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In order to include pionic degrees of freedom in the description of nuclear many-body systems, the chiral
model in the nonlinear representation is investigated. The renormalizability of the model, which is obtained
from the lineare model by a field transformation, is studied in the context of the equivalence theorem. It is
shown that in any expansion scheme which is based on self-consistent mean scalar fields, the monlinear
model should be considered as unrenormalizéblen if thes mass is kept finitg and new counterterms have
to be introduced in each order. The resulting equation of state in the ondtaofree approximation is
calculated, and the corresponding pion-nucleus optical potential is disciIS€&6.6-28187)03209-3

PACS numbsgps): 13.75.Gx, 12.39.Fe, 21.65f

I. INTRODUCTION fore, theo model in the nonlinear representation seems to be
a better starting point.

One of the most important subjects in relativistic nuclear Although the nonlinearr model is unrenormalizable by
many-body theories is to assess the effects of vacuum flugower counting, its Lagrangian can be obtained from the
tuations, which cannot be studied in nonrelativistic modelslinear model by a field transformatigivVeinberg transforma-
For this purpose, many works used some kind of mesontion) [8]. Because of the equivalence of Lagrangians which
nucleon theory incorporating scalasrX and neutral vector are connected by nonlinear field transformatif®s11], one
(w) meson field1]. On the other hand, nonrelativistic mod- might therefore expedtl2,13 that the nonlinear model is
els have clearly demonstrated the importance of pionic destill “on-shell renormalizable”(as long as thee meson mass
grees of freedoni2], in particular for the description of is kept finitg, although the usual multiplicative renormaliz-
nuclear electroweak propertig3). It is therefore desirable to ability is lost. Indeed, calculations including one-nucleon
devise chiral-invariant relativistic models which are capabléoop graphg12] (but no meson loopseemed to support this
of including both pionic degrees of freedom and vacuumconjecture, and the viewpoint that the nonlinear model
fluctuation effects at the same time. should lead to finite physical results if the counterterms of

To investigate the effects of vacuum fluctuations, it seemshe linear model are included in the transformation can be
natural to use a renormalizable model, where the calculation®und sometimes in the literatuf&3,14). In view of this fact
can in principle be done in a well-defined and straightfor-and the recent interest in linear and nonlineamodels for
ward way. Therefore, the chiral linearmodel[4] was con-  nuclear systems, often in connection with the concept of
sidered as a possible candidate. However, it was realizescale invariancg¢15], it seems necessary to us to clarify in
soon that this model leads to serious difficulties: As a resultvhich sense the nonlinear model is equivalent to the linear
of the nonderivative coupling of the pion, intricate cancella-one, in particular for the description of the bulk properties of
tions are inevitable in order to produce results consistentuclear matter. This is one of the main purposes of this work.
with low-energy theorems and current algebra. In the nucleawe will show in detail that results for the physical quantities
medium, this leads to the difficulty that in the mean-fieldin the two theories, calculated up to some order in an expan-
(Hartreg approximation the pion propagator has a tachyorsion scheme, are equivalent only if the mean scalar fields in
pole[5,6] (i.e., a pole at imaginary energy Explicit calcu-  the two theories are taken into account up to the same order.
lations have shown that higher order loop graphs of the rindn any treatment which is based ealf-consistentean sca-
type are actually insufficient to prevent this tachyon géle  lar fields, however, the equivalence is lost. Concrete one-
On the other hand, in the nonlinear representafiththe  loop examples will be used to illustrate this feature. Conse-
pion couples via derivatives, and no cancellations are neceguently, in these treatments the nonlinear model should be
sary to reproduce the results of low-energy theorems. Fotonsidered as unrenormalizable, and new counterterms are
example, concerning the tachyon pole problem mentionediecessary in each order of the expansion.
above, the effective pion mass in the nonlinear representation Following this procedure, we will calculate the thermody-
is of orderme from the outset and positive definite. There- namic potential and the resulting equation of s{@®S of

nuclear matter in the nonlinear model to one-loop order. This
requires the introduction of a new counterterm to renormal-
1This problem does not appear in an “exact” calculation, butize the pion loop contribution, i.e., the shift of the pionic
shows up in any expansion scheme of the effective potential t@ero-point energy relative to the vacuum value, which arises
some order’, which requires the pion propagator up to order 1 due to an enhanced pion mass in the medium. This enhanced
as an input(See the discussion at the end of Seg. Il. pion mass, which originates from tleewave pion-nucleon
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interaction, has only a little effect on the bulk properties, andn2=m?(v) (a=o,7). Note that, since depends on tem-

we will explore some consequences of it for the pion-nucleugerature and density, these are in-medium masses. Their re-
optical potential. The main purpose of this paper, however, isation to the free(subscriptf) masses isny=(v/v)Mys,

to provide a basis for an application of the nonlineanodel  and

to the description of nuclear matter, and the numerical results
presented here serve as illustrative examples.

The rest of the paper is organized as follows. In Sec. Il the
linear ¢ model and problems associated with it are dis-
cussed. In Sec. Il the Lagrangian is transformed to the non- The calculation of the one-loop thermodynamic potential
linear representation, and it is shown that the pion loop contising the imaginary-time path integral is standgi6]: One
tribution to the effective potential cannot be renormalized byadds a source termpJ and a chemical potential term
the counterterms present in the original Lagrangian. In Secu.y°y to the Lagrangiari2.1) and represents the partition
IV the equivalence theorem is reviewed and applied to théunction Z(J)=exp(i/A)W(J) by a path integral, where the
present problem. In Se® a new counterterm is introduced t integration in the classical action is evaluated along a
to renormalize the pion loop contribution, the resulting one-straight line C) fromt=0 tot=—i8. One then performs a

mi=m§f+na)\2(vz—v$) (a=0o,m n,=3, n_=1).

(2.9

loop equation of state at finite temperature is calculated, andegendre  transformation to the effective action
the pion-nucleus optical potential is discussed. Conclusions (u)=i(BV)Ves=W(J) — [d*xJ¢. This leads to
are presented in Sec. VI.
—4 o
IIl. LINEAR o MODEL Ver(U)= N fD‘/’D‘/’DUD”

The Lagrangian of the chiral linear model is given by i R .

[4] xex%%f d4x(£+Jo+Mc¢y0¢)) }
1 ¢ J=J(u)
L=ylib—g(ptim Tys) ¢+ 5[(0#¢)2+(0Mw)2] 2.9

MZ A2
—7(¢2+n2)—z(¢2+n2)2+c¢. (2.1

Shifting $=u+ o, we obtain
L=—Vg(u)+ylib—my(u)—g(o+im 7ys) ¢

+ 210,007~ M) o)+ 5[(3,m ()]

—N2uo(o?+ nz)—%z(aer )2+ o[c—umi(u)],
(2.2
where
2 2
Vy(u)= Zu4+ 7u2—cu
is the classical potential, andmy(u)=gu, mfr(u)

=u?+N\%0?, and m3(u)=pu?+3N%u? The “physical”

value ofu (i.e., the thermal average, or the vacuum expecta-

tion value in the case of =0, of ¢) will be denoted by,

and can be obtained from the conditip#y] that the linear

term in Eqg.(2.2) cancels ther tadpole loop graphpS(u)]:

J(uy=c—u[m3(u)+ ém2(u)]—iS(u)=0 at u=v.
2.3

The counterterms are obtained by

replacing
wl— u?+ du? and\®— N2+ 6\ 2, besides the wave function
renormalizations and the renormalizationgfThis gives a
contribution o« Sm?(u) = du®+ 8A2u? in the linear term of
Eq. (2.2), which has been included in E(.3). The particle
masses atu=v will be denoted by my=my(v) and

whereJ(u) = —dVi/du has the form(2.3). The thermody-
namic potential per unit volume is the®/V=V(v). To
O(#) one obtaing5,17]

d*k
Ver(U)=V(u)+ 6V (u) +ih } f<2w)4ca
X In[k2—mZ(u)+ie]+Vp(u)
EVC|+VF+VD, (26)

wherecy=4, ¢c,=—3, C,=—3,

2 2
1)
SVe(u)= Tu4+ %uz

is the counterterm t®(%), andVy, is finite and vanishes as
Me, T—0.
Using dimensional regularization we hap&r]

[K—InmZ(u)],
2.7

where K=1/ep— y+Indw+32 and ep=2—D/2. From the
above forms formi(u) we see that all divergences can be
put into SX? and du?. To fix the finite parts of these con-
stants, one usually requires that foe= =0 there be no
loop contributions to the one- and two-poimtGreen func-
tions at zero momentunil,5], i.e., that (9VF/ﬁu|u:vf
=6V /dgu?|,-,,=0.[The first condition means that in the

vacuum the counterterm in E(R.3) cancels the loop graphs
S, such thatmef=c/vf .] The explicit form of Vg can be
found in[5].

[ d% o mi(u)
|f (Zw)4ln[k2—mi(u)+|e]= —~—
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From Eq.(2.4) we see that for fixednf,f, the in-medium The det in Eq.(3.2) refers to space-time as well as to the
mass squareth> becomes negative if<v;, even for slight  isospin indicesi,. Inserting Eq.(3.1) into Eq. (2.1, and
deviations ofv from v;. This is the tachyon pole problem introducing ghost fieldsy, »* to account for the Jacobian
discussed in the Introductidnit should be emphasized that (3.2, one arrives at the Lagrangian of the chiral nonlinear
in a “full” calculation this problem does not appear due to model:

the Goldione theorem_in the medidsl, which states that -
iS(v)=v3,(0), where3_(0) is the unrenormalized pion L'=N[ID—g¢'+ (D" 7y,ysIN

self-energy in the linear model &t=0, i.e., 1 u?
+50(9,9")2+4¢'2(D E)?]— - ¢'?

2-# 2
Ner

I PP _
o UA_7(0)—c=0 (at u=v). (2.8

\? 1-& 24’ |’
——¢'*+co’ + npy* . (33
B 7 ¢ ¢ 142 N\ 15 Z (3.3
Here —A_*(0)=m2+ ém%+3(0). Therefore, atu=v,
where the effective potential has its minimum, the inverseHere the covariant derivatives are defined by

pion propagator at zero momentum becomeq7] D#é=[1/(1+ &) ](0"&) and DAN=[g*
—A_Y(0)=c/v>0. In a loop expansioffor any other ex- +i7 (£xXD“&)]N.
pansion schemehowever, the effective potential to ordér The chiral transformation properties of the new fields and

(V) involves the pion propagator up to ordér1, and the role of the Jacobian are discussed in Appendix A. As is

nothing prevents-A_™(0) (n=0,1,... /—1) from be- argued there, the Jacobian factor should be included even if
coming negative, when evaluated at the minimum'gﬁ‘). In  one starts directly from the nonlinearmodel, although we

our example above, the one-loop effective potential involvederived it here from the field tran_sfortnfltions./ _
the integral over the zero-loofHartre@ pion propagator, We now shift the new scalar field’=u+o". It is also

which indeed has no tachyon pole at the “zero-loop value”cOnvenient to introduce a pion field’ =2ug such that the
v=v, but becomes tachyonic for any othexv; . Accord- factor in front of the kinetic term becomeés Of course, the

- () . determinant changes accordingly, and we obtain the shifted
ingly, V¢ becomes complex, and a loop expansion of theLagrangian of the nonlinear modgl2]:

effective potential in the linearr model is rendered impos-
sible.

L= —vc,(u)+ﬁ[im —my(u)—go’
I1l. WEINBERG TRANSFORMATION

1
N+ S[(9,0")2=mi(u)o'?]

. L . 1
To obtain theo model Lagrangian in the nonlinear repre- +2—(D'“77’) TV, s
sentation of chiral symmetry, one can introduce the chiral u

radjus @') and the chiral angleﬁQ instead of the original 1 o'\ 2 )
variables ¢, ie., ¢+im Tys=¢p'U with + (1+ _) (D*a')2— p2(U)————
U=exp(i # 7ys). One also performs a chiral rotation of the 2 u 1+ 7'2/4u?
nucleon field 8] N=U2y, such that the meson-nucleon in- ) , s
teraction part of Eq(2.1) becomes simply-gN¢'N. In- \2ug'3— )‘_Uf4_ EMZU_”—
stead of the chiral anglé, however, it is customary to use 4 27T U 1+ 72407
the variable£= 6 tan(6/2), in terms of whichU*? takes the Ty
form U_l’2=(1+i§~ Tys)/ (1+ §2_)1’2._ As a result, the trans- s o/u + o' [e—um(u)]. 3.4)
formation (¢, m, ) — (¢',&N) is given by[8,13] 1+ 7' 2/4u
1-£ 2¢ 1—i& Ty Here the covariant derivatives are given by
d): 2¢’1 = 2¢)’7 W:W .
1+ 1+ (1+8) 1
3.9 DAN=| g*+i 7 (7' XD*w') |N,
(2u)?
The Jacobian of this transformation is given by
1
24! DMH/Z?(FWLH,). (3.5
J=delA;), Aijzl%gzéijzAaij . (62 LA

The quantitiesmy(u), m2(u), and alsom2(u) in the
termoo’ in EqQ. (3.4), are the same as those in EB.2), but
2Forv=uv,/+/3, thea meson becomes tachyonic, too. The calcu-the new in-medium pion mass squayefi(u) =c/u is a posi-
lations(see Sec. ¥ however, show that this presents no problem astive definite quantity. The physical value offor the nonlin-
long as one is not interested in the transition to the abnormal statear model, i.e., the thermal average¢df, will be denoted by
(v=0). Moreover, it is known that this problem can be solved atv’. It is different fromuv of the linear theory, as is clear from
least partially by including the ring-type diagrafis/—19. the form of the transformatio(8.1). It can be obtained from
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the condition that the linear terr_n in E€3.4) cancels the inserting theO(%°) solution, i.e., the minimum o¥(u),

tadpole graph$S’(u)] of the nonlinear model: into the O(%) parts of the effective potential. Thi®(#%°)
N 2 2 ergin o, solution is independent df,p and is the same in both mod-

I (W)=c—ufmz(u)+ smy ()] =iS'(W)=0  at “le e @=vi). Since for this solution m:(v)

' =,ufr(vf)=c/vf, the “pure O(#)” parts are identical in

The effective nucleon and masses are them{=my(v') both theories. (This is, of course, of little practical impor-
andm/?=m?(v"'). The square of the effective pion mass in tance, since these parts are removed by the subtraction of the
the nonlinear model, vacuum value$.This observation indicates already that the
loop expansion in the two theories are equivalent to each
c v} other only if one really compares terms of the same order in
wr=pl(v)=—=pu? —, (3.7  #, taking into account also thk dependence of the mean

’ !

v v fieldsv andv’.

has the same dependence on the scalar mean field as the full
inverse propagatc{r—A;l(O)] had in the linear model; see
Eq. (2.9).

If the counterterms of the linear model are included inthe In this section we first consider some aspects of the
transformation, it is clear that we have to replaceequivalence theorem which are relevant to understand the
wP— u?+ 8u? and \2—\2+ 5\? everywhere in Eq(3.4,  connection between the linear and nonlineamodel. We
besides the wave function renormalizations and the renotthen explain why in actual loop calculations based on self-
malization ofg. This leads, in particular, to the counterterm consistent mean fields the nonlineamodel should be con-

o« mZ(u) for tadpole graphs in E43.6). There is, however, sidered as unrenormalizable.
no pion mass counterterm in the transforngednlineay La-
grangian. A. Equivalence theorem and one-loop examples

Let us now discuss the one-loop effective potential in the . . L .

nonlinear model. Itis clear that the integration over the ghosf Our notation will, for simplicity, refer to a single scalar

fields in the effective potentidtf. Eq. (2.5)] gives back the 1€ld (#), but the generalization will be obvious. We con-
logarithm of the Jacobi determinant, i.e., a contribution

sider a canonical transformation of field variables ¢[ ¢']
suchthatC(d)=L(P[d' 1)=L'(d"). We also introduce the
1+o'/u ) shifts =0+u and ¢'=0’'+u’, and denote the shifted

IV. RELATION BETWEEN THE LINEAR
AND NONLINEAR o MODEL

A Trin Lagrangians by L(o,u)=L(c+u) and

L' (o' ,u')=L'(c'+u"). The physical values af andu’ in

to be integrated over the meson fields. Since the integrane two theories are denoted @sandv’. Then the connec-
involves only the fluctuation fields, it is clear that the ghosttion (or equivalence between the original and the trans-
loop gives contributions of orde#? and higher. Therefore formed theories can be summarized as foll¢@s11].

our effective potential takes again the fott6), where the (1) If (¢~ --)* denotes the average @f(x;) (x,)- - -
effective masses have to be replaced by those of the nonlivith weight exp{/#)fd*xL, we have

ear model. The nucleon and the loop are formally un-

1+ @' %/4u?

changed, while the pion loop becomes (pp-- ) D=(P[p'1p[$']-- )~ *), (4.1
— 3 [ d% , (0o )Eo=(olo" v 10" [0 v']- - )F ),
VF,W=—?ﬁJ (277)4In[k2—,uw(u)+|e] (4.2)

) The first relation applied for the one-point function gives the
—_ 3h C—[K—In 2()] 3.9 relation between the mean fields=v(v'), and therefore
6472 u? Ko ' ' the shifted fields are related by

Because of the inverse power dependenceipthis diver- oo’ v']=¢lo"+v']-v(v"), (4.3
gence cannot be canceled by the tefiy,(u) in Eq. (2.6). o . . .
(We note that this feature is independent of the choice of th&/hich is used in Eq(4.2). Note that there is no simple rela-
normalization of the fields’, as long as the Jacobian is tion between then-point functions in the two theories, i.e.,
properly adjusted.In other words, the counterterms of the between(¢é- - -Y“(? and(¢' ¢’ - --)*'(®), or similarly be-
linear model are insufficient to make the effective potentialtween the shiftedn-point functions. In particular, if the
in the nonlinear model finite. n-point functions in the original theory are made finite by
A more general discussion concerning this point will be
given in the next section. Here we just note that we should—
compare the effective potentials in the two theories at their *This is evident for the loop parts of the effective potential. From
respective “physical” valuesi=v andu=v' [see Eq(4.4) the classical potential in the transformed theory there also arises an
below]. If these quantities are determined self-consistentlyadditional O(%) term due to Av=v'—vxh, ie,
from Egs.(2.3) and (3.6), they implicitly include all orders  V(v')=Vy(v)+Av[(N2vZ+ u?)v;—c]+O(4?). However, the
of #. The “pure O(%)” effective potential is obtained by term in brackets - - -] vanishes since; minimizesVy(u).
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renormalization, th@-point functions of the new theory will to be taken into account. For example, if both sides of Eq.

nevertheless be divergent in gendrED]. (4.2) are calculated to ordéf for fixed v andv’, and then

(2) The effective actions of the two theories at their re-the solutions of Eq92.3) and(3.6) are substituted foy and
spective minima are the same: v', terms of ordet:? or higher will in general be different on

the left-hand sidéLHS) and the RHS of Eq4.2). Similarly,

F(w)=T"(v"). 44 i we calculatel'(u) for fixed u, andW(J) for fixed J, to

order 7, and insert the full solution of Eq2.3 for u, the
guantitiesl“(u) and W(J=0) differ by terms of ordet:?,
and the argument given in Appendix B leading to E44)
. iorfs _ W\ (o) shows that als®' (v) andI™’(v') differ by terms of ordef: 2.
(3) The two-point functlor], A,(R)_W(p)“( P) In particular, these higher order terms may contain diver-
and A’ (p)=(o’(p)a’(—p))“ ) have the same pole; gences which are not canceled by the counterterms of the old
i.e., at the pole they behave as theory.
. Let us discuss some one-loop examples which demon-
_ oo strate the validity of the equivalence theorem in the loop
Alp) p2_mz:>A (p) p2—m2' (4.5 expansion, provided that the dependence of andv’ is
explicitly taken into account. Equatidd.5) implies the fol-
While Z is finite due to renormalizatiorZ’ is divergent in  lowing relation between the meson self-energies in the origi-
general. nal and transformed theories: If we write schematically
(4) The S-matrix elements are unchanged: A~ Y(k?)=k®—m?—3(k?) in the original theory, wheren?
is the mass parameter in the Lagrangian, and
} A" Y k) =k?2-m'2—3'(k?) in the transformed theory,

Relation (4.4) shows in particular that the thermodynamic
potential and, therefore, all bulk properties of the system ar
the same in the two theories.

n/2

where Am?=m’'2—m?x# arises due tw’'#v, the “pole

position” up toO(%) is given bym?+ 3 (m?) in the original
o) theory and bym?+ 3.’ (m?) + Am? in the transformed theory.

X(o(p1)- -~ o(pn))™” These should be the same, i.e.,

Hl (p?—m?)f(py)

Si(P1:P2, - - - .pn)=<z

lim
2 i=
piﬂmz

1 n/2 . n ,
=z m L eF-mie) A" m?) = A"{(m?) =3 (m?) ~[ 3 (m?) + Am?] =0,
Z pizamz i=1 (47)

’ ' L' (o' v")
X(a'(p1)---a'(pn)) , (4.6 Here we consider the pion propagator in free space as an

where thef(p;) are the momentum space wave functions example. In this case, the self-energies in the linear and non-
I . i

Since theS-matrix elements in the original theory are finite linear_models areS. (=3 i+ ém>(vy) —k*(Z,—1) and

by renormalization, in the transformed theory the diver-3’ =3’ —k?(Z,.—1), where the unrenormalized self-

gences contained in the on—shell_ Green“funcuons and’ in energiesS ., S'. are given in Appendix C 1. The mass

cancel. The transformed theory is thus “on-shell renormal- t : th l del :

izable” [10], although the Green functions themselves ar aEame er n ze noninear moade 1S
’ i=clvt{=clvi—cAv/vs, where Av=v'—v. From Eq.

divergent. Mot = _

Simple proofs of these statements are given in Appendi2-8) We have c/vg=—A_#(0)=mZ+3 ¢(0)+ dmZ(vy)
B. and therefore, t® (%),

We now discuss in which sense the above general rela-
tions are valid in some expansion scheme, e.g., the 16dp ( 2

expansion. Usually one performs the loop expansion of the Amiz,u;zf—miFwa(O)ﬂL §mi(vf)—%Av.
effective action, or of Green functions like those in E42), vt

for fixedv andv’, and leaves out the tadpole graphs. In the

end, one substitutes the solutions of Egs3) and(3.6) for v ] ]

andv’. The solutions of these nonlinear equations, however hen the difference between the inverse propagators be-
involve all powers offi, and so do the Green functions on COMes

both sides of Eq(4.2), although they are truncated in the

4.9

loop expansion for fixed andv’. If we want tocomparethe ALY = AN KD =S (K2 =S (0)—=3' (K2
Green functions in the old and new theories up to a given w1 (k) af (K= 2i(K5) = 24(0) = 22(K%)
order inf, the/ dependence of the mean fieldsndv’ has mef

f

“Since points (3) and (4) are most relevant in free space )
(p=T=0), our Lorentz-covariant notation refers to this case, al- 1h€ one-loop connection betweeh andv follows from

though the generalization is obvious. We also use the notatiofds-(2.3) and(3.6): If we write v =v(@+#v ™), and similar
(o(p1)- - - a(Pn)) (P1+Pa+t---pa=0) for the Fourier transform for v’, and define the counterterm&mi(u) to cancel the
of the n-point function, with the delta function for overall momen- one-loop vacuum tadpole graphs, it follows that
tum conservation removed. vO=y'O=y satisfiesm?(v;)=clv;, and
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i 34 since the nonlineas- model has definite advantages over the
Av= —2[8’(vf)—8(vf)]+0(ﬁ2): 2—F1(m,27f) linear e model, in particular for the many-body problem, one
vt could still use Eq(3.4) as an effective Lagrangian, and de-
4.10 termine the necessary counterterms in each order of the ex-
' pansion scheme. This method, which is somewhat similar to
where the treatment of loop diagrams in chiral perturbation theory
[21] (although the context is quite differgnwill be illus-
q 1 trated in the next section for the case of the one-loop effec-
(4.1) tive potential.(Another method would be to introduce a cut-
off in the loop integrals. However, this method has the
and in Eq.(4.10 we used the explicit one-loop expressionsg;snignve"’}[ﬂtease that in many cases it leads to conflicts with
for the tadpole graphs in the two theories. Inserting Eq; Before closing this section, we add two remarks: First, the

(4.10 into Eq. (4.9, and using the explicit forms of the ; .
. . . . . S “nonlinear o model” in the common senge2,23,4 refers
self-energies given in Appendix C 1, it is easy to show thatto the case wherep is eliminated due to a constraint

2_ 2 . .
f((zlr?)kis Srgﬁfsfie(;);gressmnm.g) vanishes, and therefore Eg. ¢*+ =2 in the original representatiof2.1), leading to a
The case of ther meson propagator is treated similarly in nonrenormalizable Lagrangizan EW' If then one transf_orm_s
Appendix C 2, and in Appendix C 3 we discuss which kinds[Cf- EG: 3.D] @w=#"/(1+a'%/4f7), the new Lagrangian is
of course completely equivalent to the old one due to the

of relations between the on-sheiltpoint functions are im- : . . . ) :
plied by Eq.(4.6), referring for definiteness to the case of the gquwalence theorem discussed in the previous section, since

o n-point functions. There we explicitly demonstrate the!n this case there is_no scalar field in the Lagran.gian and
cancellation of divergences contained in theoint function hence no problem with the treatment of tadpole diagrams.

and in theZ’ factors of theS matrix in the nonlinear theory, Eecond,. as 2I<)2ng ngo4ne cor}siders only t:ef Igraphs, the
provided that the: dependence ob andv’ is taken into I ag{rar?gmnst{h. ) an (I'. )t_are od_course gonl;pe ey_equgla- ¢
account explicitly. ent, since the complications discussed above arise due to

loop diagrams. For example, the tree graphsifeX scatter-
ing and -7 scattering give in both representations the same
well-known expressions for thewave scattering lengthi@n

of

+0(#?),

4

Fl(m2)=if

(2m)* g2—m?+ie’

B. Use of the nonlinearo- model in the self-consistent

mean-field approximation units of 1m._) [24]:
In the previous subsection we have pointed out that in the
loop expansion the linear and nonlineamodels lead to the gzmwf[ m2, 1 m2,
. . A= —
same physical results only if one really compares terms of N Mt [4m§” l—mif/4mﬁ,f mif

the same order i, i.e., only if tadpole diagrams are

counted explicitly as loop diagrams. On the contrary, if one (4.12
follows the usual procedure and sums up the tadpole dia- 2 2 2

grams to all orders by minimizing the effective potential, one __Mas [ 27 2Meg 4.13
finds that the counterterms of the linear model are not suffi- i 3217fﬂ m2,—4m2,  mZ '

cient to cancel the divergences in the nonlinear model. An
example was already discussed in Sec. lll, where we founéiere k=[4mw(1+m_¢/mys)] % and a,y(a,,) refers to
that the divergence of the one-loop effective potential in theésospin zero in theé (s) channel. In the nonlinear model,
nonlinear theory cannot be absorbed by the counterterms ofie first term in Eq(4.12 is due to the nucleon pole Born
the linear model. Another example is shown in EG12),  graphs, and the second term duertaneson exchange. Simi-
which implies that the termAG,, which represents the larly, the first term in Eq.(4.13 is due to them* contact
O(#) difference of the tadpole contributions in the two theo-term, while the rest is due to meson exchange. Both ex-
ries, is necessary to obtain finite on-shell Green functionpressions reproduce the current algebra predictions in the
(S-matrix elementsin the nonlinear theory. limt m,—w. (The experimental values area,y

An order-by-order treatment of tadpole diagrams, how-=—0.015+0.015[25] anda,,=0.26+ 0.05[26].)
ever, contradicts the successful mean-field theories and is
clearly inadequate and impractical. We therefore conclude
that, as far as one is using some expansion scheme based on
self-consistent mean fields, the nonlinegamodel Lagrang- To illustrate the use of the nonlinear chiral model for
ian (3.4) should be considered as unrenormalizaljle  nuclear matter, in this section we will calculate the one-loop
have shown this explicitly only for the loop expansion. How- effective potential and the resulting EOS at finite density and
ever, also in other expansion schentegy., the IN expan- temperature.
sion [20]) the self-consistency condition for the scalar field In addition to the counterterms of the linear model in-
mixes all powers of the expansion paramdtBlevertheless,

V. EOS IN A ONE-LOOP CALCULATION

%In two dimensions, the Lagrangian in the original representation
50f course, Eq(4.9) can also be derived directly from the Wein- is manifestly renormalizable, and the one in the new representation
berg transformation, i.e., the analog of E4.2) for the pion. Thisis is “on-shell renormalizable” in the sense of the equivalence theo-
also shown in Appendix C 1. rem|[22].
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cluded in Eq.(2.6), a new counterterm is needed to renor-
malize the pion loop contributio(8.9). It has the form

1
(42—
(14 o/u)?

c? c?
—?&v:—?ﬁ

5L (5.1

and is of second order in the chiral-symmetry-breaking pa-

rameterc. If Sa is chosen such that the new term in the
effective potential[ 6V 4= (c?/u?) 5a] cancels the diver-
gence in Eq(3.8), it is clear that also the" counterterms,
which are obtained by expanding E®.1) in powers ofc,

cancel the divergences of the one-pion-loop contribution to
the ¢" Green functions at zero external momenta. To deter- L

mine also the finite part oda, we will require that the term
«¢ in Eg. (5.1) cancel the whole pion loop contribution to
the o one-point function in free spacei€v;). This gives

S 3t K —Inu? 1} (5.2)
a= —In — = .
647T2 Mot 2
— c? 3% ,uz
i _ T S N
VF,ﬂ' U2 oa B 647T2 Mﬂ-lnﬂif 2(1“77 Iu‘Trf)
(5.3

The remaining countertermu? and A2 are determined
in the usual way5] by requiring that, in an expansion of the
effective potential aju,=T=0 aroundu=wv;, the first two
terms are solely due to the classical potentgl, i.e., that
there are no loop contributions to the one- and two-peint
Green functions in free space at zero momentum:

IV et
2
70 =v; M—C, (5.9
MC:T:O,u:vf
9V g
—m2
(9U2 _m(rf’ (55)
p=T=0u=u,
; 2 _ 2 2.2 2
where, as in Sec. I, m;=u“+Nv; and m;

=u’+ 3)\21;?. As a result of the conditiort5.4), the pion
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FIG. 1. The binding energy per nucleon obtained in the one-loop
approximation to the nonlinear model as a function of the density
for three temperatureb=0 (solid line), T=50 MeV (dashed ling
and T=100 MeV (dot-dashed line The parameters used are
m,=600 MeV, m,=783 MeV, g=10, andg,=5.

2

1
4 T 4 4 2 2 2
o= m In—-— s (m;—m_;)+2m_(m;—m_;) |,
F 64’772 if 2 f f f |
(5.7
.
3 ,u,f, v?
Veq= paln == S (ua—ua) = 7Ha 51 |-
64| o 2 4 vt J
(5.9

The forms(5.6) and(5.7) are the same as in the linear
model[5,12]. Including the Hartree term due to themeson,
which involves the mean field,, in the classical parV,
and expressing the parametgr and\? by m?, and mZ,
we obtain, after subtracting the vacuum val6¢

2
wf

2

2 2
m_.—m
2 of af 2
(vz—vf)+—8 > (v?=vP)*=c(v—vy)
Ut

Vo=

1

5 (5.9

2 a2
mwaO .

mass parameters in free space are the same for the linear and

nonlinear models 42,=m2,), since in free space; is de-
termined such that the RHS of E¢p.4) vanishes.

The form of theu ., T-dependent paiW, is given in Ap-
pendix D. The mean fields andw, are determined by mini-

According to the above procedure, the renormalizedmizing the effective potential for fixege.,T. For wg this

Feynman part of the effective potenti®y(u)=Vy+ Ve

+Vp in the nonlinear model atu=v becomes
VF:VFN+VFU+VF7T' Whel’e
1 m?
VFN:_F mﬁ'”—z—i(mﬁ—mﬁf)
ar me
+2m(mi—mip) |, (5.6

"Since in the following we consider only the nonlinear model, we
omit the primes on all quantitesv(—v, ¢'—d@, my—my,

giveswy=g,,p/m2; with the baryon density =0V / . .

The pressure and energy density of the system are deter-
mined from the thermodynamic potenti@/V=V (v) by

the standard thermodynamic relationships.

In the numerical calculations we usg=f_, and there-
fore g=my¢/v¢=10. Fixing alsom,=783 MeV, the free
parameters aren, andg,, which can be fitted to the em-
pirical saturation point of the energy per nucleonTat 0.
This givesm,=600 MeV, g,=5. We note that this value of
m,. is not inconsistent with the ones extracted from recent
w7 phase shift analysd27].

In Figs. 1 and 2 we show the binding energy per nucleon
and the pressure far=0, 50, and 100 MeV as functions of

etc). However, we still distinguish the pion mass parameter in thethe density. One finds that the effect of the pion loop term on

nonlinear model ,(Li) from the one in the linear modehﬁ).

these bulk properties is negligibly small. This is natural,
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FIG. 2. Same as Fig. 1 for the pressure. FIG. 4. The effectiverN scattering length in units oh;fl for

T=0 as a function of the density. The empirical values for zero
density and normal nuclear matter density ar®.015 and—0.03,

since we are including here only the effect of thhwave 7N .
Srespectlvely.

interaction, which is known to be weak. Therefore, the EO
is practically the same as the one obtained in R&R8] on ) - ) ) 1 o
the basis of the linear model by leaving out thétachyonig  'ength in the mediuma .n(p) (in units of m_¢), which is
pion loop contribution. It is known that this EOS is very soft defined via the depth of thewave 7N optical potentialV qp
compared to other relativistic EOS. This is indicated by theat threshold by29,12
slow increase of the energy and the pressure at high densi-
ties, and the low incompressibility of about 130 MeV at
T=0.

In Fig. 3 we show the effective masseg, m,, andu,,
as functions of the density for the same values of the temwhere«x is defined below Eq4.13. The empirical value of

peratures as used in Figs. 1 and 2. As we mentioned already () at normal nuclear matter density is0.03 [29].
in Sec. Il in order to investigate the phase transition to thecompared to the zero density value0.015, this implies
Wigner mode ¢=0), one should include the ring-type dia- some additional repulsion due to the presence of the nuclear
grams to avoid the tachyon pole in tbepropagator. HOW-  medjum. Since the quantity on the LHS of EG.10 is
ever, we see from Fig. 3 that, due to the rather slow decreasgven in terms of the pion propagator by
of v with increasing density, we are far from the tachyonic_A;l(qozmﬂ ,q=0), we have, in the Hartree approxima-
region even at high densities. tion,

In order to elucidate the effect of the enhanced pion mass,
we finally consider the effectiverN s-wave scattering 2 2

~ 5
an(p)=— KMy ——— (5.11

P~
zmﬂ'fvopt(E:mwf):_K lm_fawN(p)a (Sl@

1,0.........&&.4;..1||

T=0 4
-0 2 3
— = —T=50 MeV | (p—0) CMy ¢ du g° Mgy

— — K FR— =—K— —

=== T=100 MeV—] 2 2
d Uf ap o me mo.f

0.8

[ (5.12
0.6
To obtain the zero density limit, we used the relation
81)/(9p|p:0= —g/mi, which follows from the more general
relation given in Ref[5] [see EQq.(3.223 of Ref. [5]]. By
comparing with Eq(4.12 and the discussion given there, we
02 — m -y see that in the zero density limit the Hartree expression for

i ] an reduces to ther meson pole contribution to theN
oo Lo b v b b e b scattering length.The nucleon pole contribution arises from
-%']6 08 the one-loop graphs in the pion self-energy. Numerically,

however, the first term in Ed4.12 is smaller by a factor of

FIG. 3. Effective masses of the nucletupper three lings the :(mgf/Zme)_zzO_l for theo mass used herk.
o (middle three lines and the pior(lower three linesas functions The effectivewN scattering length5.11) is shown for
of the density for three temperatur®s 0 (solid liney, T=50 Mev ~ T=0 in Fig. 4 as a function of the density. We see that at the
(dashed lines and T=100 MeV (dot-dashed lings The tempera-  Saturation density the result is roughly consistent with the
ture dependence of the pion effective mass cannot be disentanglé@mpirical value. The zero density value, however, is much
on this scale. larger in magnitude than the experimental value due to the

0.4

Effective masses [GeV]

0.4
density [fm
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rather lowo mass used heré€To reproduce the experimental C-07640383, and by the Fonds zurréferung der Wissen-
zero density value, one would needramass of about 1.5 schaftlichen Forschung of the Austrian Ministry for Science
GeV) and ResearctBMWF) under Contract No. P10274-PHY.

VI. SUMMARY AND CONCLUSIONS APPENDIX A: CHIRAL TRANSFORMATIONS

. . . . IN THE NONLINEAR REPRESENTATION
At present the chiralr model in the linear representation

does not seem to be well suited for the nuclear many-body Here we briefly discuss the chiral transformation proper-
problem due to the appearance of a tachyon pole in the Haties of the fields in the nonlinear Lagrangi&h3) and the
tree pion propagator. Therefore, in this paper we investigatetble of the Jacobian term. From the well-known infinitesimal
the nonlinear chirab- model as a candidate to include both chiral transformations in the linear representation and Eg.
the pionic degrees of freedom and vacuum fluctuation effect63.1) it follows that the new pion field transforms as
in the description of many-nucleon systems. The square of,— & — («;/2)(1— &) — &(a- &), which is a special case
the in-medium pion mass in this model is positive definite,of the general nonlinear transformation derived [in].

and therefore the nonlinear model in the Hartree approximaAccordingly, the transformation of the fields
tion represents a more natural starting point for the manyB=(N,(D#N), or (D*£)) has the form of a local isospin

body problem than the linear model. transformation:
Since the Lagrangian of the nonlinear model can be ob-
tained from the one of the linear model by a field transfor- B—B+iT-(ax§B, (A1)
mation, one might expect that the two models are equivalent )
to each other as far as physical quantities are concerned. Wjth T=72 for B=(N,(D*N)) and (T;)j=—iej for

this paper, however, we have shown that in any expansioR =(D*§). From this it follows that any isoscalar function

scheme which is based on self-consistent scalar mean fielg@onsisting ofN,(D#N),(D*§), and ¢’ is chiral invariant.

the equivalence between the two models does not hold. This Concerning the determinak8.2), we note that, first, the

is due to the fact that the self-consistency conditions, whicfluantity A is just the square root of the coefficient of the

are different in the two models, bring in all powers of the Kinetic term for theg field in Eq.(3.3). If we would start

expansion parameter, while the equivalence theorem holddrectly from the nonlineatr model Lagrangian, express the

particular, we have shown that if one employs self-consistenf’® momentum conjugate & we would just get the same

scalar fields, the counterterms introduced in the linear modédpctorJ of Eqg. (3.2 [30]. Thus, although we derivedi as a

are insufficient to Cancei the divergences in physicai quantiJaCObian of a field transformation, it should be there even if

ties in the nonlinear model; i.e., the “on-shell renormaliz- One starts directly from the nonlinear model. Second, the

ability” [10] is lost. This point was illustrated explicitly by determinant is necessary to make the measure of the partition

using various one-loop examples, like the effective potentia|function of the nonlinear model chiral invariant: From the

poie positions of meson pr‘opagators7 &hchatrix elements. transformation properties discussed above it follows that
Based on this observation, one still can employ the non{d,£&)Af(9“&;) is chiral invariant. Therefore, the measure

linear o model as a nonrenormalizable effective model, andP£ det(A;;), rather tharD§, is chiral invariant. This has con-

introduce the necessary counterterms in each order of thgequences, for example, for the one-loop pion self-energy

expansion scheme, similar in spirit to the treatment of loopgiven in Appendix C 1, where the ghost lo@pst diagram in

in chiral perturbation theory21], although the context is Fig. 5 cancels the contribution of the pion logfourth dia-

different. We illustrated this procedure for the calculation ofgram in Fig.  at zero external momenta.

the one-loop effective potential, and discussed the resulting

EOS. As compared to the linear model, the new ingredient is APPENDIX B: THE EQUIVALENCE THEOREM

the pion loop contribution, which arises due to {séghtl ) ) ) o

enhgnced pi%n mass in the medium. For the bLEIISk %rog)erties, In this appendix we briefly indicate the proofs of the state-

however, this contribution turns out to be negligibly small. MeNts(1)—(4) of Sec. IV A[9,10]. , ,

To illustrate the effect of the enhanced pion mass in the 1N€ generating functionals in the linear and nonlinear

medium more clearly, we considered the pion optical potentN€0ries are given By

tial in the Hartree approximation. We pointed out that its size

at normal nuclear matter density is consistent with the em- Z(J):eiW(J):J D¢eXF<ii [£(¢)+J¢]>

pirical depth of the optical potential. The zero density limit

of the resulting effective scattering length, however, turns

out to be larger in magnitude than the experimental one due =i D¢’exp<ii {E’(¢’)+J¢[¢’]}), (B1

to the rather lowo mass used to fit the saturation point of

nuclear matter. These numerical examples at least indicate

that the Hartree approximation to the nonlinear model has nog

obvious difficulties to describe nuclear matter properties. In this as well as the following appendixes we do not indidate

explicitly. The integrals in the exponents of E¢B1)—(B4), as well
as those in Eqs(B7) and (B8), refer to four-dimensional space-
time. We also note that the quantities defined in EB4) and(B3)

This work was supported by a Grant in Aid for Scientific are related byZ(J,u) =exp(—ifJu)Z(J) andW(J,u) =W(J)— [ Ju,
Research of the Japanese Ministry of Education, Project Nand similarly for the transformed theory.
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- Z(o’,v): o 2:’((}",1)/) ’ 2:'(0",11')
Zr(J):eIW (J):J\D(ﬁleXF{iJ‘[£1(¢/)+J¢l]), <0'O'> <O'O'> +<O’ f>
(BZ) +<fo_/>£'(0',v’)+<ff>£'(o",u')

H : 20,1
and the generating functionals for the shifted theories are +[one-point functions C*(v")].  (BY)
[31]

If D(p? is the o-irreducible o'-f vertex function

and E(p?) the o-irreducible f-f vertex function,

7 _ QWU : - i
Z(J,u)=e fDaexp(lf [E(a,u)+Jo]) we can write(o” (p) f(_p»y(,,jl,v/,, - D(p?) (0" () o’
’ ; Breo 1ot (_p)>£ (@0 anq<f(p)f(_p)>£ (o' v )ZE(p2)+D2(p2)

:J Do GX4|J‘ {ﬁ (o',u") ><<a_/(p)0_r(_p)>y(gfyvf), and Eq.(B9) leads to

+J(¢[0’+U’]—U)}), (B3) z= lim (p?~m?){A’(p)[1+D(p*)*+E(p?)}.

p2m?

(B10)
Z'(J,u’)=eiW’<Jv“’>=fDa'exp(ij[Z'(a',u')+Ja'] .
(B4) In the absence of bound stat@s particular, in perturbation
theory, the functionsD(p?) and E(p?) satisfy the usual
dispersion relations without pole terms. It then follows that
A’(p) must have a pole at the same positionAdp), and
the residues are related by

In the last equalities of Eq$B1) and(B3), the variablesp’
and o' were introduced according tap=d¢[¢’'] and
o+u=¢[c’+u’]. The corresponding mean fields are given
by

Z

= L(¢) — R —
v=(pY'PIZ(0)=IWIJ|;o, (B5) z 1+ D(m)T? (B11)

v’ =(¢" )" 1Z(0)=W'/93| 50, (B6) _ _
To show the equality ofS-matrix elements, one uses

o=c'+f(o',v')+C(v') in the second line of Eq(4.6)
and notes that, in order to hawe o poles of the Green
function, every external block(p) must lead to an interme-
diate o' propagator; i.e., we can replace(p;)
—>D(pi2)a’(pi). Moreover, terms involvingc(v ') give only
contributions with less that sigma poles, and therefore we
have effectively o(p;)—[1+D(m?)]o’(p;) at the pole.
This gives Eq(4.6) with Z' given by Eq.(B11).

where we use@(0)=2'(0). By taking derivatives with re-
spect toJ at J=0 of Eq.(B1), the relation(4.1) is obtained.
In a similar manner, from EqB3) for u=v andu’=v' we
obtain Eq.(4.2 with o[o’,v'] given by Eq.(4.3.

Relation (4.4) follows simply from the definition of the
effective action, i.e.,

F(u>=\TV(J(u>,u)=W(J(u>)—f J(u)u,

APPENDIX C: ONE-LOOP EXAMPLES FOR THE
( IW EQUIVALENCE THEOREM
Ex

=ul, (B7)
J=J(u) ) In this appendix we give various one-loop examples for

the general discussions on the equivalence theorem presented

_ in Sec. IV?
r'(u)=vv'<a<u),u)=W'(J'<u>)—JJ'(u)u,

1. Pion propagator
W’
4J

k?=m?, we need the forms for the unrenormalized self-
energies which follow from the Feynman diagrams shown in
where the functiong(u), J'(u) obey the relations given in Fig. 5:

the brackets above. Comparison with E&5), Eq. (B6)

=u), (B8) In order to verify that the RHS of Eq4.9) vanishes for
J=J'(u)

shows thav andv’ are solutions ofi(u)=0 andJ’(u)=0, S, (K2)=NZ[F1(m>2) +5F 1 (m2) + 4N 20 2F 5(k2,m2 ,m2) ]
respectively[see also Egs(2.3 and (3.6)], and therefore 5 ) - s 2 2
I'(v)=W(0), T'(v")=W’(0)=W(0), where the last iden- —8g°F1(my) +497KkF (k% my,my), (CY

tity follows from Eqgs.(B1) and(B2). This gives Eq(4.4).

To show Eq.(4.5), one uses the fact that for canonical
transformationg4] o=0'+f(o’,v’)+C(v'), wheref is Since all formulas of this appendix refer to free space
second or higher order iat’, andC(v') is some function of (u.=T=0), we leave out the indeX on all quantities, i.e.,
v'. Then Eq.(4.2) for the two-point function gives vi—Uv, My—my, etc.
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2

—+m?

5 Fa(m7) + (2k?—m{ —mZ)Fy(mj)

— 1
ST (k)= =
(€)=

+<k2—m§>2F2(k2,mi,m§>}
+49%k%F (k% m§,mg). (%)

Since we calculate up to one-loop order, we havevsetv

andu’?=m2 in the self-energies:; has been defined in Eq.

(4.11), and
[ d%
ety 29,
1
X .
(@—mi+ie)(k—q)2—mi+ie]

(C3

It is easy to verify that fork?’=0 the expressior{C2) is

finite. Using 2202=m2—m?, it is also easy to see that the

RHS of Eq.(4.9) vanishes fok?=m? .
We can also verify that Eq4.9) follows directly from the
Weinberg transformation, i.e., the analog of E§9) for the

pion. For this, we note that to one-loop order the transforma-

tion of the pion field can be approximated as- =’ +f,
where f.=#'(o'lv—='%14?). If D,(k? is the pion-
irreducible 7'-f _ vertex, andE_(k?) the pion-irreducible
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Vs N
)+
N NP Rt

FIG. 5. Feynman diagrams for the one-loop pion self-energy.
The solid, dashed, dot-dashed, and dotted lines represent the
nucleon, piong, and ghost propagators, respectively. The last dia-
gram (ghost loop is present only in the nonlinear model.

ear models differ only due to the pion loop and ghag} (
loop contributions, which are obtained from the Feynman
diagrams of Fig. 6 as
37 'O(k?) =3NZ[F (M) + 2\ 0 2F (k2 m? m2)],
(CY

_ 3
3 (m+9) loop 2 =—| = (K=m2)Fy(m?)
v

1
+ 5 (K =m2)?Fy(k%mZ .m7) .
(C9)

Note that fork=0 these expressions agree with the second

f»-f vertex, the Weinberg transformation gives the COnneCygiyatives of the unrenormalized pion loop terms in the ef-

tion
A (k¥ =A/(K)[1+D (k) ]*+E.(K?), (C9
which can be rewritten in the following form valid ©(#%):
ALK = AT H(K?) = (K2 —m?7)2D (k%)
+(k?*—m2)?E (k?). (C5)
The one-loop expressions of the verti@s(k?) andE . (k?)
are

N 2 2
D (k%) = —5| zFa(mz) +F1(m5)
v

+(k2—m2)F(k?,m2,m?) |, (C6)

-1
EA(k?)=— Fa(k?*,m%,m?).

(C7)

With these forms, the equivalence of E¢$.9) and(C5) can
be easily verified.

2. Sigma propagator
To show the validity of Eq(4.7) for the o propagator, we

use the fact that the self-energies in the linear and nonlin-

fective potential§see Eqs(2.6) and(3.8)] with respect tau

at u=v. The mass shift Am? is given by
Am2=3)\?(v'?—v?)=9\%F(m2) + O(%?), where we used
Eq. (4.10. Therefore the difference between the inverse
propagators becomes, to one-loop order,

-3
A;1<k2>—A::1<k2>=7F1<mi)<k2—m§>

3
+ —F,(k?,m2,m?)
202 2

X[(k2=m?2)2—(m2—m?)?].
(C10

Settingk2=m(2,, we see from this that Eq4.7) is satisfied,
and we also obtain the expression fbr,(k?) [see Eq.
(B1D)]:

D(,<k2>=%[H(mi)—(kz—mi)a(kz,mi,mi>].
(C1)

This coincides with the expression obtained for the
o-irreducibleo’-f . vertex, where to one-loop order

!

(o
1+ —
1%

11_!2

fym— o

2v
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N : N
_‘l\_f/.)__ + o —l\\_,/)— T + ————————— S ~7 * S /.>.\/\/)___
| .
FIG. 6. Feynman diagrams for the one-logfself-energy. The
solid, dashed, dot-dashed, and dotted lines represent the nucleon,
pion, o, and ghost propagators, respectively. The last diagram \~7/"\/-’ N RN
(ghost loop is present only in the nonlinear model. S ./ + S :x\ Fo--
3. 0® S matrix
We first discuss which kind of relations between the on-
shell amputated rpoint functions (,,) are implied by Eqg. ST N Yo
(4.6), referring for definiteness to the n-point functions. F S R e e
Equations (4.6) and (B11) imply that to one-loop order : O SO
G,=(2/12")"?G,=G,(1+nD,)+G,,, where we split
G, in the linear model into a tree grap®,; and a loop FIG. 7. Feynman diagrams for the® Green functions up to

contributionG,, ,, andD ,=D ,(k?= m?Z). The tree graph in  one-loop order. The solid, dashed, dot-dashed, and dotted lines rep-
the nonlinear modeG,,, differs from the one in the linear resent the nucleon, pionr, and ghost propagators, respectively.

model due taw’ #v. We therefore obtain the relation The first diagram is the tree graph, and the second one is a coun-
terterm o< S\2. The last three diagram@host loop} are present
G, ,—G,,+AG,=nG,D,, (C12 only in the nonlinear model. The symb8ldenotes the symmetrizer

with respect to the external momerka, ks, ,Ks.
whereAG, (=G, —Gp. In particular, forn>4 there are
no tree graphs, and the on-sheipoint functions are identi-
cal (and finite.

Let us verify Eq.(C12) explicitly for the casen=3. The .
one-loop Feyn_mar_1 graphs for thé off-shell Gree_n gunction Gg/loop(kl,kz,ks) — _—32|{(m§— mi)z[Fz(ki)ﬂL Fz(kg)
G; are shown in Fig. 7. The tree graphGs,= — 6iA“v, and 2v
using Eq.(4.10 we obtain

due to the pion and ghost loops, we give the expressions only
for these contributions. In the linear model we obtain

+Fy(k)]+(m2—m2)®

AGa=—BIN2(v' —0) = z—if(mg—mg)a(mg). X[Fa(kiko) +Fa(ko k) T} (C14
1

(C13  where we useF,(k?)=F,(k?,m2,m?), and the “triangle
Since the loop contributions in the two models differ only graphs” are defined by

dq 1

(2m)* [a°—mE+iel[(q+ky)?—m2+ie][(q+ky+ko)?—mZ+ie]

F3(klik2):if (C19

It is easy to see that fds=0 (i=1,2,3), Eq(C14) agrees with—i times the third derivative of the unrenormalized pion loop
term in Eqg.(2.6) with respect tau atu=v.

In the nonlinear model, owing to the derivative couplings, one obtains an expression for the loop graphs which involves
the integration momentum qj also in the numerator. By using relations like q-:{q+k)=(q2—mfr)
+[(g+k)%— mfr]— (k?— mfr) + me and shifts of the integration variable, one can removegtidependence from the numera-
tors with the result

—3i
Gy "9 Mk ko k) = — {2F (kIG5 = 3m2) — Fa(k3) (K= m2) (k3 +G = 2m?) = F(kG) (ko= mo) (3 + K
U
—2m?2) — Fo(k3)(k3—m2) (k2 + k3 —2m2) + (k2 —m?2) (k3 — m2) (k3— m2)[ F3(Ky k)

+F3(ka k) 1}, (C16)
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with F;=F;(m2). For k=0 (i=1,2,3), this agrees with 40 PPk K2
—i times the third derivative of the pion loop term in Eq. Vp(v)=— §J —Sﬁk)[f,(k)ﬂth(k)]
(3.8 with respect tau atu=v. (2)
From Egs.(C11), (C13, (C14), and (C16) we see that 1 d®k  Kk?
relzation2 (C12 for n=3 is valid for the on-shell case _§i:;’ﬂw aifwmfi(k)' (DY
(ki=m5).

where  a,=1, a,=a,=3, E(k) = VkZ+m2,
w,=JKC+m2, w,=kK2+m2,, w,=k*+u2, and the
distribution  functions  f;=[exp{Bwi(K}—1]"* and
APPENDIX D: THE FORM OF Vp fo(K)=[exp{BEK=u)}+1]"Y. Here u’=pu.—g,W°.
We note that all masses which appear in H9l) are in-
The explicitly u.,T-dependent part of the effective po- medium masses as defined in the main text, except foirthe
tential has the form meson mass.
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