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Role of retardation in three-dimensional relativistic equations

A. D. Lahiff and I. R. Afnan
Department of Physics, The Flinders University of South Australia, GPO Box 2100, Adelaide 5001, Australia
(Received 16 June 1997

Equal-time Green'’s function is used to derive a three-dimensional integral equation from the Bethe-Salpeter
equation. The resultant equation, in the absence of antiparticles, is identical to the use of time-ordered dia-
grams, and has been used within the frameworkaF coupling to study the role of energy dependence and
nonlocality when the two-body potential is the sumooéxchange and crossedexchange. The results show
that nonlocality and energy dependence make a substantial contribution to both the on-shell and off-shell
amplitudes[S0556-28187)00911-4

PACS numbgs): 13.75.Cs, 11.10.St, 11.86m, 21.30.Cb

[. INTRODUCTION equation,(ii) the subtraction of the antiparticles’ contribu-
tions from the kernel, angii) the removal of the nonlocality
With the advent of quantum chromodynami€3CD) as  and energy dependence in the potential to allow for a coor-
the fundamental underlying theory of strong interaction, itdinate space local potential. This will give us a qualitative
would be nice to relate the Lagrangian used in the nucleonmeasure of the error in the coupling constant resulting from
nucleon interactions with a meson-baryon effective Lagrangthe standard approximation used in generating local nucleon-
ian extracted from QCD. Although it is not possible at nucleon potentials.
present to write such an effective Lagrangian with all the In principle there are an infinity of relativistic 3D equa-
coupling of the meson to the baryon predetermined by QCDtions that satisfy the same unitarity conditions as the Bethe-
we can start with a Lagrangian that preserves the symmetrie3alpeter equationgs]. However, in practice there are four
of QCD, e.g., chiral symmetry. At this stage the couplingequations most commonly used in nucleon-nucleon scatter-
constants will have physical significance in that they can béng. Three result as a direct reduction of the Bethe-Salpeter
related to QCD parameters. On the other hand, a determinaquation. These ar@) the Blankenbecler-Sug@r] equation
tion of the coupling constants in an effective chiral Lagrang-in which the relative energy is set to zefo, the Grosq 8]
ian[1] from the experimental data, e.g., the nucleon-nucleorequation in which one of the particles is on-mass-shell, and
phase shifts, could be used to test models of QCD. (iii ) the Klein [9] equation in which the relative energy is
Modern nucleon-nucleon interactiof,3] based on me- integrated out. This latter equation has been used in recent
son exchange have achieved the remarkable success of fittiggars in conjunction with time ordered perturbation theory to
the “experimental” phase shifts with &2 per data of ap- determine the two-meson exchange nucleon-nucleon poten-
proximately 1[3]. These interactions invariably start with a tial. The difference between these three equations is the treat-
Lagrangian that includes the coupling of the nucleon to a semnent of the off-mass-shell degree of freedom present in the
of mesons, with the coupling constants of the mesons to thBS equation. The fourth equation is based on Hamiltonian
nucleon as parameters to be adjusted to fit the experimentenamics[10] with the connection to the field theoretic La-
data. To determine the phase shifts for a given Lagrangiargrangian made via the Okubo projection metHdd] as
we need tdi) define the two-body equation to be solved for implemented by Fudgl2]. In this equation the nucleons are
the scattering amplitude aril) define the kernel or potential on-mass-shell.
for this two-body equation. In an ideal world, to maintain In Sec. Il we will derive the Klein equation from the
covariance, we need to solve the Bethe-Salp®&) equa- equal-time Green'’s functiofl3], and in this way establish a
tion [4] with the kernel being the sum of all two-particle systematic procedure for improvement on the standard po-
irreducible Feynman diagrams for nucleon-nucleon scattertential in the Klein equation as suggested by Phillips and
ing. In practice this is not simple, and the standard procedur#/allace[14]. Although we have reduced the dimensionality
has beeni) to replace the four-dimensional Bethe-Salpeterof the equation from 4D to 3D, the kernel still includes the
equation by a three-dimension@D) equation that reduces contribution from antiparticles. In Sec. lll we examine the
to the Lippmann-Schwinger equatif] in the nonrelativis-  kernel of the Klein equation. Here we find that the contribu-
tic limit, (ii) approximate the potential for this 3D equation tion of antiparticles, at the level of one meson exchange, can
by the sum of all single meson exchanges or one- plus twobe significant for sufficiently large coupling constants. At a
meson exchanges, artiii) to use the resultant potential in coupling constant that gives a binding energy comparable to
three or more nucleon systerfise., the Schrdinger equa- that of the deuteron, the contribution from antiparticles can
tion), reduce the momentum and energy dependence of tHee neglected. The neglect of the antiparticle contribution re-
potential in order to generate a local coordinate space poteituces the kernel of the Klein equation to that resulting from
tial. time-ordered perturbation theory as has been implemented
The aims of the present investigation are to test, in dor the nucleon-nucleon system in both the Bonn and
scalar theory, the effect on the coupling constantipfe-  Nijmegen potentials. We then proceed to define the potential
placing the Bethe-Salpeter equation by a corresponding 3Rrising from the exchange of two mesons in the no-anti-
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particle (NAP) approximation. In the Klein approach, with given in terms of the vacuum expectation value of the time
NAP, the one- plus two-meson exchange potential is botlordered product of fields d45]

nonlocal and energy dependent, and to derive the corre- L

sponding local potential we need to remove these dependen-  G(x,y;x’,y")=(0|T((xX)(y) (x' ) p(y")|0). (1)
cies. In Sec. IV we compare the results of the BS, Klein-

NAP and the energy-independent potentials with differenfThe equal-time Green’s function is then defined 3

levels of nonlocality. We find that although the BS and

Klein-NAP are in reasonable agreement, the removal of non- G ! XY= | Ay S(X— Vo) S(x— !
locality and energy dependence could be too severe. The (XX, XgY; XoX",Xoy") = | dYod¥o8(Xo=Y0) 8(Xo~Yo)
effect of these approximations and the introduction of a form .,

factor on the value of the coupling constant and the off-shell XG(xyxy'), @
behavior of the potential is examined. Finally, in Sec. V we
discuss some of the possible implications of our results fo
the nucleon-nucleon interaction.

yvhere we have written the four-vectors using the notation
X=(Xq,X). To simplify matters, we need to write the coor-
dinate space Green’s function in terms of the momentum
space Green'’s function. This can be achieved by first intro-
ducing the relative and center-of-mass momenta as

To establish the relation between the BS and Klein equa- 1
tions, we derive the Klein equatidi®] from the equal-time k=5(P1=P)
Green’s functio 13]. In this way, we establish the relation
between the four-dimensional Bethe-Salpeter equafidn and
and the three-dimensional Klein equation in the form re-

Il. THEORY

cently proposed by Phillips and Walla€&4] which allows P=pi+p; (3
for a systematic improvement in the kernel of the Klein
equation to reproduce the result of the BS equation. then d*p,d*p,=d*Pd*k.The equal-time Green’s function

The two-body Green’s function or four-point function is can be now be written as

G(XOX,XOy;X()X’ ,X(,)y,): f d4Pd3kd3kreiPO(xofxé)efiP-[(X+y)/27(x’ +y’)/2]e*ik~(xfy)'G"(k,kr : P)eik"(X,*y,), (4)

where é(k'k’,P)' the “equa|-time” Green’s function in The aim of this section is to write an apprOXimation to Eq
momentum space, is given by (7) that is an integral equation in three dimensions. There are
an infinity of such equations], and to find the optimum one
_ s is not the aim of the present study.
G(k,k’;P)zf dkodkyG(kok,kok';P)=(G). (5) The unique feature of the Klein equation is that the po-
o tential is assumed to be independent of the “relative” energy
] ] o ko, and as a result the “relative” energy integration, in the
We note that this “equal-time” Green’s function 80t @  jntegral equation, can be carried through resulting in a 3D
function of the “relative energy’ky, and has the potential equation. This suggests that one may develop an approxima-
of setting the framework for a three-dimensional integralijon scheme based on the idea that the poteitialan be
equation for both the Green's function and the scatteringyiyided in two partg14]. The first part<, is independent of

amplitude orT matrix. _ o o the “relative” energy, i.e.,
The two-body Green'’s function defined in E@) satisfies

the BS equation Ki(k,k';P)=Ki(k,k';P), ®)

G=Gp+GoKG=G,+ G, TGy, (6)  and the restk,=K—K;, has all the “relative” energy de-
pendence. The problem now reduces to finding an optimum

whereG, is the free two-particle Green’s function, the prod- K; such that the solution to the 3D integral equation is a
uct of the Feynman propagators for the two particles, Bnd good approximation to the solution of the BS equation, and
is theT matrix for two-particle scattering. In E(6), K isthe  to define a systematic procedure for improving the results of
potential in the BS equation and consists of the sum of althe Klein equation.
two-particle irreducible Feynman diagrams that contribute to  Let us first assume tha{,=0, then the “equal-time”
the Green’s function. Using the second expression in(€q. Green’s function can be written as
to iterate the integral equation f@, we can write the BS
equation for thelT matrix as (G)=(Gp)+(GgTGg)=(Gg)+(GoK;G), 9

T=K+KG,T. (7)  where
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=(Go)K1{(Go) +(GoTGp)}. (19

However, sinceK; does not depend on the “relative” en-
ergy, itis simple to show thdG,K,G)=(Go)K,(G) andas  This result again gives us the Klein equation as defined in
a result we can write Eq. (12 with the potential in this case given by E(16).
Clearly, we cannot determine this potential for the full BS
(GoTGp) =(G)K1(G)=(Gp)K1{(Gp) +(GoTGp)}- kernel with G, a solution of Eq.(14). This would be
(1D equivalent to solving the full BS equation with no approxi-
mations to the kernel. As a first approximation, we could
expand the kernel of the BS equation in powers of the cou-
pling constant, and at the same time iterate @4) to keep
T=K;+Ky(Go)T1, (12) all ter_ms of.the same order as in the BS kgrngl. This vv_iII
effectively give us an expansion of the potential in the Klein
equation as a power series in the coupling constant. We will
see in the next section, for Yukawa type coupling, that to
order g2 this potential corresponds to single meson ex-
T1=(Go) " YGyTGo)(Gg) L. (13) change, while to ordeg®, K, _WiII inclu_de one- and two-
meson exchanges. The question then is how do the results of

At this stage all we have established is tha ifis indepen-  this three-dimensional equatidthe Klein equation com-
dent of the relative energy, then we have the 3D equatioR@'€ with the results from the BS equation when the potential
first proposed by Kleiri9]. is calculated to the same order?

The potential in the BS equation is the sum of all two- _ 1€ definition of the “equal-time” potential in E|16)
particle irreducible diagrams that contribute to the amplitude@/!OWs for a systematic way of calculating the amplitude
and in general this potential depends on the “relative” en-Within the framework of a three-dimensional equation. In
ergy. In this case&, is not zero, and we need to define an addition, this equation includes both the positive and nega-

optimum K,. The Green's function for the potenti&l, is V€ €nergy component of the Feynman propagators. This
given by result is identical to that used by Phillips and Wallace for the

two-body bound state problefi4]. One can show that in the

Gr.=Go+GoK,Gk.=Go+Go(K—K)Gy., (14 absenpe .of negative energy states, 'ghis expression for the
2 2 2 potential is equivalent to the result of time-ordered perturba-

tion theory[18,19. Since theS matrix resulting Eq.(12)

with K; defined in Eq(16) is identical to theS matrix from

the original BS equation, we have maintained covariance,

but it is not manifest covariance. Furthermore, since trunca-

tion in bothK andGK2 are carried through at the field theory

level, we expect covariance to be maintained.

Finally, to fourth order in the coupling constant, and in
the absence of antiparticles, this potential is identical to that
used to include two pion exchange in the nucleon-nucleon

= -1 -1 interaction before any approximation is required to transform
K1=(Go) (GoKGi,)(Co) ", (16) the potential to coordinate spafk6,17. This therefore can
B o ., form the basis of estimating the approximate magnitude of
then Eq.(15 can be solved for the “equal-time” Green's o errors made in going from the BS equation to a coordi-
function for the potentiaK, with the simple solution that |5¢e space local potential used in the Sdimger equation
(GK2>=<GO>, i.e., the “equal-time” Green’s function for ¢ 5 given Lagrangian.
the potentiaK, is identical to the “equal-time” free Green’s
function, providedK, is defined as in Eq(16).

The Green'’s function for the full BS kernkl can now be lll. THE TWO-BODY POTENTIAL

written in terms ofK, as

This allows us to write a 3D integral equation, the Klein
equation, in whichK is the potential, as

where the amplitudd@} is the “equal-time” T matrix, and is
defined in terms of the B matrix as

and the corresponding “equal-time” Green’s function is
given by

(Gk,)=(Go) +(GoKGy,) = (Go)K1(Gk,). (15

If we now defineK;, the potential that is independent of the
“relative energy,” in terms of the kernel of the BS equation
as

To examine the approximations needed to reduce the ker-
nel of the BS equation to a local potential in coordinate
space, we need to define a Lagrangian. To avoid the prob-
. . . . . lems with spin and isospin, especially at the BS level with
with the corresponding “equal-time” Green’s function given ~rqcsed meson exchange, we have considergtbatheory,

by i.e., a Lagrangian of the form

(G)=(Go) +(GoTGp)=(Gk,) +(Gk,K:G). (18

G=Go+GoTGo= Gy + Gy K1 G, 17)

1 1
= —[ % —m242 M _,,2,.27_ 2
We are now in a position to write the “equal-time” ampli- £ 2[(9 Poup—m 7]+ 2[& 70,0~ o ]=g¢%o.
tude as (20
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In the nucleon-nucleon interaction the kernel of the BS equainclude the kernel of the BS equation to oragr and take

tion is truncated to include the one pion exchange and thGK2~GO. This gives the singler-exchange potential as

crossed two pion exchange. To compensate for this trunca-

tion one includes the exchange of all mesons with a mass K?=(Go) N Gol PG)(Go) 1, (21)

less than 1 GeV. The motivation is that the heavy meson

exchange will model .aII hi_gher ord(_ar di.agre_xms _that ha"ewherel(z), the o-exchange amplitude as employed in the BS

been excluded20]. With this approximation in mind, we equation, is given by

make use of the above Lagrangian to define the kernel of the

BS equation in terms of- exchange and the crossedex-

change. In addition, we will define the potential in the Klein 12(k,k')= 9 '

equation to be an approximation kg , and the order of this (k—k")2—pu’+ie

approximation to be determined by our approximation to the

kernel of the BS equation, i.e., the potential in both equationsvith the relative four-momenturk= (kg ,k). To evaluate the

is taken to the same order in the coupling constant. In thi¢equal-time” matrix elements(G,) and (Gyl®?Gg), we

way we expect the mechanism included in both the BS andeed to perform the relative energy integration in both the

Klein equations to be the same, and the difference is théitial and final stategsee Eq(10)]. For this we decompose

result of using a 3D equation in place of the 4D equation. the product of the Feynman propagators for the tvfields,
With the above scheme in mind, we first consider thein the center-of-mass, in terms of their positive and negative

potential in the Klein equation to ordef. In this case we energy components, i.e.,

2

(22

1 1
Go(k,P)= =G/ t4+G +G, T +Gy . 23
olk.P) (2m)* [(VsI2)+kol2—E2+i€ [(Vs/2) — ko2~ E2+ie  ° 0 0 0 (
|
By performing the relative energy integration, we reduce thewvhere
“equal-time” free Green’s function to )
17, 5(k.K';P)=(G§PIDGYY), (27)
(Go)= 5 EL > =(Gg )*+(Go ), with a,B,y,6=+,—. Making use of the symmetry of the
(2m)” Bk s=(2B) +le (24 integrals| (). s(k,k’;P) under the exchange of indices and
momenta to reduce the number of integrals, we can write the
where “equal-time” Green’s function foro exchange as
L 1 (Gol Go)=[(Gg ") +A]d.[(Gg ") +A]
+4+\
(Co 0= o 2B Vo 2Erie +[(Go ") +AJd [(Gg ) +A]
. . . +[(Go ) +AJd_[(Gy ) +A]
Gy )=— . 25) +[(Gy, Y+ A]d_[{(G, )+A
< 0 > (271_)3 (2Ek)2 \/g‘f'ZEk_lf ( [< 0 > ] [< 0 > ]
—2(Gg ")do(Gy ) —2(Gg )do(Gg ),
We note here that the free “equal-time” Green’s function is 28
a function s=P? and not+/s as in a number of three- (28)
dimensional equations. It is only when we divide thiswhere
Green'’s function into its positive and negative energy com-
ponents, and neglect the negative energy component, do we 2 1
get the dependence ofs. do(k k=2
+( ’ ) ]
To perform the relative energy integration on the Green'’s 20 \[s— Ex—Ewv—o+tie
function for o exchanged(i.e., Gol @G,) we again take ad-
vantage of the decomposition of the Green’s function in 9° 1
" . . d_ k,k, - _ = ,
terms of a positive and negative energy component to write ( ) 20 ot Ext B+ w—ic
+ 00
(GOI(Z)GO)zf dkodkyGo(k,P)1®(k,k")Go(k’,P) g2 1
o do(k,k')=5— —— (29

2(‘0 Ek+ Ek/+(1),

= 12 (k,k":P), 26
2, 2 1 yakiK'iP) @
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FIG. 1. The bound state energy of tihe¢ system in the Bethe- FIG. 2. The phase shifts for the¢-¢ system in the Bethe-
Salpeter, Klein, and Klein with no antiparticle as a function of the Salpeter, Klein, and Klein with no antiparticles as a function of the
coupling strengtty?/44. energy forg?4m=1.646. This corresponds to a binding energy

comparable to the deuteron binding energy.
1 1 1 . . . . .
A(k,k')=— ) (30) antiparticles is negligible. In Fig. 2 we present the phase
(2m)3 (2Ep)? Ex+E + shifts for the onep exchange potential, corresponding to the

coupling constant ofy?/4w=1.646, for the BS, Klein, and
This result is identical to that of Phillips and Wallat®4].  Kjein-NAP equations as a function of energy. Here we note
We observe here that the elimination of the negative energihat all three results are very close, and that the contribution
components of the “equal-time” free Green’s function, i.e., of the negative energy states is comparable to the difference
(Go)—(Gy ") reduces the above expression for the “equal-hetween the BS and the Klein equations. The fact that the

time” Green’s function to terms witG, *) only, i.e., Klein equation gives a good approximation to the BS equa-
2 o . tion is an indication that one can work within the framework
(Gol “Gg)=2(Gy ")d(Gg 7). (3D  of the three-dimensional Klein equation with no antiparticles

for the range of coupling constants that are consistent with

As a result, the potential in the Klein equation reduces to th‘?he nucleon-nucleon potential

simple form used in time ordered perturbation theory At this stage we have carried out the determination of the
5 1 potential for the Klein equation to ordg?. To include the

K(12)(k,k’;s)~g— _ (32) crossedo exchange, we need to go to fourth order in the
0 s—E,—E,—w+ie coupling constant. The starting point is still EG.6), but

now we have to include all contributions koto orderg* as
We will refer to this approximation as the Klein potential well as the contribution fron®,. With the help of Eq(14),
with no antiparticlegKlein-NAP). This major simplification \ye can writeK,, after one iteration of5¢_, as
of the potential, in neglecting the negative energy component 2
of the two-particle free Green’s function, can have a major K, =(G,)"YGoKG_ }(Go) *
reduction in the structure of the crossed twoexchange 2
contribution. ~(Go) X GoK[Go+ Go(K—K1)Go])(Go)

Before we proceed to the evaluation of potental to

orderg®, we need to estimate the contribution of the nega- (33
tive energy component of the-¢ Green's function. To get |f we now take the kernel of the BS equation to fourth order
our scalar model to be a reasonable approximation to thg the coupling, i.e.,
nucleon-nucleon interaction with pion exchange, we have
chosen the mass of thgto bem=1.0 GeV, while the mass K~ 4@, (34)
of the o is taken asu=0.15 GeV. In this way the range of
the interaction is comparable to that generated by one piowhere 1) is the crossedr-exchange diagram, and keep
exchange. In Fig. 1 we plot the mass of thep bound state terms to fourth order in the coupling, we get
as a function of the strength of the coupling, ig/4, for _ _ _ _
the BS, Klein, and KleingNAP. Here vI\:/)e gbsfrve that theKlAN“<Go> H(Gol ?'Go)(Go) " +(Go)(Gol"Go)(Go)
negative energy states can make a substantial contribution to -1 2 1(2) _ (2) )
the binding energy if the coupling is strong enough. How- F{Go){Gol TG0l Go) ~(Gol TGoKTCo) ]
ever, if we assume that the binding energy of thap sys- X(Gg) =K@+ KM, (35)
tem is comparable to that of the deutef@e., 2.225 MeV,
then the coupling constant /4= 1.646, and the contri- The first term is just the “equal-time” single: exchange,
bution to the binding energy of the negative energy states owhile the second term is the “equal-time” crossedex-
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tion either a singler exchangdi.e., orderg?) or o exchange
plus crossedr exchange(i.e., orderg?). At this stage the
N e only parameter in the potential is the coupling consignt
which we set in the last section to reproducebap bound
state with a binding energy of 2.225 MeV. This fixes the
(a) (b) coupling constant at a value gf/4m=1.646 for singles
exchange, andy?/47w=1.484 for singleo exchange and
/ crossedo exchange. We now carry through a number of
N approximations to this fully covariant model. These being
e AN s N at the ones-exchange level, we compare the results of the
N BS with the Klein-NAP, and the corresponding potential
with no energy dependencéij) at the o exchange plus
crossedo exchange, we compare the results of the BS and
Klein-NAP with the results of removing first the energy de-
pendence, i.e., the retardation, and second the momentum
/ \ N | dependence, i.e., the nonlocality of the potential in the Klein
N N ¢ % equation.
;N \ AN . Since the Klein-NAP approximation is identical to time
\ ordered perturbation theory, the potential has energy depen-
(9) (h) () (0 dence of the form exhibited in E(Q?_:Z). '_I'his energy d_epen-_
dence corresponds to a retardation in the potential which
FIG. 3. The diagrams that contribute to the potenl{éf) to may cause problems if implemented in many-body calcula-
fourth order in the coupling constant in time ordered perturbationtions. To remove the energy dependence in a typical denomi-
theory. Diagramsa) and (b) are the singler exchange, i.eK{”,  nator, e.g.,
while diagramge)—(j) are the crossed diagrams. Here diagréons
and(d) are those diagrams that are in the iterateeixchange in the 1
BS equations but are not generated in the iteration of the Klein D=——"—"-—, (37)
equation and are part of the fourth order contribution to the poten- \/g_ Ex—Ev—o
tial.

we first expand the energy of thg and the total energy of
change. In addition to these two contributions, we have dhe system in a power series of the inverse of ghmass on
part of the boxed diagram that cannot be represented by tHBe grounds that the typical momenta are small when com-
sequential “equal-time” twoo exchange. This contribution pared with thep mass, i.e.,
is given in the third and final term, and consists of the
“equal-time” boxed diagram minus the once iterated
“equal-time” single o exchange, since

k2
Js=2 iZ+m2=2m+ EOJF

(Go) HGol PGoK ' Go)(Gg) 1=K P(Gp)K . K2
(36) E=VKC+mP=m+——+---, (38)

2m
In general, the evaluation of this potenti&{*) involves the .
evaluation of the relative energy integration in both initial Whereko is the on-shell momentum. We then follow Sug-
and final states for both the boxed and crosseskchanges. awara and gkub@?] and Rijken[16] and expandD in
To facilitate the evaluation of these integrals, we have rePowers ofm™=, with the result that
tained only the positive energy component of the fiee)

2 2_ 12 _L2_112\2
Green’s function, i.e., we have assumed tBgat~Ggy = in D=_ 1. 2ko—k"—k +(2k0 K=k .
the evaluation of the potential. This gives us the result of o 2me 2me
time ordered perturbation theofi6,21], i.e., the potential (39

K(14) is the sum of the diagrams in Fig. 3. Note that in making ) o L .
use of time ordered perturbation theory we have assume he I'rSt. tef”.‘ |n this expansion, "Q(.l)’ is referred to as
that the contribution of antiparticles is negligible. That int € _ald|abat|c appro>‘<‘|mat|or_1, an_d”|f we "e.ep _terms of
turn was justified on the basis of our results for the presenP(m ) we have th_e n_onadl_abanc apprOX|mat|c{r16].
Lagrangian and at a value of the coupling constant that give§though this approximation might be valid for th below

a binding energy for the-¢ that is comparable to the deu- the threshold fowr production, the corresponding expansion
teron binding energy. for E,» can be questioned sinég is an integration variable

that takes on all values from zero to infinity in solving the

integral equatio23]. The “adiabatic” approximation at the

oneo-exchange level is basically the static approximation in
To examine the approximation required to reduce the BSvhich E +E,, = Js, and in this limit the potential has no

equation to the nonrelativistic Schiioger equation with a energy dependence, and reduces to a local Yukawa potential.

local coordinate space potential, we define the interaction at For the twoo-exchange contribution, i.e., ordgf, we

the level of the BS equation. We will include in the interac- get factors of the form given in Eq37) for intermediate

IV. NUMERICAL RESULTS
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FIG. 4. Thes-wave phase shifts for the BS, Klein-NAP, and FIG. 5. The Kowalski-Noyes half-off-shell function for the
energy-independent-exchange potentials. Klein-NAP and the energy-independariexchange potentials. The
energy-independent | corresponds to the potential that gave the
states. In this case to remove the energy dependence onkase shifts in Fig. 4, while energy-independent Il corresponds to

needs to carry through an “on-energy-shell” approximationthe case when the coupling constanis adjusted to give the same
which requires that phase shifts for the energy-independent and the Klein-NAP poten-

tials.
k?—k3—0
ing energy of the¢-¢ system is 2.225 MeV in the BS,
and Klein-NAP, and the energy-independent potential. The re-
sultant coupling constants are presented in Table I. Here we
k'2—k3—0, (40)  oObserve a change of 6% in going from the BS to the Klein-
NAP equation as compared with a 13% change in going
wherek andk’ are the initial and final state momenta, re- from the BS to an energy-independent potential. This change
spectively. The final form of the resultant potenfia6,21 to  in the coupling constant is significant if the coupling constant
orderg” in both the adiabatic and nonadiabatic approximads to be a meaningful quantity that might be derived from
tions, has no energy dependence. The momentum depefome underlying quantum field theory, such as QCD for the
dence then is determined by the expansion in powers df ~ nucleon-nucleon interaction.

of all energy denominators, and the number of terms kept in  The contribution to ordeg” for the potential in the Klein-
such an expansion. NAP approximation has both nonlocality in the form of mo-

In Fig. 4 we present the-wave phase shifts for the case mentum dependence, and a dependence on the energy. By
when the potential is defined to be due to a singlex- taking the initial and final momenta on the energy shell, we
change. Here we observe that although the results of the B&§Move the energy dependence, but not the nonlocality. This
and Klein-NAP equations are in reasonably good agreemengion-locality is removed by implementing the procedure in
the removal of the energy dependence has a substantial effdefl- (38). The resultant potential to ordg”* is now local
on the phase shifts. Although this difference could be com{16,17, and can be used in the three- and many-body calcu-
pensated for by the adjustment of the coupling consgarit lations. In Fig. 6 we present the phase shifts fqr potentials
is not clear that the off-energy-shell difference will not per- calculated to ordeg®. Included are the phase shifts for the
sist. To illustrate this, we present in Fig. 5 the Kowalski- BS, Klein-NAP, and the energy-independent potentials to
Noyes[24,25 half-off-shell function for the Klein-NAP po- O(1) (adiabati¢ and O(m™*) (nonadiabatie Here again,
tential (solid line) and the energy-independent potential | the results of the BS and Klein-NAP are in reasonable agree-
(dashed ling Also included, is the result for the half-off- ment, but the energy-independent approximations are sub-
shell function for an energy-independent poten“e(ldbtted Stantially different. The fact that the results for the adiabatic
line) that gives almost the same phase shifts as the Kleindnd nonadiabatic approximations are different is an indica-
NAP potential. Clearly the half-off-shell function for the tion that the series expansionim* is not as convergent as
energy_independent and energy_dependent potentia]s ayee would like it to be. Here again the off-shell behavior of
quite different. This is true even when the two potentials _ ) . )
have approximately the same phase shifts. Such a large TABLE I. Comparison of the coupling constant required to give
variation in the off-shell behavior of the amplitude, even? Pinding energy of 2.225 MeV for thé-¢ system.
when the potentials are identical on-shell, can have Signm'Potential 24
cant effects on three- and many-body res(2§]. gram

To get a measure of the uncertainty in the coupling conBethe-Salpeter 1.646
stantg as a result of removing the energy dependence of thg|ein-NAP 1.747
potential while keeping the physical observables the samesnergy independent 1.433

we have adjusted the coupling constgrauch that the bind-
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FIG. 6. Thes-wave phase shifts for the BS, Klein-NAP, adia- 15 g Theswave phase shifts a.,=100 MeV for the
batic O(1), nonadiabati®O(m™*) single s exchange, and crossed AD lab

X ein-NAP and energy-independent potential for thheexchange
o potentials.

potential.

the amplitude for the Klein-NAP and energy-independent ) .
potentials are substantially different as illustrated in Fig. 7NAP and energy-independent-exchange potentials as a

where the Kowalski-Noye§24,25 function is given for function of the cutoff parametex at a laboratory energy_of
these potentials. As was the case with the phase shifts, tH&)0 MeV. Here we observe that as the cutoff mass is re-

nonadiabatic approximation is substantially better than th&uced, the difference between energy-dependent and energy-
adiabatic approximation. independent solutions is also partly reduced. This suggests

In the nucleon-nucleon interaction, theNN vertex has thatthe energy dependence is a short-range effect, and as the
associated with it a form factor that is a function of the form factor starts to dominate the short-range behavior of the

exchange pion momentum. This form factor is introduced to?otential, the role of the energy dependence is suppressed.
overcome the singular nature of the potential. For the La-
grangian under consideration the potential is not singular and
there is no need for any form factors. However, to examine
the effect of such a form factor on the difference between the In an attempt to understand the approximation involved in
energy-dependent and energy-independent potentials, weducing the potential in the Bethe-Salpgi8s) equation to
have introduced a Gaussian form fadi6] by the substitu- an equivalent local potential for use in the Sainger equa-
tion tion, we have considered a series of approximations which
- involved (i) the reduction of the equation from four to three
g’—g’e ¥V, (41) dimensions(ii) the elimination of negative energy states or

. . antiparticles, (iii) the removal of energy dependence and
wherek is the momentum of the exchangedneson. In Fig.  nonjocality in the potential. To maintain simplicity in the

8 we illustrate the changes in the phase shifts for the Kleiny,qqel while maintaining some relevance to the nucleon-
nucleon interaction, we have considered a scafar inter-

V. CONCLUSION

2.0
action Lagrangian and included in the potential all diagrams
1.8 e to orderg?, i.e., singlec exchange and crossed two ex-
1.6 T T T~ change in analogy with one- and two-pion exchanges in the
O ~—— 0

14 ST ~—] nucleon-nucleon problem. To set the strength of this interac-
‘ ya tion, we required that thes-¢ system have a bound state
1.2 s energy comparable to the deuteron binding energy.

@1.0 B In reducing the two-body problem from four to three di-
b / mensions, we have taken advantage of the equal-time
08 A Green'’s functiof13] and the requirement that the potential

0.6 4 have no dependence on the relative end@jy to derive a
0.4 Vi scheme that allows for a systematic way of improving the
V4 — KIsin-NAP potential to reproduce the results of the BS equafib.
02 —— abiabatic We then found that at the one-exchange level, neglecting
------ non-adiabatic . . . . .
0.0 the contribution of negative energy states is not substantial,

00 01 02 03 04 05 06 07 08 09 10

o (GeV) provided that thep-¢ system has a weakly bound state as in

the deuteron. The elimination of negative energy states gives
FIG. 7. The Kowalski-Noyes half-off-shell function for the Us the time-ordered perturbation theory that has been used as

Klein-NAP, adiabaticO(1), nonadiabaticO(m™1!) single o ex-  the starting point for the recent derivation of the nucleon-

change, and crossesd potentials. nucleon potentidl2,16,17. At this level there is good agree-
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ment between the BS equation and the corresponding threcal potentials, and can be the origin of the three-nucleon
dimensional equation we refer to as the Klein-NA®|.  force introduced to get the correct binding energy of light
However, the potential now is both energy dependent, i.enuclei.

has retardation, and is nonlocal. These features give rise to Although we have considered one of an infinite set of 3D
problems if the potential is to be used for three- and manyequations with the kernel calculated to org@ér we should
body calculations. To avoid such problems, it has becom@gint out that for the bound state problem with the value of
standard practice to remove the energy dependence and nGfie coupling constant used here, the results of the Klein
locality. Here we find that the approximations required togquation are in good agreement with the solution of the BS
remove this energy dependence and nonlocality results in @guation in which the kernel is calculated to all orders
drastic change in the phase shifts. [14,27,28. Finally, we should point out that there have been

If we adopt the view that the coupling constant can, at th&;jmilar analyses based on the Blankenbecler-Sugar equation
local potential level, be adjusted to fit the experimental phasg29,3q_

shifts, then the coupling constant defined at the covariant
level could change by as much as 10-15 %. This raises a
problems in the nucleon-nucleon case if thiBIN coupling
constant extracted from the experimental data is to be com-
pared with theoretical results extracted from QCD. This The authors would like to thank Daniel Phillips and Vin-
problem becomes central when the fit to the experimentatent Stoks for their interest and help over the duration of this
phase shifts is at a level where tlyé per data is near one. investigation, Coen van Antwerpen and Daniel Phillips for
More interesting is the fact that the off-shell behavior of thethe Bethe-Salpeter code, and Daniel Phillips for his comment
final local potential is substantially different from the origi- on the initial draft of this manuscript. Finally we also would
nal potential derived from the time-ordered perturbationlike to thank the Australian Research Council for their finan-
theory. This change in off-shell behavior has significantcial support without which the project would not have been
ramifications in the three- and many-body results based opossible.
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