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Polarized deep-inelastic lepton scattering from the polarized two- and three-nucleon bound states
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A relativistic description of polarized deep-inelastic lepton scattering from polarized nuclei is presented. It is
based on front form dynamics. Convolution formulas for the nuclear spin structure fungﬁoemd g’z* are
derived. They require the front form spin distributions of nuclei and the nucleonic spin structure functions. The
description is applied to the deuteron and the trinucleon bound states. The numerical calculations show that
relativistic effects arising from the consistent quantum mechanical treatment of spin are small. Simple approxi-
mations to the convolution formulas fgﬁ‘ andgg‘ are justified. The approximative convolution formulas allow
the subtraction of nuclear effects from measured spin structure functions and therefore the experimental
determination of the neutron spin structure functions. Polartée turns out to be a rather reliable effective
neutron spin target for deep-inelastic scattering of polarized leptons. The differences between descriptions
based on front form and on instant form dynamics are also discus3@856-28137)03908-3

PACS numbses): 25.30—c, 24.70+s, 25.10+s, 29.25.Pj

[. INTRODUCTION describe deep-inelastic lepton scattering from the deuteron
[12-14 and the three-nucleon bound state simultaneously.
When 3He is described as a system of three nucleons Deep-inelastic lepton scattering from nuclei is described
interacting through instantaneous potentials, the total anguldh front form dynamics. Front form dynamics allows the use
momentum of*He is carried to a large extent by the neutron. of impulse approximation consistenfly5—17. This is a for-
Employing realistic two-nucleon potentials the calculatedmal quantum mechanical consistency. We believe that im-
neutron contribution to the nuclear spin ran§ikfrom 0.85  Pulse approximation is also physically reliable for the de-
to 0.90. This theoretical observation motivated experimentalSCTiPtion of deep-inelastic lepton scattering. The form of
ists [2] to use polarized®He targets as substitutes for un- plane wave impulse approximatigRWIA) used neglects the
available neutron spin targets. The tacid assumption is thapteraction between the hadrons, produced on the struck

the impurities present in the substitute neutron spin targetéwd(.aon’ and the spectator residual nucleus in the final state,
i.e., the unwanted contributions to tHele total angular mo- dnd it neglects all me}ny-hadrpn curren'ts. The paper extends
o . the successful description, given previough8| for deep-

me‘."t”m arising from the proton spins and f“°"T‘ the nlJCIeonIQnelastic scattering of unpolarized leptons from unpolarized
orbital motion will not blur the neutron properties one would 3He, to the case with polarization. Section Il recalls some

like to see. Referenck8] discusses an unfavorable case: INacis on front form dynamics needed for the actual calcula-
inclusive quasielastic scattering of polarized electrons from;on Section 11l parametrizes the nuclear current tensor of a
polarized *He [4-9], the spin-dependent resporRe.. car-  spins target; it introduces the spin-averaged and the spin-
ries some information on the poorly known neutron chargejependent structure functions; the generalization to spin-1
form factor. However, the neutron signal Ry, remains  targets, e.g., to the deuteron, is given in the Appendixes A
weak and gets overwhelmed by the proton one at small moand B. Section IV describes the cross section for longitudinal
mentum transfers. The neutron charge form factor is smallepton polarization in terms of the nuclear structure func-
compared to the proton one and therefore contributes littleions. Section V derives convolution formulas for the spin-
despite the fact that the neutron makes up most of*ie  dependent structure functions in PWIA. They require the
total angular momentum. spin distributions of the deuteron and the trinucleon bound
This paper discusses deep-inelastic scattering of polarizestates in terms of front form variables; those front form spin
leptons from polarizedHe. Experiments measure the beamistributions are determined in Sec. VI for the trinucleon
asymmetry, in particuldrl0,11 the *He spin structure func-  pound state and in Appendix C for the deuteron. Our results
tion gf'; from g} the neutron contribution should get un- are discussed in Sec. VII. Conclusions are given in Sec. VIII.
folded and the neutron spin structure functghshould get
extracted. The conclusion of the paper will be that indeed the Il. ELEMENTS OF FRONT FORM DYNAMICS
neutron spin structure functiog; can successfully be ob-
tained in these experiments. In deep-inelastic lepton scatter- First, we give our notation. We exhibit the instant form
ing polarized®He is a reliable neutron spin target in contrastcomponents of any four-vectdr in round brackets as usual,
to the experience of Ref3]. However, the theoretical dis- !-€-

cussion of the paper will often be kept general in order to
A= (A% Al A% A%), (2.2

*Present address: Scandpower GmbH, FlotowstraRe 41-43, Ef’;nd abbreviate the three spatial componeAts 4%,A%) by
22083 Hamburg, Germany. A. We use the metrig”*”=(1,—1,—1,—1) and the four-
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dimensional totally antisymmetric tensoe*’*# with In the description of deep-inelastic lepton scattering the
€012= — €°12%=1. For the description of front form dynam- front form null vectorsn and| are chosen by
ics we choose the following basis vectors:

(1) P | -Q ke (k- QQ
- ' V(Q92-Q? (Q)%- Q% 1— (k.- O)

=]
l=(1,n), (2.2 2.7

ke being the initial four-momentum of the lepton a@uits

€1=(081), (2.29 momentum transfer to the target nucleus. The chok@
- ieldsQ*=Q%+n-Q=0. The basis vectoe, is defined b
e,=(08&,). (229 Ye€ldsQT=Q™+n-Q 1 y
They satisfy the conditionsn?=1%=0, e-e=-g, élz&, (2.8
in-1=1 andn-e=I-e=0. The vectorsn and| are null Q.|

vectors. The three-dimensional vecters e;, andn form & he definition ofe, follows then from the requiremer2.3).
positively oriented three-dimensional set of orthonormal ba,,s the momentum transfér has the representation

sis vectors such that
Q={2Q01 V_Q 1010}' (29)

Secongdwe need the description of states for the nuclear
target and for the constituents of the nuclear target. For the
the carets over vector symbols indicate three-dimensionajescription we use eigenstates of the mass opekétaf the
unit vectors. Four-dimensional vectors are built up fromfront form component$ of the four-momentunP and of

those basis vectors, i.e., the spinJ;. The spin operatod; is defined in terms of the
Pauli-Lubanski vectoW [16], i.e.,

! B
Eel#eZveﬂva na|B=l, (23)

A= EA—n+ EA+|+A1e +A% (2.4a
2 2 1 21 ' R 1 P\~
(o,Jf)Mszgl MW (2.10
where the front form components v
A~ =1.A=A—n.A, (2.40 The Lorentz transformatioth¢(P/M) boosts a particle of

massM from rest to four-momentun®. In Eq. (2.10 the
Lorentz transformatior;(P/M) is still operator valued in
its dependence on mads4 and momentunP. The corre-
Al=—¢,.A (2.49) sponding boosts\;(P/M) belong to the front form kine-
' ' matic subgroup of the Lorentz group; thus, even for compos-
(2.48 ite systems with interactions between constituents, the boosts
A;(P/M) are interaction free; this is why the components

are introduced. We arrange the front form components of & Of the momentum are called kinematic. The eigenstates are

A*=n-A=A%+n-A, (2.49

A?=—g, A

vector in curly brackets, i.e., chosen in the form
2 2
A={A" AL A% AT}, (2.59 M m
p
={A~ = . . 2.1
A={A" A}, (2.5b —wamz 1PN iG+1) lpn). (21D
and abbreviate the three kinematic components —v-WI/M A

{AL A2 A"} by A and the transverse compone#st, A%}

among them byA, . The three-dimensional basis vectors The defining spin operators are given covariantly, e.g.,
&, &, andn of front form dynamics may be assumed to —W?/M?=J;. The spin projection—v-W/M is chosen
differ from those of instant form dynamics; thus, the compo-With respect to the direction of quantizationv taken as a
nents{Al,AZ} and (A',A?) may be different; in this paper spacelike vector which satisfieg=—1 andv-p=0. The
we choose them to be identical. The four-dimensional vol-Standard choice af for front form dynamics is

ume element of integration is b m
d*A=dA’dAldAZd A3, (2.6a mnp™ 212

In this case the spin projection operator becomes
—v'W/M=ﬁ«jf. For a spins particle the operatoﬁf is
realized by the vector of Pauli matrice¢2. The notation of

we shall use the abbreviationd®A=dAldA2dA® and states does not keep the eigenvalues of mass andnsging
d3A=dAldA’dAt =dA dA*. j; it only indicates the kinematic components of the momen-

1
d*A= EdA*dAldAZdAt (2.6b
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tum and the spin projectiomp and\. The state2.11) are  corresponds to different rest frame vect&gsin instant and

orthonormal and complete, i.e., J; in front form dynamics. They are relatdd6] by the
(P'N'[pPAY=8(p' = P) Sy » (2.133 Melosh rotationRy(p), i.e.,
ERE
> Jd3p|ph>(ph|=l. (2.13b Rm(p)=A (m Al ) (2153
N
They are connected to the staleg)) in the particles rest J‘C=2 RM(p)‘jJ{c. (2.15p
i

frame with pg={m,0,0m} by the unitary transformation
U[A¢(p/m)] according to
(]
m

[m
[PA)= p_+U _m+pt+in-(oxp)

o 2. 2
the extra facton/ym/p™ ensuring orthogonality in the form \/(m+p )P

(2.133. The transformation does not change the eigenvalughe quantum mechanical states are related to each other by
\.

Need will arise to also use basis statﬁs} in the quan- - ap N
tum mechanical framework of instant form dynamics. The |p3>:; [PA) P (MRyu(p)]s). (2.19
latter states are defined in the same way as the corresponding

front form stategp\) are in Eq.(2.11). Differences are due In Eq. (2.16 |(9p/(9|5| =p*/p° is the Jacobian for the trans-

to the different choice of kinematic components of the MO-ormation of momentum variables. The instant form states
mentum. Though the componemtsare called kinematic, the | 5¢y are also chosen to be orthogonal and complete without
instant form boostd.(p/m) are not interactionfree for com- g5 weight factors in their phase space as the front form

posite systems, in contrast to the properties of the front forn;,ias are chosen according to E@s133 and (2.13h.
boostsA ;(p/m); the indicesc andf differentiate the form of

dynamics,c standing forcanonical represents the instant
form, f standing forfront represents the front form of dy-
namics. In addition, the instant form boostg(p/m) of a The current tensotna|WA"(Q,PA)|na) of the targetA
particle with massn from rest to the momentump are rota-  with massm,, four-momentumP,, and polarizatiom, is
tionless, whereas the corresponding front form boostsequired for the description of inclusive processes; it is de-
A¢(p/m) contain a rotation. Thus, the same four-vedidér fined by

The Melosh rotation is an operator in spin space. For a spin-
3 particle it takes the explicit form

IprM), (2.14

(2.159

Ru(p

IIl. NUCLEAR CURRENT TENSOR

P+
<nA|WKV(QaPA)|nA>:(27T)6BE f d®Py \ m_i<PAnA|JK(O)|Px,3x>2é\3(Px_Q_PA)5(P>?_Q__P;)

[Pa
X(PxBx|IA(0)|Pana) M (3.9

in terms of the nuclear curredi;(0) at time-space point 0; assumed to be in pure quantum mechanical stigs,).
the proton charge, is split off from the current. General They are defined as eigenstates of the n\dsshe momen-
final stategPyxBx) of c.m. momentunPy can be reached in tum P, the spin —W?/M?, and of the spin projection
the scattering procesgy describing discrete quantum num- —n,.W/M in the direction of polarizatiom, with eigen-
bers and also the modes of internal excitation; they are ogajyej, i.e., 1 ands, respectively. Unless stated otherwise,
mass shell, they are not observed in inclusi_ve processes. Thge plane-waves-function producing part of the states
momentum transfer to the target nucleusQsThe current |p,n \y will be considered to be split off in the following.
tensor (na|W"(Q,P,)[na) is obtained from its spin- Though the target states are assumed to be quantum me-
operator formW4"(Q,P,) and from the density operator chanically pure for the purpose of calculation, polarization
pa(NaP4) by will nevertheless be described by the density operator
Y Y naP,). It is an operator in nuclear spin space. It is a
(MAlWA"(Q,Pa)[Na) =TI WLY(Q,Pa) pa(NaP ) ] 3.2 Eggeﬁtz/%calar and nzrmalized by[‘ﬁg(nAFF’)A)]zpl. When
32 referring to pure states as assumed, it has the property
Deuteron and®He are the considered target nuclei. Theypi(nAPA)=pA(nAPA). The polarizationn, chosen by ex-
have spin 1 and, respectively; for calculations they are perimentalists does in general not coincide with the standard
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direction v of quantization in Eq(2.12. Thus, the target Its Lorentz structure is built from the three four-vect@s
stategPan,) are to be expanded in terms of the target basiP,, andW. The current tensor operatd'a”(Q,P,) has the

states|Pa\a) Of Eq. (2.1, i.e., general form
) Q*Q” A
[Pana) = 2 [PANaXNAIN), (33 WA QP =| =5~ — 9" |[FA.Q%)
A
the transformation paramete¢a|n,) depend on the mo- P4PX A ol
mentumP,; the trace operation in Eq3.2) is carried out + Q- pAF2(X’Q )m_A
with respect to matrix elements of the basis st ) at 5
fixed target momenturi, . 1 et
g ’ ] 0 Wt
A. Trinucleon density operator QW
The full density operatopa(n,) commutes with the mo- | Wp— Q_—PAPAﬂ)gé(XaQZ) ma
mentum operatoP. Its projectionpa(naPa), i.e., 39
(PaNalpa(Na) [PaNa) =(MAlpa(NaPA) N A), (3.9 _
with
onto the Hilbert sector of momentum eigenstates with eigen-
value P, is needed in Eq(3.2). The density operator of a - Q-Pp
spin- target is parametrized in the form Pai=Pa— o Q*, (3.9a
PA= 21— 2 naW 3 AQ?
pa(Na A)_E _m_AnA' . (3.5 X::_ZQQP , (3.9
A

The parametrization satisfies all required constraints. It is at = ) ) .

most linear in the Pauli-Lubanski vect® which is trace- X Peing the Bjorken scaling variable. .The depelndence. of the
less, i.e., TIW]=0. The vectomn, is the polarization vector CUTrent tensor operator on the Pauli-Lubanski vettoris
according to which target polarization is defined. The paramlinear for a spin; target,j=; being the spin quantum num-
etrization (3.5) satisfies all required constraints for a quan-ber- The current tensor operator is built from four basic ten-

tum mechanically pure target state providei;l=—1 and sor forms which satisfy all symmetry requirements. Those
Np-Po=0 ' basic tensor forms get augmented by structure functions

Matrix elements of the density operator of any momentumWhiCh are real-valued Lorentz scalars and therefore depend

P, are related to those of the rest frame, i.e. on the nontrivial scalar®? andQ- P, or, equivalently, on
T the Bjorken scaling variable and Q2.

The current tensofna|WA"(Q,PA)|n,) follows from the
current tensor operatd¥Wi”(Q,P4) of Eq. (3.8 and from the
density operatompa(naP,) of Eq. (3.5 according to Eq.
(3.2. In fact, the current tensdna|WL"(Q,Pa)|na) is ob-
tained from the operato3.8) by replacing the Pauli-

(AAlPA(NAPA) N AY=(NAI3[1+Ng- 0allNA). (3.6

For Eq.(3.6) the identities

W Mg Pa Pa\# [ aal’ Lubanski vectoW by the polarization vecton, according
— |Pahay= \/ —U| Af| = || Ls|l =] |0~= .
Ma Py Mg ma/ |72 to the relation
X |PrAa), 3.7 .
Pt @78 4= (1/ima) TTWpa(Na,Pa)]. (3.10
M
nk= |_f<ﬂ) (O,ﬁR)V, (3.7b The two spin-averaged structure functidﬁ% and F§ and
Mal,, the two spin-dependent structure functicngand g’z* deter-

_ mine the current tensor in full; they are used in the notation
are usedPr={m,,0,0m,} denoting the target rest frame standard for deep-inelastic lepton scattering; they are related
momentum, ng=(0,ng) its rest frame polarization and to the corresponding structure functio\/\é‘f, W’;, G’f, and

oal2 its angular momentum operator. The constraints o35 of Ref. [3], usually employed at lower energy and mo-

pa(naP,) are best proven in the rest frame. mentum transfers, by
The corresponding density operator of a spin-1 target is
given in Appendix A. Ma

FR(x,Q%)= A W3(Q%,Q-Pa/my),  (3.113
B. Trinucleon current tensor operator

M . L. P
The current tensor operatWﬁ (Q.P,) is Hermitian and F’é\(x,Qz):hWﬁ(Qz,Q- PA/my), (3.11H
conserved, it preserves parity and time-reversal invariance. Mma
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Q-P, and na={—(n-n,),n%,n2,(n-nx)}=(0,ng). The momen-

A 2\ A 2 ATTA A R

9:(x,Q%) = Am, G1(Q%Q-Pa/ma), (3110  yym transfer is used in the fort2.9). The kinematically
needed four-vectors can be given in terms of the basis vec-

(Q-Pp)? torsn, |, e;, ande,, i.e.,

gé(x,Q2>=WG§<Q2,Q-PA/mA). (3.119
A

1
PA=§mA(n+I), (3.123
We are interested in describing asymmetry measurements in
deep-inelastic lepton scattering; they are carried out in order
to determine the spin-structure functiogfs andg5 . 1 3
. ) . = ++- , 3.12

All structure functions can be obtained from a given cur- Q ZQ : Qe ( b
rent tensor by contractions with other tensors. The deuteron
current tensor is—as current tensor of a spin-1 target—quite 1
different from Eq.(3.8) as Appendix B shows. Nevertheless, Na=5(n-na)(n=1)—(ey-na)e;— (& Na)ey,
its dependence on the spin-structure functigﬁsand g5, (3.129
being contained in the part proportionaldt”*?, is the same

also for the deuteron. Thus, the relations by which the spin 5
; A A Q-Nna V=Q
structure functiong? andg; are recovered from a computed Na— ~——=—Px=—|(n-np)+ (e;-np) |n
. L . P, A A _ 1-Na
current tensor will hold for the deuteron in identical form. Q-Pa
/_QZ

C. Trinucleon current tensor in the nuclear c.m. system _

—(e1-na)l—(er-np)e;

The nuclear current tensv,"(Q,P,) is evaluated in the
nuclear c.m. system. We shall now use the notational identi- —(ey-np)e,. (3.129
fications P,= P for the four-momentum of the target and

na=ng for its polarization, i.e.P,={ma,0,0ma}=(m,,0)  The nuclear current tensor takes the form

"QY A PLP; 1 A 2V-Q?
(MAWR'(QuPIng) = ==~ 0" FEOGQA T+ G pa PR QA et o ela)
1 A 2 -Q° A 2 1 A 2
X1 —Ng E(n'nA)gl(XrQ )+ (n-np)+———(&1-Na) | 92(X,Q) | +1g E(n'nA)gl(XaQ )
_ N2
—— (e1~nA)gé‘<x,Q2>>—em<e1-nA>[g’f<x,Q2>+gé‘(x,Q2>]
—eyp(ey Na)[07(X,Q%) + gé‘(x,QZ)]J : (3.13

Equation(3.13 rewrites Eq.(3.8—after the trace operatio3.2) is carried out—with respect to the antisymmetric part of the
nuclear current tensor; only that part matters for the extraction of the spin-structure furgitiandg5 ; it is the same for the
current tensors of the three-nucleon bound states and of the deuteron.

D. Extraction of spin-structure functions

The spin-structure functiong’f and g’z* can be extracted from particular matrix elements or by contractions with four-
vectors and tensors available from the kinematic setup of the experiment as IBR#&¥e label the first extraction scheme
by I, the second extraction scheme by II.

The extraction scheme | reads the nuclear spin-structure funcg@asd gé\ off from selected components of the nuclear
current tensor. The considered matrix element is written covariantly as a contraction with the basisejeaiats,, i.e.,

Q2
(e;-Na)g5(x,Q?) |, (3.14)

v iA A 2
€1,,€2,(Na|Wa (Q:PA)|nA>:_m_A (n-na)g7(x,Q%)+2

it refers to the kinematic components of the current. When specifying the nuclear polarizatiothe target rest frame, both
nuclear spin-structure functions can be extracted separately from that single relation, i.e.,

gh(x,Q%) = — (ima/A)ey,e5,(NalWA"(Pa. Q)W) . (3.153
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05(x,Q%) = — (imp/A) ——— JQ_Qemezy<nA|w“”<PA,Q>|nA>|nAel (3.15D

The extraction scheme Il contracts the full current tensor with the tensors of other physical variables and extracts the
spin-structure functions from the resulting scalars, i.e.,

i Q-Pa Q- NaAPaQ*NZ—Q-PAQ*PX
2A Q- ni P2 [QA2+A(Q 2] — ((A?'PA)z €apulNalWA"(Q,Pa)[Na), (3.163

gl(x Q%)=

(Q-Pa)? Q-naQ-PAQ N —[Q%+(Q-na)?IQ"PX

0A(X,Q) = or

€a V<nA|WMV(Q1PA)|nA>' (316b
2AQ%Q-n,  PAQ%+(Q-np21—(Q:Pa)? prr AT
|
The extraction scheme Il uses relatiai3s119 and(3.119 d2o(pol) 1[d20(+1) d2o(—1)
for the spin-structure function@iA of Ref.[3]. Both extrac- ; =—( P — ) (4.4b
tion schemes—and all possible variants of them—are dQ.dE dQ.dE dQ.dE

equivalent as long as the current tensor is exact, i.e., satisfies
Lorentz covariance and current conservation. However, they d?a(pol)
are inequivalent for approximate current tensors. And the qq’ 'dE’

= oo tart [[EcosﬁA+E (COD ,COSHp
nuclear current tensor of this paper will only be calculated

approximately in PWIA and with wave functions which do g7(x,Q?)
not exhibit all required symmetry properties as Sec. VI will +SiNO ¢SiNGACOSHA) |
explain in more detail. AQ°
—2EE'[cos9p— (COM COH
IV. CROSS SECTION
The derivation of the inclusive cross section for inelastic +sm@)esm6Acos¢A)] 2( Q )} (4.40
lepton scattering is recalled. Letkez(E,IZe) and MA(Q")*

=(E’,QE’") be the initial and final momenta of the lep- It is the same for spi-and the spin-1 target®, is the
ton andQ=k,—k, the four-momentum transfer. The cross scattering angle of the leptomr,,; the Mott cross section. In
section is determined by the nuclear current tensoboth cases the target polarizatiop is described in the rest
(Na|WR"(Q,Pa)|na) of Sec. lll and by the corresponding frame by the polarization angle®, and ¢,, i.e.,
lepton current tensofng| 7,,,/ne) With Na=(0,SiNGaCOSPA ,SINGSINGA ,COF,). The angles are mea-
e , sured with respect to the incoming lepton beam.
<ne| 77#V|ne>:2(ke'uke+ke K& — 9" ke Ke
+ imeeﬂmﬁQaneﬁ). (4.1) V. PLANE WAVE IMPULSE APPROXIMATION

The calculations of this paper are carried out in PWIA.
ey extend the work of Ref18] by the inclusion of beam
and target polarization. Referend3] also uses PWIA. Su-
Ke perficially, impulse approximatiorassumes that only one-
=h.— (4.2 nucleon currentgy;;,(0) contribute to the complete nuclear
Me currentJ¥(0), i.e.,

When the lepton is longitudinally polarized before scattermg,l.h
its polarization vecton, gets

with h,= =1 being the helicity andn, the mass of the lep- A
ton. In the rest frame of the target the cross section becomes W0)=S ju (5.13
d?o(hy) a? E’ v
dQ/dE’ _E E<”e| 70N NAlWR(Q,Pa)[Na). Stated in this manner, the assumption is clearly inconsistent
€ 4.3 because, for interacting systems, the current on the right-
' hand side does not transform correctly as a four-vector. In
It is split into a helicity-independent and a helicity-dependentcontrast, the restricted assumption
part, i.e.,

A
do(h) _d*ounpo)  d*s(po) w4 JA(0)=i§1 ine) (5.1b
dQ.dE’  dQLdE  “dQlLdE’ '

is consistent: Both sides of the latter equation transform cor-
Its polarization part has the form rectly under the front form kinematic subgroup of the Lor-
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entz group; the full nuclear current can then be generated byation is believed to be particularly reliable for deep-
translations and general Lorentz transformations. Furtherinelastic processes; it yields the convolution formula for the
more, inclusive cross sections require knowledge of theauclear current tensor.

nuclear current tensor which is quadratic in the current op-
erator and which therefore contains interference terms of the
form j{i)ing - PWIA neglects those interference terms.
Referencé3] discusses this approximation of incoherence as Using the nuclear density operatog(naP4), the nuclear
an approximation on the accessible final states; this approxeurrent tensof3.1) takes the convolution form

A. Convolution formula for the nuclear current tensor

m [e's}
<nA|WXV(QaPA)|nA>:t2 stpr_ilf dMTTW, ) (Qn(M), pr) S(PNMtn) pa(NaPA) ] (5.29
N NY ™

mA+mA,1
in PWIA. Its spin matrix elements are
! 2% 3 mN * ! 172% ! !
(MW (Q.PNA)=2 | d PN dM X ONIWE ) LONM), PRI ) (NN Al S(PNMEN) [N A )
tn PN Y —matma_g )‘N)‘r,\|
(5.2b
Because of the discussion on consistency at the beginning of this section, only the kinematic comporeit® + will be

taken from the convolution formulé.23. In Eq. (5.23, Qy is the momentum transfer to the struck single nucleon; the latter
momentum transfer

Qn(M):={Q™+ Py —Pp_1(M+my) —py ,Q} (5.29

is different from the momentum transfér to the whole nucleus. The momentum comporfeqt (M +m,) of the spectator
(A—1) nucleus is defined bl 5_ (M +ma) =[(M+m,)2+ P(ZA_m]/P,Ll , M +mj, being the effective mass of th& (1)
nucleusm,_ 4 is its minimum value. In Eq(5.2) the nucleonic current tensW’N‘(”tN)[QN(M),pN] and the front form spectral

function S(pyMty) are introduced; their definitions will be discussed next. This section uses the ddpitab notational
meaning distinct from Sec. Il.

B. Nucleonic current tensor

The nucleonic current tensW’,jE’tN)(QN ,Pn) is defined by

N . _ .
<)\l,\l|WINL(VtN)(QNva)|)\N>:(27T)6m_’:l; Jd3pxl<pN>\’NtN|Jﬁ(0)lpxlﬁxl>26‘°’(pxl—Q—pN)ﬁ[pxl—QN(M)—pN]

X<px1ﬂx1|jl€l(0)|pN)\NtN>- (53)

It is an operator in nucleonic spin space and depends on istgpin Ref.[3] the corresponding instant form matrix elements
are given. After transformation to front form spin states according to

(NIWRE ) (Qn PN M) = > N Rh-;(pN)|Sl,\l><Sl,\l|W;NL(]}tN)(QN PN IS (Sl Rm (PN [AN) (5.9

’
SNSN

the nucleonic current tensor takes the form

<)\’|WMV (Q p )|)\ >:5, QK‘QK‘_gMV FN(tN)(X QZ)L'FMFN“N)(X QZ)L
N N(tn) NsMN N )\N)\N Qﬁ 1 N ~N mN QN'pN 2 NN mN
etrep < S N(t ~ QN'S((;N) )
+i Jaglls N(xy,Q2)+| s L NN (3, Q2) ||\
QN'pNQN Nl Sglon)gy (XN, Q) s(oN) Qu- P Png 9, NV (XnLQR) || AN

(5.5

with the nucleonic Bjorken variabbey : = —Q,%,/ZQN- pn and with
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~ Pn- Qn
PNI=PNT — = QN (5.6a
N
My pﬁ Pn Pn pf\]
> L~ - . - A > - L~ = A >
s(on):={—| —=N-on+2— 0N, —N-0ON |, 0N T—N-On,—N-ON . 5.6b
(on) |p§( ﬁ AT NN Ny N (5.6b

In fact, s(ay) acts like the Pauli-Lubanski vectdV, except for factors, i.e{\{|S(on)/2|An)= (N (L/my) WIAy)-

C. Spectral function

The spectral function is defined as the probability of finding a nucleon of iségpiith momentumpy and the spectator
(A—1) nucleus with an excitatiofh,_, of massmu_q(fa_1), i.€.,

<)\N)\A|S(pNMtN)|)\II\I7\A>:A)\ Ef SIM+mpa—mp_1(fa- 1) J(PANAlPNAEN(PA— PN A-1TA-1)

A-1'A-1
X (PNANEN(PA= PN A—1fa—1|Paka). (5.7

The spectral function is an operator in nucleonic and in nuclear spin space. Refgt8hdefines it relativistically for the
spin-averaged case; the extension to spin dependence is minor. The spectral function is calculated here in the nuclear c.m.
system.

The spectral function is related to the front form momentum densipgty) according to the sum rule

| MO LIS MBI = o orti k) 589

with

<)\N)\A|P(pNtN)|)\l,\l)\A>:A}\ 2« (PaMAlPNANEN(PA= PN A—1fa— 1) (PNANEN(PA— PN A-1fa—1|Paka).  (5.8D

A-1'A-1

The front form momentum density will be calculated in Sec. VI.

D. Spin structure functions in deep-inelastic lepton scattering

The results of the previous subsections are now adapted to deep-inelastic lepton scattering.

1. Bjorken limit

We consider the Bjorken limit@°)?> — Q>m2 under the condition that the Bjorken variable: — AQ?/2Q- P, remains
constant. In terms of front form components for the momentum trangfer)3> — Q2. In scattering from a many-nucleon
systemQy # Q" , in principle; however, in the Bjorken limit ligjQn=Q for all component$15]. In that limit the convolu-
tion formula for the nuclear current tensor of E§.29 becomes

3 My v
<nA|WKV(QrPA)|nA>:tE fd pNpTTr[Wﬁ(tN)(Q,pN)P(pNtN)PA(nAPA)]- (5.9
N N

The troublesome problem, that the nuclear current telgp(Q,P,) when calculated in PWIA does not respect current
conservation, disappears in that limit, i.Q, W,"(Q,P,) =W4"(Q,P,)Q,=0. In the Bjorken limit the spin-structure func-
tions scale; experimentally one should see them to become independer®ftofine convolution formuld5.9) yields that
scaling behavior; the nucleonic structure functions only depend on the nucleonic Bjorken vegialle the resulting nuclear
structure functions will also turn out to depend on the nuclear Bjorken vanabldy; the dependence of the spin-structure

functionsgiN(tN) andgiA on the momentum transfeﬁﬁ, andQ?, respectively, will therefore be scratched from now on. The two

Bjorken variables are related by

1Q-Py Pa
Xn=X— =X s
NTAQ-py Apy

(5.10

the momentum fractiop,;/P 5 =x/Axy will often be needed.
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2. Extraction from selected current tensor matrix elements

Extraction scheme | of Sec. Il D only needs kinematic components of the nuclear current tensor; it can therefore be
employed consistently in PWIA, it is our favorite extraction scheme in this paper. Using the convolution f¢sufar the
matrix element3.14) of the nuclear current tensor, i.e.,

2

Q
(n s(an)gy ™M (xy) —2 o

er-s(on) gy M (xy)

1
€1,,€2,(NaAlWA"(Q,Pa)[na)= 'AZ Jd3pr——Tr

N PN
X p(Pntn) PA(NAPA) |, (5.11
|
convolution formulas result fog!* in the form
. % fdng(gtN)zA, (5.14H
9?(X):ZN AggT(tN)(Ag Na- SN(fthA)|nAHn,
(6123 tE Jdgng(gtN)=1. (5.149

N(I )
(5.129  The front form spin distributiorsy(étyn,) also satisfies a

. e ' sum rule, i.e.,
provided the front form spin distribution is defined by
P - -
SN(fthA)::J dgpN5< g_ P_'j’) Tr[O'Np(pN'[N)pA(nAPA)] f dgnA'sN(gthA)=<o-N(tN)>‘ (515
A

(5.13

The assumptiom,||n is essential for the derivation af},
the assumptiom,/|e; is essential for the derivation af,.
The front form spin distributioﬁN(gthA) will be calculated
in Sec. VI for the three-nucleon bound state and in Appendix

C for the deuteron. It takes on the role which the spin-

averaged front form momentum distributiég(éty), i.e., <UN<tN

Thus, it is related to the spin expectation va(um(tN)) in

the polarized trinucleon bound sta@ana)=|¥gna), de-
fined by

3
Z( +tNTN(|))nA UN(')‘ BnA>-
(5.163

+

Pn
fn(étn) f dspN5< &— P_) Trlp(Pntn) pa(NAPA) ], )
A i.e., to the nucleonic contribution to the nuclear spiR(i)
(5.143 ) : ) . . : NI
and (i) being the nucleonic spin and isospin projection
played for the calculation of the spin-independent structur@perators. The spin expectation val{ey,,) is given by

functionF5 in Ref.[18]. Normalization and momentum con- the S-, S'-, and D-state probabilitiesP(S), P(S'), and
servation implied P(D) of the trinucleon wave function according to

1
$[P(S")—P(D)], ty=+ > (proton,

(oN(ty) = 1 (5.16bH
P(S)+ :[P(S)—P(D)], ty=— > (neutron.

The sum rule is calculated in the nuclear c.m. system for Whi;;h(O,ﬁR); it does not depend on the direction of the
polarizationny .

3. Extraction from the full current tensor

Extraction scheme 1l of Sec. Il D requires the full nuclear current tensor which cannot be calculated consistently in PWIA.
We only discuss the extraction according to E@163 and(3.160 for curiosity, since it was used in Rdf3] for nonrela-
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tivistic phenomena. The extraction scheme Il yields

(x)———Ef Q%P4 Q:-Pa r( (g~ 2P Pa-S(ay)
. P P @ P Qe || TR s
(Q-ny)? (Q-PA>2 Q-s(ay) Q:Pp Pa-'s(ay)
Q2 - PiQ? ) QN 1 LV (k) + [ NS (o) — P2 Qn, 1 N(tN)(XN)] (Pntn) PA(NAPA) |
(5.17a
1 (Q-Py)? Q- P, ({  QPH(Q-nw)? Pas(ay)  Q-s(ay)
92(x)= 2 f PA[Q2+(Q na)2]—(Q-Pa)2 Q-Pn T | M- stow Q-Pa Qs | Qo
24(Q-np)? Pa-S(0oy)
X g} xp) ¢ - S~ Q(_QPAA AQ_::” }g?“kaN)}pmNtN)pA(nAPA)). (5.7
The abbreviation
- . R s(o
S0 =s(00 W, (5.18

is introduced in Egs(5.173 and (5.17H. The choice of polarization fon, and the approach of the Bjorken limit are
noncommuting mathematical procedures. It seems to make sense to take the Bjorken limftavralydefinite polarizatiom,

is assumed. In case of the polarizatiﬁmﬁ, Eq. (5.179 yields the convolution formula Eq5.123 for the spin-structure
function g’i\ in the Bjorken limit; in case of the polarizatioﬁ\Hél, Eq. (5.17b yields the convolution formula Ed5.121 for
the spin-structure functiog’z* in the Bjorken limit. Thus, there appears to be complete consistency between the two employed

extraction schemes. We shall therefore use the convolution fornibla2g9 and (5.120 in all applications of this paper.
However, that consistency is not general.

Under the assumptioﬁAHé1 an alternative convolution formula f(g‘i\ results from Eq(5.173 in the Bjorken limit; under
the assumptiom,||n an alternative convolution formula fa? results from Eq(5.178 in the Bjorken limit, i.e.,

+

1 m A A~ - A > Al PN
A X):Kz d*pn— —Tr [el'UN+n'UN L]gl;mN)(XN)P(pNtN)PA(nAF’A) , (5.199
tn Pn Py
2+ +\ 2 2 + e
my\ “Pa a - PN Py PNPNL ON| Nty
gz(X)__E fdspN — | T ({n'UN{l_(_) + + }9 N(Xn)
P/ Py M/ pymy my )
- - (e1-Pn)?)  Pni-On N(ty)
+n-on| 1+ 2| ot g, (Xn) | p(PNtN)PA(NAPA) |- (5.199
N N

The alternative convolution formulas Eq5.199 and(5.19b, are structurely different from those of E45.123 and(5.12h.

They contain terms proportional g, which cannot be expressed by the front form spin distribusigftyn,). Though the
spin-structure functiongf and gé are Lorentz scalars, independent from the nuclear polarization, the ones approximately
calculated remain dependent. We naotice that dependence with amazement, especially, since in the instant form description of
guasielastic scattering no such dependence arises. However, we have checked the quantitative differences of the convolution
formulas(5.123 and(5.199 for g’f; the differences are not resolvable on the plots shown later.

VI. FRONT FORM MOMENTUM DENSITY OF THE TRINUCLEON BOUND STATE AND SPIN DISTRIBUTION

In this section the front form momentum densitfpyty) of Eq. (5.8b) is calculated for the trinucleon bound state, i.e., for
A=3. It is calculated as an operator in nucleonic and nuclear spin space. Introducing the spin-dependent operator

(MO N = By By, (6.2)

for nucleoni by its matrix elements, the front form momentum dengipyty) is related to the nuclear bound st »)
with spin projection\ 5, i.e.,

2, 3%(pn=POIMAN) dye

| PA)\A> , (6.23

(ANNAlP(PNEN) NN A) = < PaNa



56 POLARIZED DEEP-INELASTIC LEPTON SCATTERING ... 2303

, , A Py pr ,
(ANl P(PNEN) NN == | PakA| 8| = = =] 8%(Pns — P1u) O1(AAN) Bty | Paka | - (6.2b
I:’A PA I:)A
|
In the operator the front form momentum fractipj/P, is The internal single-nucleon moment&; (&;) are ex-
introduced. tended to the standard three-dimensional form of on mass
The single-nucleon front form momenpa are related to  shell particles
the ¢.m. momentun®, and to the internal front form mo- 4
mentak;, and the front form momentum fractiods by ki” = &iMo, (6.43
_ miz_*'kizl
PAL:; PiL (6.39 k== (6.4b)
1
P IR R Y m ke 6.4
p;r:; pj+, (6.3 i KR &My &M, (6.49
with
p-+ 24 2\ 102
I N n
Kip=Pio— —7Pas, (6.30 Mo=| > KL (6.4
Pa 7§
ot and k?=m?. That three-dimensional forrk; is also con-
=

& (6.30  strained by k;=0. The internal momentk; are therefore
related to the Jacobi momentéﬁ(), in which the ground

state| W) usually is given, by

Py

The internal single-nucleon moments (&;) satisfy the two

constraints¥;k;, =0 andZ;&=1. For the calculation of the 1. .

front form momentum density the nuclear c.m. system is p=5(ka—ks), (6.5a
assumed, i.eRP,, =0 andP =mj,. The internal part of the
nuclear bound statéPa\ ) is a mass eigenstate as in Eq. =k (6.5b
(2.17), a proper state of relativistic quantum mechanics; q b ’

however, when the interactions are added to the square of thgsuming equal masses=m, for the three nucleons. Thus,
free mass operator, the resulting eigenvalue equation bgg complete transformation of the wave function to the inter-

for an internal nonrelativistic Hamiltonian. Thus, the relativ- yossible. However, the front form momentum density

istic mass eigenstate can be identified with the nonrelativistic, |, t ) samples the front form properties of a single

ground statéW g\ ») of internal motion; it was already used pcleon according to Eq6.2h. Thus, a mixed set of mo-

in Eq. (5.169. The mass eigenstate is independent of any > . . . .
: P . enta pkq, &;) is preferable in terms of which the Jacobi
choice of the dynamics; it is represented here in terms o omenta can be expressed, i.e.,

front form variables for momenta and spin. However, that
identification of|Pa\a) with |5\ ) has one serious draw- > >

back: Rotational invariance is violated, sincBg\ ) is an P=p, (6.63
eigenstate of an angular momentum operator, built up from 1 m2 -+ k2
H H H H e -> 1 2 N 1L

the operators of constituents without interactions. That vio q=|—ki,—Kk3,— _< §1M0——> (6.6b)
lation [17] gives rise to the well-known ambiguities when 2 §1Mo
elastic form factors are extracted from approximately com- . . . . !
puted current matrix elements. The same ambiguities arg‘ this representation the multicoordinate quantily, be-
likely to reoccur in the present context when extracting strucEOMes
ture functions from an approximately computed current ten- A(m2 + p2 2 2,2 112

. AT my,+p?) +k my,+ K
sor. This paper does not explore those ambiguities in full, but M= (MyFPT) KL, | MytKL (6.60
at least it compares two extraction schemes according to 1-& &1

Secs. llID, VD 2, and V D 3 which weight spin matrix el- ) . ) . ]
ements differently, but which yield spin-structure functionsWith the notationp?=p? in the remainder of this section.
numerically almost indistinguishable. In view of that short- Equation(6.69 holds only approximately; it neglects angle-
coming, the suggestion of RefL9] to construct relativistic dependent termg-k,, /m% which are, however, small for
mass eigenstates directly is an interesting alternative, but the physically relevant momenta in a nuclear bound state.
has not yet matured such that it can be employed simultafhe relativistic trinucleon bound state wave function takes
neously in the two- and three-nucleon systems. the following form in that mixed representation:
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[ opa) | --
(PKy, E1018,S3t1tots| Pk a) = 2 (N Ry(Ky €1p?)]s1) ———|(PA(Ky1, £1P?)S1S;Satatots| Wk a).

d(pky €1)

The transformation of momenta requires the Jacobi determinant

3(pg) z‘ ag° _ Mo(ky 497 |
a(pky, &) 1961 46 (1-&)
in Eq. (6.8 the argument list oM, is made explicit. Only the spin of nucleon 1 is Melosh rotated. The rotation mRgyix

depends ork,, but throughM, on all internal variablesk|, &), therefore also op?; this is the reason why its argument
is changed to the argument lidt,( £,p?), i.e.,

(ky, &p? (6.8

V(my+ & Mg)2+k3,

in contrast to the notation in ER.159. The spins of the nucleons 2 and 3 are still taken to be canonical, since the expectation
value (6.2b sums over that spin dependence.
The front form momentum density is calculated according to

Ru(ky, é1p?) = (6.9

(MNIRw (PN EPP)[S1)(S1RM (PN €PP)INY)

A
<ANAA|p<pNtN>|x’NAA>=;E > | dp

tot
At2la s 1515253

f (pthpz)

X(P g\l PA(PNL EP?)S;SoSatntats)(PA(Pr. £P2)S1SoSattats| Wk a)l g=p /P (6.10

At this stage we go back to the corresponding instant form momentum dgﬂ(fimN) which reads, in the nuclear c.m.
system,

(snsalp(Pntn)|Susa) = < Vgsp 2 S(pn—K) Oi(SSN) S, ‘I’BSA>

=AY, X | d*p(Wgsh|p(— pn)SiSaSstntata){ P(— Pn)SnSSstntats| Wesa)

totg Sp83
1 , - - OnPNOAPN 1. - ,
:§<SNSA po(Pntn) + p1(Patn) o oat p2(Pitn) 5—2 30N OA||SKSA
N
1 |— — S — onPNOA PN 1. - ||
:Ej pzdp<SNSA pO(prtN)+pl(prtN)UN'o'A+p2(prtN)(5—2_§0'N'0'A SNSA | -
N

(6.1))

The first step gives the definition. In the next two steps of (BdL1) the spin structure of the instant form momentum density
p(pNtN) is recalled; in the last step it is realized that that spln structure already holds after integrafipheanprior to the

integration on the magnitude of p The funCtIOﬂSpo, P1s andp2 in the result(6.11) are numerically available and will be
used for calculating the front form momentum density. Since the calculation is carried out in the nuclear c.m. system, the
canonical and front form spins of the nucleus are identical, g\ o) =| ¥ gsa) and therefore

(MNMAlP(PNEN) NN A) =5 f pzdp (pthp )< NAA| R (P €P?)| po(apty) + p (APt oy oa+ po(aPty)
Gwdond 1. |
X(%_?"N'UA) Ru(Pn.éP?) }\N)\A> (6.12
q d=d(py, £p?)

‘f:p;/PX

The result(6.12 requires the replacement of the Jacobi momenﬁmsd(pm £p?) by the front form momentaply, &)
according to the prescription of E6.6b), given there in terms oflq; , &1).
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The determination of the spin-structure functicg% and g’rj in deep-inelastic lepton scattering according to E§sl9
requires the full spin-dependent momentum deng{fynty); however, the determination according to E¢s12 which this

paper prefers needs the front form spin distribulﬁgﬂgthA) only, i.e.,

3
21 Tr[o_)-NRl\Jr/I(pNLgpz)o-iNRM(pNLgpz)]

- (., ) aq® )
SN(éthA)=§f d pmf pedp a—g(pmfp )

agna-q 1 .

x| paq ptN)niA+E(prtN)( F 3

(6.13

g=d(py, £p?)

The front form spin distributiorﬁN(gthA) was already in- It is characterized by th&-, S'-, and D-state probabilities
troduced in Eq.(5.13. The calculations of this paper are P(S)=90.36%,P(S’)=1.38%, andP(D)=8.25%. The ef-
based on it. fective nucleon polarizatioﬁaN(tN)) is defined in Eq(5.16a
of Sec. V; it is related to the wave function probabilities
VII. RESULTS AND DISCUSSION according to Eq(5.16h; the employed wave function yields
the specific valuego,)=0.881 and(o,)=—0.046. The
neutron component is also in the front form spin distribution

use the theoretical apparatus developed for the deuteron overwhelr_mng importance as Fig. 2 Sh.OW.S; this fact holds
ue for longitudinal and transverse polarizations. In the front

Appendices A—C as well and therefore discuss deep-inelast rm spin distribution of*H the proton and neutron change

lepton scattering from the deuteron and the three-nucleo les. Thus. the technical tools f lculating e spi
bound states simultaneously. We shall abbreviate the lab&P'€S: 'hus, the technical tools for calculating spin-

N(ty) from now on byp andn for ty=+% and ty=— 4, structure funptions are also available, but no such calculation
differentiating proton and neutron contributions, respec-IS done in this paper. . .
tively. We expec'ged_ that _the Melosh_ r_otgtlon from canonical to
front form spin is a sizable relativistic effect, important for
the actual magnitude and shape of the front form spin distri-
S butions. This expectation did not turn out to be true; leaving
_ The deuteron and®He front form spin distributions the Melosh rotations out, i.e., putting them to unity in Eq.
sn(£tyna) are displayed as functions of the momentum frac-(C7) for the deuteron and in Eq6.13 for 3He creates
tion ¢ in Figs. 1 and 2. The componerﬁ§-§N(§thA) are Mminute changes of less than 0.1% in the distributions outside
given for longitudinal and transverse polarizations, i.e., forzeros; the chaanges are invisible in the plots. In both cases,
ﬁA:ﬁ and ﬁA=é1, respectively. They are split into proton deuteron and“He, the front form spin distributions are

and neutron contributions. The calculation is based on rela?®aked around=1/A. The approximation

tivistic mass eigenstates which are obtaifg6] by reinter-

preting nonrelativistic bound states. Their wave functions are - 1

derived from the Paris potentif20] for the deuteron and for NA - Snapd €INNA) = 5( & K) (onty) (7.9
the trinucleon bound state.

The spin-structure functiongf and gé\ of deep-inelastic
lepton scattering are calculated according to E§s.2). We

A. Front form spin distribution

1. Deuteron is a simple one; it is independent from the direcu’hnof the
The employed relativitic deuteron wave function is ob-nuclear polarization. When calculating the nuclear spin-

tained from a nonrelativistic one, characterized by$hand ~ Structure functiong” later on, it will turn out to also be a
D-state  probabilites, i.e., P(S)=94.23% and reliable one for both nucleonic distributions in both nuclei. It
P(D)=5.77%. The effective nucleon polarizatigery,,) is poorest for the’He proton distributio_n in longitudinal po-
is defined in Eq(5.164; it is related to the wave function larization whose peaking arourd= 1/A is least pronounced.

orobabilities according to EGC8) of Appendix C: in the However, the proton contribution to thtéHe spin-structure

isoscalar deuteron it is the same for proton and neutron; thfém(:t'onS will turn out to be small anyhow.
employed wave function vyields the specific values
(0p)=(0n)=0.457. The proton and neutron components of B. Nucleonic spin-structure functionsg™ ™%’

the front form spin distributioriN(gthA) are shown in Fig. I
1. They are identical. Furthermore, their longitudinal and
transverse components are indistinguishable on the scale
the plot.

The nuclear spin-structure functiogé are calculated ac-
c?rding to the convolution formula®.12. The convolution
ormulas require a parametrization of the nucleonic spin-
structure functiongiN(tN) . We employ the parametrization of

2. Trinucleon bound state’He Ref. [23]; it is displayed in Figs. 3 and 4. The parametriza-

o o : N(ty) « \
The employed relativistic trinucleon wave function is ob- tion of g} in Ref. [23] accounts for the experimental pro-

tained from a nonrelativistic one, computed in R¢8,22.  ton data[24] and satisfies the Bjorken sum ri25]
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- FIG. 3. Nucleonic spin-structure functiogﬁ“tN) and g';(tN) as
.Flf'tl.'b Cipmpone?tﬂAt-_sN(g;,\t,rr:A) of the tdeutferon_ f;ﬁnt tform functions of the nucleonic Bjorken varialsg in the scaling limit.

spin distribution as a function of thé momentum Ta“.go eutron  rhe neutron spin-structure functions are shown as dotted curves, the

and proton components are identical. The 1ongjtud|nal ang tlrans|E)r0ton ones as dashed curves, all in the parametrization of Ref.

verse ?_ontlrlbutlonsa_l.?., thehccg)llwtnbuttlﬁns rﬁ]mg=n anc:l Na=€1 23], g)¥ according to the twist-2 prescription of R¢R6]. The

respectively, are indistinguishable on the chosen scale. data for the proton spin-structure functigf are taken from Ref.

[24]; only the statistical errors are shown. Older SLAC data for

g referred to in Ref[24] are not plotted.

1
| antaton-gixi-5 2 (7.2

A

Oy’
does not hold for the parametrization @?(IN) according to

ga andgy being the axial and vector coupling constants ofRef. [27], which seems, however, to be invalidated by the

the nucleon. The parametrization gf(tN) is based on the eXxisting proton datf24].

twist-2 prescription of Ref.26] which relates both nucleonic

spin-structure functions by C. Nuclear spin-structure functions g*

The deuteron and®He spin-structure functiong; and
gé are calculated using the convolution formu(&sl2. The
predictions are displayed in Figs. 5 and 6, respectively. They
are broken up into proton and neutron contributions. The
) D ) neutron contribution dominates thi#le spin-structure func-
The first datd 14] for 92 referrln% to the momentum trans- inns: the proton contribution is insignificant f8He. In con-
fer range 1 GeV=-Q?<10 GeV-, are consistent Wlt_h that yrast, the proton and neutron make contributions of compa-
prescription, though the experimental precision is still unsat;gp|e magnitude, but of opposite sign to the deuteron spin-
isfactorily poor. structure functions. Both results are due to the fact that

The proton and neutron spin-structure functicmﬁt“) proton and neutron spin structure functiogg(t“‘) are of
andg) ™ are of comparable magnitude, though of differentcomparable size. Experimental data on the deuteron and
sign, in the parametrization of Figs. 3 and 4. This character®He spin-structure functiomy? and on the deuteron spin-
istic is decisive for the successful extraction of the neutrorstrycture functiong’z'\ have recently become available, i.e.,

spin-structure functions frontHe data. This characteristic Refs.[12,13,10,11,1} respectively.
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FIG. 2. Componenh,-sy(étyna) of the “He front form spin FIG. 4. Weighted nucleonic spin-structure functiongy ™ as

distribution as function of the momentum fractign Neutron and  functions of the nucleonic Bjorken variabig in the scaling limit.
proton components are shown for longitudinal and transverse polarFhe neutron spin-structure function is shown as dotted curve, the
izations, i.e., fom,=n andn,=e,, respectively. The neutron com- proton one as dashed curve, both in the parametrization of Zaf.
ponents are given by the dotted curve; on the chosen scale of tteccording to the twist-2 prescription of R¢26]. The data for the
plot, they coincide for both cases of polarization. The longitudinalproton spin-structure functiogh are taken from Ref[14]; they
(transversg proton component is displayed as short-dastiedg- refer to two distinct scattering angles of the leptéh,=4.5° and
dashed curve; the small proton components are also shown in ar®,=7.0°, indicated by solid dots and solid rectangles, respectively;
enlarged scale on the right side of the figure. only the statistical errors are shown.
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FIG. 5. Deuteron spin-structure functiog$ and g5 as func- FIG. 7. Weighted deuteron spin-structure functiorg; and
tions of the Bjorken variable. They are derived from the convo- Xg5 as functions of the Bjorken variable The theoretical predic-
lution formulas(5.12 using the parametrizations of Fig. 3 for the tions are derived from the convolution formulés.12 using the
nucleonic structure functions. The full results are shown as solidparametrization of Fig. 3 for the nucleonic structure functions; they
curves; the neutron and proton contributions are given by the dottedre compared to the experimental dataxgf of [12], indicated by
and dashed curves, respectively. small solid dots, and df13], indicated by solid rectangles, and to

the experimental data forg), of [14]; the data foxg} refer to two

distinct scattering angles of the leptdn,=4.5° and®,=7.0°,
The deuteron da;El].Z—léﬂ rezfer to a momentum transfer indicated by solid dots and rectangles, respectively; only the statis-
range 1 GeV<—Q?<15 GeV?; we assume them to scale tcal errors are shown.

and therefore consider the description in scaled approxima- . o )

tion developed in this paper as appropriate. Figure 7 comtoughly account for trends in the existing experimental data
pares the data with the predictions of Fig. 5. The experimen[ll]' Figure 8 compares the theoretical prediction with data.
tal error bars for the quantityg] in Ref.[13] have become
quite small indicating that the theoretical spin-structure func-
tion changes sign at too large a value for the scaling variable
x; furthermore its peak is also shifted to too largealues. The front form spin distributionsy(&tyn,) are approxi-
Thus, as a consequence, also the assumed parametrization,@dted in Eq(7.1) by a s-function form. This approximation

the neutron spin-structure functigj appears to be slightly yields approximate nuclear spin-structure functions
inconsistent with the data. In contrast, due to sizable error

bars the first datf14] for xgé cannot be considered a strin-
gent test of the assumagi'(t“) .
The 3He data[10,11] refer to an average momentum

D. Unfolding the neutron spin-structure functions
from the nuclear ones

Olep =2 6 V(0N (7.4
N

in turn, i.e., very simple relations between nuclear and nucle-

transfer of —Q?=2 GeV?, scaling is not evident; the de- _ .~ .~ . o
O o ! . . onic spin-structure functions. Approximatidid.4) accounts
scription in scaled approximation developed in this paper Sor the full calculation quite reliably. For the deuteron and

not quite appropriate. Outside the domain of Bjorken scalingror 3He the differences irg’f and g’; between the approxi-

the general convolution formulas for the nuclear spin- .
structure functions have to be based on the front form spec,mate‘j forms(7.4) and the full convolution formula5.12)

tral function and not on the density which the particular re-2ré not dlst|_ngwshable In .plots and are therefc_)re_ not
lations(5.12) use; in that cas@y is also not equal t@. The displayed—with one rather inconsequential exception: As

front form spectral function is not calculated in this paper.eXpeCteOI from the discussion of tiiele proton distribution,

Nevertheless, the description assuming scaling is able '€ @Pproximated proton pontr!but!onsgé show some mi-
nor deviations; they are given in Fig. 9. The transverse com-

ponent of the proton spin distribution iPfHe is compara-
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-
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FIG. 6. *He spin-structure functiong} andg5 as functions of
the Bjorken variable<. They are derived from the convolution for- FIG. 8. 3He spin-structure functiorg} as function of the
mulas(5.12 using the parametrizations of Fig. 3 for the nucleonic Bjorken variablex. The theoretical prediction is derived from the
structure functions. The full results are shown as solid curves; theonvolution formula(5.123 using the parametrization of Fig. 3 for
neutron and proton contributions are given by the dotted and dashetie nucleonic structure functions; it is compared to the experimental
curves, respectively. data of Ref[11]; for the data only the statistical errors are shown.
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FIG. 9. ®He spin-structure functiong? andg5 as functions of FIG. 10. Weighted neutron spin-structure functiogg; as a
the Bjorken variablex. The validity of the approximatiot7.4) is function of the Bjorken variabley. The neutron spin-structure
checked. Only the small proton contributions are shown. ComparefHnction assumed in Fig. 3 is compared to the ones extracted from
with Fig. 6 the resolution of the plots is increased. The protonthe *He data[10], indicated by big solid dots, and from the deu-
contributions ardi) derived in a proper calculation according to the teron datg13], indicated by solid dots, according to Hg.5). The
convolution formulae of Eqg5.12 and (i) estimated according to model dependence of the extraction due to the nonuniqueness of the
the approximatior(7.4); the dashed curves refer to the proper cal- deuteron wave function is not folded into the experimental error; it
culation, the dot-dashed ones to the approximation. The correspon&i small compared with the existing errors in the experimental data.
ing neutron contributions and the full spin-structure functions are,
not shown, since both results are indistinguishable in plots with th
chosen resolution.

olution formula(7.4). When starting out from the param-
%trization of the nucleonic spin-structure functions in Fig. 3,
calculating the nuclear ones without approximation accord-
ing to Eq.(5.12 and then recovering according to the
approximate relatior(7.5), differences arise which are not
resolvable in plots and are therefore not displayed. This sys-
tematic error therefore appears to be minor.

tively better approximated by E¢7.1) than the longitudinal
one as the different pronounciation of peaks arogsdl/A
in Fig. 2 shows. According to Eq¢$5.12 the spin-structure

function g depenSs on the longitudinal and the spin- (2) The experimental errors @ andgP, i.e., Ag” and
structure functiong; on the transverse component of the y\gP pollute the extracted neutron spin-structure functions.

front form spin distributionsy(&tyna). The differences be-  The errors om\g” in the existing experiments are still large.
tween the approximated forif7.4) and the full convolution  For the deuteron the error in the existing proton data contrib-
formula (5.12 for g5 are therefore smaller than the corre- utes to the error in the extraction quite significantly, since
sponding differences fa; . This fact is bourne out in Fig. 9 AgP[{op)/(on)|=AgP; in contrast the same error has a very
for the proton contributions. We now turn to unfolding the small weight for the extraction from®He data, since
neutron spin-structure functions from the nuclear ones. Agp|<0p)/<gn>|:o_o&gipl

First, we assume that the convolution formul&sl?) are (3) The nucleonic contributionéoy,) in the extraction

exact. However, we would like to use its approximated form(7.5) are model dependent, though they lie within rather

(7n'4) in order to extract the neutron spin-structure fUnCtionSgy o) jimits for realistic bound state wave functions, i.e., for
g; from the experimental data

the deuteron 0.45(0,,)<0.47 and for °He [1]
0.85<(0,)<0.90 and—0.06<(o,)<—0.04. The resulting
spread of theoretical results is displayed in Fig. 11 Tole.
Given the errors in the present experimental data, the model
dependence is not significant yet.

An example is given in Fig. 10. Even if the convolution

1
g?(xN>=[gf‘<x>—g2<x><op>]m . (75
X:XN

formula (5.123 were exact and were well described by Eq. 00— b N
(7.4), the extraction7.5) of the neutron spin-structure func- - A
tions meets three distinct types of errors, i.e., i ]
£ o251 .
o0 L -
1 (op) i 1
Agh(x ):(A Alxn)— + A P(X)_p) B ]
9i (X i N <Un> 9i (Xn <Un> L B
'0'5_\ L]
g-p(XN) 0.01 0.1 1.0
+ A )| T+ AT (gP(xn) %
<‘7n>
1 FIG. 11. Neutron spin-structure functig as a function of the
—gip(XN)<a'p>) —s +A3y,gi“(x,\,), (7.6 Bjorken variablex, . The neutron spin-structure function assumed
(on) according to Fig. 3 is shown as the middle curve and compared with

] ) ) the ones extracted from the calculat¥de spin-structure function
which we add up linearly for convenience. g} according to Eq(7.5. The upper and lower curves give the

(1) There is a systematic errdr,,g;'(xy) due to the fact bandwidth of the theoretical uncertainty due to the model depen-
that the extractiori7.5) is derived from the approximate con- dence[1] of the trinucleon bound state wave function.
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Secongdthe convolution formula$5.12 may be concep- A N[ X
tually wrong. There may be a multitude of effects, e.g., a F> bmdmg(x)=2 f déF, ™ (A_é)beinding(gtN)
medium dependence of the nucleonic structure functions, a N
binding correction, or other contributing non-nucleonic
nuclear constituents, which invalidate the convolution for-
mulas(5.12 and which also contribute msy,gi”(xN). Those
effects were discussed in the context of the spin-independent .
structure functiorFQ [18]. In the next subsection we worry o .:f 3 ( _ Pw * E)

; : belndlng(gtN)- d pN5 f +
about corresponding consequences for the spin-structure Pa
functionsgiA and their bearing on extracting neutron spin-
structure functions. Anticipating that also those corrections XTrlp(pntn) pa(NaPa)],  (7.8D
will turn out to be small, we conclude:

The approximate relatioii7.5) can reliably be used to into which binding is built in, the EMC effect in the EMC
extract the neutron spin-stucture functiagisof the neutron  ratio Rgyc can by and large be accounted for. Assuming the
from deuteron andHe data. Figure 10 uses tHéle data of ~Same momentum shift in the nucleonic plus momentum for
Ref.[10] and the deuteron data of R€L3]. When the data the present discussion of théHe spin-structure function
from all experiments, presently being performed or being ing’f, the front form spin distributioriN(gthA) gets the cor-
the planning stage, will be in, the parametrization of therespondingly changed modification and becomes
neutron spin structure functiorg', shown in Fig. 3, may
have to be revised.

(7.8a

with the spin-averaged front form momentum distribution

" pute
SNbinding(gthA)::fd3pN5( & o7 )

E. Is there an EMC effect A

in the 3He spin structure function g4? >
P 9 XTrlonp(Pntn) PA(NAPA) 1,

In the case of unpolarized deep-inelastic lepton scattering

a deviation between the nucleonic structure function of a free (7.99
nucleon, i.e.Fg(tN), and of a bound nucleon, i.éE5/A, is

indeed observed and called the EMC effect. There is a diver- - - €

sity of theoretical mechanisnig8] able to account for that Sbinding §TNNA) = SN (g_ m_A)tN”A : (7.9b

observation. For example, the decrease of the EMC ratio

The shift in the nucleonic plus momentum is only introduced
F5(X) in the § function which contains the front form momentum
Remc(X): 2R+ FI0 (7.7 fraction py/P.. The front form spin distribution
2 2 §Nbindin9(§thA) still satisfies the sum rulé.15 almost un-
changed: Compared with the original definiti@13 its de-
at intermediate values of the Bjorken variakledefined here pendence o is shifted, but since its nonvanishing values
for 3He, is often attributed to a medium correction of the are centered aroundA/according to Figs. 1 and 2, the inte-
nucleonic structure function, which may be realized in a thegration of ﬁA-§meding(§thA) over ¢ from O to 1 still col-
oretical description either by modifying the nucleonic frontlects the complete domain in which the front form spin dis-
form momentum distribution due to nuclear binding or by antribution is nonzero. The changed front form spin
additional meson contribution to the nuclear structure funcdistribution in Eq.(5.129 yields the modified®*He spin-
tion, the pion being the most important non-nucleonicstructure funCtiorU/i\binding according to
nuclear constituent; Reff18], which this paper extends, used
the latter m/?chanism. Both mechanisms yield comparable ae
effects forF; at intermediatex; they affect, however, the . as nNew| Xz < L
spin-structure functiog? quite differently: Whereas a bind- Gibincing X) tEN Ag 9 (Af) A" Soining £TMA)| -
ing modification of the spin-averaged momentum distribu- (7.10
tion will also yield a corresponding modification of the front
form spin distributionsy(£tyn,) and will directly change When using that modified®He spin-structure function
the predictions for the nuclear spin-structure funcidn we 9% binding—2S @ theoretical model for experimental data — in
do not see any simple mechanism for the spinless pions tthe extraction procedur§.5 for the neutron spin-structure
contribute tog? . function g7, no significantly increased deviation occurs be-
In one recipe attempting to account for nuclear bindingtween the neutron spin-structure function extracted and the
[29], the nucleonic plus momentupy, is shifted top;+e  one assumed for calculating qqaccording to Eq(7.10.
due to binding,e standing for an averaged binding energy, In fact, compared with the errorsg? discussed in the last
often taken to be about 30 MeV. Indeed, such a simple subsection the deviation is increased by less than 1%; the
shift yields the decrease in the ordinary EMC ratio deviation would not be discernable in a plot with the resolu-
Revc(X) at intermediate Bjorken variables Using the con-  tion of Fig. 10. Thus, a possible binding correction in the
volution formula 3He spin-structure functiog’i\, as introduced in this subsec-
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15T T T T 15— T ergy transfers to the struck nucle@y and to the nucleu®
i 1 i is relatively small for deep-inelastic scattering, i.e.,
g 0 1 2 i A:=Q%°-Q%,|A|<QC. Nevertheless, its effect 0B3
2 10l - & i
A 1 g " ] QX=Q%—2Q A +A? (7.12
5] - B 45| B
i i i can be sizable. One finds for the ratio of the scaling variables
0.5||||I|\|| O.5""|“" XandXN
0.0 0.5 1.0 0.0 0.5 1.0
X X 2
X Q 2pn-Q
=55 5A P, (7.133
FIG. 12. EMC ratiosSgyc(X) and Rgyc(X). The spin ratio XN A Q QK
Semc(X) of Eq. (7.1 is given as solid curve and compared with the
ordinary EMC ratioRgyc(x) of Eq. (7.7) given as a dashed curve. X 1 Apn-Q
In the right figure the nuclear structure functions are used in the %_ 1+ A/myx P,-Q’ (7.130
forms gfhingindX) and FoynandX) according to Egs(7.10 and
(7.8a. The left figure shows the same ratios but without the inclu-with
sion of binding effects; there, the nuclear structure functions are
used in the formgf(x) and F5(x) according to Egs(5.123 and Pn: Qn=pn- Q. (7.130

(7.89 with e=0. . .

The ratio x/xy is only at moderate values of close to
. . . . . + + i
tion, does not invalidate the extraction of the neutron spinAPn/Pa for all relevant nucleon momentay at which the

structure function according to E(Z.5). However, an EMC  sSpectral function gives significant contributions. Comparing
effect can arise in the ratio the instant form and the front form convolution formulas we

therefore have to expect conflicting results for small values

g™ (%) of the Bjorken variable.
Semc(X): = 5 - , (7.11 The noncovariant result for g7(x,Q%)=(Q- P,/
95(x){op) +g1(X){0n) Am,)G1(Q? PA-Q/m,) is obtained from Eq.3.119 of

Ref.[3] as function ofx and Q. The only modification with
respect to the quasielastic results is the replacement of the
nucleonic structure functions by the corresponding deep-
"inelastic ones according to

Semc being a much more sensitive quantity. This fact is
documented in Fig. 12 which shows this ratio with and with-
out the inclusion of a binding correction according to Eq
(7A.10) in the calculation of the’He spin-structure function
g7 - The ratioSgyc exhibits the same decrease at intermedi-

ate Bjorken variablex as the ordinary EMC rati®Rgyc of GTGN)(Qﬁva'QN/mN)zlimp.—NQgT(tN)(XN QY.
Eq. (7.7) does. The trend is clearly observable $ayc, Bj NN

though its smooth dependence on the Bjorken variabie (7.143
disturbed by the zero in the denominator of the ratio in defi- m3
nition (7.11); the definition may therefore be considered un- Gg(tN)(Qﬁl ,DN~QN/mN)=”m—N29’2\‘(tN)(XN 'Qﬁ)-
fortunate. Bj (Pn- Qn)

(7.14b

F. Relation to instant form dynamics . . o (t)
For practical calculations the parametrizations gﬁ N

. Refereg“:@] descrlbgs poIz;nzed inelastic lepton .Scatter'given in Sec. VII B are used; they do not carry a dependence
ing from *He noncovariantly in PWIA. It assumes instant on Q2' in contrast. the nucleonic structure functi(ﬁg(t’“)
form dynamics. Though the formalism is employed there for N ’

a description of quasielastic scattering, it is general and mayill remain dependent F’Qﬁ- _
formally be applied to the deep-inelastic regime of the The solid curve of Fig. 13 shows the spin-structure func-
Bjorken limit as well. In this subsection we explore a de-tion g7(x,Q?) derived from Eq.(3.119 of Ref. [3]. The
scription of deep-inelastic scattering based on Egd1a—  four-momentum transfer has been chosen to-1@°=10
(3.110 of Ref.[3]. However, the exploration is only a matter GeV?2. However, no significant change of the results is seen
of curiosity: The boosts of instant form dynamics are inter-for any value larger than-Q*=1 GeV?. Thus, theoreti-
action dependent for a composite system. The assumption 6flly, scaling is observed for Q*>1 GeV? provided it is
PWIA that the nuclear current is built from single-nucleon assumed for nucleons. This fact may be taken as one justifi-
contributions cannot be made consistently. Thus, front forntation for assuming scaling in the description of the data of
dynamics remains the superior form of description for deepRefs.[10,11], collected for an average momentum transfer
inelastic scattering. Q?=2 GeV2. However, Fig. 13 also proves that the concep-
The description of Ref[3] in terms of instant form dy- tually required difference between the momentum tran@fer
namics made the same conceptual distinction between the the nucleus an@y to the nucleon matters. The unjustified
momentum transfer to the nucle@and to a nucleo®,,, recipeQn=Q makes the results very close to the prediction
to a nucleon bound in the nucleus though assumed to be drsed on front form dynamics. Referen¢86—34 employ
mass shell, as this paper does, i@y# Q due to their dif- this recipeQy=Q. We claim that the approximated form of
ference in energy transfer. The difference between the erEq. (7.4) for giA, used for the interpretation of ex-
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g'z\'(tN), respectively. In deep-inelastic scattering the simple

approximation(7.4) for the convolution formulas is moti-
vated and proven to be reliable. Referenfg32] already
related the nuclear spin-structure functions to the nucleonic
spin-structure functions weighted by integral properties of
the nuclear wave function. But they were unable to justify
that relation rigorously. The present approach gives the miss-
ing proper justification. This finding is important for the in-
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001 x°1 0 terpretation of the experimental data with respect to the
analysis of nuclear effects.
FIG. 13. *He spin-structure functiorg? as function of the ACKNOWLEDGMENTS
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mula (3.119 of Ref.[3] using a noncovariant approach under the The work was started together with F. Coester who ac-

assumption of instant form dynamics is given as a dashed curve. loompanied the authors for a long time with his expertise and

a second calculation based on the same formalism we have expliencouragement; the authors are indebted to him; the authors

ity set Qy=Q; that approximation cannot be justified theoretically owe their slowly acquired insight into the intricacies of front

in instant form dynamics; the result is presented as dotted curvefiorm dynamics entirely to him, their still limited understand-

For comparison the full calculation of E¢5.123 is shown as a ing of it is their own fault. The authors are grateful to R.

solid curve. Milner for discussions on the HERMES project. The work
was supported in part by the Deutsche Forschungsgemein-

perimental data, is well supported by front form dynamics; inschaft(DFG) under Contract No. Sa 247/11-2.

contrast, its derivation based on instant form dynamics is

only poorly justified. APPENDIX A: DEUTERON DENSITY OPERATOR

The full density operatop,(n,) commutes with the mo-

Viil. CONCLUSION mentum operatoP. Its projectionpa(naPa), i.€.,

The convolution formulas which relate the structure func-
tions for deep-inelastic scattering to the properties of con- (PaNAlPA(NA)|PANAY =(NAlpa(NAPA)NA), (A1)
stituent particles of the target nucleus depend on the assump-
tion of one-body current operators and on the covariance abnto the Hilbert sector of momentum eigenstates with eigen-
the current tensor of the bound constituents. Consistencyalue P, is needed in Eq(3.2). The density operator of a
problems and ambiguities are due to the fact that one-bodgpin-1 target is parametrized in the form
currents cannot be covariant under all Lorentz transforma-
tions in a system of bound particles.

This paper presents a detailed derivation of nuclear spin- 1— inA~W+ itA THEY(W)
dependent structure functions for deep-inelastic lepton scat- 2mp ma
tering and applies them to the two- and three-nucleon bound (A2)
states. Front form dynamics is used for which the covariance
under the kinematic subgroup is sufficient to derive convowith the Lorentz tensol“”(W) defined by
lution formulas: The restriction to one-nucleon currents is

1
pa(NaPa) = 3

possible without inconsistencies. This is why we like the WEW - W'WE 1/ PEPY

description in terms of front form dynamics. The previous THY(W): = _( A A_g,uv W2.
calculation of Ref[30] is closest in spirit to this paper. In 2 3 Pi

contrast the noncovariant approach using instant form dy- (A3)

namics as discussed in Ref&,31-34 cannot be consis-

tently extended to the Bjorken limit in this sense. Our inves-The density operator is at most quadratic in the Pauli-

tigation of relativistic effects in the spin-dependent structure-ubanski vectoiV. The vectom, and the tensor, describe

functions for the deep-inelastic regime is novel; it extendghe polarization of the target. The parametrizatié2) sat-

the work of Ref.[18] to polarization. The numerical results isfies the required constraints. The Pauli-Lubanski vedor

show that relativistic effects due to the proper treatment ofnd the tensor operatdr**(W) are traceless, i.e., [W]=0

spin are small and negligible compared to larger effects arisand T T#*(W)]=0. In general, the polarization vectap

ing from the conceptual difference between front form andand the polarization tensdr, are independent. However,

instant form predictions and arising from the model depenwhen considering a quantum mechanically pure state as we

dence of the ground state wave functions. These findings a0, thenn, is the direction according to which its polariza-

equally valid for the two- and three-nucleon systems. tion is defined; in this case the polarization veatgrand the
Front form dynamics allows the formulation of convolu- polarization tensot, are connected by

tion formulas with a comparatively simple structure, i.e., the

nuclear spin-structure functiorgg' andg, are separately de- 3 1( pep?
termined by the convolution of the front form spin distribu- th"="| nknk— _(¥_gw> ' (Ad)
tion with the nucleonic spin-structure functiogg(t“‘) and 2 3 Pa
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besides Eq.(A4) the general constraint:i=
na-PA=0 then hold for the polarization vector, .

Matrix elements of the density operator of any momentum i

P, are related to those of the rest frame, i.e.,

11 3. -
Algl 1+ 5NR-Sa

(N alpa(NaP )N a) = < A

372
+3% tri;TA(SA) >\A>. (A5)
For Eq.(A5) the identities
W P o=/ Myl Pa
mA| ANA) = f M
Pal® .
X|L¢l =] (0S4)"||Prhp), (ABa)
My o

Pa\* .
nk= Lf( ) (0g)", (A6b)

THY(W) /
( |Paka) =

X| Ly

|PrAA),

B PAVY
) iLf(m—AA) jT')\(SA)

(A6C)

Q"Q”

WA"(Q,Pp) = —gr T

( FH(x,Q%) +

+GH"(W)b%(x,Q? )—+H"”(W)b (x,Q%? )—+|—

X Qg Wegt(x,Q?) +

with

Q*, (B2a)

Xi=— -, (B2b)

—1 and

)-Q . A A
—Qmi b7 (x Q))

Q-W A
Ws= 5P, PAﬁ)gé‘(x,Q% o
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t (A6d)

are used. In the fornfA5) for the target rest frame it is
obvious that the density operator has only nine independent
elements as appropriate for a spin-1 particle, one arising
from the identity operator, three from the vector oper&por

and five from the tensor operatdi(S,). The Cartesian rest
frame tensoiT ) A(Sa),

TA(Sa):= St L 39S%, (A7)
2 3
is symmetric, i.e. T (SA) T (SA) and with respect to the
tensor lables traceless, i.€;Tx(Sa)=0; thus, the tensor
part of the density operator can equivalently be written as a
five-component tensoTA](SA) of second rank—in standard
relation to its Cartesian representati@). The constraints
on the density operatgra(naP,), from which, for example,
condition (A4) results, are best proven in the target rest
frame, and their validity then carries over to any system by
Lorentz covariance.

APPENDIX B: DEUTERON CURRENT TENSOR

The current tensoW4"(Q,P,) is Hermitian and con-
served, it preserves parity and time-reversal invariance. Its
Lorentz structure is built from the three four-vect@s P,
andW. The current tensor has the general form

PAPA[ _a TW)-Q 4
(X,Qz)— (Q)
‘" o

etrabB

] Q-Pa

(B1)

were permissible. Furthermore, the structure functions which
augment the basic tensors depend on the Lorentz scalars
Q?,Q-P, and Q- W)?, where the dependence o (W)?

is at most linear and could therefore explicitly be split off.
This strategy would result in a perfectly admissible and ab-
solutely general parametrization of the current tensor. How-
ever, those additional terms, specific for a spin-1 target, are
not traceless and therefore would yield a nonstandard param-
etrization upon spin averaging. In contrast, the modified,

x being the Bjorken scaling variable. The dependence of théhough clumsier basic tensor forms in E§1):
current tensor operator on the Pauli-Lubanski vegtbis at
most quadratic for a spin-1 targgt 1 being the spin quan-

tum number. Besides the standard basic tensor forms used Q"Q# Q,,,Q”

a1 e VYV RRYVLLTY GMV(W): g,u TM v (W) ’
for a spins case the two additional onggv*W"+W"W#]/2 Q2
and [W-P L+ W'P41(Q-W)/2 with W:=W—(Q-W/Q?)Q (B3a)
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space. As in Eq(6.2b of Sec. VI it is related to the nuclear

M ! ' . . . .
H“V(W):{g“#,— QQ(z“ [PAQ, T (W) bound statdP,\ ) with spin projection\ 5 by
: 1 Q, Q" (NNAALP(PNEN) [N A)
+TH A(W)QuPal—| 9,/ — 1 A i
Ma Q < (pﬁ pI )
=\ PaA 8 o = 55| 9P —p))
B3b ANA NL ™ P1L
(B30 Pa Px Pa
and the scalarQ-T(W)-Q=Q,T#*(W)Q, are traceless
with respect to spin summation. Thus, the' struiture functions X O1(MAN) 8y g [Paka ) - (C1)
proportional to the Pauli-Lubanski vectdf, i.e.,g;", and the

structure functions proportional to the basis tenget$(W)
andH*"(W) and to the scala®-T(W)-Q, i.e., biA, cannot
contribute in the spin-averaged case. When spin averaginq,h
the current tensofB1) reduces to the well-known form with
the two structure functions? andF?5 .

The current tensofna|WA”(Q,Pa)|n,) follows from the
current tensor operatdW,”(Q,P4) of Eq.(B1) and from the
density operatops(naP,) of Eq. (A2) according to Eg.
(3.2. In fact, the current tensdma|W4"(Q,PA)|n,a) is ob-
tained from the operatofB1l) by replacing the Pauli-
Lubanski vectoW and the tensor operatdr”(W) accord-
ing to the relations

The nuclear c.m. system is assumed for the calculation.
e internal part of the nuclear bound stHg\ ») is a mass
eigenstate and it can therefore be identified with the nonrel-
ativistic ground stat¢¥ g\ ,) of internal motion. It is calcu-
lated in terms of the three-dimensional relative momentum
and in terms of canonical spins, but has now to be trans-
formed to the appropriate front form variables.

Internal single-nucleon front form moment§; (&) are
introduced as in Sec. VI and extended to three-dimensional
form there; the momenta are constraineld; ¢,) are the

independent ones. The relative momentﬁm expressed by
&= (1/im) TTWHpa(na,P)], (B4a)  them. e,

th7= (LM TH T (W)pa(naPa)].  (B4D) -
(kl_k2)1 (Cza)

T
I
N -

We note that Eq(B43a) differs from the corresponding Eq.
(3.10 for a spins target, since the quantum numbgris
different; this difference is obvious, since polarization is de- 1
fined with respect to the maximum angular momentum pro- 5:[@,"%1—( EMo—
jection j; despite that difference the current tensors in Egs. 2

(3.8 and(B1) are defined such that their dependence on the

polarization vector and on the spin-structure functigﬁs’s with the abbreviation

the same for spin-1 and spintargets.

mz+k?2,

“aM, ) (©

12

(C20

OF THE DEUTERON AND SPIN DISTRIBUTION

2 2
APPENDIX C: FRONT FORM MOMENTUM DENSITY _[ my+ki
0=
§1(1- &)

In this section the front form momentum densitfpyty)
of Eq. (5.8b is calculated for the deuteron, i.e., fA=2. It  The two-nucleon bound state wave function takes the follow-
is calculated as an operator in nucleonic and nuclear spimg form in that representation:

[ o .
(ki E1NiSotato| Wk )= 2 (Mq|Ryy(Ky, €1)]s1) ke £ (P(kyi €1)8:1Sot1to| Wk a). (C339
51 d(ky &1)
The transformation of momenta requires the Jacobi determinant
ap ap® Mo(Ky. £1)
=|—(k =" C3b
A R ey (C3b
the transformation of spin the Melosh rotation
My+ & Mo+i(onki— ogki)
Rum(ki €1)= ; (C30

V(my+&Mg)?+k7,
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in Eq. (C3b) the argument list oM, is made explicit. The front form momentum density samples the front form properties of
a single nucleon. Thus, only the spin of nucleon 1 is Melosh rotated. In contrast, the spin of nucleon 2 remains in canonical

representation, since the expectation value in (&4) sums over that spin dependence. The front form momentum density
takes the form

<)\N)\A|p(pNtN)|)\l,\l)‘A>_ 2 E

A t2 15152

NIRM(PNL E)S1)(ST Rm(Prs €)M T sA Al P(Pry €)S1Sotats)

ap (pmi)<k

X(D(pm§)5132t1t2|‘PB)\A>|§ VI (C4)

At this stage we go back to the corresponding instant form momentum defipi{y) which reads in the nuclear c.m. system

<SNS;-\|p(5NtN)|SI,\ISA>:<\pBS’A Z 5(5N_|2i)oi(5|’\15N)5tNti ‘I’BSA> :AZ ; (W gShlPsiSatatz)(PnsnSatatzl W gSa)
2 2

o . GBSty 1. .
= §< SNSA Po(pNtN)+P1(pNtN)UN'SA+P2(pNtN)(?_ 39N Sa
N
+ pa(Put) 25 T (Sa) Yiu(Pr) s'NsA>. (CH)

The first step gives the definition. In the next two steps of &) the spin structure of the instant form momentum density

p(ﬁNtN) is recalled. The spin operat()’r‘AZ](SA) was already introduced in Appendix A, it is a five-component tensor of rank

2 and is related to its Cartesian forfA7) in standard fashion. In addition to the three functigpgs p, andp,, which are
already present in the description of the spimarget, a fourth functiorp; occurs, which is responsible for the tensor
polarization. The functiongg,p1,p2, andps of Eq. (C5) are numerically available and are used for calculating the front form
momentum distribution. However, neithpg nor p5 will affect the spin-structure functior‘g’i\ and gé\; both determine the

front form momentum distributiorf \(éty) of Eq. (5.148, required for the calculation of the spin-independent deuteron
structure functiorF’é\. Since the calculation is carried out in the nuclear c.m. system, the canonical and front form spins are
identical, thus|Wg\a)=|¥gsa) and therefore

Ip3(pn. £) ,
___3£i—-<ANAA

- on-PSa P
po(Ptn) +p1(Pty)on- Sat Pz(ptN)(T

A@AA>

The result(C6) requires the replacement of the Jacobi momer&mﬁ(pm £) by the front form momentap, £) according
to the prescription of Eq(C2b), given there in terms ofl(;, &;).

The determination of the spin-structure functiagis and g5 in deep-inelastic lepton scattering according to H§s19
requires the full spin-dependent momentum deng(iyyty); however, the determination according to E@s12 needs the
front form spin distributioréN(gthA) only, i.e.,

11

(AN Alp(PNEN) [N A) = 2pr Ry (Pn.€)
A

1. . “
- §0'N'SA> +§M: T[AZI\]/I(SA)Y;M(p)pS(ptN)l Ru(Pneé)

P=P(py, )

(C6)

£=py/Px

NRm (PN )]

- pnap 1
pl(ptN)n:A+P2(ptN)( 52 _§nlA)

ap® 3
&_f(leg) =

- 1 )
SN(§thA):§J d“pn.
P=p(Py. &)

(C7)

The front form spin distributioéN(gthA) was already introduced in E¢5.13. The calculations of this paper are based on
it. It satisfies the sum rulés.19 relating it to the spin expectation vaIujeN(tN)> in the polarized deuteron staf@gn,),

defined by Eq(5.1639. The spin expectation vaIL(erN(tN)) is given by theS- and D-state probabilities of the two-nucleon
bound state wave function according to

1 1
(oN(ty) = (P(S)——P(D)) (C8)
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