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Nonlinear chiral s model for nuclear matter
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In order to include pionic degrees of freedom in the description of nuclear many-body systems, the chirals
model in the nonlinear representation is investigated. The renormalizability of the model, which is obtained
from the linears model by a field transformation, is studied in the context of the equivalence theorem. It is
shown that in any expansion scheme which is based on self-consistent mean scalar fields, the nonlinears
model should be considered as unrenormalizable~even if thes mass is kept finite!, and new counterterms have
to be introduced in each order. The resulting equation of state in the one-loop~Hartree! approximation is
calculated, and the corresponding pion-nucleus optical potential is discussed.@S0556-2813~97!03209-3#

PACS number~s!: 13.75.Gx, 12.39.Fe, 21.65.1f
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I. INTRODUCTION

One of the most important subjects in relativistic nucle
many-body theories is to assess the effects of vacuum
tuations, which cannot be studied in nonrelativistic mode
For this purpose, many works used some kind of mes
nucleon theory incorporating scalar (s) and neutral vector
(v) meson field@1#. On the other hand, nonrelativistic mod
els have clearly demonstrated the importance of pionic
grees of freedom@2#, in particular for the description o
nuclear electroweak properties@3#. It is therefore desirable to
devise chiral-invariant relativistic models which are capa
of including both pionic degrees of freedom and vacu
fluctuation effects at the same time.

To investigate the effects of vacuum fluctuations, it see
natural to use a renormalizable model, where the calculat
can in principle be done in a well-defined and straightf
ward way. Therefore, the chiral linears model@4# was con-
sidered as a possible candidate. However, it was real
soon that this model leads to serious difficulties: As a re
of the nonderivative coupling of the pion, intricate cancel
tions are inevitable in order to produce results consis
with low-energy theorems and current algebra. In the nuc
medium, this leads to the difficulty that in the mean-fie
~Hartree! approximation the pion propagator has a tachy
pole @5,6# ~i.e., a pole at imaginary energy!.1 Explicit calcu-
lations have shown that higher order loop graphs of the r
type are actually insufficient to prevent this tachyon pole@6#.
On the other hand, in the nonlinear representation@7# the
pion couples via derivatives, and no cancellations are ne
sary to reproduce the results of low-energy theorems.
example, concerning the tachyon pole problem mentio
above, the effective pion mass in the nonlinear representa
is of ordermp

2 from the outset and positive definite. Ther

1This problem does not appear in an ‘‘exact’’ calculation, b
shows up in any expansion scheme of the effective potentia
some orderl , which requires the pion propagator up to orderl 21
as an input.~See the discussion at the end of Sec. II.!
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fore, thes model in the nonlinear representation seems to
a better starting point.

Although the nonlinears model is unrenormalizable by
power counting, its Lagrangian can be obtained from
linear model by a field transformation~Weinberg transforma-
tion! @8#. Because of the equivalence of Lagrangians wh
are connected by nonlinear field transformations@9–11#, one
might therefore expect@12,13# that the nonlinear model is
still ‘‘on-shell renormalizable’’~as long as thes meson mass
is kept finite!, although the usual multiplicative renormaliz
ability is lost. Indeed, calculations including one-nucle
loop graphs@12# ~but no meson loops! seemed to support thi
conjecture, and the viewpoint that the nonlinear mo
should lead to finite physical results if the counterterms
the linear model are included in the transformation can
found sometimes in the literature@13,14#. In view of this fact
and the recent interest in linear and nonlinears models for
nuclear systems, often in connection with the concept
scale invariance@15#, it seems necessary to us to clarify
which sense the nonlinear model is equivalent to the lin
one, in particular for the description of the bulk properties
nuclear matter. This is one of the main purposes of this wo
We will show in detail that results for the physical quantiti
in the two theories, calculated up to some order in an exp
sion scheme, are equivalent only if the mean scalar field
the two theories are taken into account up to the same or
In any treatment which is based onself-consistentmean sca-
lar fields, however, the equivalence is lost. Concrete o
loop examples will be used to illustrate this feature. Con
quently, in these treatments the nonlinear model should
considered as unrenormalizable, and new counterterms
necessary in each order of the expansion.

Following this procedure, we will calculate the thermod
namic potential and the resulting equation of state~EOS! of
nuclear matter in the nonlinear model to one-loop order. T
requires the introduction of a new counterterm to renorm
ize the pion loop contribution, i.e., the shift of the pion
zero-point energy relative to the vacuum value, which ari
due to an enhanced pion mass in the medium. This enha
pion mass, which originates from thes-wave pion-nucleon

t
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56 2281NONLINEAR CHIRAL s MODEL FOR NUCLEAR MATTER
interaction, has only a little effect on the bulk properties, a
we will explore some consequences of it for the pion-nucl
optical potential. The main purpose of this paper, howeve
to provide a basis for an application of the nonlinears model
to the description of nuclear matter, and the numerical res
presented here serve as illustrative examples.

The rest of the paper is organized as follows. In Sec. II
linear s model and problems associated with it are d
cussed. In Sec. III the Lagrangian is transformed to the n
linear representation, and it is shown that the pion loop c
tribution to the effective potential cannot be renormalized
the counterterms present in the original Lagrangian. In S
IV the equivalence theorem is reviewed and applied to
present problem. In Sec. V a new counterterm is introduce
to renormalize the pion loop contribution, the resulting on
loop equation of state at finite temperature is calculated,
the pion-nucleus optical potential is discussed. Conclusi
are presented in Sec. VI.

II. LINEAR s MODEL

The Lagrangian of the chiral linears model is given by
@4#

L5 c̄ @ i ]”2g~f1 i p•tg5!#c1
1

2
@~]mf!21~]mp!2#

2
m2

2
~f21p2!2

l2

4
~f21p2!21cf. ~2.1!

Shifting f5u1s, we obtain

L̂52Vcl~u!1 c̄ @ i ]”2mN~u!2g~s1 i p•tg5!#c

1
1

2
@~]ms!22ms

2~u!s2#1
1

2
@~]mp!22mp

2 ~u!p2#

2l2us~s21p2!2
l2

4
~s21p2!21s@c2ump

2 ~u!#,

~2.2!

where

Vcl~u!5
l2

4
u41

m2

2
u22cu

is the classical potential, andmN(u)5gu, mp
2 (u)

5m21l2u2, and ms
2(u)5m213l2u2. The ‘‘physical’’

value ofu ~i.e., the thermal average, or the vacuum expec
tion value in the case ofT50, of f) will be denoted byv,
and can be obtained from the condition@4# that the linear
term in Eq.~2.2! cancels thes tadpole loop graphs@S(u)#:

J~u![c2u@mp
2 ~u!1dmp

2 ~u!#2 iS~u!50 at u5v.
~2.3!

The counterterms are obtained by replaci
m2→m21dm2 andl2→l21dl2, besides the wave functio
renormalizations and the renormalization ofg. This gives a
contribution }dmp

2 (u)5dm21dl2u2 in the linear term of
Eq. ~2.2!, which has been included in Eq.~2.3!. The particle
masses atu5v will be denoted by mN[mN(v) and
d
s
is

lts

e
-
n-
-

y
c.
e

-
d
s

-

ma
2[ma

2(v) (a5s,p). Note that, sincev depends on tem-
perature and density, these are in-medium masses. The
lation to the free~subscript f ) masses ismN5(v/v f)mN f ,
and

ma
25ma f

2 1nal2~v22v f
2! ~a5s,p, ns53, np51!.

~2.4!

The calculation of the one-loop thermodynamic poten
using the imaginary-time path integral is standard@16#: One
adds a source termfJ and a chemical potential term
mcc̄g0c to the Lagrangian~2.1! and represents the partitio
function Z(J)5exp(i /\)W(J) by a path integral, where the
t integration in the classical action is evaluated along
straight line (C) from t50 to t52 ib. One then performs a
Legendre transformation to the effective actio
G(u)[ i (bV)Veff5W(J)2*d4xJf. This leads to

Veff~u!5
2\

bV
lnF E DcDc̄DsDp

3expS i

\EC
d4x~L̂1Js1mcc̄g0c! DU

J5J~u!
G ,

~2.5!

whereJ(u)52]Veff /]u has the form~2.3!. The thermody-
namic potential per unit volume is thenV/V5Veff(v). To
O(\) one obtains@5,17#

Veff~u!5Vcl~u!1dVcl~u!1 i\ (
a5N,s,p

E d4k

~2p!4
ca

3 ln@k22ma
2~u!1 i e#1VD~u!

[Vcl1VF1VD , ~2.6!

wherecN54, cs52 1
2 , cp52 3

2,

dVcl~u!5
dl2

4
u41

dm2

2
u2

is the counterterm toO(\), andVD is finite and vanishes a
mc , T→0.

Using dimensional regularization we have@17#

i E d4k

~2p!4
ln@k22ma

2~u!1 i e#5
ma

4~u!

32p2
@K2 lnma

2~u!#,

~2.7!

where K51/eD2g1 ln4p13
2 and eD522D/2. From the

above forms forma
2(u) we see that all divergences can b

put into dl2 and dm2. To fix the finite parts of these con
stants, one usually requires that forT5mc50 there be no
loop contributions to the one- and two-points Green func-
tions at zero momentum@1,5#, i.e., that ]VF /]uuu5v f

5]2VF /]u2uu5v f
50. @The first condition means that in th

vacuum the counterterm in Eq.~2.3! cancels the loop graph
S, such thatmp f

2 5c/v f .# The explicit form of VF can be
found in @5#.
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From Eq.~2.4! we see that for fixedmp f
2 , the in-medium

mass squaredmp
2 becomes negative ifv,v f , even for slight

deviations ofv from v f . This is the tachyon pole problem
discussed in the Introduction.2 It should be emphasized tha
in a ‘‘full’’ calculation this problem does not appear due
the Goldstone theorem in the medium@5#, which states that

iS(v)5vS̄p(0), where S̄p(0) is the unrenormalized pion
self-energy in the linear model atk50, i.e.,

]Veff

]u
52uDp

21~0!2c50 ~at u5v !. ~2.8!

Here 2Dp
21(0)5mp

2 1dmp
2 1S̄p(0). Therefore, atu5v,

where the effective potential has its minimum, the inve
pion propagator at zero momentum becom
2Dp

21(0)5c/v.0. In a loop expansion~or any other ex-
pansion scheme!, however, the effective potential to orderl

(Veff
(l )) involves the pion propagator up to orderl 21, and

nothing prevents2Dp
21(n)(0) (n50,1, . . . ,l 21) from be-

coming negative, when evaluated at the minimum ofVeff
(l ) . In

our example above, the one-loop effective potential invol
the integral over the zero-loop~Hartree! pion propagator,
which indeed has no tachyon pole at the ‘‘zero-loop valu
v5v f , but becomes tachyonic for any otherv,v f . Accord-
ingly, Veff

(l ) becomes complex, and a loop expansion of
effective potential in the linears model is rendered impos
sible.

III. WEINBERG TRANSFORMATION

To obtain thes model Lagrangian in the nonlinear repr
sentation of chiral symmetry, one can introduce the ch
radius (f8) and the chiral angle (u) instead of the original
variables f,p, i.e., f1 i p•tg55f8U with
U5exp(i u•tg5). One also performs a chiral rotation of th
nucleon field@8# N5U1/2c, such that the meson-nucleon in
teraction part of Eq.~2.1! becomes simply2gN̄f8N. In-
stead of the chiral angleu, however, it is customary to us
the variablej5û tan(u/2), in terms of whichU1/2 takes the
form U1/25(11 i j•tg5)/(11j2)1/2. As a result, the trans
formation (f,p,c)→(f8,j,N) is given by@8,13#

f5
12j2

11j2
f8, p5

2j

11j2
f8, c5

12 i j•tg5

~11j2!1/2
N.

~3.1!

The Jacobian of this transformation is given by

J5det~Ai j !, Ai j 5
2f8

11j2
d i j [Ad i j . ~3.2!

2For v&v f /A3, thes meson becomes tachyonic, too. The calc
lations~see Sec. V!, however, show that this presents no problem
long as one is not interested in the transition to the abnormal s
(v50). Moreover, it is known that this problem can be solved
least partially by including the ring-type diagrams@17–19#.
e
s

s

’’

e

l

The det in Eq.~3.2! refers to space-time as well as to th
isospin indicesi , j . Inserting Eq.~3.1! into Eq. ~2.1!, and
introducing ghost fieldsh,h* to account for the Jacobia
~3.2!, one arrives at the Lagrangian of the chiral nonlineas
model:

L85N̄@ iD” 2gf81~Dmj!•tgmg5#N

1
1

2
@~]mf8!214f82~Dmj!2#2

m2

2
f82

2
l2

4
f841cf8

12j2

11j2
1hh* S 2f8

11j2D 3

. ~3.3!

Here the covariant derivatives are defined
@7# Dmj5@1/(11j2)#(]mj) and DmN5@]m

1 i t•(j3Dmj)]N.
The chiral transformation properties of the new fields a

the role of the Jacobian are discussed in Appendix A. As
argued there, the Jacobian factor should be included eve
one starts directly from the nonlinears model, although we
derived it here from the field transformations.

We now shift the new scalar fieldf85u1s8. It is also
convenient to introduce a pion fieldp852uj such that the
factor in front of the kinetic term becomes1

2. Of course, the
determinant changes accordingly, and we obtain the shi
Lagrangian of the nonlinear model@12#:

L̂852Vcl~u!1N̄F iD” 2mN~u!2gs8

1
1

2u
~Dmp8!•tgmg5GN1

1

2
@~]ms8!22ms

2~u!s82#

1
1

2F S 11
s8

u D 2

~Dmp8!22mp
2 ~u!

p82

11p82/4u2G
2l2us832

l2

4
s842

1

2
mp

2 s8

u

p82

11p82/4u2

1hh* S 11s8/u

11p82/4u2D 3

1s8@c2ump
2 ~u!#. ~3.4!

Here the covariant derivatives are given by

DmN5F ]m1 i
1

~2u!2
t•~p83Dmp8!GN,

Dmp85
1

11p82/4u2
~]mp8!. ~3.5!

The quantitiesmN(u), ms
2(u), and alsomp

2 (u) in the
term}s8 in Eq. ~3.4!, are the same as those in Eq.~2.2!, but
the new in-medium pion mass squaredmp

2 (u)5c/u is a posi-
tive definite quantity. The physical value ofu for the nonlin-
ear model, i.e., the thermal average off8, will be denoted by
v8. It is different fromv of the linear theory, as is clear from
the form of the transformation~3.1!. It can be obtained from

-
s
te
t
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56 2283NONLINEAR CHIRAL s MODEL FOR NUCLEAR MATTER
the condition that the linear term in Eq.~3.4! cancels the
tadpole graphs@S8(u)# of the nonlinear model:

J8~u![c2u@mp
2 ~u!1dmp

2 ~u!#2 iS8~u!50 at u5v8.
~3.6!

The effective nucleon ands masses are thenmN8 [mN(v8)
andms8

2[ms
2(v8). The square of the effective pion mass

the nonlinear model,

mp8
2[mp

2 ~v8!5
c

v8
5mp f

2
v f8

v8
, ~3.7!

has the same dependence on the scalar mean field as th
inverse propagator@2Dp

21(0)# had in the linear model; se
Eq. ~2.8!.

If the counterterms of the linear model are included in
transformation, it is clear that we have to repla
m2→m21dm2 and l2→l21dl2 everywhere in Eq.~3.4!,
besides the wave function renormalizations and the re
malization ofg. This leads, in particular, to the counterter
}dmp

2 (u) for tadpole graphs in Eq.~3.6!. There is, however,
no pion mass counterterm in the transformed~nonlinear! La-
grangian.

Let us now discuss the one-loop effective potential in
nonlinear model. It is clear that the integration over the gh
fields in the effective potential@cf. Eq. ~2.5!# gives back the
logarithm of the Jacobi determinant, i.e., a contribution

}\TrlnS 11s8/u

11p82/4u2D ,

to be integrated over the meson fields. Since the integr
involves only the fluctuation fields, it is clear that the gho
loop gives contributions of order\2 and higher. Therefore
our effective potential takes again the form~2.6!, where the
effective masses have to be replaced by those of the no
ear model. The nucleon and thes loop are formally un-
changed, while the pion loop becomes

V̄F,p52
3i

2
\E d4k

~2p!4
ln@k22mp

2 ~u!1 i e#

52
3\

64p2

c2

u2
@K2 lnmp

2 ~u!#. ~3.8!

Because of the inverse power dependence onu, this diver-
gence cannot be canceled by the termdVcl(u) in Eq. ~2.6!.
~We note that this feature is independent of the choice of
normalization of the fieldp8, as long as the Jacobian
properly adjusted.! In other words, the counterterms of th
linear model are insufficient to make the effective poten
in the nonlinear model finite.

A more general discussion concerning this point will
given in the next section. Here we just note that we sho
compare the effective potentials in the two theories at th
respective ‘‘physical’’ valuesu5v andu5v8 @see Eq.~4.4!
below#. If these quantities are determined self-consisten
from Eqs.~2.3! and ~3.6!, they implicitly include all orders
of \. The ‘‘pure O(\)’’ effective potential is obtained by
full

e

r-

e
st

nd
t

in-

e

l

ld
ir

y

inserting theO(\0) solution, i.e., the minimum ofVcl(u),
into the O(\) parts of the effective potential. ThisO(\0)
solution is independent ofT,r and is the same in both mod
els (v f5v f8). Since for this solution mp

2 (v f)
5mp

2 (v f)5c/v f , the ‘‘pure O(\)’’ parts are identical in
both theories.3 ~This is, of course, of little practical impor
tance, since these parts are removed by the subtraction o
vacuum values.! This observation indicates already that t
loop expansion in the two theories are equivalent to e
other only if one really compares terms of the same orde
\, taking into account also the\ dependence of the mea
fields v andv8.

IV. RELATION BETWEEN THE LINEAR
AND NONLINEAR s MODEL

In this section we first consider some aspects of
equivalence theorem which are relevant to understand
connection between the linear and nonlinears model. We
then explain why in actual loop calculations based on s
consistent mean fields the nonlinears model should be con-
sidered as unrenormalizable.

A. Equivalence theorem and one-loop examples

Our notation will, for simplicity, refer to a single scala
field (f), but the generalization will be obvious. We co
sider a canonical transformation of field variablesf5f@f8#
such thatL(f)5L(f@f8#)[L8(f8). We also introduce the
shifts f5s1u and f85s81u8, and denote the shifted
Lagrangians by L̂(s,u)[L(s1u) and
L̂8(s8,u8)[L8(s81u8). The physical values ofu andu8 in
the two theories are denoted asv andv8. Then the connec-
tion ~or equivalence! between the original and the tran
formed theories can be summarized as follows@9–11#.

~1! If ^ff•••&L denotes the average off(x1)f(x2)•••

with weight exp(i /\)*d4xL, we have

^ff•••&L~f!5^f@f8#f@f8#•••&L8~f8!, ~4.1!

^ss•••& L̂~s,v !5^s@s8,v8#s8@s8,v8#•••& L̂8~s8,v8!.
~4.2!

The first relation applied for the one-point function gives t
relation between the mean fields,v5v(v8), and therefore
the shifted fields are related by

s@s8,v8#5f@s81v8#2v~v8!, ~4.3!

which is used in Eq.~4.2!. Note that there is no simple rela
tion between then-point functions in the two theories, i.e
between̂ ff•••&L(f) and^f8f8•••&L8(f8), or similarly be-
tween the shiftedn-point functions. In particular, if the
n-point functions in the original theory are made finite b

3This is evident for the loop parts of the effective potential. Fro
the classical potential in the transformed theory there also arise
additional O(\) term due to Dv[v82v}\, i.e.,
Vcl(v8)5Vcl(v)1Dv@(l2v f

21m2)v f2c#1O(\2). However, the
term in brackets@•••# vanishes sincev f minimizesVcl(u).
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renormalization, then-point functions of the new theory wil
nevertheless be divergent in general@10#.

~2! The effective actions of the two theories at their r
spective minima are the same:

G~v !5G8~v8!. ~4.4!

Relation ~4.4! shows in particular that the thermodynam
potential and, therefore, all bulk properties of the system
the same in the two theories.

~3! The two-point functions4 D(p)5^s(p)s(2p)& L̂(s,v)

and D8(p)5^s8(p)s8(2p)& L̂8(s8,v8) have the same pole
i.e., at the pole they behave as

D~p!;
Z

p22m2
⇒D8~p!;

Z8

p22m2
. ~4.5!

While Z is finite due to renormalization,Z8 is divergent in
general.

~4! The S-matrix elements are unchanged:

Sn~p1 ,p2 , . . . ,pn!5S 1

ZD n/2

lim
pi

2→m2
F)

i 51

n

~pi
22m2! f ~pi !G

3^s~p1!•••s~pn!& L̂~s,v !

5S 1

Z8
D n/2

lim
pi

2→m2
F)

i 51

n

~pi
22m2! f ~pi !G

3^s8~p1!•••s8~pn!& L̂8~s8,v8!, ~4.6!

where thef (pi) are the momentum space wave function
Since theS-matrix elements in the original theory are fini
by renormalization, in the transformed theory the div
gences contained in the on-shell Green functions and inZ8
cancel. The transformed theory is thus ‘‘on-shell renorm
izable’’ @10#, although the Green functions themselves
divergent.

Simple proofs of these statements are given in Appen
B.

We now discuss in which sense the above general r
tions are valid in some expansion scheme, e.g., the loop\)
expansion. Usually one performs the loop expansion of
effective action, or of Green functions like those in Eq.~4.2!,
for fixed v andv8, and leaves out the tadpole graphs. In t
end, one substitutes the solutions of Eqs.~2.3! and~3.6! for v
andv8. The solutions of these nonlinear equations, howev
involve all powers of\, and so do the Green functions o
both sides of Eq.~4.2!, although they are truncated in th
loop expansion for fixedv andv8. If we want tocomparethe
Green functions in the old and new theories up to a giv
order in\, the\ dependence of the mean fieldsv andv8 has

4Since points ~3! and ~4! are most relevant in free spac
(r5T50), our Lorentz-covariant notation refers to this case,
though the generalization is obvious. We also use the nota
^s(p1)•••s(pn)& (p11p21•••pn50) for the Fourier transform
of the n-point function, with the delta function for overall momen
tum conservation removed.
-

re

.

-

l-
e

ix

a-

e

r,

n

to be taken into account. For example, if both sides of E
~4.2! are calculated to order\ for fixed v andv8, and then
the solutions of Eqs.~2.3! and~3.6! are substituted forv and
v8, terms of order\2 or higher will in general be different on
the left-hand side~LHS! and the RHS of Eq.~4.2!. Similarly,
if we calculateG(u) for fixed u, and W(J) for fixed J, to
order \, and insert the full solution of Eq.~2.3! for u, the
quantitiesG(u) and W(J50) differ by terms of order\2,
and the argument given in Appendix B leading to Eq.~4.4!
shows that alsoG(v) andG8(v8) differ by terms of order\2.
In particular, these higher order terms may contain div
gences which are not canceled by the counterterms of the
theory.

Let us discuss some one-loop examples which dem
strate the validity of the equivalence theorem in the lo
expansion, provided that the\ dependence ofv and v8 is
explicitly taken into account. Equation~4.5! implies the fol-
lowing relation between the meson self-energies in the or
nal and transformed theories: If we write schematica
D21(k2)5k22m22S(k2) in the original theory, wherem2

is the mass parameter in the Lagrangian, a
D821(k2)5k22m822S8(k2) in the transformed theory
where Dm2[m822m2}\ arises due tov8Þv, the ‘‘pole
position’’ up toO(\) is given bym21S(m2) in the original
theory and bym21S8(m2)1Dm2 in the transformed theory
These should be the same, i.e.,

D821~m2!2D21~m2!5S~m2!2@S8~m2!1Dm2#50.
~4.7!

Here we consider the pion propagator in free space a
example. In this case, the self-energies in the linear and n

linear models areSp f5S̄p f1dmp
2 (v f)2k2(Zp21) and

Sp f8 5S̄p f8 2k2(Zp21), where the unrenormalized sel

energiesS̄p f , S̄p f8 are given in Appendix C 1. The mas
parameter in the nonlinear model
mp f825c/v f8.c/v f2cDv/v f

2 , where Dv[v82v. From Eq.

~2.8! we have c/v f52Dp f
21(0)5mp f

2 1S̄p f(0)1dmp
2 (v f)

and therefore, toO(\),

Dmp
2 [mp f822mp f

2 5S̄p f~0!1dmp
2 ~v f !2

mp f
2

v f
Dv.

~4.8!

Then the difference between the inverse propagators
comes

Dp f821~k2!2Dp f
21~k2!5S̄p f~k2!2S̄p f~0!2S̄p f8 ~k2!

1
mp f

2

v f
Dv. ~4.9!

The one-loop connection betweenv8 andv follows from
Eqs.~2.3! and~3.6!: If we write v5v (0)1\v (1), and similar
for v8, and define the countertermudmp

2 (u) to cancel the
one-loop vacuum tadpole graphs, it follows th
v (0)5v8(0)5v f satisfiesmp

2 (v f)5c/v f , and

-
n
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Dv5
2 i

ms f
2 @S8~v f !2S~v f !#1O~\2!5

3\

2v f
F1~mp f

2 !

1O~\2!, ~4.10!

where

F1~m2!5 i E d4q

~2p!4

1

q22m21 i e
, ~4.11!

and in Eq.~4.10! we used the explicit one-loop expressio
for the tadpole graphs in the two theories. Inserting E
~4.10! into Eq. ~4.9!, and using the explicit forms of the
self-energies given in Appendix C 1, it is easy to show t
for k25mp f

2 expression~4.9! vanishes, and therefore Eq
~4.7! is satisfied.5

The case of thes meson propagator is treated similarly
Appendix C 2, and in Appendix C 3 we discuss which kin
of relations between the on-shelln-point functions are im-
plied by Eq.~4.6!, referring for definiteness to the case of t
s n-point functions. There we explicitly demonstrate t
cancellation of divergences contained in then-point function
and in theZ8 factors of theS matrix in the nonlinear theory
provided that the\ dependence ofv and v8 is taken into
account explicitly.

B. Use of the nonlinears model in the self-consistent
mean-field approximation

In the previous subsection we have pointed out that in
loop expansion the linear and nonlinears models lead to the
same physical results only if one really compares terms
the same order in\, i.e., only if tadpole diagrams ar
counted explicitly as loop diagrams. On the contrary, if o
follows the usual procedure and sums up the tadpole
grams to all orders by minimizing the effective potential, o
finds that the counterterms of the linear model are not su
cient to cancel the divergences in the nonlinear model.
example was already discussed in Sec. III, where we fo
that the divergence of the one-loop effective potential in
nonlinear theory cannot be absorbed by the counterterm
the linear model. Another example is shown in Eq.~C12!,
which implies that the termDGnt , which represents the
O(\) difference of the tadpole contributions in the two the
ries, is necessary to obtain finite on-shell Green functi
(S-matrix elements! in the nonlinear theory.

An order-by-order treatment of tadpole diagrams, ho
ever, contradicts the successful mean-field theories an
clearly inadequate and impractical. We therefore concl
that, as far as one is using some expansion scheme bas
self-consistent mean fields, the nonlinears model Lagrang-
ian ~3.4! should be considered as unrenormalizable.@We
have shown this explicitly only for the loop expansion. Ho
ever, also in other expansion schemes~e.g., the 1/N expan-
sion @20#! the self-consistency condition for the scalar fie
mixes all powers of the expansion parameter.# Nevertheless,

5Of course, Eq.~4.9! can also be derived directly from the Wein
berg transformation, i.e., the analog of Eq.~4.2! for the pion. This is
also shown in Appendix C 1.
.
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since the nonlinears model has definite advantages over t
linears model, in particular for the many-body problem, on
could still use Eq.~3.4! as an effective Lagrangian, and d
termine the necessary counterterms in each order of the
pansion scheme. This method, which is somewhat simila
the treatment of loop diagrams in chiral perturbation the
@21# ~although the context is quite different!, will be illus-
trated in the next section for the case of the one-loop eff
tive potential.~Another method would be to introduce a cu
off in the loop integrals. However, this method has t
disadvantage that in many cases it leads to conflicts w
symmetries.!

Before closing this section, we add two remarks: First,
‘‘nonlinear s model’’ in the common sense@22,23,4# refers
to the case wheref is eliminated due to a constrain
f21p25 f p

2 in the original representation~2.1!, leading to a
nonrenormalizable Lagrangian forp. If then one transforms
@cf. Eq. ~3.1!# p5p8/(11p82/4f p

2 ), the new Lagrangian is
of course completely equivalent to the old one due to
equivalence theorem discussed in the previous section, s
in this case there is no scalar field in the Lagrangian a
hence no problem with the treatment of tadpole diagram6

Second, as long as one considers only tree graphs,
Lagrangians~2.2! and~3.4! are of course completely equiva
lent, since the complications discussed above arise du
loop diagrams. For example, the tree graphs forp-N scatter-
ing andp-p scattering give in both representations the sa
well-known expressions for thes-wave scattering lengths~in
units of 1/mp f) @24#:

apN52k
g2mp f

mN f
F mp f

2

4mN f
2

1

12mp f
2 /4mN f

2
1

mp f
2

ms f
2 G ,

~4.12!

app5
mp f

2

32p f p
2 F71

27mp f
2

ms f
2 24mp f

2
1

2mp f
2

ms f
2 G . ~4.13!

Here k5@4p(11mp f /mN f)#21, and apN(app) refers to
isospin zero in thet (s) channel. In the nonlinears model,
the first term in Eq.~4.12! is due to the nucleon pole Bor
graphs, and the second term due tos meson exchange. Simi
larly, the first term in Eq.~4.13! is due to thep4 contact
term, while the rest is due tos meson exchange. Both ex
pressions reproduce the current algebra predictions in
limit ms→`. ~The experimental values areapN
520.01560.015@25# andapp50.2660.05 @26#.!

V. EOS IN A ONE-LOOP CALCULATION

To illustrate the use of the nonlinear chirals model for
nuclear matter, in this section we will calculate the one-lo
effective potential and the resulting EOS at finite density a
temperature.

In addition to the counterterms of the linear model i

6In two dimensions, the Lagrangian in the original representat
is manifestly renormalizable, and the one in the new representa
is ‘‘on-shell renormalizable’’ in the sense of the equivalence th
rem @22#.
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cluded in Eq.~2.6!, a new counterterm is needed to reno
malize the pion loop contribution~3.8!. It has the form7

dL52
c2

f2
da52

c2

u2
da

1

~11s/u!2
, ~5.1!

and is of second order in the chiral-symmetry-breaking
rameterc. If da is chosen such that the new term in t
effective potential@dVeff5(c2/u2)da# cancels the diver-
gence in Eq.~3.8!, it is clear that also thesn counterterms,
which are obtained by expanding Eq.~5.1! in powers ofs,
cancel the divergences of the one-pion-loop contribution
the sn Green functions at zero external momenta. To de
mine also the finite part ofda, we will require that the term
}s in Eq. ~5.1! cancel the whole pion loop contribution t
the s one-point function in free space (u5v f). This gives

da5
3\

64p2FK2 lnmp f
2 2

1

2G , ~5.2!

F V̄F,p1
c2

u2
daG

u5v

5
3\

64p2Fmp
4 ln

mp
2

mp f
2

2
1

2
~mp

4 2mp f
4 !G .

~5.3!

The remaining countertermsdm2 anddl2 are determined
in the usual way@5# by requiring that, in an expansion of th
effective potential atmc5T50 aroundu5v f , the first two
terms are solely due to the classical potentialVcl , i.e., that
there are no loop contributions to the one- and two-poins
Green functions in free space at zero momentum:

]Veff

]u U
mc5T50,u5v f

5v f mp f
2 2c, ~5.4!

]2Veff

]u2 U
m5T50,u5v f

5ms f
2 , ~5.5!

where, as in Sec. II, mp f
2 5m21l2v f

2 and ms f
2

5m213l2v f
2 . As a result of the condition~5.4!, the pion

mass parameters in free space are the same for the linea
nonlinear models (mp f

2 5mp f
2 ), since in free spacev f is de-

termined such that the RHS of Eq.~5.4! vanishes.
According to the above procedure, the renormaliz

Feynman part of the effective potentialVeff(u)5Vcl1VF
1VD in the nonlinear model at u5v becomes
VF5VFN1VFs1VFp , where

VFN52
1

8p2FmN
4 ln

mN
2

mN f
2

2
3

2
~mN

4 2mN f
4 !

12mN f
2 ~mN

2 2mN f
2 !G , ~5.6!

7Since in the following we consider only the nonlinear model,
omit the primes on all quantities (v8→v, f8→f, mN8→mN ,
etc.!. However, we still distinguish the pion mass parameter in
nonlinear model (mp

2 ) from the one in the linear model (mp
2 ).
-

-

o
r-

and

d

VFs5
1

64p2Fms
4 ln

ms
2

ms f
2

2
3

2
~ms

42ms f
4 !12ms f

2 ~ms
22ms f

2 !G ,

~5.7!

VFp5
3

64p2Fmp
4 ln

mp
2

mp f
2

2
1

2
~mp

4 2mp f
4 !2

1

4
mp f

4 S v2

v f
2

21D 2G .

~5.8!

The forms~5.6! and ~5.7! are the same as in the linears
model@5,12#. Including the Hartree term due to thev meson,
which involves the mean fieldw0, in the classical partVcl ,
and expressing the parametersm2 andl2 by mp f

2 andms f
2 ,

we obtain, after subtracting the vacuum value@5#,

Vcl5
mp f

2

2
~v22v f

2!1
ms f

2 2mp f
2

8v f
2 ~v22v f

2!22c~v2v f !

2
1

2
mv f

2 w0
2 . ~5.9!

The form of themc ,T-dependent partVD is given in Ap-
pendix D. The mean fieldsv andw0 are determined by mini-
mizing the effective potential for fixedmc ,T. For w0 this
givesw05gvr/mv f

2 with the baryon densityr5]Veff /]mc .
The pressure and energy density of the system are d
mined from the thermodynamic potentialV/V5Veff(v) by
the standard thermodynamic relationships.

In the numerical calculations we usev f5 f p , and there-
fore g5mN f /v f.10. Fixing alsomv5783 MeV, the free
parameters arems and gv , which can be fitted to the em
pirical saturation point of the energy per nucleon atT50.
This givesms.600 MeV,gv.5. We note that this value o
ms is not inconsistent with the ones extracted from rec
pp phase shift analyses@27#.

In Figs. 1 and 2 we show the binding energy per nucle
and the pressure forT50, 50, and 100 MeV as functions o
the density. One finds that the effect of the pion loop term
these bulk properties is negligibly small. This is natur

e

FIG. 1. The binding energy per nucleon obtained in the one-lo
approximation to the nonlinears model as a function of the densit
for three temperaturesT50 ~solid line!, T550 MeV ~dashed line!,
and T5100 MeV ~dot-dashed line!. The parameters used ar
ms5600 MeV, mv5783 MeV, g510, andgv55.
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since we are including here only the effect of thes-wavepN
interaction, which is known to be weak. Therefore, the E
is practically the same as the one obtained in Refs.@5,28# on
the basis of the linears model by leaving out the~tachyonic!
pion loop contribution. It is known that this EOS is very so
compared to other relativistic EOS. This is indicated by
slow increase of the energy and the pressure at high de
ties, and the low incompressibility of about 130 MeV
T50.

In Fig. 3 we show the effective massesmN , ms , andmp

as functions of the density for the same values of the te
peratures as used in Figs. 1 and 2. As we mentioned alre
in Sec. II, in order to investigate the phase transition to
Wigner mode (v50), one should include the ring-type dia
grams to avoid the tachyon pole in thes propagator. How-
ever, we see from Fig. 3 that, due to the rather slow decre
of v with increasing density, we are far from the tachyon
region even at high densities.

In order to elucidate the effect of the enhanced pion ma
we finally consider the effectivepN s-wave scattering

FIG. 2. Same as Fig. 1 for the pressure.

FIG. 3. Effective masses of the nucleon~upper three lines!, the
s ~middle three lines!, and the pion~lower three lines! as functions
of the density for three temperaturesT50 ~solid lines!, T550 MeV
~dashed lines!, andT5100 MeV ~dot-dashed lines!. The tempera-
ture dependence of the pion effective mass cannot be disentan
on this scale.
S

e
si-

-
dy
e

se

s,

length in the mediumãpN(r) ~in units of mp f
21), which is

defined via the depth of thes-wavepN optical potentialVopt
at threshold by@29,12#

2mp fVopt~E5mp f !52k21
r

mp f
ãpN~r!, ~5.10!

wherek is defined below Eq.~4.13!. The empirical value of
ãpN(r) at normal nuclear matter density is20.03 @29#.
Compared to the zero density value20.015, this implies
some additional repulsion due to the presence of the nuc
medium. Since the quantity on the LHS of Eq.~5.10! is
given in terms of the pion propagator b
2Dp

21(q05mp f ,q50), we have, in the Hartree approxima
tion,

ãpN~r!52kmp f

mp
2 2mp f

2

r
~5.11!

→
~r→0!

2k
cmp f

v f
2

]v
]rU

r50

52k
g2

mN f

mp f
3

ms f
2

.

~5.12!

To obtain the zero density limit, we used the relati
]v/]rur5052g/ms

2 , which follows from the more genera
relation given in Ref.@5# @see Eq.~3.22a! of Ref. @5##. By
comparing with Eq.~4.12! and the discussion given there, w
see that in the zero density limit the Hartree expression
ãpN reduces to thes meson pole contribution to thepN
scattering length.@The nucleon pole contribution arises fro
the one-loop graphs in the pion self-energy. Numerica
however, the first term in Eq.~4.12! is smaller by a factor of
.(ms f /2mN f)

2.0.1 for thes mass used here.#
The effectivepN scattering length~5.11! is shown for

T50 in Fig. 4 as a function of the density. We see that at
saturation density the result is roughly consistent with
empirical value. The zero density value, however, is mu
larger in magnitude than the experimental value due to

led

FIG. 4. The effectivepN scattering length in units ofmp f
21 for

T50 as a function of the density. The empirical values for ze
density and normal nuclear matter density are20.015 and20.03,
respectively.
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rather lows mass used here.~To reproduce the experimenta
zero density value, one would need as mass of about 1.5
GeV.!

VI. SUMMARY AND CONCLUSIONS

At present the chirals model in the linear representatio
does not seem to be well suited for the nuclear many-b
problem due to the appearance of a tachyon pole in the H
tree pion propagator. Therefore, in this paper we investiga
the nonlinear chirals model as a candidate to include bo
the pionic degrees of freedom and vacuum fluctuation effe
in the description of many-nucleon systems. The square
the in-medium pion mass in this model is positive defini
and therefore the nonlinear model in the Hartree approxi
tion represents a more natural starting point for the ma
body problem than the linear model.

Since the Lagrangian of the nonlinear model can be
tained from the one of the linear model by a field transf
mation, one might expect that the two models are equiva
to each other as far as physical quantities are concerne
this paper, however, we have shown that in any expan
scheme which is based on self-consistent scalar mean fi
the equivalence between the two models does not hold.
is due to the fact that the self-consistency conditions, wh
are different in the two models, bring in all powers of th
expansion parameter, while the equivalence theorem h
only if we compare terms which are of thesameorder. In
particular, we have shown that if one employs self-consis
scalar fields, the counterterms introduced in the linear mo
are insufficient to cancel the divergences in physical qua
ties in the nonlinear model; i.e., the ‘‘on-shell renormal
ability’’ @10# is lost. This point was illustrated explicitly by
using various one-loop examples, like the effective poten
pole positions of meson propagators, andS-matrix elements.

Based on this observation, one still can employ the n
linear s model as a nonrenormalizable effective model, a
introduce the necessary counterterms in each order of
expansion scheme, similar in spirit to the treatment of loo
in chiral perturbation theory@21#, although the context is
different. We illustrated this procedure for the calculation
the one-loop effective potential, and discussed the resul
EOS. As compared to the linear model, the new ingredien
the pion loop contribution, which arises due to the~slightly!
enhanced pion mass in the medium. For the bulk proper
however, this contribution turns out to be negligibly sma
To illustrate the effect of the enhanced pion mass in
medium more clearly, we considered the pion optical pot
tial in the Hartree approximation. We pointed out that its s
at normal nuclear matter density is consistent with the e
pirical depth of the optical potential. The zero density lim
of the resulting effective scattering length, however, tu
out to be larger in magnitude than the experimental one
to the rather lows mass used to fit the saturation point
nuclear matter. These numerical examples at least indi
that the Hartree approximation to the nonlinear model has
obvious difficulties to describe nuclear matter properties.
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APPENDIX A: CHIRAL TRANSFORMATIONS
IN THE NONLINEAR REPRESENTATION

Here we briefly discuss the chiral transformation prop
ties of the fields in the nonlinear Lagrangian~3.3! and the
role of the Jacobian term. From the well-known infinitesim
chiral transformations in the linear representation and
~3.1! it follows that the new pion field transforms a
j i→j i2(a i /2)(12j2)2j i(a•j), which is a special case
of the general nonlinear transformation derived in@7#.
Accordingly, the transformation of the field
B[„N,(DmN), or (Dmj)… has the form of a local isospin
transformation:

B→B1 iT•~a3j!B, ~A1!

with T5t/2 for B5„N,(DmN)… and (Ti) jk52 i e i jk for
B5(Dmj). From this it follows that any isoscalar functio
consisting ofN,(DmN),(Dmj), andf8 is chiral invariant.

Concerning the determinant~3.2!, we note that, first, the
quantity A is just the square root of the coefficient of th
kinetic term for thej field in Eq. ~3.3!. If we would start
directly from the nonlinears model Lagrangian, express th
partition function in ‘‘Hamiltonian form,’’ and integrate ou
the momentum conjugate toj, we would just get the same
factor J of Eq. ~3.2! @30#. Thus, although we derivedJ as a
Jacobian of a field transformation, it should be there eve
one starts directly from the nonlinears model. Second, the
determinant is necessary to make the measure of the part
function of the nonlinear model chiral invariant: From th
transformation properties discussed above it follows t
(]mj i)Ai j

2 (]mj j ) is chiral invariant. Therefore, the measu
Dj det(Ai j ), rather thanDj, is chiral invariant. This has con
sequences, for example, for the one-loop pion self-ene
given in Appendix C 1, where the ghost loop~last diagram in
Fig. 5! cancels the contribution of the pion loop~fourth dia-
gram in Fig. 5! at zero external momenta.

APPENDIX B: THE EQUIVALENCE THEOREM

In this appendix we briefly indicate the proofs of the sta
ments~1!–~4! of Sec. IV A @9,10#.

The generating functionals in the linear and nonline
theories are given by8

Z~J!5eiW~J!5E DfexpS i E @L~f!1Jf# D
5E Df8expS i E $L8~f8!1Jf@f8#% D , ~B1!

8In this as well as the following appendixes we do not indicate\
explicitly. The integrals in the exponents of Eqs.~B1!–~B4!, as well
as those in Eqs.~B7! and ~B8!, refer to four-dimensional space
time. We also note that the quantities defined in Eqs.~B1! and~B3!

are related byZ̃(J,u)5exp(2i*Ju)Z(J) andW̃(J,u)5W(J)2*Ju,
and similarly for the transformed theory.
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Z8~J!5eiW8~J!5E Df8expS i E @L8~f8!1Jf8# D ,

~B2!

and the generating functionals for the shifted theories
@31#

Z̃~J,u!5eiW̃~J,u!5E DsexpS i E @L̂~s,u!1Js# D
5E Ds8expS i E $L̂8~s8,u8!

1J~f@s81u8#2u!% D , ~B3!

Z̃8~J,u8!5eiW̃8~J,u8!5E Ds8expS i E @L̂8~s8,u8!1Js8# D .

~B4!

In the last equalities of Eqs.~B1! and~B3!, the variablesf8
and s8 were introduced according tof5f@f8# and
s1u5f@s81u8#. The corresponding mean fields are giv
by

v5^f&L~f!/Z~0!5]W/]JuJ50 , ~B5!

v85^f8&L8~f8!/Z~0!5]W8/]JuJ50 , ~B6!

where we usedZ(0)5Z8(0). By taking derivatives with re-
spect toJ at J50 of Eq. ~B1!, the relation~4.1! is obtained.
In a similar manner, from Eq.~B3! for u5v andu85v8 we
obtain Eq.~4.2! with s@s8,v8# given by Eq.~4.3!.

Relation ~4.4! follows simply from the definition of the
effective action, i.e.,

G~u!5W̃„J~u!,u…5W„J~u!…2E J~u!u,

S ]W

]J U
J5J~u!

5uD , ~B7!

G8~u!5W̃8„J~u!,u…5W8„J8~u!…2E J8~u!u,

S ]W8

]J U
J5J8~u!

5uD , ~B8!

where the functionsJ(u), J8(u) obey the relations given in
the brackets above. Comparison with Eq.~B5!, Eq. ~B6!
shows thatv andv8 are solutions ofJ(u)50 andJ8(u)50,
respectively@see also Eqs.~2.3! and ~3.6!#, and therefore
G(v)5W(0), G8(v8)5W8(0)5W(0), where the last iden-
tity follows from Eqs.~B1! and ~B2!. This gives Eq.~4.4!.

To show Eq.~4.5!, one uses the fact that for canonic
transformations@4# s5s81 f (s8,v8)1C(v8), where f is
second or higher order ins8, andC(v8) is some function of
v8. Then Eq.~4.2! for the two-point function gives
re

^ss& L̂~s,v !5^s8s8& L̂8~s8,v8!1^s8 f & L̂8~s8,v8!

1^ f s8& L̂8~s8,v8!1^ f f & L̂8~s8,v8!

1@one-point functions1C2~v8!#. ~B9!

If D(p2) is the s-irreducible s8-f vertex function
and E(p2) the s-irreducible f -f vertex function,
we can write^s8(p) f (2p)& L̂8(s8, v8) 5 D(p2) ^s8(p) s8

(2p)& L̂8(s8,v8) and ^ f (p) f (2p)& L̂8(s8,v8)5E(p2)1D2(p2)
3^s8(p)s8(2p)& L̂8(s8,v8), and Eq.~B9! leads to

Z5 lim
p2→m2

~p22m2!$D8~p!@11D~p2!#21E~p2!%.

~B10!

In the absence of bound states~in particular, in perturbation
theory!, the functionsD(p2) and E(p2) satisfy the usual
dispersion relations without pole terms. It then follows th
D8(p) must have a pole at the same position asD(p), and
the residues are related by

Z85
Z

@11D~m2!#2
. ~B11!

To show the equality ofS-matrix elements, one use
s5s81 f (s8,v8)1C(v8) in the second line of Eq.~4.6!
and notes that, in order to haven s poles of the Green
function, every external blockf (p) must lead to an interme
diate s8 propagator; i.e., we can replacef (pi)
→D(pi

2)s8(pi). Moreover, terms involvingC(v8) give only
contributions with less thatn sigma poles, and therefore w
have effectively s(pi)→@11D(m2)#s8(pi) at the pole.
This gives Eq.~4.6! with Z8 given by Eq.~B11!.

APPENDIX C: ONE-LOOP EXAMPLES FOR THE
EQUIVALENCE THEOREM

In this appendix we give various one-loop examples
the general discussions on the equivalence theorem prese
in Sec. IV.9

1. Pion propagator

In order to verify that the RHS of Eq.~4.9! vanishes for
k25mp

2 , we need the forms for the unrenormalized se
energies which follow from the Feynman diagrams shown
Fig. 5:

S̄p~k2!5l2@F1~ms
2 !15F1~mp

2 !14l2v2F2~k2,mp
2 ,ms

2 !#

28g2F1~mN
2 !14g2k2F2~k2,mN

2 ,mN
2 !, ~C1!

9Since all formulas of this appendix refer to free spa
(mc5T50), we leave out the indexf on all quantities, i.e.,
v f→v, mN f→mN , etc.
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S̄p8 ~k2!5
1

v2F S k2

2
1ms

2 DF1~mp
2 !1~2k22ms

22mp
2 !F1~ms

2 !

1~k22ms
2 !2F2~k2,mp

2 ,ms
2 !G

14g2k2F2~k2,mN
2 ,mN

2 !. ~C2!

Since we calculate up to one-loop order, we have setv85v
andmp8

25mp
2 in the self-energies.F1 has been defined in Eq

~4.11!, and

F2~k2,m1
2 ,m2

2!5 i E d4q

~2p!4

3
1

~q22m1
21 i e!@~k2q!22m2

21 i e#
.

~C3!

It is easy to verify that fork250 the expression~C2! is
finite. Using 2l2v25ms

22mp
2 , it is also easy to see that th

RHS of Eq.~4.9! vanishes fork25mp
2 .

We can also verify that Eq.~4.9! follows directly from the
Weinberg transformation, i.e., the analog of Eq.~B9! for the
pion. For this, we note that to one-loop order the transform
tion of the pion field can be approximated asp5p81fp ,
where fp5p8(s8/v2p82/4v2). If Dp(k2) is the pion-
irreducible p8-f p vertex, andEp(k2) the pion-irreducible
f p-f p vertex, the Weinberg transformation gives the conn
tion

Dp~k2!5Dp8 ~k2!@11Dp~k2!#21Ep~k2!, ~C4!

which can be rewritten in the following form valid toO(\):

Dp
21~k2!2Dp8

21~k2!5~k22mp
2 !2Dp~k2!

1~k22mp
2 !2Ep~k2!. ~C5!

The one-loop expressions of the verticesDp(k2) andEp(k2)
are

Dp~k2!5
21

v2 F1

4
F1~mp

2 !1F1~ms
2 !

1~k22ms
2 !F2~k2,mp

2 ,ms
2 !G , ~C6!

Ep~k2!5
21

v2
F2~k2,mp

2 ,ms
2 !. ~C7!

With these forms, the equivalence of Eqs.~4.9! and~C5! can
be easily verified.

2. Sigma propagator

To show the validity of Eq.~4.7! for thes propagator, we
use the fact that thes self-energies in the linear and nonlin
-

-

ear models differ only due to the pion loop and ghost (g)
loop contributions, which are obtained from the Feynm
diagrams of Fig. 6 as

S̄s
p loop~k2!53l2@F1~mp

2 !12l2v2F2~k2,mp
2 ,mp

2 !#,
~C8!

S̄s8
~p1g! loop~k2!5

3

v2F2~k22mp
2 !F1~mp

2 !

1
1

2
~k22mp

2 !2F2~k2,mp
2 ,mp

2 !G .
~C9!

Note that fork50 these expressions agree with the seco
derivatives of the unrenormalized pion loop terms in the
fective potentials@see Eqs.~2.6! and~3.8!# with respect tou
at u5v. The mass shift Dms

2 is given by
Dms

253l2(v822v2)59l2F1(mp
2 )1O(\2), where we used

Eq. ~4.10!. Therefore the difference between the inver
propagators becomes, to one-loop order,

Ds
21~k2!2Ds8

21~k2!5
23

v2
F1~mp

2 !~k22ms
2 !

1
3

2v2
F2~k2,mp

2 ,mp
2 !

3@~k22mp
2 !22~ms

22mp
2 !2#.

~C10!

Settingk25ms
2 , we see from this that Eq.~4.7! is satisfied,

and we also obtain the expression forDs(k2) @see Eq.
~B11!#:

Ds~k2!5
3

2v2
@F1~mp

2 !2~k22mp
2 !F2~k2,mp

2 ,mp
2 !#.

~C11!

This coincides with the expression obtained for t
s-irreducibles8-f s vertex, where to one-loop order

f s.2
p82

2v S 11
s8

v D .

FIG. 5. Feynman diagrams for the one-loop pion self-ener
The solid, dashed, dot-dashed, and dotted lines represent
nucleon, pion,s, and ghost propagators, respectively. The last d
gram ~ghost loop! is present only in the nonlinear model.
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3. s3 S matrix

We first discuss which kind of relations between the o
shell amputated n-point functions (Gn) are implied by Eq.
~4.6!, referring for definiteness to thes n-point functions.
Equations ~4.6! and ~B11! imply that to one-loop order
Gn85(Z/Z8)n/2Gn.Gn,t(11nDs)1Gn,l , where we split
Gn in the linear model into a tree graphGn,t and a loop
contributionGn,l , andDs[Ds(k25ms

2). The tree graph in
the nonlinear modelGn,t8 differs from the one in the linea
model due tov8Þv. We therefore obtain the relation

Gn,l8 2Gn,l 1DGn,t5nGn,tDs , ~C12!

whereDGn,t[Gn,t8 2Gn,t . In particular, forn.4 there are
no tree graphs, and the on-shelln-point functions are identi-
cal ~and finite!.

Let us verify Eq.~C12! explicitly for the casen53. The
one-loop Feynman graphs for thes3 off-shell Green function
G3 are shown in Fig. 7. The tree graph isG3,t526il2v, and
using Eq.~4.10! we obtain

DG3t526il2~v82v !5
29i

2v3
~ms

22mp
2 !F1~mp

2 !.

~C13!
Since the loop contributions in the two models differ on

FIG. 6. Feynman diagrams for the one-loops self-energy. The
solid, dashed, dot-dashed, and dotted lines represent the nuc
pion, s, and ghost propagators, respectively. The last diag
~ghost loop! is present only in the nonlinear model.
-

due to the pion and ghost loops, we give the expressions
for these contributions. In the linear model we obtain

G3l
p loop~k1 ,k2 ,k3!5

23i

2v2
$~ms

22mp
2 !2@F2~k1

2!1F2~k2
2!

1F2~k3
2!#1~ms

22mp
2 !3

3@F3~k1 ,k2!1F3~k2 ,k1!#%, ~C14!

where we useF2(k2)[F2(k2,mp
2 ,mp

2 ), and the ‘‘triangle
graphs’’ are defined by

on,
m

FIG. 7. Feynman diagrams for thes3 Green functions up to
one-loop order. The solid, dashed, dot-dashed, and dotted lines
resent the nucleon, pion,s, and ghost propagators, respective
The first diagram is the tree graph, and the second one is a c
terterm }dl2. The last three diagrams~ghost loops! are present
only in the nonlinear model. The symbolS denotes the symmetrize
with respect to the external momentak1 ,k2 ,k3.
op

nvolves

-

F3~k1 ,k2!5 i E d4q

~2p!4

1

@q22mp
2 1 i e#@~q1k1!22mp

2 1 i e#@~q1k11k2!22mp
2 1 i e#

. ~C15!

It is easy to see that forki50 (i 51,2,3), Eq.~C14! agrees with2 i times the third derivative of the unrenormalized pion lo
term in Eq.~2.6! with respect tou at u5v.

In the nonlinear model, owing to the derivative couplings, one obtains an expression for the loop graphs which i
the integration momentum (q) also in the numerator. By using relations like 2q•(q1k)5(q22mp

2 )
1@(q1k)22mp

2 #2(k22mp
2 )1mp

2 and shifts of the integration variable, one can remove theq dependence from the numera
tors with the result

G3l8
~p1g! loop~k1 ,k2 ,k3!5

23i

2v2
$2F1~k1

21k2
21k3

223mp
2 !2F2~k1

2!~k1
22mp

2 !~k2
21k3

222mp
2 !2F2~k2

2!~k2
22mp

2 !~k3
21k1

2

22mp
2 !2F2~k3

2!~k3
22mp

2 !~k1
21k2

222mp
2 !1~k1

22mp
2 !~k2

22mp
2 !~k3

22mp
2 !@F3~k1 ,k2!

1F3~k2 ,k1!#%, ~C16!
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with F1[F1(mp
2 ). For ki50 (i 51,2,3), this agrees with

2 i times the third derivative of the pion loop term in E
~3.8! with respect tou at u5v.

From Eqs.~C11!, ~C13!, ~C14!, and ~C16! we see that
relation ~C12! for n53 is valid for the on-shell case
(ki

25ms
2).

APPENDIX D: THE FORM OF VD

The explicitly mc ,T-dependent part of the effective po
tential has the form
-

ng

.

l.

,

ys

s

VD~v !52
4

3E d3k

~2p!3

k2

E~k!
@ f 2~k!1 f 1~k!#

2
1

3 (
i 5s,v,p

aiE d3k

~2p!3

k2

v i~k!
f i~k!, ~D1!

where as51, av5ap53, E(k)5Ak21mN
2 ,

vs5Ak21ms
2, vv5Ak21mv f

2 , vp5Ak21mp
2 , and the

distribution functions f i5@exp$bvi(k)%21#21 and
f 6(k)5@exp$b(E(k)6mc* )%11#21. Here mc* 5mc2gvw0.
We note that all masses which appear in Eq.~D1! are in-
medium masses as defined in the main text, except for thv
meson mass.
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