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Spin-isospin structure and pion condensation in nucleon matter

A. Akmal* and V. R. Pandharipande†

Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green St., Urbana, Illinois 61801
~Received 5 May 1997!

We report variational calculations of symmetric nuclear matter and pure neutron matter, using the new
Argonnev18 two-nucleon and Urbana IX three-nucleon interactions. At the equilibrium density of 0.16 fm23

the two-nucleon densities in symmetric nuclear matter exhibit a short-range spin-isospin structure similar to
that found in light nuclei. We also find that both symmetric nuclear matter and pure neutron matter undergo
transitions to phases with pion condensation at densities of 0.32 fm23 and 0.2 fm23, respectively. Neither
transtion occurs with the Urbanav14 two-nucleon interaction, while only the transition in neutron matter occurs
with the Argonnev14 two-nucleon interaction. The three-nucleon interaction is required for the transition to
occur in symmetric nuclear matter, whereas the transition in pure neutron matter occurs even in its absence.
The behavior of the isovector spin-longitudinal response and the pion excess in the vicinity of the transition,
and the model dependence of the transition are discussed.@S0556-2813~97!02110-9#

PACS number~s!: 21.65.1f, 21.30.Fe, 26.60.1c, 64.70.2p
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I. INTRODUCTION

A central problem in nuclear many-body theory is t
prediction from realistic models of nuclear forces of prop
ties of uniform nuclear matter in stable nuclei and in neut
stars. This problem has been the focus of much atten
since the pioneering work of Brueckner, Levinson, and M
moud @1# in 1954. Early work in this field, based primaril
on Brueckner-Bethe-Goldstone many-body theory, was
viewed by Bethe@2# in 1971. A variational method based o
hypernetted chain summation techniques~VCS, previously
denoted FHNC-SOC! was developed in the 1970s@3#, par-
ticularly to include the effects of many-body correlation
presumably important in dense neutron star matter. Calc
tions performed since then have confirmed that many-b
clusters make significant contributions to the binding en
gies of equilibrium nuclear matter and light nuclei@3–8#.

Friedman and Pandharipande@9# ~hereafter denoted FP!
carried out detailed calculations of the equation of state
symmetric nuclear matter~SNM! containing equal number
of protons and neutrons and of pure neutron matter~PNM!
with VCS, using the Urbanav14 model of theNN interaction
@10#. In these calculations, effects of many-body forces w
introduced partly via a small density dependence in theNN
interaction and partly by adding a density-dependent con
bution, attributed to the attractive two-pion exchange thr
nucleon interaction@11#. The parameters of these contrib
tions were adjusted to reproduce the empirical propertie
SNM, and methods were developed to interpolate betw
SNM and PNM@12#. The main weakness in this approach
that the effect of many-body interactions on the structure
matter is ignored.

In the 1980s, a variational theory using Monte Ca
~VMC! methods was developed for light nuclei@13#. Corre-
lation operators with the same structure were employed
both VMC and VCS methods, with the aim of obtaining
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unified description of light nuclei and nuclear matter. T
Urbana VII ~UVII ! model of three-nucleon interactions, co
taining the Fujita-Miyazawa two-pion exchange thre
nucleon interaction@14# and a phenomenological, shorte
range interaction, was added to the Hamiltonian. T
parameters of the UVII were determined by reproducing
binding energies of3H, 4He, and the equilibrium density o
SNM using approximate VMC and VCS calculations@15#.

Wiringa, Fiks, and Fabrocini@16# ~hereafter denoted
WFF! calculated the equation of state of SNM and PN
with an improved VCS method using the Urbana and A
gonne@17# v14 models of theNN interaction and the Urbana
VII three-nucleon interaction. Their calculations of PNM in
dicated a transition to a new phase, possibly including p
condensation, atr;0.24 fm23 with the Argonne v14,
though not with Urbanav14. No evidence of a similar tran
sition in SNM was found by WFF.

Since the pioneering work of Migdal@18# and of Sawyer
and Scallapino@19#, many investigators have used effectiv
interactions to study the possibility of pion condensation
SNM and PNM. These efforts were recently reviewed
Kunihiro et al. @20#. In these studies, theD resonance is
explicitly considered as a non-nucleonic degree of freedo
In contrast, WFF considered only nucleonic degrees of fr
dom and absorbed the effect of theD resonance into the two
and three-nucleon interactions. The approaches used
Migdal and by WFF to study pion condensation are thus v
different. Although the effect of this type of transition on th
equation of state is relatively small, it can have importa
consequences for the cooling and evolution of neutron s
@21#.

In the late 1980s Carlson@22# developed the Green’s
function Monte Carlo~GFMC! method, with which exact
calculations of light nuclei are possible, starting from Ham
tonians with realistic two- and three-nucleon interactio
The GFMC method can be used to determine some of
parameters of the three-nucleon interaction from exact ca
lations of nuclear binding energies.

Recently, Wiringa, Stoks, and Schiavilla@23# made sig-
nificant improvements to the Urbana-Argonnev14 models of
2261 © 1997 The American Physical Society
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2262 56A. AKMAL AND V. R. PANDHARIPANDE
the NN interaction by including isospin symmetry breakin
terms. Their resulting Argonnev18 is one of the new models
fit to the NijmegenNN scattering database@24,25#. Using
this interaction, along with the GFMC method, Pudlineret
al. @26# obtained parameters for the Urbana IX~UIX ! model
of the three-nucleon interaction. Exact GFMC calculatio
by Pudlineret al. @27,28# have shown that the Argonnev18
and Urbana IX interactions provide a good description of
bound states, up to seven nucleons. While all observed e
gies are not exactly reproduced, in each case the differe
between theory and experiment is much smaller than
contribution of the three-nucleon interaction.

In the present work, we employ the Argonnev18 and Ur-
bana IX interactions to study the properties of SNM a
PNM, using the VCS method. We have introduced furth
improvements to the method, in order to address the r
tively strong momentum dependence of the Argonnev18 in-
teraction. These improvements are described in Append
A and B.

With these interactions, we find that both SNM and PN
undergo transitions to a new phase at densities of;0.32
fm23 and;0.2 fm23, respectively. The transitions are sim
lar in nature to that found by WFF in PNM, using the A
gonnev14 and Urbana model VII.

In this paper, we discuss the phase transition and the s
isospin structure of normal SNM at equilibrium density. A
ditional results for the equation of state of dense matter,
cluding relativistic effects, will be reported separately. T
plan of the present paper is as follows. The Hamiltonian a
the VCS method are reviewed in Secs. II and III. In Sec.
we present various pair distribution functions of interest,
both equilibrium and transition densities. These resu
clearly indicate that, in normal SNM atr50.16 fm23, the
tensor correlations inT50 states have near maximum po
sible strength atr;1 fm. The results also indicate the im
portant role played by the short-range parts ofsi•sjti•tj
andsi•sj interactions in determining the transition densi
as predicted by Migdal. In Migdal’s approach, the strength
the short-range part of thesi•sjti•tj interaction is repre-
sented by the Landau-Migdal parameterg8. We also com-
ment on the model dependence of this transition in Sec.
by comparing the Urbanav14 and the Argonnev14 and v18
interactions. Results for the sums of isovector sp
longditudinal responses of SNM and PNM are presented
Sec. V. The corresponding results for the strengths of p
exchange interactions and pion fields appear in Sec.
These results clearly indicate that the high density phase
cludes pion condensation, as anticipated by WFF. Results
SNM are presented at normal density and at the transi
density. The response of SNM at normal density exhib
little indication of the phase transition, which is evidently
first order in the present approach. Conclusions are prese
in Sec. VII.

II. THE HAMILTONIAN

The Argonnev18 two-nucleon interaction has the form

v18,i j 5 (
p51,18

vp~r i j !Oi j
p 1vem. ~2.1!
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The electromagnetic partvem consists of Coulomb and mag
netic interactions in thenn, np, andpp pairs, and it is omit-
ted from all nuclear matter studies. The strong interact
part of the potential includes 14 isoscalar terms with ope
tors:

Oi j
p51,145@1,si•sj ,Si j ,~L•S! i j ,L2,L2si•sj ,~L•S! i j

2 #

^ @1,ti•tj #. ~2.2!

By convention, operators with evenp< 14 include theti•tj
factor, while those with oddp<13 are independent of isos
pin. The operators withp515, 16, and 17 are isotensor:

Oi j
p515,175~3tzitz j2ti•tj ! ^ ~1,si•sj ,Si j !. ~2.3!

The interactions associated with operatorsp516 and 17 are
generated by the mass difference between neutral
charged pions, while the phenomenological interaction w
the p515 operator is necessary to fit the difference betwe
np and pp, 1S0 phase shifts. Finally, the isovector intera
tion with the operator

Oi j
185~tzi1tz j! ~2.4!

is required to fit thenn scattering length and effective rang
along with thenp and pp data. The interaction constructe
with the above elements provides an accurate fit to theNN
scattering data in the Nijmegen database, using the kin
energy operator:

K5(
i

2
\2

4 F S 1

mp
1

1

mn
D1S 1

mp
2

1

mn
D tziG¹ i

2 , ~2.5!

which takes into account the mass difference between
tons and neutrons.

The Urbana models ofVi jk contain two isoscalar terms:

Vi jk5Vi jk
2p1Vi jk

R . ~2.6!

The first term represents the Fujita-Miyazawa two-pion e
change interaction:

Vi jk
2p5(

cyc
A2pS $ti•tj ,ti•tk%$Xi j ,Xik%

1
1

4
@ti•tj ,ti•tk#@Xi j ,Xik# D , ~2.7!

Xi j 5Si j Tp~r i j !1si•sjYp~r i j !, ~2.8!

with strengthA2p . The functionsTp(r i j ) and Yp(r i j ) de-
scribe the radial shapes of the one-pion exchange tensor
Yukawa potentials. These functions are calculated using
average value of the pion mass and include the short-ra
cutoffs used in the Argonnev18 NN interaction. The term
denoted byVi jk

R is purely phenomenological, and has th
form

Vi jk
R 5U0(

cyc
Tp

2 ~r i j !Tp
2 ~r ik!. ~2.9!
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This term is meant to represent the modification ofND and
DD contributions in the two-body interaction by other pa
ticles in the medium, and also accounts for relativistic
fects. The spin-isospin dependence of these effects is
glected.

The two parametersA2p and U0 are chosen to yield the
observed energy of3H and the equilibrium density o
nuclear matter,r050.16 fm23. The parameters of mode
VII, used by WFF, were determined from approximate var
tional calculations using the older Argonnev14 NN interac-
tion, and have the valuesA2p520.0333 MeV and
U050.0038 MeV. The parameters of model IX
A2p520.0293 MeV andU050.0048 MeV, have been de
termined from exact GFMC calculations of3H and the
present approximate variational calculations of nuclear m
ter with the Argonnev18 NN interaction. Most of the differ-
ence between the parameters of models VII and IX is du
the use of exact, rather than approximate, calculations of3H
in the latter. The parameters of model VIII, also determin
via exact3H calculations, albeit with the older Argonnev14
interaction, have the valuesA2p520.028 MeV and
U050.005 MeV, which are not very different from th
present model IX parameters. The insensitivity of these
rameters to the details of the Urbana-Argonne models ofv i j
had been previously noted@29#. For example, calculations o
3H and nuclear matter saturation density using model
yielded similar results with the Urbanav14 and Argonnev14
interactions, despite significant differences in the ten
components of these interactions. We also note that the
ues ofA2p obtained from all these fits are close to;20.03
MeV, the strength predicted by the Fujita-Miyazawa mod
More recent theoretical models ofVi jk

2p , such as the Tucson
Melbourne @30#, predict significantly larger strengths
A2p;20.063 MeV. These models ofVi jk

2p also have addi-
tional terms which are neglected here.

The isotensor and isovector parts ofv i j , and the isovector
part of the kinetic energyK, are very weak and may presum
ably be treated as first-order perturbations. In first ord
these terms do not contribute to the energy of SNM, wh
has total isospinT50. Therefore, the SNM calculations
which neglectvem by definition, are carried out with the
isoscalar part of the Hamiltonian:

HSNM5(
i

2
\2

4 S 1

mp
1

1

mn
D¹ i

21(
i , j

(
p51,14

vp~r i j !Oi j
p

1 (
i , j ,k

Vi jk . ~2.10!

The isotensor and isovector terms do contribute to the en
of PNM. The isospin operatorsti•tj , 3tzitz j2ti•tj and
tzi1tz j reduce to constants, respectively, equal to 1, 2,
22, in PNM. Hence, the full Hamiltonian, excludingvem,
has a simple form for PNM, given by

HPNM5(
i

2
\2

2mn
¹ i

21(
i , j

(
q51,7

ṽ 2q21~r i j !Oi j
2q21

1 (
i , j ,k

Vi jk , ~2.11!
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ṽ 15v11v212v1522v18, ~2.12!

ṽ 35v31v412v16, ~2.13!

ṽ 55v51v612v17, ~2.14!

ṽ 2q215v2q211v2q for q>4. ~2.15!

We note that@ti•tj ,ti•tk#50 in PNM, thus the commutato
term of Vi jk

2p can be omitted from HPNM.

III. VARIATIONAL CALCULATIONS

The variational method developed in@3,11,16,31# pro-
vides a means to calculate the energy and wave functio
the ground state of nuclear matter from realistic models
nuclear forces. We outline the method here and describe
ditional developments in Appendices A and B.

The variational wave function has the form

Cv5S S)
i , j

Fi j DF, ~3.1!

consisting of a symmetrized product of pair correlation o
eratorsFi j operating on the Fermi gas wave functionF. In
SNM, theFi j include eight terms:

Fi j 5 (
p51,8

f p~r i j !Oi j
p , ~3.2!

representing central,si•sj , Si j , and (L•S) i j correlations
with and withoutti•tj factors. In PNM, theFi j reduce to a
sum of four terms with only oddp<7.

This wave function is clearly too simple to accurate
describe the ground state of nuclear matter. Monte Ca
studies of few-body nuclei@32# and 16O @6# use additional
three-body correlation operators in the variational wa
function. These additions to the wave function lower t
ground state energy of16O by ;1 MeV/nucleon. Attempts
to include three-body correlation operators in variational c
culations of SNM are currently in progress@33#. Exact
GFMC calculations have now been carried out for nuc
containing up to seven nucleons@26,28#. The ground state
energy of 7Li obtained with variational wave functions in
cluding three-body correlation operators is greater than
exact value by;0.7 MeV/nucleon. From these results, w
estimate that the presentCv may underbind SNM by a few
MeV. In contrast, the three-body correlations have a mu
smaller effect on the energy of pure neutron drops@8#. The
variational energy of a drop with eight neutrons, calcula
with the simpleCv , is greater than the exact value by;0.5
MeV/nucleon. Thus, we believe the energies calculated
the present work to be relatively more accurate for PNM th
for SNM. This result is to be expected, since SNM has stro
tensor correlations in two-bodynp states, with isospinT50,
and in three-bodynnp andpnn clusters withT5 1

2.
Despite the aforementioned shortcomings, the simpleCv

having only pair correlation operators describes the gr
features of the nuclear wave function rather well. For e
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2264 56A. AKMAL AND V. R. PANDHARIPANDE
ample, the spin-isospin dependent two-nucleon distribu
functions calculated in this approximation are close to
exact distribution functions@27#. We note that the magnitud
of the ground state energy is generally much smaller t
those of the positive kinetic and negative interaction en
gies. The magnitude of the error in the ground state energ
typically only a few percent of the interaction energy. W
can therefore study the main features of the spin-isos
structure of PNM and SNM using the simpleCv described
above.

The correlation operatorsFi j are determined from Euler
Lagrange equations@11# that minimize the two-body cluste
contribution of an interaction (v̄ 2l), where

v̄ i j 5 (
p51,14

apvp~r i j !Oi j
p , ~3.3!

l i j 5 (
p51,8

lp~r i j !Oi j
p . ~3.4!

The variational parametersap are meant to simulate th
quenching of the spin-isospin interaction between particlei
and j , due to flipping of the spin and/or isospin of particlei
or j via interaction with other particles in matter@34#. We
use

ap51 for p51 and 9 , ~3.5!

ap5a otherwise, ~3.6!

since the operators 1 andL2 (p51 and 9! are independent o
spin-isospin. Theap of the (L•S) i j

2 interactions (p513,14)
are also set to unity. The (L•S) i j

2 operator has a significan
L2 part, which should not be quenched, and quenching
remainder ofvp513, along with vp514, does not lower the
variational energy. Thelp(r ) simulate screening effects i
matter and are determined by the healing distancesdp of the
correlation functionsf p:

f p~r .dp!5dp1 . ~3.7!

The radial dependence oflp(r .dp) is determined from the
above constraint. Thelp(r ,dp) are constants chosen t
make the gradients off p at dp equal to zero. The energy o
nuclear matter is particularly sensitive to the range of
tensor and central correlations. For simplicity we assume

dp5dt for p55,6, ~3.8!

dp5dc for pÞ5,6. ~3.9!

The Fi j , and consequentlyCv , thus depend on three varia
tional parameters:a, dc , and dt , the values of which are
determined by minimizing the energy. Two additional p
rameters used by WFF have only a small influence on
energy.

It is convenient to divide the interaction and correlati
operators as follows:

v i j 5vs,i j 1vb,i j 1vq,i j , ~3.10!

Fi j 5Fs,i j 1Fb,i j . ~3.11!
n
e

n
r-
is

in

e

e

-
e

The static partsvs and Fs involve terms with momentum
independent operatorsOi j

p5126 . The spin-orbit terms, with
p57 and 8 are included invb andFb , while terms quadratic
in L, with p59 to 14 are included invq . The two-body~2B!
cluster contributions involve expectation values of the ope
tors:

f q~r i j !Oi j
q v i j

p Oi j
p f q8~r i j !Oi j

q8 , ~3.12!

f q~r i j !Oi j
q ¹ i j

2 f q8~r i j !Oi j
q8 , ~3.13!

in plane-wave states. We divide these contributions into fi
parts: the static parts,^v&-2B-s (^T&-2B-s) include interac-
tion ~kinetic! energy contributions forq, p, andq8 (q and
q8)<6; the spin-orbit parts,̂v&-2B-b and^T&-2B-b include
terms withp<8, and one or more of thep, q, andq8 equal
to 7 or 8; and the quadratic part,^v&-2B-q includes all terms
with p>9.

The results obtained with various Hamiltonians for SN
at kf51.33 fm23 and 1.6 fm23 are listed in Table I. These
Hamiltonians include the kinetic energy plus Urbanav14 v i j
~U14!, Argonne v18 v i j ~A18!, and Argonnev18 v i j plus
model IX Vi jk ~A181IX !. The Fermi kinetic energy is listed
as ^T&-1B, the one-body cluster contribution to the kinet
energy.

Variational cluster Monte Carlo studies of8n-drops @8#
and 16O @6,35#, including up to five-body cluster contribu
tions to the ground state energy, indicate that the conv
gence of the cluster expansion is not particularly good
either case. For example, the one- through five-body clus
contribute 12.9,254.5, 11.1,23.8, and 1.1 MeV, respec
tively, to the ground state energy of the8n drop. This result
does not contradict the earlier lowest-order constrain
variational calculations of neutron gas@36,37#, which re-
tained only thê T&-1B and all 2B contributions. The aim o
the earlier studies was to obtain estimates of the ground s
energy; thedc anddt were not determined variationally, bu
rather were fixed by constraints. In the present work,Cv is
determined variationally to study the structure of SNM a
PNM. The larger optimum values ofdc and dt lead to the
significant size of many-body~MB! clusters of three or more
particles.

According to Table I, the kinetic energy and static inte
actions and correlations make large contributions to the
and 2B cluster energies. We expect MB cluster contributio
containing¹ i

2 or vs,i j andFs correlations to be important. In
this work, as in earlier studies by FP and WFF, these con
butions are calculated using chain summation methods@3#.
The following three improvements were made by WFF in t
basic VCS calculation used by FP.

~i! The kinetic energy can be calculated using differe
expressions related by integration by parts. If all MB cont
butions are calculated, these expressions yield the sam
sult. However, they yield different results when only selec
parts of the MB clusters are summed by VCS techniqu
Studies of atomic helium liquids with VCS methods@38# find
the exact result to be between the energies obtained usin
Jackson-Feenberg~JF! and Pandharipande-Bethe~PB! ex-
pressions. Both the JF and PB energies were calculate
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TABLE I. Contributions to the energy of SNM in MeV.

U14 U14 A18 A18 A181IX A181IX

kf ~fm21) 1.33 1.60 1.33 1.60 1.33 1.60
r ~fm23) 0.16 0.28 0.16 0.28 0.16 0.28
dc ~fm! 2.15 1.79 2.13 2.08 1.80 1.67
dt ~fm! 3.44 2.86 5.67 4.76 4.81 3.81
a 0.80 0.80 0.65 0.61 0.80 0.90

^T&-1B 22.01 31.85 22.01 31.85 22.01 31.85
^v&-2B-s 256.40 275.21 266.17 2100.68 266.41 2105.34
^T&-2B-s 16.08 21.72 19.01 28.51 20.25 33.47
^v&-2B-b 23.23 26.37 22.29 25.02 22.38 25.76
^T&-2B-b 0.80 1.50 0.54 1.10 0.62 1.58
^v&-2B-q 1.11 3.56 4.31 11.39 4.46 12.44
^v1T&-2B 241.64 254.80 244.61 264.71 243.46 263.61
^v1T&-MB-s 4.76 2.91 6.47 9.31 5.50 8.47
^v1T&-MB-b 20.21 21.02 20.28 21.01 20.22 20.72
^v&-MB-q 1.61 3.91 3.00 8.54 3.38 10.62
^V2p& 0.00 0.00 0.00 0.00 23.60 29.96
^VR& 0.00 0.00 0.00 0.00 6.33 22.09
dE2B 20.95 22.06 21.30 22.35 21.89 24.07
1
2 (EPB1EJF)1dE2B 214.42 219.22 214.71 218.37 211.96 25.33
1
2 (EPB2EJF) 0.30 0.27 0.55 0.82 0.60 1.10
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WFF, who took the average of the two as the result, and
the difference as an estimate of the error.

~ii ! The pair distribution functiongc(r ) is defined such
that rgc(r ) represents the probability of finding a particle
a distancer from a given particle. Conservation of number
particles then implies:

I c5rE d3r @12gc~r !#51, ~3.14!

for both SNM and PNM. Also, since SNM has total isosp
T50, we have the following identity for expectation valu
of ti•tj operators:

I t5
1

AK 0U (
i , j 51,A

ti•tjU0L 523. ~3.15!

The values ofI c andI t calculated using the VCS method a
generally within a few percent of these exact results. Ho
ever at small densities, the correlations become large du
the bound deuteron and virtual bound1S0 states, causingI c
and I t to deviate from their exact values by more than 10
in some regions of thedc , dt , a parameter space. Devia
tions of this size can also occur at large densities. Excurs
into such regions of the parameter space are curtaile
SNM by minimizing:

^H&1LF ~ I c21!21S 1

3
I t11D 2G ~3.16!

with L chosen to keepI c and I t within 10% of their exact
values. Only theL(I c21)2 constraint is applicable fo
PNM.

~iii ! In their calculation, WFF added the leading multipl
operator chain contributions to those summed via VCS.
lf

-
to

ns
in

t

r0, these terms contribute less than 1 MeV/nucleon, while
4r0, they may contribute a few MeV/nucleon. Includin
these terms, WFF estimate the error in the calculation of
MB contributions due to kinetic energy,vs and Fs to be
;0.5 MeV/nucleon atr0, and; 5 MeV/nucleon at 6r0 in
SNM; the corresponding error in PNM is lower still. We no
that these errors are negligible compared to the error imp
in the use of the simpleCv given by Eq.~3.1!.

The computer program used to carry out the present
culations is built upon that of WFF and retains all the im
provements made by them.

The contribution of MB clusters involving spin-orbit cor
relations and interactions is calculated using methods de
oped by Lagaris@31#. Separable three-body clusters, wi
correlations between pairsi j and ik, but not betweenjk,
make the dominant contribution tôv1T&-MB-b, via v i j or
¹ i

2 terms in the Hamiltonian. Chain diagrams with corre
tions between all three pairsi j , ik, and jk were found to
make a smaller contribution. We therefore sum all thre
body separable contributions to^v1T&-MB-b, and estimate
only the leading chain contributions.

Lagaris also calculated part of the three-body separa
contribution to^v&-MB-q using the U14 Hamiltonian@11#.
The L2 and„L–S…

2 interactions that contribute tôv&-MB-q
are significantly stronger in the A18 model than in the U
model. We therefore include a more complete calculation
three-body separable terms and leading central chain co
butions to^v&-MB-q in the present work. These calculation
are outlined in Appendix A. The present calculation
^v&-MB-q and the earlier calculation by Lagaris yield simil
results for the U14 Hamiltonian: 1.61~3.91! MeV versus
1.35 ~3.0! MeV at kF51.33 ~1.6! fm23. The difference be-
tween the the two calculations is significant for the t
A181IX Hamiltonian, which makes much greater contrib
tions to ^v&-MB-q ~Table I!.
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We have summed the contributions of leading three-b
and more than three-body diagrams to the expectation va
of the V2p andVR static three-body interactions, using VC
methods described in@39#. The A18 interaction induces
stronger correlations than U14, as is evident by compa
T-2B-s for the two interactions in Table I. The larger corr
lations lead to comparatively larger^V2p& and ^VR&. The
^V2p& in U141VII @15# and A181IX models equal23.49
and23.60 MeV, respectively, atkF51.33 fm23, despite the
smaller strength ofV2p in model IX (A2p520.0293 MeV!
compared to model VII (A2p520.0333 MeV!. The ^VR& is
larger for A181IX ~6.33 MeV atkF51.33 fm23) compared
to U141VII ~3.99 MeV atkF51.33 fm23!. Only about half
the increase in̂ VR& is due to the larger strength ofVR in
model IX (U050.0048 MeV! compared to model VII
(U050.0038 MeV!.

We note that the two-body correlations in this variation
calculation do not have the optimal form. TheFi j are ob-
tained by minimizing the sum of 2B contributions of th
potential v̄ @Eq. ~3.3!#, with healing constraints imposed a
dc and dt . More general correlations can be generated
separately minimizing the two-body cluster contribution
each partial wave, specified byl ,S,J and the relative mo-
mentumk @40#. Thus, the correlationsf ( l ,S,J,k) depend on
all the quantum numbers, and yield a lower 2B energy th
theFi j operators defined in Eq.~3.2! for v̄ with the samedc
and dt . The MB contributions cannot be easily calculat
with the generalf ( l ,S,J,k), however.

The Fi j operators provide a good approximation to t
two-body correlations in matter. The small differences b
tween optimumf ( l ,S,J,k) andFi j can be accounted for b
inclusion of the second-order two-particle–two-hole con
bution, DE2, calculated in correlated basis perturbati
theory@41,42#. We estimate this contribution as described
Appendix B, approximating theDE2 by the differencedE2B
between the 2B cluster energies calculated usingf ( l ,S,J,k)
andFi j . The values ofa,dc ,dt are determined by minimiz
ing the energy calculated from theFi j , anddE2B , calculated
for these optimuma,dc ,dt , is perturbatively added to th
energy. The calculated values ofdE2B ~Table I! for the U14
Hamiltonian are slightly smaller in magnitude than theDE2
values reported in@41#, for the same interaction. ThedE2B
correction is larger for the A18 and A181IX Hamiltonians,
which predict stronger correlations in matter. TheDE2 is
known to be relatively larger for the A14 interaction@42#,
which induces stronger correlations than the U14. O
best estimate of the variational energy, given
1
2 (EPB1EJF)1dE2B , is also listed in Table I.

Over a decade ago, Day and Wiringa@5# calculated the
ground state energies of SNM by means of the Brueckn
Bethe method. Contributions of up to four hole-line diagra
were included, in order to reduce the estimated error in
calculated energy to;60.18~1.3! MeV at kf51.33(1.6)
fm21. The calculations demonstrated that the three realis
two-body potentials used in that work, Bonn~1975! @43,44#,
Paris @45# and A14, yielded essentially the same energy
;214.9 MeV atkf51.33 fm21. At kf51.6 fm21, the Paris
and Argonnev14 models yielded similar energies of;217.8
MeV, while the Bonn result was somewhat higher,
;216.8 MeV. Our results with U14 and A18~Table I! are
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close to the earlier results atkf51.33 fm21, and are about 1
MeV lower atkf51.6 fm21. As with the results of Day and
Wiringa, the present results show a remarkable model in
pendence of the energy of SNM forkf<1.6 fm21, calculated
from realistic two-nucleon interaction models. The diffe
ences in the energies obtained using the different models
smaller than the estimated error in the many-body calcu
tions.

The energies of SNM and PNM calculated using t
A181IX Hamiltonian appear in Fig. 1 and Fig. 2, along wit
the results obtained by WFF using A141VII. As discussed
in detail below, there appears to be a phase transition in b
SNM and PNM with the present Hamiltonian. The curv
marked LDP and HDP show the energies obtained for
low and high densitiy phases, respectively.

At larger densities, the A181IX energies are significantly
higher than the A141VII energies. A major part of this dif-
ference can be attributed to the difference betweenVi jk in
models VII and IX. For example, the contribution of mod

FIG. 1. E(r) of SNM calculated using A181UIX. Included for
comparison are previous calculations ofE(r) using A141UVII
~WFF!, and U-DDI ~FP!. The two sets of variational minima ob
tained atr.0.28 fm23 are labeled LDP and HDP.

FIG. 2. E(r) of PNM calculated using A181UIX. Included for
comparison are previous calculations ofE(r) using A141UVII
~WFF!, and U-DDI ~FP!. The two sets of variational minima ob
tained atr.0.16 fm23 are labeled LDP and HDP.
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IX exceeds that of model VII by 8.2~4.5! MeV to SNM
~PNM! energy atr50.32 fm23. Model VII is unrealistic,
however, as it overbinds3H and 4He. The remainder of the
difference between A181IX and A141VII is due to the
stronger momentum-dependent part,vq,i j of A18, which
makes significant contributions at larger densities.

In the early 1980s, FP added phenomenological dens
dependent terms to the U14 Hamiltonian, and adjusted t
parameters to reproduce the empirical equilibrium dens
energy and compressibility of SNM. These results also
pear in Fig. 1 and Fig. 2. Energy density functionals ba
on the FP results forE(r) of SNM and PNM reproduce
the binding energies of nuclei from16O to 208Pb rather
well @46#.

The minimum energy calculated for SNM with th
present variational wave function and the A181IX Hamil-
tonian is212 MeV, compared to the empirical value of216
MeV. As previously mentioned, results of variational a
exact calculations of light nuclei suggest that includi
three-body correlations in the wave function could lower
variational bound on the energy by more than 1 MeV, a
that the true energy may be more than 1 MeV lower s
Thus, the underbinding of SNM due solely to deficiencies
the A181IX model of nuclear forces is probably much le
than 2 MeV. This underbinding is a very small fraction
the total potential energy of SNM atr050.16 fm23, which
is ;250 MeV for this Hamiltonian.

At approximately twice the equilibrium density, we ob
serve what appears to be a transition in SNM due to a cha
in dt , the range of tensor correlations. The energy of SNM
shown in Fig. 3 as a function of density and ofdt /r 0, where
r 0 is the unit radius defined by

4p

3
r 0

3r51. ~3.17!

The energies in Fig. 3 have been minimized with respec
variations in the other two parameters,a anddc , at eachr
and dt /r 0. For r,0.32 fm23, the minimum occurs a
dt /r 0;4, whereas forr.0.32 fm23, it shifts to dt /r 0;6.

FIG. 3. Constrained energies:Ec(r,dt /r 0)5
1
2 (EPB1EJF)

1L@(I c21)21( 1
3 I t11)2#, of SNM using A181UIX. L was set to

1000 MeV, in order to keep the integrals of the two-body densi
I c and I t within 5% of their exact values of 1 and23 during
minimization.
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The upper line in Fig. 1, labeled LDP, represents the m
mum energies fordt /r 0;4, while the lower line labeled
HDP gives the energies of the minima at larger values
dt /r 0.

This transition is probably related to pion condensat
@16,18,36#, and its spin-isospin structure is discussed in
following sections. The transition does not occur in simi
calculations of SNM using either the U14 or A14 and is th
sensitive to the two-nucleon interaction model. The Fuji
Miyazawa two-pion exchange three-nucleon interaction i
necessary ingredient for the transition to occur in SNM.
similar transition occurs for PNM~Fig. 2! at a lower density
(;0.2 fm23) with both the A141VII and A181IX Hamil-
tonians, but it is not observed for U141VII. The E(r,dt /r 0)
for PNM with A181UIX appear in Fig. 4. Unlike the A14
and U14 interactions, the transition persists in PNM w
A18, in the absence of the Fujita-Miyazawa interaction,
though it occurs at a much higher density (;3.5r0) in that
case.

The contributions toE(r,dt /r 0) of SNM at selected val-
ues of r and dt /r 0 are listed in Table II for the A181IX
model. The interactionsv tt, vst, andvc, associated with the
operatorsSi j ti•tj , si•sjti•tj and 1, make the largest con
tributions to the energy of SNM. These contributions a
listed separately, along with the contribution of the entirev.
The v tt and vst contributions come mainly from the one
pion exchange interaction. The expectation values ofvst,
V2p, and many-body cluster contributions are significan
different in the LDP and HDP. The pion-exchange contrib
tions to the energies of PNM and SNM are listed in Table
for the LDP and HDP. The OPEP used to calculate^vp&
includes apNN dipole form factor with a 5 fm21 cutoff as
described in Sec. VI. TheV2p is that given by model IX. The
results indicate that for SNM the change in the pio
exchange contribution between the two phases comes o
whelmingly from theV2p, which is required to produce th
phase transition. However, for PNM a significant part of t
enhancement in the pion-exchange contribution comes f
vp, thus indicating the diminished importance of the thre
body interaction to the phase transition, and the persiste
of the transition in the absence ofV2p.

In the present calculation, the transition in SNM is of fir

s

FIG. 4. Constrained energies:Ec(r,dt /r 0)5
1
2 (EPB1EJF)

1L(I c21)2 of PNM, using A181UIX. L was set to 1000 MeV.
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TABLE II. Contributions toE(r,dt /r 0) of SNM for A181IX model in MeV.

r ~fm23) 0.16 0.28 0.28 0.36 0.36
dt /r 0 4.20 4.00 6.00 4.00 6.00
dc /dt 0.38 0.41 0.25 0.44 0.28
a 0.80 0.90 0.96 0.98 0.88

^T&-1B 22.11 32.10 32.10 37.96 37.96
^v1T&-2B 243.65 262.71 267.24 274.37 279.54
^v1T&-MB 8.71 18.11 35.29 28.52 43.70
^T& 42.26 67.41 72.28 85.16 85.97
^v& 255.09 279.91 272.13 293.06 283.85
^v tt& 229.14 245.82 249.65 256.94 259.23
^vst& 210.30 212.85 26.20 213.81 26.97
^vc& 226.04 247.27 247.10 261.65 261.25
^V2p& 23.64 210.72 222.88 218.35 232.26
^VR& 6.42 22.65 23.76 40.69 41.71
dE2B 21.91 24.65 22.26 26.78 26.20
1
2 (EPB1EJF)1dE2B 211.96 25.22 21.22 7.67 5.37
1
2 (EPB-EJF) 0.60 1.05 2.30 1.45 2.82
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order, as is evident in Fig. 1. Thus, it is difficult to obta
information about the HDP by studying the LDP. The ord
of the corresponding transition in PNM is not as evident
Fig. 2, though it appears to be of first order as well.

IV. PAIR DISTRIBUTION FUNCTIONS

The two-body densityr2
p(r ), associated with the operato

Oi j
p , is defined@6# such that

K 0U (
iÞ j 51,A

B~r i j !Oi j
pU0L 5AE d3rB~r !r2

p~r !, ~4.1!

for any functionB(r i j ). This relationship is used to calcula
the expectation values of the pair interactionsvp(r i j )Oi j

p in
the ground states of nuclei and nuclear matter, denoted
u0&. The r2

p associated with the static operators 1,ti•tj ,
si•sj , si•sjti•tj , Si j and Si j ti•tj , are denoted byr2

c ,
r2

t , r2
s , r2

st , r2
t , andr2

tt . All properties of SNM discussed
in this and the following two sections are obtained fro
these six two-body densities. In the case of PNM, we dis
gard isospin and consider onlyr2

c , r2
s , andr2

t . The central
two-body density,r2

c , is proportional to the probability o
finding a pair of particles separated by a distancer , and
asymptotically approaches the matter density,r, as r→`.
All other r2

p are associated with spin-isospin correlations a
must therefore vanish asr→`.
r

by

-

d

The staticr2
p , calculated for SNM at the equilibrium den

sity of r50.16 fm23, appear in Fig. 5. The large magnitude
of ther2

p.1 indicate that short-range correlations in SNM a
strongly spin-isospin dependent. The nature of these corr
tions is more evident in the pair distribution function
rT,S,M

(2) (r …, which are proportional to the probability of find
ing a pair of nucleons with total isospin T, spin S, and sp
projection M, as a function ofr . Forestet al. recently studied
these densities in light nuclei@7#.

The rT,0,0
(2) (r ), in S50, M50 states, are spherically sym

metric and are obtained from ther2
p’s using spin-isospin pro-

jection operators, such asPS505 1
4 (12si•sj ). In SNM,

r1,0,0
~2! ~r !5

1

16
@3r2

c~r !1r2
t~r !23r2

s~r !2r2
st~r !#,

~4.2!

r0,0,0
~2! ~r !5

1

16
@r2

c~r !2r2
t~r !2r2

s~r !1r2
st~r !#, ~4.3!

whereas in PNM,

r0,0
~2!~r !5

1

4
@r2

c~r !2r2
s~r !#. ~4.4!
TABLE III. Expectation values of the pion exchange interaction and pion excess operators.

^vp&/A, MeV ^V2p&/A, MeV ^dnp
(1)&/A

SNM, r50.16 fm23 231.53 23.64 0.05
SNM, r50.36 fm23, LDP 260.62 218.35 0.09
SNM, r50.36 fm23, HDP 266.86 232.26 0.15
PNM, r50.16 fm23 20.67 1.23 20.01
PNM, r50.20 fm23, LDP 0.14 1.90 20.01
PNM, r50.20 fm23, HDP 218.20 28.67 0.05
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The pair distribution functions inS51 states have a qua
dropolar deformation due to the tensor interaction. TherS,M

(2)

in PNM are given by

r1,0
~2!~r !5C0~r !22C2~r !P2~cosu!, ~4.5!

r1,61
~2! ~r !5C0~r !1C2~r !P2~cosu!. ~4.6!

The expectation value of B1(r i j )PS51, where

PS515 1
4 (31si•sj ), can be calculated from either the two

body densitiesr2
(p) or from the distributionsr1,M

(2) . Equating
the two results, we find

C0~r !5
1

3
3

1

4
@3r2

c~r !1r2
s~r !#. ~4.7!

A similar calculation of the expectation value ofBtSi j yields

C2~r !5
1

12
r2

t ~r !. ~4.8!

In the case of SNM, theC0(r ) and C2(r ) in T50,1 states
are obtained from the expectation values ofB1(r i j )PS51 and
BtSi j , multiplied by isospin-projection operators,PT50,1.
For theT50, S51 distribution functions, we obtain

C0~r !5
1

3
3

1

16
@3r2

c~r !23r2
t~r !1r2

s~r !2r2
st~r !#,

~4.9!

C2~r !5
1

12
3

1

4
@r2

t ~r !2r2
tt~r !#. ~4.10!

The correspondingT51 expressions are given by

C0~r !5
1

3
3

1

16
@9r2

c~r !13r2
t~r !13r2

s~r !1r2
st~r !#,

~4.11!

C2~r !5
1

3
3

1

16
@3r2

t ~r !1r2
tt~r !#. ~4.12!

FIG. 5. r2
p5126 for SNM at r50.16 fm23.
The extrema ofrT,1,M
(2) (r ,u) at fixed r occur forM50 at

u50 andu5p/2. These extrema are plotted as a function
r in Figs. 6, 8, and 9. From Eqs.~4.5! and ~4.6!, it follows
that

rT,1,61
~2! ~r ,u50!5rT,1,0

~2! ~r ,u5p/2!, ~4.13!

rT,1,61
~2! ~r ,u5p/2!5

1

2
@rT,1,0

~2! ~r ,u50!1rT,1,0
~2! ~r ,u5p/2!#.

~4.14!

We also note that in SNM

rT,S,M
~2! ~r→`!5

2T11

16
r. ~4.15!

The r0,1,0
(2) (r ,u50,p/2) are shown in Fig. 6 for SNM a

r50.16 fm23, along with the corresponding functions fo
2H, 4He, and16O, from Ref.@7#. At small r , this density is
large for u5p/2, where the OPE tensor potential is attra
tive, and small foru50, where the OPEP is repulsive. Thu
according to Ref. @7#, equidensity surfaces havin

FIG. 6. rT,S,M50,1,0
(2) (r ;u50,p/2) for SNM atr50.16 fm23, and

for light nuclei scaled to match the maximum value of the SN
distribution.

FIG. 7. rT,S,M51,0,0
(2) (r ) for SNM at r50.16 fm23, and for light

nuclei scaled to match the maximum value of the SNM distributi
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r0,1,0
(2) .0.01 fm23 are toroidal in shape. The rati

r0,1,0
(2) (r ,u5p/2)/r0,1,0

(2) (r ,u50) is a measure of the streng
of tensor correlations inT50 states. For the maximum pos
sible tensor correlations,r0,1,0

(2) (r ,u50) is negligible com-
pared tor0,1,0

(2) (r ,u5p/2). Figure 6 thus indicates that th
tensor correlations inT50 states, in nuclei and in nuclea
matter, have near the maximum possible strength atr;1 fm.
The peak value ofr0,1,M

(2) (r ) is almost 2.5 times the
asymptotic value of 0.01 fm23 at r50.16 fm23. The spheri-
cally symmetric two-body densities for SNM and nuclei
the T51, S50 channel@r1,0,0

(2) (r )# are shown in Fig. 7.
These distributions peak atr;1, where the nuclear force i
most attractive, and the peak value is about 1.5 times
asymptotic value. Bothr1,0,0

(2) (r ) andr0,1,M
(2) (r ) are supressed

nearr;0 by the repulsive core in theNN interaction.
According to Ref.@7#, the r0,1,M

(2) (r ) and r1,0,0
(2) (r ) have

universal shapes in light nuclei at smallr . In Figs. 6 and 7,
we have scaled the densities in light nuclei such that th
maximum values equal those of SNM. The two-body dens
distributions in SNM appear to have nearly the same sh
as those in light nuclei forr &1.5 fm. However, significant
differences occur forr *2 fm. Note that the average inte
particle distance in SNM atr50.16 fm23 is also;2 fm.

Forestet al. argue in Ref.@7#, that the ratio,RAd , of the
maximum values ofr0,1,M

(2) in a nucleusA and the deuteron
provides a good approximation to the Bethe-Levinger fac
LA , of the nucleusA. The pion and photon absorbtion cro

FIG. 8. Two-body densitiesrT,S,M
(2) for SNM at r50.36 fm23.

The full and dashed lines represent results for the LDP and H
respectively.
e

ir
y
e

r,

sections in light nuclei scale withRAd . The calculated value
of RAd for SNM at equilibrium density is 1.59A, which cor-
responds toLA56.36.

We observe interesting changes in the two-body dens
between the low and high density phases in SNM and PN
The existence of a pion condensate is indicated in the H
as discussed in the following sections. TherT,S,M

(2) (r ) in
SNM atr50.36 fm23 in the LDP, withdt /r 054, and in the
HDP, with dt /r 056 are shown in Fig. 8. The analogou
rS,M

(2) (r ) in PNM at r50.20 fm23 are shown in Fig. 9. The
differences between pair densities in LDP and HDP are m
pronounced in PNM. In both PNM and SNM, we find th
the long-range part of the tensor correlations is enhanced
PNM, the S50 r0,0

(2) is suppressed in the HDP, whereas
SNM, r1,0,0

(2) andr0,1,M
(2) are suppressed andr0,0,0

(2) is enhanced.
In Migdal’s approach@18#, the transition to the pion con

densed phase is inhibited by a positive, short-ran
si•sjti•tj two-nucleon interactionvst(r ), represented by
the Landau parameterg8. The eigenvalues ofsi•sjti•tj are
23, 23, 1, and 9 inT,S51,0; 0,1; 1,1; and 0,0 states
respectively. Therefore, a strong positivevst(r ) favors the
LDP, which has larger pair densities inT,S51,0 and 0,1
states, and a smaller pair density inT,S50,0. Similarly, in
PNM, a large positiveṽ s, given by Eq.~2.13!, favors the
LDP. The vst(r ) and ṽ s(r ) in the U14, A14, and A18
models are shown in Fig. 10. The positivevst and ṽ s of
U14 prevent a transition to the HDP in both SNM and PN

P,
FIG. 9. Two-body densitiesrS,M

(2) for PNM atr50.2 fm23. The
full and dashed lines represent results for the LDP and HDP,
spectively.
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In A14, ṽ s becomes negative at smallr , and PNM is thus
predicted by WFF to undergo a transition, while in A18, bo

vst and ṽ s change sign and thus cannot prevent the tra
tion in either SNM or PNM. The Urbana-Argonne potentia
have similar forms, but are fit to different data sets, wher
the U14 and A14 were fit ton-p phase shifts available in th
late 1970s and early 1980s, respectively, the A18 is fit
rectly to the 1994 Nijmegenp-p andn-p scattering database
Also, a much better fit was achieved by A18 (x2 per datum
51.09!. Thus, it is likely that A18 provides a more accura
representation of theNN interaction within the Urbana
Argonne framework.

The vst(r ) predicted byp- andr-exchange potentials i
positive for pointlike nucleons. However, these meso
exchange potentials also contain a negatived-function term.
It is possible that this term is broadened by the finite size
nucleons, and that the totalvst(r ) changes sign at smallr .
The one-meson exchange representation of theNN interac-
tion may not be reliable at smallr , however.

The v tt(r )Si j ti•tj interaction contains the main part o
the OPEP. Atr .1 fm this interaction is essentially identica
in the U14, A14, and A18 models. Atr ,1 fm it is strongest
in A14 and weakest in U14.

V. ISOVECTOR SPIN-LONGITUDINAL RESPONSE

Migdal @18# calculated the isovector spin-longitudin
~IVSL! response of nuclear matter using effective inter
tions. The IVSL response is defined as

FIG. 10. vst(r ) and ṽ s(r ) in U14, A14, and A18 models of the
nucleon-nucleon interaction.
i-

s

i-

-

f

-

RL~q,v!5(
I

u^I uOL~q!u0&u2d~v I2v02v!, ~5.1!

OL~q!5 (
i 51,A

si•qti• t̂eiq–r i, ~5.2!

where t̂ is a unit vector in isospin space, andu0& and uI &
represent the ground and excited states of the system,
energiesv0 andv I , respectively. SNM has zero isospin, an
RL is therefore independent of the direction oft̂. The opera-
tor OL(q) represents the coupling of an external pion field
NM. In the case of PNM, we taket̂ to be in thez direction,
such thatt• t̂521. OL(q) then represents the coupling of
p0 field to PNM. Migdal assumed that this response wou
be dominated by a spin-isospin sound mode, and that
occurrence of transition would be indicated by the vanish
of the corresponding excitation energy.

Calculation of the response of NM from realistic intera
tions is an extremely difficult task. However, it is we
known @47# that the sums and energy-weighted sums of
sponse functions are related to the two-body densities.
the IVSL response, the sum and energy-weighted sum
defined as

Aq2SL~q!5E
0

`

RL~q,v!dv, ~5.3!

Aq2WL~q!5E
0

`

RL~q,v!vdv, ~5.4!

thus removing the dependence on the number of particles
SNM they are given by

SL~q!511
1

9E @r2
st~r ! j 0~qr !2r2

tt~r ! j 2~qr !#d3r ,

~5.5!

WL~q!5
q2

2m
1

1

2E F (
p52,6

DL
p~r !r2

p~r !Gd3r , ~5.6!

with the DL
p(r ) tabulated in@47#. In the case of PNM we

obtain

SL~q!511
1

3E @r2
s~r ! j 0~qr !2r2

t ~r ! j 2~qr !#d3r ,

~5.7!

and

DL
s~r !52

8

3
$ ṽ s~r !@12 j 0~qr !#2 ṽ t~r ! j 2~qr !%,

~5.8!

DL
t ~r !52

4

3
$ ṽ t~r !@21 j 0~qr !#

2@ ṽ s~r !22 ṽ t~r !# j 2~qr !%. ~5.9!

We note that terms with evenp do not occur in PNM, and
the ṽ p are defined as in Eqs.~2.12!–~2.15!. The energy-



s
nt
s

ob
m

L

re

tiv

is
n-
e
at
,

si

c-
. At

in-

-

hen

ty

-

st
ced
ter-
ion

2272 56A. AKMAL AND V. R. PANDHARIPANDE
weighted sum of Eq.~5.6! contains only the contribution
from the static parts ofv i j . These represent the domina
contributions to the energy-weighted sums of response
electromagnetic fields@48,49#, and presumably toWL as
well.

The calculated values ofSL(q) in SNM at r50.16 fm23

andr50.36 fm23, and in PNM atr50.16 fm23 andr50.2
fm23, appear in Fig. 11. At the higher densities, results
tained for both the LDP and HDP are shown. At equilibriu
density, theSL(q) exhibits a small enhancement in theq;2
fm21 region. Indications of an enhancement of the IVS
response have been observed in (pW ,nW ) reactions@50#. In the
LDP, this enhancement grows slowly with density. We p
dict a much larger enhancement atq;1.3 fm21 in the HDP.

When the response is dominated by a single collec
mode, i.e., when only one of the statesuI & largely contributes
to the sum in Eq.~5.1!, the energy of the collective state
given byWL(q)/SL(q). As an example, the energy of Fey
man phonons in atomic liquid4He can be obtained from th
WL /SL ratio. The spin-longitudinal response of nucleon m
ter probably has a large spread in energy; nevertheless
can define a mean energy of the response as

ĒL~q!5
WL~q!

SL~q!
. ~5.10!

The resulting values appear in Fig. 12 for the cases con
ered in Fig 11.

FIG. 11. SL(q) for SNM and PNM.
to

-

-

e

-
we

d-

We note that in the LDP,ĒL(q) is larger thanq2/2m in
SNM as well as in PNM, indicating that the nuclear intera
tions push the response to higher energies on average
q;0 the IVSL response is almost entirely due to sp
isospin correlations, andĒL(q;0) is therefore large. In
Migdal’s picture @18#, the energy of the collective spin
isospin sound wave withq;1.3 fm23 decreases with in-
creasing matter density, and pion condensation occurs w
the energy vanishes. In the LDP, wheredt;4r 0, the present
calculations show thatĒL(q) does not decrease with densi
at any q. However, the HDP has a lowerĒL(q) than the
LDP in the vicinity ofq;1.3 fm21. It is likely that a part of
the response atq;1.3 fm21 shifts to lower energies, or soft
ens, as the system moves from the LDP to the HDP.

VI. PIONIC INTERACTIONS AND EXCESS

If the HDP is in fact a ‘‘pion-condensed’’ phase, it mu
have associated with it an enhanced pion field and enhan
pion exchange interactions between the nucleons. The in
action between two nucleons, due to the exchange of a p
of momentumq, is given by

v i j
p~q!52

f pNN
2

mp
2 ~mp

2 1q2!
si•qsj•qti•tje

iq•~r i2r j !L2~q!,

~6.1!

FIG. 12. WL(q)/SL(q) for SNM and PNM.q2/2m ~dash-dotted
curve! is plotted for comparison.
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whereL(q) is the pion-nucleon form factor. The expectatio
value of the interaction is trivially related to the sumSL(q)
of the IVSL response:

1

AK (
i , j

v i j
p~q!L 52

f pNN
2

mp
2 ~mp

2 1q2!

3

2
q2@SL~q!21#L2~q!,

~6.2!

1

AK (
i , j

v i j
p~q!L 52

f pNN
2

mp
2 ~mp

2 1q2!

1

2
q2@SL~q!21#L2~q!,

~6.3!

in SNM and PNM, respectively. The expectation value of
completev i j

p is obtained by integrating these expressio
over dq:

1

AK (
i , j

v i j
p L 5

1

2Ap2E dq q2K (
i , j

v i j
p~q!L 5E dqj~q!.

~6.4!

The functionj(q)

j~q!5
1

2p2

f pNN
2

mp
2 ~mp

2 1q2!
q4

3

2
@12SL~q!#L2~q!,

~6.5!

gives the pion-exchange nucleon-nucleon interaction~OPEP!
contribution as a function ofq, the magnitude of the momen
tum of the exchanged pions in SNM;j(q) for PNM is di-
minished by a factor of 3. The calculated values ofj(q) for

FIG. 13. j(q) for SNM and PNM.
e
s

the cases previously discussed appear in Fig. 13 for S
and PNM, where we have used

L~q2!5
l2

l21q2
~6.6!

with l55 fm21 as an illustration. In the LDP, the attractio
from the OPEP comes from a broad region aroundq;3
fm21, whereas in the HDP, the attraction is relatively mo
concentrated atq;1.5 fm21. Also, much of the repulsion
due to lowq pions in the LDP is absent in the HDP. Th
total OPEP contribution, obtained from Eq.~6.4!, is listed in
Table III. In the case of SNM, thêvp& is not very different
in the LDP and HDP; a much larger change occurs in
^V2p&, also listed in Table III. In PNM, however, the differ
ence in^vp& is more pronounced between the LDP and t
HDP.

The difference in the expectation values of the pion nu
ber operator in matter and forA isolated nucleons is called
the pion excess@51#. The operator for excess pions of mo
mentumq, due exclusively to OPE interactions, is given b

dnp
~1!~q!52

vp~q!

Amp
2 1q2

. ~6.7!

The distribution of excess pions is given by:

h~q!52
j~q!

Amp
2 1q2

, ~6.8!

FIG. 14. Pion excess function,h(q) for SNM and PNM.
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which is shown in Fig. 14 for SNM and PNM. Theh(q)
exhibits a sharp enhancement in the HDP atq;1.5 fm21.

The integral ofdnp
(1)(q), denoted bŷ dnp

(1)&, is listed in
Table III. The total̂ dnp& includes other contributions from
the NN→ND and NN→DD transition interactions@51#,
which we have not calculated here. These additional con
butions take into account the changes in the pion field du
ND andDD box diagrams and due to theVi jk

2p .

VII. CONCLUSIONS

We have studied the short-range spin-isospin structur
SNM and PNM, using one of the most accurate models
nuclear forces currently available. For SNM at equilibriu
density, we predict a short-range structure very similar
that found by Forestet al. @7# in light nuclei, at interparticle
distances,1.5 fm. Symmetric nuclear matter is bound b
small localized regions of strong attraction in theNN poten-
tial in T,S50,1 and 1,0 states. The two-nucleon densities
found to have large overshoots, ranging up to 2.5~1.5! times
the uncorrelated values~Figs. 6 and 7! in the T,S50,1 ~1,0!
attractive regions. The interaction, and consequently the
density, in T,S5 0,1 states is highly anisotropic due to th
presence of the OPE tensor force. The two-body den
overshoots in this state have femtometer-sized toroidal st
tures similar to those found in light nuclei; we therefore e
pect this feature to occur in all nuclei. These short-ran
structures are not very sensitive to the uncertainties in m
els of nuclear forces as discussed in@7#.

We also find that the Argonnev18 plus Urbana IXVi jk
model of nuclear forces, which offers one of the best fits
the NijmegenNN scattering database, as well as to the bin
ing energies of light nuclei@26#, predicts that both SNM and
PNM will undergo transitions to phases with pion conden
tion at densities of;0.32 fm23 and ;0.2 fm23, respec-
tively. The occurrence of this transition is sensitive to t
short-range parts of thesi•sj and si•sjti•tj NN interac-
tion, as predicted by Migdal@18#. The transition does no
occur with the older Urbana and Argonnev14 models in
SNM, while in PNM it occurs with the Argonnev14, though
not with the Urbanav14.

It should be stressed that the present calculations of p
condensation in the HDP are incomplete. Although we h
used a variational wave function of the same form to
scribe both the LDP and the HDP, a different form perm
ting long-range order should be used for the latter. A wa
function describing a correlated liquid crystal, containi
layers of spin-isospin ordered nucleons, may be more ap
priate for the HDP. Takatsukaet al. @52# have used such a
wave function, denoted ASL for ‘‘alternating spin layers.’’
correlated spin-ordered solid~SOS! wave function@53# has
also been used in the past. However, only lowest-order va
tional @53# or G-matrix @52# calculations have been possib
with these wave functions having long-range order. In vi
of the small difference between the energies of the LDP,
the HDP, it may be advisable to use similar methods to c
culate both. The chain summation methods used here ca
be used with either ASL or SOS wave functions. Howev
in the future it may be possible to calculate energies of
LDP as well as correlated ASL and SOS phases, using c
ter Monte Carlo methods@6,35,8#.

The indication of a phase transition obtained with t
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present calculation should be reliable. The changes in
pair distributions, the IVSL response and the pion fie
strongly suggest that the HDP will exhibit pion condensat
upon inclusion of wave functions permitting long-range o
der. We hope that such a modification will not significan
alter our results for the short-range structure and energ
the HDP. The momentum of the condensed pion field
;1.4 fm21 at the onset of the phase transition, which cor
sponds to a wavelenth of 4.5 fm. The interlayer spaci
which equals half the wavelength@54#, is thus predicted to be
;2.25 fm in both SNM and PNM. This spacing is larg
than the spacing of 1.5~1.7! fm between the layers of a
simple cubic solid atr50.32(0.2) fm23.

Most calculations exploring the possibility of pion con
densation in matter explicitly consider thepND coupling.
The baryons in ASL and SOS matter are taken to be su
positions of nucleon andD states. TheNN→ND and
NN→DD transitions are considered in these approach
which make the theory more difficult. In contrast, we do n
consider theD degree of freedom explicitly in the prese
work. The resulting effects, along with those due to oth
mesons and nucleon resonances, are implicit in the two-
three-nucleon potentials obtained by fitting experimen
data. Our Hamiltonian has only nucleon degrees of freed
and its predictions can be calculated using a variety of ma
body techniques. As previously mentioned, however,
predictions regarding pion condensations are sensitive to
details of the short-rangeNN interaction.

It is encouraging to note that our calculated density
;0.32 fm23 for the onset of pion condensation in SNM
within the range 0.32 to 0.48 fm23 favored by calculations
using the ASL wave function@52#. As with WFF, we predict
a lower transition density (;0.2 fm23) for PNM. This is due
to the fact that in most realistic models,ṽ s(r ), the relevant
interaction in PNM, is softer thanvst(r ) ~Fig. 10!. Calcula-
tions with ASL wave functions predict a higher density
;0.5 fm23 for the onset of neutral pion condensation
PNM @52#. The possibility of chargedp2 and/orK2 con-
densation in neutron star matter at densities above our re
of 0.2 fm23 for p0 condensation is currently being invest
gated by a number of researchers@55–57#.
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APPENDIX A: THE TREATMENT OF L 2

AND „L–S…

2 INTERACTIONS

The leading contribution tôv&-MB-q is from the sepa-
rable, direct three-body diagram shown in Fig. 15~a!. The
earlier calculation of̂ v&-MB-q by Lagaris @11# with the
U14 potential included only the main term of this diagra
namely the term with only central correlations between
teracting particles. While this approximation was justifiab
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FIG. 15. ~a! Three-body separable direct,~b! three-body sepa-
rable, interacting exchange,~c! three-body separable, passive e
change,~d! direct central chain,~e! interacting exchange centra
chain, ~f! pair exchange central chain, and~g! circular exchange
central chain diagrams.
no
d

on

ts

h

for U14, the much strongerL2 and (L–S)2 interactions of
A18 ~see Table I! require calculation of additional terms. I
the present work we include all relevant terms of the dir
diagram presented in Fig. 15~a!, and in addition consider:~i!
the interacting exchange three-body separable diagram@Fig.
15~b!#, ~ii ! the passive exchange three-body separable
gram @Fig. 15~c!#, and ~iii ! central chain diagrams with an
without exchanges@Figs. 15~d!–15~g!#. Terms in these dia-
grams are classified as eitherF diagrams, in which the gra
dients in the interaction operate on passive correlationsFil ,
and K diagrams, in which the gradients act on interacti
correlationsFi j and the uncorrelated wave functionF. The
direct three-body separable diagram@Fig. 15~a!#, has the gen-
eral form

TABLE IV. MB- q Contributions in MeV to SNM atr50.28
fm23 using U14 and A18NN-interactions.

Diagram U14 A18

2B-dir 4.18 9.12
2B-ex 20.62 2.27
(a) 3.47 8.57
(b) 0.22 21.54
(c) 0.21 0.46
(d1 f ) 0.20 0.49
(e1g) 20.19 0.56
1

AV2 (
ki ,k j ,kl

(
p,m,p8,q,q8

E F3* ~ i , j ,l !CS 1

4
$ f i j

p Oi j
p , f i l

qOil
q %v i j

mOi j
m$ f i j

p8Oi j
p8 , f i l

q8Oil
q8%

2~ f i j
p Oi j

p v i j
mOi j

mf i j
p8Oi j

p8!~ f i l
qOil

q f il
q8Oil

q8! DF3~ i , j ,l !d3r i j d
3r il , ~A1!
ith
f
,

-
h

with

F3~ i , j ,l !5ei ~ki•r i1k j •r j 1kl•r l !, ~A2!

whereC( ) represents the so-calledc part, or thes,t inde-
pendent part of the operator product, as described in@3#.
Also, theOi j in the separated part of the expression do
operate on thef i l Oil . The expressions for the interacting an
passive exchange diagrams@Figs. 15~a! and 15~b!# are ob-
tained by replacing the uncorrelated wave functi
F3* ( i , j ,l ) with eitherF3* ( j ,i ,l ) or F3* ( l , j ,i ), and inserting

the appropriate exchange operators (1
4 (n51,4Oi j

n or
1
4 (n51,4Oil

n ) to the far left of the operator product.
The three-body separableL2 diagrams withm59212

@Figs. 15~a!–15~c!# have large F-parts, and smaller K-par
which we neglect. For the diagram presented in Fig. 15~a!
we include terms withp,p85126 and q,q85126. The
dominant contribution comes from terms withp51 and
q,q8 representing either central or tensor correlations. T
contribution from the diagrams presented in Figs. 15~b! and
t

e

15~c! is somewhat smaller, and we only consider terms w
p,p851,2 andq,q85126. Contributions to the energy o
SNM at r50.28 fm23 for both the U14 and A18 models
without three-body interactions are listed in Table IV.

The (L•S) i j
2 in Oi j

m513,14 can be decomposed as

~L•S! i j
2 52

1

2
~L•S! i j 1

1

2
L21

1

6
si•sjL

21
1

6
a i j ~L,L !,

~A3!

where

a i j ~L,L !53si•Lsj•L2si•sjL
2. ~A4!

The (L•S) i j part ofv i j
m513,14is treated along with thev i j

m57,8,
as described by Lagaris@31#, and includes all the diagram
matic terms therein. TheL2 parts are calculated along wit
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the v i j
m59212, as described above. We also include selec

a i j diagrams, which are expected to make the most sign
cant contribution to the energy. These contain directF dia-
grams@Fig. 15~a!# with p8q8pq5cctc,tccc,ttct,cttt,tctc,
and the exchangeF diagrams @Fig. 15~b!# with
p8q8pq5cctc,tccc, where it is understood that ‘‘t ’’ repre-
sents all tensor correlations with and withoutti•tj or ti•tl
factors.

The central chain diagrams shown in Figs. 15~d!–15~g!
make a modest contribution to the energy. TheK diagrams
are obtained by inserting appropriate chain functions into
two-body integrals. Three central chain function
Gxx85dd,de,cc

c are defined in@3#, wherexx8 denote the ex-
change character of the two interacting vertices of the d
gram. Each of these may be either direct (x5d), exchanged
only with particles in the chain (x5e) or part of a circular
exchange involving both interacting particles (xx85cc).
When considering only static interactions and correlatio
theGxx8

c can be directly inserted into the two-body integra
However, the gradients associated with momentu
dependent interactions may operate on the Slater function
the de andcc chains, thus yielding somewhat more comp
cated expressions.

The direct central chain diagram@Fig. 15~d!# has neither
interacting particle exchanged. TheK part of this diagram is
obtained in the same manner as static diagrams, namel

dressing the two-body direct diagram with@eGdd
c

21#.
In order to calculate thede andcc diagrams@Figs. 15~f!

and 15~g!#, the operator productf i j
p Oi j

p v i j
mOi j

mf i j
p8Oi j

p8 is writ-
ten in powers ofL2. TheL0 part does not contain gradient
and the associatedde and ee chain diagrams are thus ob
tained as in the static case by dressing the direct two-b
diagram with

eGdd
c

~2Gde
c 1Gde

c Gde
c 1Gee

c !. ~A5!

The L0 cc chain diagrams@Figs. 15~e! and 15~g!# are calcu-
lated by replacingl i j

2 /s in the two-body exchange diagram b

1

s
eGdd

c
~ l i j 1sGcc

c !22
l i j
2

s
. ~A6!

Here,s is the degeneracy, andl i j [ l (kfr i j ) is the Slater func-
tion. TheK contribution of terms in thede andcc diagrams
containingL2 operators are calculated using the chain fu

tions Gde
L2

andGcc
L2

defined as

Gde
L2

52
rr i j

2

s E d3r lFl j
c l i l l̃ i l , ~A7!

Gcc
L2

52
rr i j

2

s2
l i j E d3r lFl j

c l l j l̃ i l , ~A8!

with

l̃ i l [
1

4
cos2u i S l i l9 2

l i l8

r il
D 2

1

4S l i l9 1
l i l8

r il
D 1cosu i

l i l8

r i j
.

~A9!
d
-

e
,

-

s,
.
-
in

by

y

-

The L2 chain functions result from theLi j
2 acting on the

Fermi gas part of the wave functions. These depend onr i and
r j due to the exchanges at the interacting vertices of
chain diagrams.

Thede contribution of theL2 part is obtained by dressin
the two-body direct diagram with

eGdd
c

@Gde
c 12~5/kf

2r i j
2 !Gde

L2
#, ~A10!

while thecc contribution is calculated by replacingr i j l i j l i j8 /s
in the two-body exchange diagram by

eGdd
c S r i j l i j l i j8

s
2r i j l i j8 Gcc

c 12Gcc
L2D 2

r i j l i j l i j8

s
. ~A11!

The present calculation of̂v&-MB-q includes terms in-
volving only the static correlations, since they yield th
dominant contribution to the energy. Without (L•S) i j corre-

lations, the f i j
p Oi j

p v i j
mOi j

mf i j
p8Oi j

p8 operator product does no
contain terms withLn.2, and the above calculation of centr
chainK diagrams is complete.

APPENDIX B: PERTURBATIVE CORRECTIONS

We wish to calculate the two-body cluster using a bet
variational wave function. The standard two-body variation
wave function has the form

C2b5S (
p51,8

f p~r i j !Oi j
p DF2b , ~B1!

whereF2b is a plane-wave Slater determinant. Thef p are
determined from theE-L equations obtained by minimizing
the total two-body cluster energy

C25
1

A(
m,n

K C2buH2
\2

m
kmn

2 uC2bL
5

1

A (
km ,kn

(
sm ,sn

(
tm ,tn

K C2bUH2
\2

m
kmn

2 UC2bL ,

~B2!

obtained after summing overkm , kn , sm , sn , tm , andtn at
chosen values ofdc , dt , anda. We propose instead to mini
mizeC2(km ,kn) separately in each partial wave, thus obta
ing momentum- and channel-dependent correlati
f ( l ,S,J,k). The perturbative correction to the energy in
l ,S,J channel is then given by

dE2~ l ,S,J!5 (
km ,kn

@C2~ l ,S,J;km ,kn!2C̄2~ l ,S,J;km ,kn!#,

~B3!

whereC2 is obtained from thef ( l ,S,J,k) and C̄2 is calcu-
lated with the operatorf pOp.

The uncorrelated two-body wave function, in relative c
ordinates, can be expanded as
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eikzuS,M &5dS0dM0(
J

A4p~2J11!i J j
J
~kr !YJ0J

0 1dS1(
J

A4p~2J11!i J j
J
~kr !YJ1J

M ^J1JMuJ01M &

1dS1(
J>1

A4p i J2@jJ2

M ~r !YJ21J
M 1jJ1

M ~r !YJ11J
M #, ~B4!

whereJ65J61, YlSJ
M are spin-angle functions,^ lSJMu lmlSms& are Clebsch-Gordon coefficients, and

jJ2

M ~r !5A~2J211!^J21JMuJ201M & j
J2

~kr !,

jJ1

M ~r !52A~2J111!^J11JMuJ101M & j
J1

~kr !. ~B5!

The correlated two-body wave function can thus be written

C~r ,k,S,M !5(
J

A4p~2J11!i J@RJ,S50~r !YJ0J
0 1RJ,S51~r !YJ1J

M ^J1JMuJ01M &#

1 (
J>1

A4p i J2@RJ2

M ~r !YJ21J
M 1RJ1

M ~r !YJ11J
M #. ~B6!

The wave functionuJ5 l ,S50,15rRJ,S in uncoupled channels satisfies theE-L equation:

2
\2

m
uJ,S9 1S \2

m

J~J11!

r 2
1 v̄ J,S2lJ,S~k!D uJ,S5

\2

m
k2uJ,S , ~B7!

and is normalized such that

uJ,S~r 5dx!5r j
J
~kr !. ~B8!

The lJ,S(k) are constants, which are varied to match the boundary conditions:

uJ,S8 ~r 5dx!5 j
J
~kr !1r j

J
8~kr !, ~B9!

wheredx5dc in the spin-singlet state, anddx5dt in the uncoupled spin-triplet state, which is affected by the tensor corr
tions.

In the coupled channels,J5 l 61, S51, we obtain a pair of coupled equations:

2
\2

m
u91S \2

m

J2~J211!

r 2
1 v̄ J2,12lc~k!D u1

6AJ~J11!

2J11
@ v̄ J,1

t 2l t~k!#v5
\2

m
k2u, ~B10!

2
\2

m
v91S \2

m

J1~J111!

r 2
1 v̄ J1,12lc~k!D v1

6AJ~J11!

2J11
@ v̄ J,1

t 2l t~k!#u5
\2

m
k2v. ~B11!
n-

nd-
These equations have two sets of solutions, denoted
(u2 ,v2) and (u1 ,v1), with boundary conditions

u2~r 5dx!5r j
J2

~kr !, v2~r 5dt!50,

u28 ~r 5dx!5 j
J2

~kr !1r j
J2

8 ~kr !, v28 ~r 5dt!50,

~B12!

wheredx5dc for J51, l 5J250, 3S1 state, anddt other-
wise, and
by u1~r 5dt!50, v1~r 5dt!5r j J1
~kr !,

u18 ~r 5dt!50, v18 ~r 5dt!5 j
J1

~kr !1r j
J1

8 ~kr !.

~B13!

Thelc(k), is adjusted to match the derivative boundary co
dition on the dominant wave (u2 or v1), while l t(k) is
varied to match the zero derivative condition on the seco
ary wave (u1 andv2). Thus,lc(k) andl t(k) depend onJ
and thel of the dominant wave.
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TABLE V. Contributions todE2 from l ,S,J channels for A181IX model in MeV.

r ~fm23) 1S0
1P1

1D2
1F3

3P0
3P1

3D2
3F3

3P223F2

0.16 ~SNM LDP! 0.00 0.00 20.01 0.00 20.20 20.80 20.15 0.00 20.94
0.28 ~SNM LDP! 20.03 0.00 20.03 0.00 0.00 21.74 20.24 0.00 22.16
0.36 ~SNM HDP! 20.05 0.00 20.05 0.00 20.14 22.97 20.35 0.00 22.80
0.16 ~PNM LDP! 0.00 20.01 20.15 20.62 0.00 20.70
0.20 ~PNM LDP! 0.00 20.01 20.16 20.83 20.01 20.15
0.24 ~PNM HDP! 20.22 20.09 20.41 21.10 0.00 20.20
tw

n:
n

he

e

a.

d to
on,

ling

he

pre-

c-
ions
s

ions

se
The RJ6

M can be expressed as superpositions of the

solutions, which match the boundary conditio
RJ6

M (r→`)5jJ6

M (r→`). Evaluating the Clebsch-Gordo

coefficients injJ6

M , we find

RJ2

M5615
1

r Fu2AJ11

2
2u1AJ

2G ,
RJ1

M5615
1

r Fv2AJ11

2
2v1AJ

2G ,
RJ2

M505
1

r
@u2AJ1u1AJ11#,

RJ2

M505
1

r
@v2AJ1v1AJ11#. ~B14!

With the wave function in hand, we can calculate t
two-body cluster energy, and thereby determinedE2( l ,S,J).
The differential equations for the wave functions are solv
at several values ofk on a grid from 0 tokf . The expressions
s.

y

ga

, S
o

d

for C2( l ,S,J,km ,kn) are then integrated over the Fermi se
In order to ensure that the correlations functions,f , in
coupled channels are positive, the solutions are matche
the asymptotic forms at the first node of the bessel functi
rather than at the healing distance (dc or dt) for values ofk
large enough such that the node occurs within the hea
distance.

The momentum-dependence off ( l ,S,J,k) is not very
large, however the dependence onl ,S,J channels is signifi-
cant. We find that no additional attraction is obtained in t
3S123D1 channel, and very little comes from the1S0 and
other singlet channels as can be seen in Table V. This
sumably indicates that the parametersdc , dt , anda are op-
timum for those channels. The bulk of the additional attra
tion due to channel- and momentum-dependent correlat
is in the 3P223F2 and 3P1 channels, with somewhat les
coming from the3D2 channel. The presentf pOp correlation
operator, withdp chosen according to Eqs.~3.8! and~3.9!, is
probably inadequate to simultaneously describe correlat
in S and P waves accurately. However, thedE2 correction
has little effect on the critical density of the predicted pha
transition.
th,

cl.

C

t-

C

de
ys.
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