exchange, we ha
chosen the mass of thef to bem51.0 GeV, while the mass
of the s is taken asm50.15 GeV. In this way the range o
the interaction is comparable to that generated by one p
exchange. In Fig. 1 we plot the mass of thef-f bound state
as a function of the strength of the coupling, i.e.,g2/4p, for
the BS, Klein, and Klein-NAP. Here we observe that t
negative energy states can make a substantial contributio
the binding energy if the coupling is strong enough. Ho
ever, if we assume that the binding energy of thef-f sys-
tem is comparable to that of the deuteron~i.e., 2.225 MeV!,
then the coupling constant isg2/4p51.646, and the contri-
bution to the binding energy of the negative energy state

FIG. 1. The bound state energy of thef-f system in the Bethe-
Salpeter, Klein, and Klein with no antiparticle as a function of t
coupling strengthg2/4p.
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antiparticles is negligible. In Fig. 2 we present the pha
shifts for the onef exchange potential, corresponding to t
coupling constant ofg2/4p51.646, for the BS, Klein, and
Klein-NAP equations as a function of energy. Here we n
that all three results are very close, and that the contribu
of the negative energy states is comparable to the differe
between the BS and the Klein equations. The fact that
Klein equation gives a good approximation to the BS eq
tion is an indication that one can work within the framewo
of the three-dimensional Klein equation with no antipartic
for the range of coupling constants that are consistent w
the nucleon-nucleon potential.

At this stage we have carried out the determination of
potential for the Klein equation to orderg2. To include the
crosseds exchange, we need to go to fourth order in t
coupling constant. The starting point is still Eq.~16!, but
now we have to include all contributions toK to orderg4 as
well as the contribution fromGK2

. With the help of Eq.~14!,

we can writeK1 , after one iteration ofGK2
, as

K15^G0&
21^G0KGK2

&^G0&
21

'^G0&
21^G0K@G01G0~K2K1!G0#&^G0&

21.

~33!

If we now take the kernel of the BS equation to fourth ord
in the coupling, i.e.,

K'I ~2!1I ~4!, ~34!

where I (4) is the crosseds-exchange diagram, and kee
terms to fourth order in the coupling, we get

K1'^G0&
21^G0I ~2!G0&^G0&

211^G0&
21^G0I x

~4!G0&^G0&
21

1^G0&
21@^G0I ~2!G0I ~2!G0&2^G0I ~2!G0K1

~2!G0&#

3^G0&
21[K1

~2!1K1
~4! . ~35!

The first term is just the ‘‘equal-time’’ singles exchange,
while the second term is the ‘‘equal-time’’ crosseds ex-

FIG. 2. The phase shifts for thef-f system in the Bethe-
Salpeter, Klein, and Klein with no antiparticles as a function of t
energy for g2/4p51.646. This corresponds to a binding ener
comparable to the deuteron binding energy.
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2392 56A. D. LAHIFF AND I. R. AFNAN
change. In addition to these two contributions, we hav
part of the boxed diagram that cannot be represented by
sequential ‘‘equal-time’’ twos exchange. This contribution
is given in the third and final term, and consists of t
‘‘equal-time’’ boxed diagram minus the once iterate
‘‘equal-time’’ single s exchange, since

^G0&
21^G0I ~2!G0K1

~2!G0&^G0&
215K1

~2!^G0&K1
~2! .

~36!

In general, the evaluation of this potentialK1
(4) involves the

evaluation of the relative energy integration in both init
and final states for both the boxed and crosseds exchanges.
To facilitate the evaluation of these integrals, we have
tained only the positive energy component of the freef-f
Green’s function, i.e., we have assumed thatG0→G0

11 in
the evaluation of the potential. This gives us the result
time ordered perturbation theory@16,21#, i.e., the potential
K1

(4) is the sum of the diagrams in Fig. 3. Note that in maki
use of time ordered perturbation theory we have assu
that the contribution of antiparticles is negligible. That
turn was justified on the basis of our results for the pres
Lagrangian and at a value of the coupling constant that g
a binding energy for thef-f that is comparable to the deu
teron binding energy.

IV. NUMERICAL RESULTS

To examine the approximation required to reduce the
equation to the nonrelativistic Schro¨dinger equation with a
local coordinate space potential, we define the interactio
the level of the BS equation. We will include in the intera

FIG. 3. The diagrams that contribute to the potentialK1
(4) to

fourth order in the coupling constant in time ordered perturbat
theory. Diagrams~a! and ~b! are the singles exchange, i.e.,K1

(2) ,
while diagrams~e!–~j! are the crossed diagrams. Here diagrams~c!
and~d! are those diagrams that are in the iterateds exchange in the
BS equations but are not generated in the iteration of the K
equation and are part of the fourth order contribution to the po
tial.
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tion either a singles exchange~i.e., orderg2) or s exchange
plus crosseds exchange~i.e., orderg4). At this stage the
only parameter in the potential is the coupling constantg,
which we set in the last section to reproduce af-f bound
state with a binding energy of 2.225 MeV. This fixes t
coupling constant at a value ofg2/4p51.646 for singles
exchange, andg2/4p51.484 for singles exchange and
crosseds exchange. We now carry through a number
approximations to this fully covariant model. These being~i!
at the ones-exchange level, we compare the results of t
BS with the Klein-NAP, and the corresponding potent
with no energy dependence,~ii ! at the s exchange plus
crosseds exchange, we compare the results of the BS a
Klein-NAP with the results of removing first the energy d
pendence, i.e., the retardation, and second the momen
dependence, i.e., the nonlocality of the potential in the Kl
equation.

Since the Klein-NAP approximation is identical to tim
ordered perturbation theory, the potential has energy dep
dence of the form exhibited in Eq.~32!. This energy depen-
dence corresponds to a retardation in the potential wh
may cause problems if implemented in many-body calcu
tions. To remove the energy dependence in a typical deno
nator, e.g.,

D5
1

As2Ek2Ek82v
, ~37!

we first expand the energy of thef and the total energy o
the system in a power series of the inverse of thef mass on
the grounds that the typical momenta are small when co
pared with thef mass, i.e.,

As52 Ak0
21m252m1

k0
2

m
1•••,

Ek5Ak21m25m1
k2

2m
1•••, ~38!

wherek0 is the on-shell momentum. We then follow Su
awara and Okubo@22# and Rijken @16# and expandD in
powers ofm21, with the result that

D52
1

vF 11
2k0

22k22k82

2mv
1S 2k02k22k82

2mv D 2

1•••G .
~39!

The first term in this expansion, i.e.,O(1), is referred to as
the ‘‘adiabatic’’ approximation, and if we keep terms o
O(m21) we have the ‘‘nonadiabatic’’ approximation@16#.
Although this approximation might be valid for theAs below
the threshold fors production, the corresponding expansio
for Ek8 can be questioned sincek8 is an integration variable
that takes on all values from zero to infinity in solving th
integral equation@23#. The ‘‘adiabatic’’ approximation at the
ones-exchange level is basically the static approximation
which Ek1Ek85As, and in this limit the potential has no
energy dependence, and reduces to a local Yukawa pote

For the twos-exchange contribution, i.e., orderg4, we
get factors of the form given in Eq.~37! for intermediate

n

in
-



o
on

e-

a
pe

t

e

B
e
ff
m

r-
ki-

l I
-

ei
e

al
ar
en
ifi

on
th
m

,
re-
we

in-
ing
nge
nt
m
the

o-
. By

we
his
in

lcu-
ials
e
to

ree-
ub-
tic
ca-
s
of

d e

the
s to
e
ten-

ve

56 2393ROLE OF RETARDATION IN THREE-DIMENSIONAL . . .
states. In this case to remove the energy dependence
needs to carry through an ‘‘on-energy-shell’’ approximati
which requires that

k22k0
2→0

and

k822k0
2→0, ~40!

wherek and k8 are the initial and final state momenta, r
spectively. The final form of the resultant potential@16,21# to
order g4 in both the adiabatic and nonadiabatic approxim
tions, has no energy dependence. The momentum de
dence then is determined by the expansion in powers ofm21

of all energy denominators, and the number of terms kep
such an expansion.

In Fig. 4 we present thes-wave phase shifts for the cas
when the potential is defined to be due to a singles ex-
change. Here we observe that although the results of the
and Klein-NAP equations are in reasonably good agreem
the removal of the energy dependence has a substantial e
on the phase shifts. Although this difference could be co
pensated for by the adjustment of the coupling constantg, it
is not clear that the off-energy-shell difference will not pe
sist. To illustrate this, we present in Fig. 5 the Kowals
Noyes@24,25# half-off-shell function for the Klein-NAP po-
tential ~solid line! and the energy-independent potentia
~dashed line!. Also included, is the result for the half-off
shell function for an energy-independent potential II~dotted
line! that gives almost the same phase shifts as the Kl
NAP potential. Clearly the half-off-shell function for th
energy-independent and energy-dependent potentials
quite different. This is true even when the two potenti
have approximately the same phase shifts. Such a l
variation in the off-shell behavior of the amplitude, ev
when the potentials are identical on-shell, can have sign
cant effects on three- and many-body results@26#.

To get a measure of the uncertainty in the coupling c
stantg as a result of removing the energy dependence of
potential while keeping the physical observables the sa
we have adjusted the coupling constantg such that the bind-

FIG. 4. Thes-wave phase shifts for the BS, Klein-NAP, an
energy-independents-exchange potentials.
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ing energy of thef-f system is 2.225 MeV in the BS
Klein-NAP, and the energy-independent potential. The
sultant coupling constants are presented in Table I. Here
observe a change of 6% in going from the BS to the Kle
NAP equation as compared with a 13% change in go
from the BS to an energy-independent potential. This cha
in the coupling constant is significant if the coupling consta
is to be a meaningful quantity that might be derived fro
some underlying quantum field theory, such as QCD for
nucleon-nucleon interaction.

The contribution to orderg4 for the potential in the Klein-
NAP approximation has both nonlocality in the form of m
mentum dependence, and a dependence on the energy
taking the initial and final momenta on the energy shell,
remove the energy dependence, but not the nonlocality. T
non-locality is removed by implementing the procedure
Eq. ~38!. The resultant potential to orderg4 is now local
@16,17#, and can be used in the three- and many-body ca
lations. In Fig. 6 we present the phase shifts for potent
calculated to orderg4. Included are the phase shifts for th
BS, Klein-NAP, and the energy-independent potentials
O(1) ~adiabatic! and O(m21) ~nonadiabatic!. Here again,
the results of the BS and Klein-NAP are in reasonable ag
ment, but the energy-independent approximations are s
stantially different. The fact that the results for the adiaba
and nonadiabatic approximations are different is an indi
tion that the series expansion inm21 is not as convergent a
we would like it to be. Here again the off-shell behavior

FIG. 5. The Kowalski-Noyes half-off-shell function for th
Klein-NAP and the energy-independents-exchange potentials. The
energy-independent I corresponds to the potential that gave
phase shifts in Fig. 4, while energy-independent II correspond
the case when the coupling constantg is adjusted to give the sam
phase shifts for the energy-independent and the Klein-NAP po
tials.

TABLE I. Comparison of the coupling constant required to gi
a binding energy of 2.225 MeV for thef-f system.

Potential g2/4p

Bethe-Salpeter 1.646
Klein-NAP 1.747
Energy independent 1.433
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the amplitude for the Klein-NAP and energy-independ
potentials are substantially different as illustrated in Fig
where the Kowalski-Noyes@24,25# function is given for
these potentials. As was the case with the phase shifts
nonadiabatic approximation is substantially better than
adiabatic approximation.

In the nucleon-nucleon interaction, thepNN vertex has
associated with it a form factor that is a function of t
exchange pion momentum. This form factor is introduced
overcome the singular nature of the potential. For the
grangian under consideration the potential is not singular
there is no need for any form factors. However, to exam
the effect of such a form factor on the difference between
energy-dependent and energy-independent potentials,
have introduced a Gaussian form factor@16# by the substitu-
tion

g2→g2e2k2/L2
, ~41!

wherek is the momentum of the exchangeds meson. In Fig.
8 we illustrate the changes in the phase shifts for the Kle

FIG. 6. Thes-wave phase shifts for the BS, Klein-NAP, adi
batic O(1), nonadiabaticO(m21) singles exchange, and crosse
s potentials.

FIG. 7. The Kowalski-Noyes half-off-shell function for th
Klein-NAP, adiabaticO(1), nonadiabaticO(m21) single s ex-
change, and crosseds potentials.
t
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NAP and energy-independents-exchange potentials as
function of the cutoff parameterL at a laboratory energy o
100 MeV. Here we observe that as the cutoff mass is
duced, the difference between energy-dependent and ene
independent solutions is also partly reduced. This sugg
that the energy dependence is a short-range effect, and a
form factor starts to dominate the short-range behavior of
potential, the role of the energy dependence is suppress

V. CONCLUSION

In an attempt to understand the approximation involved
reducing the potential in the Bethe-Salpeter~BS! equation to
an equivalent local potential for use in the Schro¨dinger equa-
tion, we have considered a series of approximations wh
involved ~i! the reduction of the equation from four to thre
dimensions,~ii ! the elimination of negative energy states
antiparticles,~iii ! the removal of energy dependence a
nonlocality in the potential. To maintain simplicity in th
model, while maintaining some relevance to the nucle
nucleon interaction, we have considered a scalarf2s inter-
action Lagrangian and included in the potential all diagra
to orderg4, i.e., singles exchange and crossed twos ex-
change in analogy with one- and two-pion exchanges in
nucleon-nucleon problem. To set the strength of this inter
tion, we required that thef-f system have a bound sta
energy comparable to the deuteron binding energy.

In reducing the two-body problem from four to three d
mensions, we have taken advantage of the equal-t
Green’s function@13# and the requirement that the potenti
have no dependence on the relative energy@9#, to derive a
scheme that allows for a systematic way of improving t
potential to reproduce the results of the BS equation@14#.
We then found that at the ones-exchange level, neglecting
the contribution of negative energy states is not substan
provided that thef-f system has a weakly bound state as
the deuteron. The elimination of negative energy states g
us the time-ordered perturbation theory that has been use
the starting point for the recent derivation of the nucleo
nucleon potential@2,16,17#. At this level there is good agree

FIG. 8. The s-wave phase shifts atElab5100 MeV for the
Klein-NAP and energy-independent potential for thes-exchange
potential.
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ment between the BS equation and the corresponding th
dimensional equation we refer to as the Klein-NAP@9#.
However, the potential now is both energy dependent,
has retardation, and is nonlocal. These features give ris
problems if the potential is to be used for three- and ma
body calculations. To avoid such problems, it has beco
standard practice to remove the energy dependence and
locality. Here we find that the approximations required
remove this energy dependence and nonlocality results
drastic change in the phase shifts.

If we adopt the view that the coupling constant can, at
local potential level, be adjusted to fit the experimental ph
shifts, then the coupling constant defined at the covar
level could change by as much as 10–15 %. This raise
problems in the nucleon-nucleon case if thepNN coupling
constant extracted from the experimental data is to be c
pared with theoretical results extracted from QCD. T
problem becomes central when the fit to the experime
phase shifts is at a level where thex2 per data is near one
More interesting is the fact that the off-shell behavior of t
final local potential is substantially different from the orig
nal potential derived from the time-ordered perturbat
theory. This change in off-shell behavior has significa
ramifications in the three- and many-body results based
. J
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e-
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to
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e
e

nt
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n

local potentials, and can be the origin of the three-nucle
force introduced to get the correct binding energy of lig
nuclei.

Although we have considered one of an infinite set of
equations with the kernel calculated to orderg4, we should
point out that for the bound state problem with the value
the coupling constant used here, the results of the K
equation are in good agreement with the solution of the
equation in which the kernel is calculated to all orde
@14,27,28#. Finally, we should point out that there have be
similar analyses based on the Blankenbecler-Sugar equa
@29,30#.
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