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Spin-isospin structure and pion condensation in nucleon matter
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We report variational calculations of symmetric nuclear matter and pure neutron matter, using the new
Argonnev ;5 two-nucleon and Urbana IX three-nucleon interactions. At the equilibrium density of 0.18 fm
the two-nucleon densities in symmetric nuclear matter exhibit a short-range spin-isospin structure similar to
that found in light nuclei. We also find that both symmetric nuclear matter and pure neutron matter undergo
transitions to phases with pion condensation at densities of 0.32 find 0.2 fn 3, respectively. Neither
transtion occurs with the Urbang, two-nucleon interaction, while only the transition in neutron matter occurs
with the Argonnev 4 two-nucleon interaction. The three-nucleon interaction is required for the transition to
occur in symmetric nuclear matter, whereas the transition in pure neutron matter occurs even in its absence.
The behavior of the isovector spin-longitudinal response and the pion excess in the vicinity of the transition,
and the model dependence of the transition are discupSe856-281®7)02110-9

PACS numbes): 21.65:+f, 21.30.Fe, 26.66-c, 64.70—p

I. INTRODUCTION unified description of light nuclei and nuclear matter. The
Urbana VII(UVIIl) model of three-nucleon interactions, con-

A central problem in nuclear many-body theory is thetaining the Fujita-Miyazawa two-pion exchange three-
prediction from realistic models of nuclear forces of proper-nucleon interactior{14] and a phenomenological, shorter-
ties of uniform nuclear matter in stable nuclei and in neutrorrange interaction, was added to the Hamiltonian. The
stars. This problem has been the focus of much attentioparameters of the UVII were determined by reproducing the
since the pioneering work of Brueckner, Levinson, and Mah-binding energies ofH, “He, and the equilibrium density of
moud[1] in 1954. Early work in this field, based primarily SNM using approximate VMC and VCS calculatigris5].
on Brueckner-Bethe-Goldstone many-body theory, was re- Wiringa, Fiks, and Fabrocin{16] (hereafter denoted
viewed by Bethd2] in 1971. A variational method based on WFF) calculated the equation of state of SNM and PNM
hypernetted chain summation technigu®cs, previously  with an improved VCS method using the Urbana and Ar-
denoted FHNC-SOCwas developed in the 197(08], par- gonne[17] v,4 models of theNN interaction and the Urbana
ticularly to include the effects of many-body correlations, VIl three-nucleon interaction. Their calculations of PNM in-
presumably important in dense neutron star matter. Calculadicated a transition to a new phase, possibly including pion
tions performed since then have confirmed that many-bodgondensation, atp~0.24 fm 3 with the Argonne v,
clusters make significant contributions to the binding enerthough not with Urbana,. No evidence of a similar tran-
gies of equilibrium nuclear matter and light nuc|8i-§|. sition in SNM was found by WFF.

Friedman and Pandharipanfi¢] (hereafter denoted FP Since the pioneering work of Migd&l 8] and of Sawyer
carried out detailed calculations of the equation of state ofind Scallaping19], many investigators have used effective
symmetric nuclear matt€iSNM) containing equal numbers interactions to study the possibility of pion condensation in
of protons and neutrons and of pure neutron mg@&M) SNM and PNM. These efforts were recently reviewed by
with VCS, using the Urbana,, model of theNN interaction  Kunihiro et al. [20]. In these studies, thd resonance is
[10]. In these calculations, effects of many-body forces wereexplicitly considered as a non-nucleonic degree of freedom.
introduced partly via a small density dependence inNiN  In contrast, WFF considered only nucleonic degrees of free-
interaction and partly by adding a density-dependent contridom and absorbed the effect of theesonance into the two-
bution, attributed to the attractive two-pion exchange threeand three-nucleon interactions. The approaches used by
nucleon interactiol1l]. The parameters of these contribu- Migdal and by WFF to study pion condensation are thus very
tions were adjusted to reproduce the empirical properties different. Although the effect of this type of transition on the
SNM, and methods were developed to interpolate betweeaquation of state is relatively small, it can have important
SNM and PNM[12]. The main weakness in this approach is consequences for the cooling and evolution of neutron stars
that the effect of many-body interactions on the structure of21].
matter is ignored. In the late 1980s Carlsofi22] developed the Green'’s

In the 1980s, a variational theory using Monte Carlofunction Monte Carlo(GFMC) method, with which exact
(VMC) methods was developed for light nucfai3]. Corre-  calculations of light nuclei are possible, starting from Hamil-
lation operators with the same structure were employed itonians with realistic two- and three-nucleon interactions.
both VMC and VCS methods, with the aim of obtaining a The GFMC method can be used to determine some of the

parameters of the three-nucleon interaction from exact calcu-
lations of nuclear binding energies.
*Electronic address: aakmal@uiuc.edu Recently, Wiringa, Stoks, and Schiavill23] made sig-
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the NN interaction by including isospin symmetry breaking The electromagnetic pat,,, consists of Coulomb and mag-
terms. Their resulting Argonne, g is one of the new models netic interactions in then, np, andpp pairs, and it is omit-

fit to the NijmegenNN scattering databad®4,25. Using ted from all nuclear matter studies. The strong interaction
this interaction, along with the GFMC method, Pudlirtr part of the potential includes 14 isoscalar terms with opera-
al. [26] obtained parameters for the Urbana (XIX) model tors:

of the three-nucleon interaction. Exact GFMC calculations

by Pudlineret al.[27,28 have shown that the Argonngg O ***=[1,0i-0}.S;.(L-9);; L% L%0;- 0y, (L-S)F]

and Urbana IX interactions provide a good description of all
bound states, up to seven nucleons. While all observed ener- ?[l7- 7] (2.2)
gies are not exactly reproduced, in each case the differen . . .
between theory and experiment is much smaller than thcg%t%?m\:vehr;ltéo?ﬁoosze\rﬁiﬁrz(\j’z)tz E\BIEF:; Ilrf' dQC(IaL:SjeeJr[]rt]egif.i?os-
contribution of the three-nucleon interaction. T L pen i

In the present work, we employ the Argonng; and Ur- pin. The operators witlp=15, 16, and 17 are isotensor:
bana IX interactions to study the properties of SNM and
PNM, using the VCS method. We have introduced further
improvements to the method, in order to address the rel
tively strong momentum dependence of the Argonggin-
teraction. These improvements are described in Appendic
A and B.

With these interactions, we find that both SNM and PNM
undergo transitions to a new phase at densities-0t32
fm~3 and~0.2 fm3, respectively. The transitions are simi-
lar in nature to that found by WFF in PNM, using the Ar-
gonnev 44 and Urbana model VII.

In this paper, we discuss the phase transition and the spi
isospin structure of normal SNM at equilibrium density. Ad-
ditional results for the equation of state of dense matter, in
cluding relativistic effects, will be reported separately. The
plan of the present paper is as follows. The Hamiltonian an
the VCS method are reviewed in Secs. Il and Ill. In Sec. IV,

Of V=B~ 7-7)© (Lo 01.S)). (2.3

3 he interactions associated with operatprs16 and 17 are
enerated by the mass difference between neutral and
arged pions, while the phenomenological interaction with
the p=15 operator is necessary to fit the difference between
np andpp, 1S, phase shifts. Finally, the isovector interac-

tion with the operator

OiP= (1, 15)) (2.9

s required to fit thenn scattering length and effective range

along with thenp and pp data. The interaction constructed

with the above elements provides an accurate fit toNihe
cattering data in the Nijmegen database, using the kinetic
nergy operator:

we present various pair distribution functions of interest, at 220 1 1 1 1
both equilibrium and transition densities. These results K:Z - — (—+ —) +|—- —) Ty Viz, (2.5
clearly indicate that, in normal SNM at=0.16 fm 3, the [ 4[\mp,  m, my, My

tensor correlations i =0 states have near maximum pos- , )

sible strength at~1 fm. The results also indicate the im- which takes into account the mass difference between pro-
portant role played by the short-range partsogf o7 - 7; tonshand heutrons. : . .
and o;- g interactions in determining the transition density, ~1N® Urbana models d¥;; contain two isoscalar terms:

as predicted by Migdal. In Migdal’'s approach, the strength of
the short-range part of the;- o7 - 7; interaction is repre-
sented by the Landau-Migdal parametgr We also com-
ment on the model dependence of this transition in Sec. |
by comparing the Urbana,, and the Argonne 4, anduv g
interactions. Results for the sums of isovector spin-

longditudinal responses of SNM and PNM are presented in V%EIE Ao\ {777 mHXi X

Sec. V. The corresponding results for the strengths of pion cye

exchange interactions and pion fields appear in Sec. VI. 1

These results clearly indicate that the high density phase in- +2[me 7,7 mdlX  Xid | 2.7
cludes pion condensation, as anticipated by WFF. Results for 4

SNM are presented at normal density and at the transition

density. The response of SNM at normal density exhibits Xij =S TH(rij) + oy oY (15)), (2.9
little indication of the phase transition, which is evidently of

first order in the present approach. Conclusions are present¥dth strengthA,. The functionsT.(r;;) and Y (r;) de-
in Sec. VII. scribe the radial shapes of the one-pion exchange tensor and

Yukawa potentials. These functions are calculated using the

average value of the pion mass and include the short-range
[l. THE HAMILTONIAN cutoffs used in the Argonne,g NN interaction. The term
denoted byVi'Tk is purely phenomenological, and has the
form

Vijk:Vizquz_FVi'Tk' (26)

VThe first term represents the Fujita-Miyazawa two-pion ex-
thange interaction:

The Argonnev ;g two-nucleon interaction has the form

vigij= X vP(rij)Of +venm. 2.0 Vi =Uo> T2(ri) T2(rip). 2.9
p=1,18 cyc
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This term is meant to represent the modificatiorN&f and  with
AA contributions in the two-body interaction by other par-

ticles in the medium, and also accounts for relativistic ef- v 1=pl+ 02+ 2015-2018 (2.12

fects. The spin-isospin dependence of these effects is ne-

glected. v 3=0340%4 2018 (2.13
The two parameters,,,. and U, are chosen to yield the

observed energy offH and the equilibrium density of 2 5=05+08+2p17, (2.14

nuclear matterp,=0.16 fm 3. The parameters of model

VII, used by WFF, were determined from approximate varia- 729712201120 for q=4. (2.19

tional calculations using the older Argonng, NN interac-

tion, and have the valuesA;,=-0.0333 MeV and we note thaf 7 7,7 7]=0 in PNM, thus the commutator
U0200038 MeV. The pal’ameters Of model IX, term OfVﬁ'IT(T can be 0m|tted from th_

A,.=—0.0293 MeV andU,=0.0048 MeV, have been de-
termined from exact GFMC calculations ¢fH and the
present approximate variational calculations of nuclear mat-
ter with the Argonney 15 NN interaction. Most of the differ- The variational method developed [3,11,16,31 pro-
ence between the parameters of models VIl and IX is due teides a means to calculate the energy and wave function of
the use of exact, rather than approximate, calculationdHof the ground state of nuclear matter from realistic models of
in the latter. The parameters of model VIII, also determinedhuclear forces. We outline the method here and describe ad-
via exact®H calculations, albeit with the older Argonng,  ditional developments in Appendices A and B.

Ill. VARIATIONAL CALCULATIONS

interaction, have the value#\,,.=-0.028 MeV and The variational wave function has the form
Uy=0.005 MeV, which are not very different from the

present model IX parameters. The insensitivity of these pa- v =|s[T E.|® 3.1
rameters to the details of the Urbana-Argonne models;of v .1;[, o @

had been previously not¢@9]. For example, calculations of

3H and nuclear matter saturation density using model Vllconsisting of a symmetrized product of pair correlation op-
yielded similar results with the Urbana, and Argonnev,,  eratorsF;; operating on the Fermi gas wave functién In
interactions, despite significant differences in the tensoSNM, theF;; include eight terms:

components of these interactions. We also note that the val-

ues ofA,, obtained from all these fits are close-to—0.03 F.= S fo(r,)OP 3.2
MeV, the strength predicted by the Fujita-Miyazawa model. UopEe T '
More recent theoretical models vﬁ{; such as the Tucson-

Melbourne [30], predict significantly larger strengths, representing centralgi- oy, S, and (-S);; correlations

A,.~—0.063 MeV. These models inZJﬂkT also have addi- With and withouts - 7; factors. In PNM, theF;; reduce to a

tional terms which are neglected here. sum of four terms with only od¢p<7.

The isotensor and isovector partswgf, and the isovector ~ This wave function is clearly too simple to accurately
part of the kinetic energi(, are very weak and may presum- describe the ground state of nuclear matter. Monte Carlo
ably be treated as first-order perturbations. In first orderstudies of few-body nuclei32] and *°O [6] use additional
these terms do not contribute to the energy of SNM, whicihree-body correlation operators in the variational wave
has total isospinT=0. Therefore, the SNM calculations, function. These additions to the wave function lower the
which neglectv, by definition, are carried out with the ground state energy of’O by ~1 MeV/nucleon. Attempts
isoscalar part of the Hamiltonian: to include three-body correlation operators in variational cal-

culations of SNM are currently in progre§83]. Exact
GFMC calculations have now been carried out for nuclei
VZ+Y X uP(r)opf containing up to seven nucleofi6,28. The ground state
1<) p=114 energy of ’Li obtained with variational wave functions in-
cluding three-body correlation operators is greater than the
+ > Viik. (2.10  exact value by~0.7 MeV/nucleon. From these results, we
estimate that the preset, may underbind SNM by a few
MeV. In contrast, the three-body correlations have a much
Dmaller effect on the energy of pure neutron drfpfs The
ariational energy of a drop with eight neutrons, calculated
ith the simple¥, , is greater than the exact value k0.5
MeV/nucleon. Thus, we believe the energies calculated in
the present work to be relatively more accurate for PNM than
for SNM. This result is to be expected, since SNM has strong

1 1
my, M,

hZ
HSNMZE - Z

of PNM. The isospin operators;- 7;, 37;i7,;— 77 and
7,i+ 7, reduce to constants, respectively, equal to 1, 2, an
—2, in PNM. Hence, the full Hamiltonian, excluding,,
has a simple form for PNM, given by

h? ~ ; i T T
- _ V24 20-1(y y02a-1 tensqr correlations in two-bodyp states, Wlth isospiT =0,
PNM Z 2m, ! |E<, q:21,7 v (1) O] and in three-bodyinp andpnn clusters withT=3.
Despite the aforementioned shortcomings, the siriple
+ 2 Vi, (2.11) having only pair correlation operators describes the gross

i<j<k features of the nuclear wave function rather well. For ex-
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ample, the spin-isospin dependent two-nucleon distributiorThe static parte g and Fg involve terms with momentum
functions calculated in this approximation are close to thendependent operato@ipj:l_ﬁ. The spin-orbit terms, with
exact distribution functionf27]. We note that the magnitude p=7 and 8 are included in, andF,, while terms quadratic
of the ground state energy is generally much smaller thain L, with p=9 to 14 are included ing. The two-body(2B)
those of the positive kinetic and negative interaction enercluster contributions involve expectation values of the opera-
gies. The magnitude of the error in the ground state energy ig®rs:
typically only a few percent of the interaction energy. We
can therefore study the main features of the spin-isospin , ,
structure of PNM and SNM using the simple, described fi(ri)) Ofuf O f (ri) OFf , (3.12
above.

The correlation operators;; are determined from Euler-
Lagrange equationd 1] that minimize the two-body cluster

contribution of an interactionz(_—)\), where

£9(r;;)OA V219 (r;od’, (3.13

in plane-wave states. We divide these contributions into five
— parts: the static partgp)-2B-s ((T)-2B-s) include interac-
vij_p:EL14 aPvP(rij)Of , 33 tion (kinetic) energy contributions fog, p, andq’ (q and
q')=<6; the spin-orbit parts,v)-2B-b and(T)-2B-b include
terms withp<8, and one or more of the, g, andq’ equal
Nij= > AP(ri;)OF . (3.4  to 7 or 8; and the quadratic pafy;)-2B-q includes all terms

p=18 with p=9.

The results obtained with various Hamiltonians for SNM
atk;=1.33 fm 2 and 1.6 fm 2 are listed in Table |. These
Hamiltonians include the kinetic energy plus Urbana v;;
(U14), Argonneuv g vj; (A18), and Argonnevg vj; plus
model IXV;; (A18+1X). The Fermi kinetic energy is listed

The variational parametera® are meant to simulate the
guenching of the spin-isospin interaction between particles
andj, due to flipping of the spin and/or isospin of particle
or j via interaction with other particles in mattg84]. We

use
as(T)-1B, the one-body cluster contribution to the kinetic
aP=1 for p=1 and 9, (3.5 energy.
Variational cluster Monte Carlo studies 8h-drops[8]
aP=a otherwise, (3.6 and €0 [6,35], including up to five-body cluster contribu-

tions to the ground state energy, indicate that the conver-
since the operators 1 ahd (p=1 and 9 are independent of gence of the cluster expansion is not particularly good in
spin-isospin. Thax of the (L-S)izj interactions p=13,14) either case. For example, the one- through five-body clusters
are also set to unity. The.( S)izj operator has a significant contribute 12.9,—54.5, 11.1,—3.8, and 1.1 MeV, respec-
L2 part, which should not be quenched, and quenching thévely, to the ground state energy of tfa drop. This result
remainder ofvP=*3 along withvP=1 does not lower the does not contradict the earlier lowest-order constrained
variational energy. ThaP(r) simulate screening effects in variational calculations of neutron g#86,37, which re-
matter and are determined by the healing distadesf the  tained only thg(T)-1B and all 2B contributions. The aim of

correlation functiongP: the earlier studies was to obtain estimates of the ground state
energy; thed, andd; were not determined variationally, but
fP(r>dP)=8y;. (3.7 rather were fixed by constraints. In the present walrk, is

. . ) determined variationally to study the structure of SNM and
The radial dependence af(r>dP) is determined from the pNM. The larger optimum values af. andd, lead to the

above constraint. ThaP(r<dP) are constants chosen to gjgnificant size of many-bod§MB) clusters of three or more
make the gradients df’ at d” equal to zero. The energy of particles.

nuclear matter is particularly sensitive to the range of thé  according to Table |, the kinetic energy and static inter-
tensor and central correlations. For simplicity we assume actions and correlations make large contributions to the 1B
_ _ and 2B cluster energies. We expect MB cluster contributions
dP=d, for p=56, 3.8 containingV? or v;; andF correlations to be important. In
dP=d, for p#5.6. (3.9 this_ work, as in earlier studies by .FP and Wl_:F, these contri-
' butions are calculated using chain summation metH8dis
TheF;, and consequently,, thus depend on three varia- The following three improvements were made by WFF in the
tional parametersa, d., andd,, the values of which are basic VCS calculation used by FP. S
determined by minimizing the energy. Two additional pa- (i) The kinetic energy can be calculated using different
rameters used by WFF have only a small influence on th&Xpressions related by integration by parts. If all MB contri-

energy. butions are calculated, these expressions yield the same re-
It is convenient to divide the interaction and correlationSult. However, they yield different results when only selected
operators as follows: parts of the MB clusters are summed by VCS techniques.
Studies of atomic helium liquids with VCS methd@s8] find
Vij=Usij T Vpij T Vq,ij » (3.10 the exact result to be between the energies obtained using the

Jackson-Feenber@F and Pandharipande-BetH®B) ex-
Fij=FsijTFp,j - (3.11 pressions. Both the JF and PB energies were calculated by
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TABLE I. Contributions to the energy of SNM in MeV.

ul4 ul14 Al8 Al18 Al18+-1X A18+I1X
ke (fm~1) 1.33 1.60 1.33 1.60 1.33 1.60
p (fm™3%) 0.16 0.28 0.16 0.28 0.16 0.28
d. (fm) 2.15 1.79 2.13 2.08 1.80 1.67
d; (fm) 3.44 2.86 5.67 4.76 4.81 3.81
a 0.80 0.80 0.65 0.61 0.80 0.90
(T)-1B 22.01 31.85 22.01 31.85 22.01 31.85
(v)-2B-s —56.40 —75.21 —66.17 —100.68 —66.41 —105.34
(T)-2B-s 16.08 21.72 19.01 28.51 20.25 33.47
{v)-2B-b —-3.23 —-6.37 —2.29 —-5.02 —2.38 —5.76
(T)-2B-b 0.80 1.50 0.54 1.10 0.62 1.58
(v)-2Bq 1.11 3.56 4.31 11.39 4.46 12.44
(v+T)-2B —41.64 —54.80 —44.61 —64.71 —43.46 —63.61
(v+T)-MB-s 4.76 2.91 6.47 9.31 5.50 8.47
(v+T)-MB-b -0.21 -1.02 -0.28 -1.01 -0.22 -0.72
(v)-MB-q 1.61 3.91 3.00 8.54 3.38 10.62
(V2™ 0.00 0.00 0.00 0.00 —3.60 —9.96
(VR 0.00 0.00 0.00 0.00 6.33 22.09
6Eop —0.95 —2.06 —-1.30 —2.35 —1.89 —4.07
3(Epg+Ejp) + 6E 5 —14.42 —-19.22 -14.71 —18.37 —-11.96 -5.33
3(Epg—E3p 0.30 0.27 0.55 0.82 0.60 1.10

WEFF, who took the average of the two as the result, and halp,, these terms contribute less than 1 MeV/nucleon, while at
the difference as an estimate of the error. 4pgy, they may contribute a few MeV/nucleon. Including
(i) The pair distribution functiomg®(r) is defined such these terms, WFF estimate the error in the calculation of the

l=p | drT1-gf(]-1, (3.14

2 77

ii=1A

0> =-3. (3.19

(HY+A|(1.—1)%+

1 2

that pg®(r) represents the probability of finding a particle at MB contributions due to kinetic energy, and Fg to be
a distance from a given particle. Conservation of number of ~0.5 MeV/nucleon ap,, and~ 5 MeV/nucleon at 6, in
particles then implies: SNM; the corresponding error in PNM is lower still. We note
that these errors are negligible compared to the error implicit
in the use of the simpl&, given by Eq.(3.1).
The computer program used to carry out the present cal-
culations is built upon that of WFF and retains all the im-
for both SNM and PNM. Also, since SNM has total isospin provements made by them.
T=0, we have the following identity for expectation values ~ The contribution of MB clusters involving spin-orbit cor-
of 7- 7, operators: relations and interactions is calculated using methods devel-
oped by Lagarig31]. Separable three-body clusters, with
1 correlations between paiiig and ik, but not betweenk,
l’:K<O make the dominant contribution t@ + T)-MB-b, via v;; or
V?2 terms in the Hamiltonian. Chain diagrams with correla-
The values of ; andl . calculated using the VCS method are tions between all three paiig, ik, and jk were found to
generally within a few percent of these exact results. Howmake a smaller contribution. We therefore sum all three-
ever at small densities, the correlations become large due toody separable contributions o + T)-MB-b, and estimate
the bound deuteron and virtual bour8, states, causin, ~ only the leading chain contributions.
and| , to deviate from their exact values by more than 10% Lagaris also calculated part of the three-body separable
in some regions of thel,, d;, « parameter space. Devia- contribution to(v)-MB-q using the U14 Hamiltoniafl11].
tions of this size can also occur at large densities. Excursionshe L and (L -S)* interactions that contribute t@)-MB-q
into such regions of the parameter space are curtailed iare significantly stronger in the A18 model than in the U14
SNM by minimizing: model. We therefore include a more complete calculation of
three-body separable terms and leading central chain contri-
butions to(v)-MB-q in the present work. These calculations
are outlined in Appendix A. The present calculation of
(v)-MB-q and the earlier calculation by Lagaris yield similar
with A chosen to keep, and| . within 10% of their exact results for the U14 Hamiltonian: 1.6@3.91) MeV versus
values. Only theA(l,—1)? constraint is applicable for 1.35(3.0) MeV at ke=1.33(1.6) fm~2. The difference be-
PNM. tween the the two calculations is significant for the the
(iii ) In their calculation, WFF added the leading multiple- A18+IX Hamiltonian, which makes much greater contribu-
operator chain contributions to those summed via VCS. Ations to(v)-MB-q (Table .
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We have summed the contributions of leading three-body 16,0
and more than three-body diagrams to the expectation value
of the V2™ and VR static three-body interactions, using VCS 100 ¢
methods described if39]. The A18 interaction induces
stronger correlations than U14, as is evident by comparing
T-2B-s for the two interactions in Table I. The larger corre-
lations lead to comparatively larg€v?™) and (VF). The
(V2™ in U14+VIl [15] and A18+IX models equal—3.49
and—3.60 MeV, respectively, &r=1.33 fm 3, despite the
smaller strength o¥/2™ in model IX (A,,=—0.0293 Me\} -100 |
compared to model VIIA,,=—0.0333 MeV). The(VR) is
larger for A18+IX (6.33 MeV atkr=1.33 fm %) compared 180t
to U14+VIl (3.99 MeV atk=1.33 fm ). Only about half 19 Moes
the increase iVR) is due to the larger strength & in %0 Toos ot oi5 020 02 030 035 040
model IX (Uy=0.0048 MeV} compared to model VII Pl
(Up=0.0038 Me\j.

5.0

00 r A18+UIX

(1996) \

E/A [MeV]

We note that the two-body correlations in this variational FIG'.l' E(p) of SN.M CaICUIated.us'ng Al’BUI.X' Included for
comparison are previous calculations B{p) using Al4+UVII

::a}lcutljatéon d.o.nc.)t.havti the optlTaélI;orm.tTﬁ' are Ofb;h (WFF), and U-DDI (FP). The two sets of variational minima ob-
ained by minimizing the sum o contributions ot tN€ tained atp>0.28 fim 2 are labeled LDP and HDP.

potentialv [Eq. (3.3)], with healing constraints imposed at

dc andd;. More general correlations can be generated by|ose g the earlier results kt=1.33 fm %, and are about 1
separately minimizing the two-body cluster contribution to MeV lower atk;=1.6 fm™ L. As with the results of Day and

. e . f_ . .
each partial wave, specified byS_,J and the relative mo- Wiringa, the present results show a remarkable model inde-
mentumk [40]. Thus, the correlaponi;(l S,J.k) depend on endence of the energy of SNM fey<1.6 fm 1, calculated
all the quantum numbers, and yield a lower 2B energy tha rom realistic two-nucleon interaction models. The differ-

the F;; operators defined in E¢3.2) for v with the samed;  ences in the energies obtained using the different models are
andd;. The MB contributions cannot be easily calculatedsmaller than the estimated error in the many-body calcula-
with the generaf(l,S,J,k), however. tions.

The F;; operators provide a good approximation to the  The energies of SNM and PNM calculated using the
two-body correlations in matter. The small differences be-A18+1X Hamiltonian appear in Fig. 1 and Fig. 2, along with
tween optimumf(l,S,J,k) andF;; can be accounted for by the results obtained by WFF using At¥Il. As discussed
inclusion of the second-order two-particle—two-hole contri-in detail below, there appears to be a phase transition in both
bution, AE,, calculated in correlated basis perturbationSNM and PNM with the present Hamiltonian. The curves
theory[41,42. We estimate this contribution as described inmarked LDP and HDP show the energies obtained for the
Appendix B, approximating thaE; by the differenceSEzg  low and high densitiy phases, respectively.
between the 2B cluster energies calculated us{thgS,J,k) At larger densities, the A18IX energies are significantly
andF;; . The values ofx,d.,d; are determined by minimiz- higher than the A14 VIl energies. A major part of this dif-
ing the energy calculated from tiig; , anddE g, calculated  ference can be attributed to the difference betwégp in
for these optimume,d.,d,, is perturbatively added to the models VII and IX. For example, the contribution of model
energy. The calculated values 8,5 (Table |) for the U14
Hamiltonian are slightly smaller in magnitude than thE, 60.0
values reported if41], for the same interaction. ThéE,g
correction is larger for the A18 and A38X Hamiltonians,
which predict stronger correlations in matter. TA&, is
known to be relatively larger for the Al4 interacti¢a2],
which induces stronger correlations than the U14. Our
best estimate of the variational energy, given by
3(Epg+ EJp + SE g, is also listed in Table I.

Over a decade ago, Day and Wirinffa] calculated the
ground state energies of SNM by means of the Brueckner- 200
Bethe method. Contributions of up to four hole-line diagrams
were included, in order to reduce the estimated error in the 1001
calculated energy to-+0.181.3) MeV at k;=1.33(1.6)
fm~1. The calculations demonstrated that the three realistic,

50.0

A18+UIX

(1996) \
/ '

s A144UVII, WFF(1988)

\ U-DDI, FR(1982)

30.0 -

E/A {MeV]

00 : : : : . .
two-body potentials used in that work, Bofit075 [43,44], o S
Paris[45] and Al4, yielded essentially the same energy of
~—14.9 MeV atk¢=1.33 fm *. At ky=1.6 fm *, the Paris FIG. 2. E(p) of PNM calculated using A18UIX. Included for

and Argonna) 14 Models yielded similar energies ef—. 17.8  comparison are previous calculations Bfp) using A14+UVII
MeV, while the Bonn result was somewhat higher, at(wFF), and U-DDI (FP). The two sets of variational minima ob-
~—16.8 MeV. Our results with U14 and Al@able ) are  tained atp>0.16 fm 2 are labeled LDP and HDP.
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. . 1 . .
FIG. 3. Constrained energiesE.(p,d;/ro)=3(Epg+E;p FIG. 4. Constrained energiesE.(p,d,/ro)= %(EPB+ E;p

+A|:(Ic_ l)2+(%| A+ 1)2], of SNM USing A18-UIX. A was set to +A(|C_l)2 of PNM, using A18+UIX. A was set to 1000 MeV.

1000 MeV, in order to keep the integrals of the two-body densities T .
I. and I, within 5% of their exact values of 1 anet3 during The upper line in Fig. 1, labeled LDP, represents the mini-
minimization. mum energies for,/ro~4, while the lower line labeled

HDP gives the energies of the minima at larger values of
IX exceeds that of model VIl by 8.24.5 MeV to SNM  d, /r,.
(PNM) energy atp=0.32 fm>. Model VIl is unrealistic, This transition is probably related to pion condensation
however, as it overbind8H and *He. The remainder of the [16,18,36, and its spin-isospin structure is discussed in the
difference between AI8IX and Al4+VIl is due to the  fo|lowing sections. The transition does not occur in similar
stronger momentum-dependent past,; of A18, which  caiculations of SNM using either the U14 or Al4 and is thus
makes significant contributions at larger densities. sensitive to the two-nucleon interaction model. The Fuijita-

d In tr(;e early 19803& szf?_'ed [?lhenomenocljog(ijqal d%nsrityMiyazawa two-pion exchange three-nucleon interaction is a
ependent terms to the amiltonian, and adjusted t eHecessary ingredient for the transition to occur in SNM. A

parameters to reproduce the empirical equilibrium der‘Sitysimilar transition occurs for PNMFig. 2) at a lower density
energy and compressibility of SNM. These results also ap ~0.2 fm~3) with both the A14+VIl and A18+IX Hamil-
pear in Fig. 1 and Fig. 2. Energy density functionals base(‘%onians, but it is not observed for Ud/II. The E(p,d, /r o)

on the FP results foE(p) of SNM and PNM reproduce f ; P ;

- . . 6 20 or PNM with A18+UIX appear in Fig. 4. Unlike the Al4
the”bL|1n6d|ng energies of nuclei from® to **Pb rather and Ul4 interactions, the transition persists in PNM with
well [46]. A18, in the absence of the Fujita-Miyazawa interaction, al-

The minimum energy calculated for SNM with the ; ; - ;
present variational wave function and the AAIX Hamil- ;[:r;c;légh it occurs at a much higher density & 5po) in that

tonian Is—12 MeV, COmPaFed to the empirical vqlule6f16 The contributions tde(p,d;/ry) of SNM at selected val-
MeV. As previously mentioned, results of variational andueS ofp andd,/r, are listed in Table Il for the A18IX
exact calculations of light nuclei suggest that includingmoolel The int:ara(::tions” »9" andw®. associated with the
three-body correlations in the wave function could lower the : ' ' ’

variational bound on the energy by more than 1 MeV, an({)permor@ﬂ-I 7, oi- o7 7 and 1, make the largest con

that the true energy may be more than 1 MeV lower stil ributions to the energy of SNM. These contributions are
Thus, the underbinding of SNM due solely to deficiencies i listed separately, along with the contribution of the entire

- Mhe v'” and v°" contributions come mainly from the one-
the A18+1X model of nuclear forces is probably much less pion exchange interaction. The expectati)c/)n values G
than 2 MeV. This underbinding is a very small fraction of [ 5. | ' o anifi ' |
the total potential energy of SNM @k =0.16 fm 2, which veT, and_ many-body cluster contrlb_utlons are significantly
is — 50 MeV for this Hamiltonian ' ' different in the LDP and HDP. The pion-exchange contribu-
. ! e . tions to the energies of PNM and SNM are listed in Table Il
At approximately twice the equilibrium density, we ob- for the LDP and HDP. The OPEP used to calculété)
serve what appears to be a transition in SNM due to a Chanqﬁcludes amNN dipole form factor wih a 5 fiit cutoff as

in d;, the range of tensor correlations. The energy of SNM is . . Py :
shown in Fig. 3 as a function of density andafro, where described in Sec. VI. Thé“™ is that given by model IX. The

X . . : results indicate that for SNM the change in the pion-
ro is the unit radius defined by L
exchange contribution between the two phases comes over-
4 whelmingly from theV?™, which is required to produce the
?roP: 1. (3.17 phase transition. However, for PNM a significant part of the
enhancement in the pion-exchange contribution comes from
The energies in Fig. 3 have been minimized with respect te 7, thus indicating the diminished importance of the three-
variations in the other two parametersandd., at eachp ~ body interaction to the phase transition, and the persistence
and d,/ro. For p<0.32 fm 3, the minimum occurs at of the transition in the absence Wf™.
d/ro~4, whereas fop>0.32 fm 3, it shifts tod,/r,~6. In the present calculation, the transition in SNM is of first



2268 A. AKMAL AND V. R. PANDHARIPANDE 56

TABLE Il. Contributions toE(p,d,/ry) of SNM for A18+1X model in MeV.

p (fm~3) 0.16 0.28 0.28 0.36 0.36
de/rg 4.20 4.00 6.00 4.00 6.00
dc/d, 0.38 0.41 0.25 0.44 0.28
a 0.80 0.90 0.96 0.98 0.88
(T)-1B 22.11 32.10 32.10 37.96 37.96
(v+T)-2B —43.65 -62.71 —-67.24 —74.37 —-79.54
(v+T)-MB 8.71 18.11 35.29 28.52 43.70
(T) 42.26 67.41 72.28 85.16 85.97
(v) —55.09 —-79.91 —-72.13 —93.06 —83.85
(v'7) -29.14 —45.82 —49.65 —56.94 —59.23
(v°7) —-10.30 -12.85 -6.20 -13.81 -6.97
(v°) —26.04 —47.27 —47.10 —61.65 —61.25
(V2™ —-3.64 -10.72 —22.88 -18.35 —32.26
(VR 6.42 22.65 23.76 40.69 41.71
SE g -1.91 —4.65 -2.26 -6.78 -6.20
5(Epg+Ejp) + 6E g —-11.96 -5.22 -1.22 7.67 5.37
3(EpgE3p 0.60 1.05 2.30 1.45 2.82

order, as is evident in Fig. 1. Thus, it is difficult to obtain  The staticp}, calculated for SNM at the equilibrium den-
information about _the HDP_ py s_tudying t_he LDP. Thg ordgrsity of p=0.16 fm 3, appear in Fig. 5. The large magnitudes
of the corresponding transition in PNM is not as evident inof the p5~* indicate that short-range correlations in SNM are

Fig. 2, though it appears to be of first order as well. strongly spin-isospin dependent. The nature of these correla-
tions is more evident in the pair distribution functions
IV. PAIR DISTRIBUTION FUNCTIONS p$?L (), which are proportional to the probability of find-

ing a pair of nucleons with total isospin T, spin S, and spin
projection M, as a function af. Forestet al. recently studied
these densities in light nuclér].
The p{? (1), in S=0, M =0 states, are spherically sym-
O> :AJ' d3B(r)ph(r), (4.1  metric and are obtained from tipd’s using spin-isospin pro-
jection operators, such &SS:O=%(1—01-0'J-). In SNM,

The two-body densityb(r), associated with the operator
Of , is defined 6] such that

(o

for any functionB(r;;). This relationship is used to calculate
the expectation values of the pair interactiox%rij)oﬁ in 2 1 .

the ground states of nuclei and nuclear matter, denoted by ~ P1o,d")=7g[3p2(r)+pa(r)=3pz(r)—p27(r)],

|0). The p5 associated with the static operators 4,7, 4.2
o-0j, 0,-0y7-7, S; and ;7 7;, are denoted byj,

Py, P3. P37, py, andpy . All properties of SNM discussed L

in this and the following two sections are obtained from (2 TGN TN T o7

these six two-body densgi]ties. In the case of PNM, we disre- Poodl) = gglp2(r) = pa(1) = p2(N+pz'(N], (43
gard isospin and consider onp§, p5, andp},. The central

two-body density,p5, is proportional to the probability of whereas in PNM,
finding a pair of particles separated by a distangceand

asymptotically approaches the matter densityasr—o.

All other pb are associated with spin-isospin correlations and 2)
must therefore vanish as—c. Poo

> . B(r;;)Of

i#j=1

1
()= ZLpa(r)=p3()]. (4.4)

TABLE lll. Expectation values of the pion exchange interaction and pion excess operators.

(v™IA, MeV (V2™)IA, MeV (ony/A
SNM, p=0.16 fm 3 —31.53 —3.64 0.05
SNM, p=0.36 fm 3, LDP —60.62 —-18.35 0.09
SNM, p=0.36 fm %, HDP —66.86 —32.26 0.15
PNM, p=0.16 fm 3 —-0.67 1.23 —-0.01
PNM, p=0.20 fm 3, LDP 0.14 1.90 -0.01

PNM, p=0.20 fri 3, HDP —18.20 —8.67 0.05
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FIG. 5. p2~27% for SNM atp=0.16 frmi 3. FIG. 6. pL y_o.1.o(r; 0=0,7/2) for SNM atp=0.16 fm 2, and

for light nuclei scaled to match the maximum value of the SNM
The pair distribution functions if8=1 states have a qua- distribution.
dropolar deformation due to the tensor interaction. 25&%1

in PNM are given by The extrema op{?) (r,6) at fixedr occur forM =0 at
#=0 and6= 7/2. These extrema are plotted as a function of
p'Z(r)=Cq(r)—2C,(r)P,(cosh), (4.5 rinFigs. 6, 8, and 9. From Eq#4.5 and (4.6, it follows
' that
2 ()=
p1+1(r)=Co(r)+Cy(r)P,(cos). (4.6) P2 1(r.0=0)=p@ (r,0=m12), 4.13

The expectation value of By(rij)Ps-;, where 1
Ps-1=1%(3+0;- 0;), can be calculated from either the two- p?) . (r,0=/2) =§[p(T2,{,o(r ,0=0)+p\?) (1, 0=/2)].
body densitieps” or from the distributiong{%), . Equating (4.14
the two results, we find

We also note that in SNM

1 1
Co(r)=§><z[3p§(r)+p§'(r)]. (4.7) 2 ) 2T+1 @15
PTsmll—*)="—"7g=p- :

A similar calculation of the expectation value BfS;; yields
The p{) (r,0=0,m/2) are shown in Fig. 6 for SNM at
1 p=0.16 fm 3, along with the corresponding functions for
Car) = 15Pa(1). 4.8 2H, “He, and'®0, from Ref.[7]. At smallr, this density is
large for 6= /2, where the OPE tensor potential is attrac-
In the case of SNM, th&€,(r) and C,(r) in T=0,1 states tive, and small forf=0, where the OPEP is repulsive. Thus,
are obtained from the expectation values3gfr;;)Ps_; and ~ according to Ref. [7], equidensity surfaces having
B:S;;, muiltiplied by isospin-projection operator®r_g ;.

For theT=0, S=1 distribution functions, we obtain 0.050
1 1 C T ag OT,
Co(r)= 3 X 76[305(1) = 3p3(r) +p3(1) = p57(1)],
(4.9
0.030 -
CaolF) = = XS pb(F) = P, 410 &
124 'fi 0.020 |
The correspondind =1 expressions are given by
0.010
1 1 C T ag gT,
Co(r)= 5z X7=[9p3(r) +3p3(r)+3p3(r)+p37(r)], B
3 16 41 0.000_EZ
( ' l) r [im]
1 1 (2 _ _3 :
= 2% 3pL(r)+ pl" _ _ FIG. 7. pYsm=10dr) for SNM atp=0.16 fm*, and for light
Ca(r) 3 16[3p2(r) P2 (1)] (412 nuclei scaled to match the maximum value of the SNM distribution.
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FIG. 9. Two-body densities 2, for PNM atp=0.2 fm 3. The

The full and dashed lines represent results for the LDP and HDPfull and dashed lines represent results for the LDP and HDP, re-

respectively.

spectively.

p(()21)0>0_01 fm 3 are toroidal in shape. The ratio Sections in light nuclei scale witR,q. The calculated value

Po,1

(2),0(“9:77/2)/%?1),0(“9:0) is a measure of the strength of Rag for SNM at equilibrium density is 1.59, which cor-

of tensor correlations if=0 states. For the maximum pos- "€SPOnds td.,=6.36.

sible tensor correlations)g?l)’o(rﬁ:O) is negligible com-
pared top$?) (r,0=/2). Figure 6 thus indicates that the
tensor correlations iM =0 states, in nuclei and in nuclear
matter, have near the maximum possible strength-dt fm.
The peak value ofp{3\(r) is almost 2.5 times the
asymptotic value of 0.01 fi at p=0.16 fm 3. The spheri-
cally symmetric two-body densities for SNM and nuclei in
the T=1, S=0 channel[p{% (r)] are shown in Fig. 7.
These distributions peak at-1, where the nuclear force is
most attractive, and the peak value is about 1.5 times th
asymptotic value. Botp{% ((r) andp{3\(r) are supressed

nearr ~0 by the repulsive core in theN interaction.

According to Ref.[7], the p{),,(r) and p{? (r) have
universal shapes in light nuclei at smallln Figs. 6 and 7,
we have scaled the densities in light nuclei such that thei
maximum values equal those of SNM. The two-body densit
distributions in SNM appear to have nearly the same shap
as those in light nuclei for=1.5 fm. However, significant
differences occur for=2 fm. Note that the average inter-

particle distance in SNM gi=0.16 fm 2 is also~2 fm.

Forestet al. argue in Ref[7], that the ratioR,q, of the

We observe interesting changes in the two-body densities
between the low and high density phases in SNM and PNM.
The existence of a pion condensate is indicated in the HDP,
as discussed in the following sections. Th& \(r) in
SNM atp=0.36 fm 2 in the LDP, withd,/r,=4, and in the
HDP, with d,/ro=6 are shown in Fig. 8. The analogous
p&,(r) in PNM atp=0.20 fm % are shown in Fig. 9. The
differences between pair densities in LDP and HDP are more
pronounced in PNM. In both PNM and SNM, we find that
the long-range part of the tensor correlations is enhanced. In
BNM, the S=0 p{2 is suppressed in the HDP, whereas in
SNM, p{% yandp(?, are suppressed apd? o is enhanced.

In Migdal's approact 18], the transition to the pion con-
densed phase is inhibited by a positive, short-range
g- o7+ 7; two-nucleon interaction?’(r), represented by
fhe Landau parameter . The eigenvalues of;- o7 - 7; are

y—3, -3, 1, and 9 inT,S=1,0; 0,1; 1,1; and 0,0 states,

Fespectively. Therefore, a strong positivé™(r) favors the

LDP, which has larger pair densities ihS=1,0 and 0,1
states, and a smaller pair densityTnS=0,0. Similarly, in

PNM, a large positivev 7, given by Eq.(2.13, favors the

maximum values op{?,, in a nucleusA and the deuteron LDP. The v"(r) and v °(r) in the U14, Al4, and Al18
provides a good approximation to the Bethe-Levinger factormodels are shown in Fig. 10. The positiv€™ and v ¢ of
L, of the nucleusA. The pion and photon absorbtion cross U14 prevent a transition to the HDP in both SNM and PNM.
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FIG. 10.0v77(r) andv “(r) in U14, A14, and A18 models of the
nucleon-nucleon interaction.

In Al4, v ¢ becomes negative at small and PNM is thus

RL(q,w>=EI [(11OL(@)]0)[28(w— wo—w), (5.1)

ou(a)= 2 o-qr-te'9, (5.2

=1A

wheret is a unit vector in isospin space, af@ and|l)
represent the ground and excited states of the system, with
energiesvg andw, , respectively. SNM has zero isospin, and

R, is therefore independent of the directiontofThe opera-

tor O, (q) represents the coupling of an external pion field to
NM. In the case of PNM, we taketo be in thez direction,
such thatr-t=—1. O, (q) then represents the coupling of a
w0 field to PNM. Migdal assumed that this response would
be dominated by a spin-isospin sound mode, and that the
occurrence of transition would be indicated by the vanishing
of the corresponding excitation energy.

Calculation of the response of NM from realistic interac-
tions is an extremely difficult task. However, it is well
known [47] that the sums and energy-weighted sums of re-
sponse functions are related to the two-body densities. For
the IVSL response, the sum and energy-weighted sum are
defined as

AG?S, ()= J:RL(q,w)dw, (5.3

AGPW, (q) = f:RL<q,w>wdw, (5.4

thus removing the dependence on the number of particles. In

predicted by WFF to undergo a transition, while in A18, bothSNM they are given by

v?" andv ¢ change sign and thus cannot prevent the trans
tion in either SNM or PNM. The Urbana-Argonne potentials

have similar forms, but are fit to different data sets, whereas

the U14 and Al4 were fit ta-p phase shifts available in the
late 1970s and early 1980s, respectively, the A18 is fit di
rectly to the 1994 Nijmegep-p andn-p scattering database.
Also, a much better fit was achieved by A1g%(per datum
=1.09. Thus, it is likely that A18 provides a more accurate
representation of theNN interaction within the Urbana-
Argonne framework.

Thewv?"(r) predicted byw- and p-exchange potentials is
positive for pointlike nucleons. However, these meson
exchange potentials also contain a negatiMenction term.

" 1
(@) =1+ | g (0)iotan = p¥(ni(anar,
55

9> 1
We@= 5 Fr, (56

p p
vShe Di(r)pa(r)

with the DP(r) tabulated in[47]. In the case of PNM we
obtain

1 oa . t H 3
Si(g)=1+ §f [p3(r)jo(ar)—py(r)jo(qr)]d-r,

It is possible that this term is broadened by the finite size of (5.7

nucleons, and that the total"(r) changes sign at smail
The one-meson exchange representation of\thkinterac-
tion may not be reliable at small however.

The v”(r)Sija-i~1-j interaction contains the main part of
the OPEP. Ar>1 fm this interaction is essentially identical
in the U14, Al14, and A18 models. A1 fm it is strongest
in A14 and weakest in U14.

V. ISOVECTOR SPIN-LONGITUDINAL RESPONSE

Migdal [18] calculated the isovector spin-longitudinal

and

8 -
DI(r)=~z{v “(N[1=jo(an]—v (rja(an)},
(5.9

t :_f Tt i
Dy(r) 3{v (N[2+]jo(an)]

—[v 7(r)—2v '(r)]j(an)}. (5.9

(IVSL) response of nuclear matter using effective interacWe note that terms with evem do not occur in PNM, and

tions. The IVSL response is defined as

the v P are defined as in Eq$2.12—(2.15. The energy-
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FIG. 11. S (q) for SNM and PNM. curve is plotted for comparison.

weighted sum of Eq(5.6) contains only the contributions
from the static parts ob;;. These represent the dominant
contributions to the energy-weighted sums of responses
electromagnetic field$48,49, and presumably tdV, as

well. . . . — .
The calculated values @& (q) in SNM atp=0.16 fm™3 isospin correlations, andE, (g~0) is therefore large. In

andp=0.36 fr 3, and in PNM atp=0.16 fm 3 andp=0.2 Migdal's picture [18], the energy of the collective spin-
. , . . X - L e o
fm~3, appear in Fig. 11. At the higher densities, results ob!SOSP!N sound wave witly~1.3 fm™* decreases with in

tained for both the LDP and HDP are shown. At equilibriumcreasmg matter density, and pion condensation occurs when

density, theS, (q) exhibits a small enhancement in tge-2 e energy vanishes. In the LDP, whefie-4r,, the present

fm~* region. Indications of an enhancement of the IVSL calculations show thdE (q) does not decrease with density

response have been observed pgn) reactiong50]. In the ~ at anyq. However, the HDP has a lowe#, (q) than the

LDP, this enhancement grows slowly with density. We pre-LDP in the vicinity ofg~1.3 fm™*. It is likely that a part of

dict a much larger enhancementeat 1.3 fm™ L in the HDP.  the response at~1.3 fm™ " shifts to lower energies, or soft-
When the response is dominated by a single collectivéns, as the system moves from the LDP to the HDP.

mode, i.e., when only one of the stat€slargely contributes

to the sum in Eq(5.1), the energy of the collective state is

given byW, (q)/S.(q). As an example, the energy of Feyn- V1. PIONIC INTERACTIONS AND EXCESS

man phonons in atomic liquiHe can be obtained from the

W, /S, ratio. The spin-longitudinal response of nucleon mat-

ter probably has a large spread in energy; nevertheless,

can define a mean energy of the response as

We note that in the LDPE (q) is larger thang®/2m in
SNM as well as in PNM, indicating that the nuclear interac-
tf?ons push the response to higher energies on average. At
g~0 the IVSL response is almost entirely due to spin-

If the HDP is in fact a “pion-condensed” phase, it must
have associated with it an enhanced pion field and enhanced
%efon exchange interactions between the nucleons. The inter-
action between two nucleons, due to the exchange of a pion
of momentumgq, is given by

— Wi (q)
E = . 51
L(a) S.(q) (5.10 -
T\ — 7NN ig-(rj—ri) A 2
v = g -00: -7 - 7€ iTTIA ,
The resulting values appear in Fig. 12 for the cases consid- i@ m2(m2+q?) | q49;-97°7, (@)

ered in Fig 11. (6.1
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FIG. 13. £(g) for SNM and PNM.

whereA (q) is the pion-nucleon form factor. The expectation

value of the interaction is trivially related to the su#n(q)
of the IVSL response:

1

K<Z Uij(Q)> ==

1 1, )

K< >=— . 97TS(a)—1]1A%a),
6.3

i<
(m2+q?) 2
in SNM and PNM, respectively. The expectation value of th

completev] is obtained by integrating these expression
overdq:

2w 3
mZ(m2+g?) 2

ks

g’[SL(a)—1]A%(q),
(6.2)

f2NN
> vl(a) =

i1<j

1 1
K<i2<,- vu>= 2A772f dq qz<2J vi,-(q)>=f daé(q).
(6.9
The function&(q)
1 f2
)= 5

3
q*5[1-Su(a)]A%(a),
65

gives the pion-exchange nucleon-nucleon interadi®REP
contribution as a function af, the magnitude of the momen-
tum of the exchanged pions in SNM(q) for PNM is di-
minished by a factor of 3. The calculated valuest(d) for

22 m2(m2+q?)
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FIG. 14. Pion excess functiom(q) for SNM and PNM.

the cases previously discussed appear in Fig. 13 for SNM
and PNM, where we have used

2 AZ
M@= 5o 6.6
with A=5 fm~! as an illustration. In the LDP, the attraction
from the OPEP comes from a broad region aroupd3
fm~1, whereas in the HDP, the attraction is relatively more
concentrated aj~1.5 fm~1. Also, much of the repulsion
due to lowq pions in the LDP is absent in the HDP. The
total OPEP contribution, obtained from E®.4), is listed in
orable lll. In the case of SNM, théy ™) is not very different
Sin the LDP and HDP; a much larger change occurs in the

(V2™), also listed in Table Ill. In PNM, however, the differ-
ence in{v™) is more pronounced between the LDP and the
HDP.

The difference in the expectation values of the pion num-
ber operator in matter and féx isolated nucleons is called
the pion exces§s1]. The operator for excess pions of mo-
mentumg, due exclusively to OPE interactions, is given by

v™(q)
snb(g)=— ——. 6.7
Vm2+g?
The distribution of excess pions is given by:
£(q)
Q) =— T (6.9
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which is shown in Fig. 14 for SNM and PNM. Théq) present calculation should be reliable. The changes in the
exhibits a sharp enhancement in the HDRyat1.5 fm 1. pair distributions, the IVSL response and the pion fields
The integral ofsn*)(q), denoted by(sn), is listed in  strongly suggest that the HDP will exhibit pion condensation
Table IIl. The total(dn,.) includes other contributions from upon inclusion of wave functions permitting long-range or-
the NN—NA and NN—AA transition interactiond51],  der. We hope that such a modification will not significantly
which we have not calculated here. These additional contrialter our results for the short-range structure and energy of

butions take into account the changes in the pion field due tthe HDP. The momentum of the condensed pion field is

NA andAA box diagrams and due to thezj}{. ~1.4 fm ! at the onset of the phase transition, which corre-
sponds to a wavelenth of 4.5 fm. The interlayer spacing,
VIl. CONCLUSIONS which equals half the wavelengfth4], is thus predicted to be

We have studied the short-range spin-isospin structure of 2-25 fm in both SNM and PNM. This spacing is larger
SNM and PNM, using one of the most accurate models ofhan the spacing of 1.51.7) fm between the layers of a
nuclear forces currently available. For SNM at equilibrium Simple cubic solid ap=0.32(0.2) fm®. .
density, we predict a short-range structure very similar to Most calculations exploring the possibility of pion con-
that found by Foreset al.[7] in light nuclei, at interparticle ~densation in matter explicitly consider theNA coupling.
distances<1.5 fm. Symmetric nuclear matter is bound by The baryons in ASL and SOS matter are taken to be super-
small localized regions of strong attraction in t&l poten- ~ Positions of nucleon and\ states. TheNN—NA and
tial in T,5=0,1 and 1,0 states. The two-nucleon densities ardN—AA transitions are considered in these approaches,
found to have large overshoots, ranging up to(2.5) times wh|cr_1 make the theory more difficult. In contrast, we do not
the uncorrelated valug§igs. 6 and Yin the T,S=0,1(1,0) consider theA degree of freedom explicitly in the present
attractive regions. The interaction, and consequently the pa¥ork. The resulting effects, along with those due to other
density, in T,S= 0,1 states is highly anisotropic due to the Mesons and nucleon resonances, are |m.pI.|C|t in the two- and
presence of the OPE tensor force. The two-body densit{iree-nucleon _potgntlals obtained by fitting experimental
overshoots in this state have femtometer-sized toroidal strudata. Our Hamiltonian has only nucleon degrees of freedom,
tures similar to those found in light nuclei; we therefore ex-and its predictions can be calculated using a variety of many-
pect this feature to occur in all nuclei. These short-rangd0dy techniques. As previously mentioned, however, the
structures are not very sensitive to the uncertainties in mogdRredictions regarding pion condensations are sensitive to the
e|s Of nuc'ear forces as discussec{'ﬂ}. details of the Short'rangNN interaction.

We also find that the Argonne;s plus Urbana IXV;j It is elicsouraging to note that our calculz.ated. density_of
model of nuclear forces, which offers one of the best fits to™0-32 fm™* for the onset of pion condensation in SNM is
the NijmegenNN scattering database, as well as to the bindWithin the range 0.32 to 0.48 fi favored by calculations
ing energies of light nucldi26], predicts that both SNM and Using the ASL wave functiof62]. As with WFF, we predict
PNM will undergo transitions to phases with pion condensa? lower transition density~< 0.2 fm~°) for PNM. This is due
tion at densities of~0.32 frm 2 and ~0.2 fm 3, respec- to the fact that in most realistic models,’(r), the relevant
tively. The occurrence of this transition is sensitive to theinteraction in PNM, is softer than’’(r) (Fig. 10. Calcula-
short-range parts of the;- o and ;- o;7- 7; NN interac-  tions with ASL wave functions predict a higher density of
tion, as predicted by Migddl18]. The transition does not ~0.5 fm 3 for the onset of neutral pion condensation in
occur with the older Urbana and Argonng, models in  PNM [52]. The possibility of chargedr™ and/orK™ con-
SNM, while in PNM it occurs with the Argonne,,, though  densation in neutron star matter at densities above our result
not with the Urbana 14. of 0.2 fm 2 for #° condensation is currently being investi-

It should be stressed that the present calculations of piogated by a number of research&&—57.
condensation in the HDP are incomplete. Although we have
usgd a variational wave function of thg same form to dg— ACKNOWLEDGMENTS
scribe both the LDP and the HDP, a different form permit-
ting long-range order should be used for the latter. A wave The authors thank J. L. Forest, S. C. Pieper, and R. B.
function describing a correlated liquid crystal, containingWiringa for many discussions and useful suggestions, D. S.
layers of spin-isospin ordered nucleons, may be more apprd-ewart for help preparing the manuscript and figures, and C.
priate for the HDP. Takatsukat al. [52] have used such a M. Elliot for proofreading the manuscript. This work was
wave function, denoted ASL for “alternating spin layers.” A supported by the U.S. National Science Foundation via Grant
correlated spin-ordered soli®0O9 wave function[53] has No. PHY 94-21309. Calculations were performed on the
also been used in the past. However, only lowest-order varigeray C90 at the Pittsburgh Supercomputing Center.
tional [53] or G-matrix [52] calculations have been possible
with these wave functions having Iong-range order. In view APPENDIX A: THE TREATMENT OF L2
of the small difference between the energies of the LDP, and AND (L -S)2 INTERACTIONS
the HDP, it may be advisable to use similar methods to cal-
culate both. The chain summation methods used here cannot The leading contribution tdv )-MB-q is from the sepa-
be used with either ASL or SOS wave functions. Howeverrable, direct three-body diagram shown in Fig.(a5 The
in the future it may be possible to calculate energies of theearlier calculation of(v)-MB-q by Lagaris[11] with the
LDP as well as correlated ASL and SOS phases, using clugd14 potential included only the main term of this diagram,
ter Monte Carlo methodg5,35,9. namely the term with only central correlations between in-

The indication of a phase transition obtained with theteracting particles. While this approximation was justifiable
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TABLE IV. MB-q Contributions in MeV to SNM ajp=0.28

fm~3 using U14 and A18\N-interactions.
’ 7609
/ @ ,J Diagram u14 Al8
j i 3 H j

i D ki 7

2B-dir 4.18 9.12

(a) (b) (e) 2B-ex —0.62 2.27

(a) 3.47 8.57

(b) 0.22 —154

s (c) 0.21 0.46

(d+f) 0.20 0.49

/ } / } (e+9) -0.19 0.56
@ © for U14, the much stronget? and (L -S)? interactions of

A18 (see Table)l require calculation of additional terms. In
the present work we include all relevant terms of the direct

l\ l diagram presented in Fig. (@, and in addition considefi)
the interacting exchange three-body separable diagFagn
15(b)], (ii) the passive exchange three-body separable dia-
4 7 % v 7
(8)

gram|[Fig. 15c)], and(iii) central chain diagrams with and
without exchange§Figs. 18d)—15g)]. Terms in these dia-
grams are classified as eitherdiagrams, in which the gra-
FIG. 15. (a) Three.body Separab|e d|re¢b) three.body sepa- dients in the interaction Operate on paSSiVe C0rre|at|¥]n$
rable, interacting exchangé;) three-body separable, passive ex- and K diagrams, in which the gradients act on interacting
change,(d) direct central chainfe) interacting exchange central correlationsF;; and the uncorrelated wave functidn. The
chain, (f) pair exchange central chain, aiig) circular exchange direct three-body separable diagriifig. 15a)], has the gen-

®

central chain diagrams. eral form
1 > ®%(i,j,hHC 1{fP P fIOT 0 TOM R OF 11 OF
AQZ kixkj’kl o . 3\l 4L IJ’ il ij ] v
—(fPofulOMP Of )(fﬂoﬁfﬁ'oﬁ’))c1>3(i,j,|)o|3|ri,-o|3riI , (A1)
|
with 15(c) is somewhat smaller, and we only consider terms with
p.p’'=1,2 andq,q'=1-6. Contributions to the energy of
D(i,j,1)=eKiritkyrrken), (A2) SNM atp=0.28 fr3 for both the U14 and A18 models,

without three-body interactions are listed in Table IV.

2 m=13,14
whereC( ) represents the so-calledpart, or theo, 7 inde- The (L-9)jj in Oj; can be decomposed as

pendent part of the operator product, as describef3]n
Also, the Oj; in the separated part of the expression do not 1 1 1 1
operate on thé¢; O; . The expressions for the interacting and (L. s)ﬁ =—>(L-9);+ L2+ = —a;;(L,L),
passive exchange diagrarfiSigs. 15a) and 15b)] are ob- 6 6
tained by replacing the uncorrelated wave function (A3)
®3%(i,j,1) with either®%(j,i,I) or ®3(l,j,i), and inserting
the appropriate exchange operators%EgﬂAO{} of  where
3=,-140]) to the far left of the operator product.

The three-body separable? diagrams withm=9—12
[Figs. 18a)—15c)] have large F-parts, and smaller K-parts aij(L,L)=30'i-L0'j~L—0'i-0'jL2. (A4)
which we neglect. For the diagram presented in Figal5
we include terms withp,p’=1—-6 andq,q'=1—6. The
dominant contribution comes from terms wifp=1 and  The (L-S);; part ofv{]~ ***is treated along with the]]~ "®,
g,q’ representing either central or tensor correlations. Thes described by Lagar[§1] and includes all the d|agram-
contribution from the diagrams presented in Figsbl®nd  matic terms therein. The? parts are calculated along with

g O'jL2+
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the vi“j“=9’12, as described above. We also include selectedhe L? chain functions result from the;‘} acting on the

aj; diagrams, which are expected to make the most signifiFermi gas part of the wave functions. These depend and
cant contribution to the energy. These contain difeadia-  r; due to the exchanges at the interacting vertices of the
grams[Fig. 15a)] with p’q'pg=cctctccc,ttct,cttt,tctc,  chain diagrams.

and the exchangeF diagrams [Fig. 15b)] with Thede contribution of thel.? part is obtained by dressing
p'q’pg=cctc,tccc, where it is understood thatt” repre-  the two-body direct diagram with

sents all tensor correlations with and withagit7; or 7 - 7
factors.

The central chain diagrams shown in Figs(d)515g)
make a modest contribution to the energy. Faliagrams ) S ) ,
are obtained by inserting appropriate chain functions into thihile thecc contribution is calculated by replacimgl;; l;;/s
two-body integrals. Three central chain functions,in the two-body exchange diagram by
Gix’:dd,de,cc are defined in 3], wherexx’ denote the ex-
change character of the two interacting vertices of the dia- e rijlijlilj
gram. Each of these may be either direct=d), exchanged erdd —5— f
only with particles in the chainx=e) or part of a circular
exchange involving both interacting particlesx(=cc). The present calculation div)-MB-q includes terms in-
When considering only static interactions and correlationsyolving only the static correlations, since they yield the
the Gix, can be directly inserted into the two-body integrals. dominant contribution to the energy. Without {S);; corre-

However, the gradients associated with momentumyations thefﬁoipjviTomfP’Oﬁ, operator product does not

ijhj

dependent interactions may operate on the Slater functions &yntain terms with.">2. and the above calculation of central
thede andcc chains, thus yielding somewhat more compli- -5ink diagrams is complete.

cated expressions.

The direct central chain diagraffrig. 15d)] has neither
interacting particle exchanged. THepart of this diagram is
obtained in the same manner as static diagrams, namely by \ye wish to calculate the two-body cluster using a better
dressing the two-body direct diagram w{te®dd—1]. variational wave function. The standard two-body variational

In order to calculate thde andcc diagramgFigs. 15f)  wave function has the form

and 1%g)], the operator produd’tﬂOf}v{}‘O{}‘fﬁ’Oﬁ’ is writ-

ten in powers oL.2. TheL° part does not contain gradients, ] o

and the associatede and ee chain diagrams are thus ob- q'Zb:(p_Elsf (rii)oij>q)2b’ (B1)
tained as in the static case by dressing the direct two-body ’

diagram with

eSiq G+ 2(5/K7r3) G, (A10)

! ~C L2
11 GE 4+ 2G| -

all — - (A1D

APPENDIX B: PERTURBATIVE CORRECTIONS

where ®,, is a plane-wave Slater determinant. THeare
c determined from th&-L equations obtained by minimizing
€%dd( 2GS+ G§GGet GSo). (A5)  the total two-body cluster energy

The L° cc chain diagram$Figs. 15e) and 1%g)] are calcu- 1 2
lated by replacingizj/s in the two-body exchange diagram by CzZ;\E <‘I’2b| H-— Ekﬁm|\l,2b>

m,n

1 GS c \2 lizi ! h
ge dd(lij+sGCC)—§. (AB) :Kkm,k 2 2 \szH_Ek

n %m>%n Tm: T

2
mn

‘I’zb>v
Here,s is the degeneracy, ang=I(k;r;;) is the Slater func- (B2)
tion. TheK contribution of terms in thele andcc diagrams

containingL2 operators are calculated using the chain func-obtained after summing ovég,, k,, o, oy, 7, andm, at-
. L2 L2 chosen values dl;, d;, anda. We propose instead to mini-
tions G, and G, defined as

mize C,(k,,,k,) separately in each partial wave, thus obtain-
2 ing momentum- and channel-dependent correlations
2__P ijf 3, £C| T f(1,S,3,k). The perturbative correction to the energy in an
=—— Fely s A7 ; )
Gde s ) dnFalit, (A7) [,S,J channel is then given by

2
I — JE—
GL2=—p—;|in3r.Ffj|.j| » (A8)  OEx(1,8,9)= 2 [Call,S.J;km kn) = Coll,S, 35k ko)1,
S

(B3)
with
, whereC, is obtained from the (1,S,J,k) andC, is calcu-
il lated with the operatofPOP.
The uncorrelated two-body wave function, in relative co-
(A9) ordinates, can be expanded as

!
il
i+

4 i

I-’
coszai( = rl) 2
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%S, M) = 85p8y0 2 VAT(23+ 1)i%] (KN)Sos+ 8512 VAm(23+1)i% (kr)Wh (I1IM[J0IM)
J J

+ 052, VAT [ (03 10+ & (N ], (B4)
whereJ.,.=J=*1, yrgJ are spin-angle functiong)SJM|Im;Sm,) are Clebsch-Gordon coefficients, and

& (n= \/(2\],+1)(J,1JM|J,01M>jL(kr),

& (N==v(23, +1)(J. 1IM|I. 0IM)] , (kr). (B5)

The correlated two-body wave function can thus be written
Wk SM)=2 VAm(23+ 1)i%[Rys-0(1) 0+ Ry s-1(1) Mo I1IM|I0IM) |

+J§>:1 Jamid-[RY (NI 1, +RY (A 151, 86)

The wave functioru;—| s—o1=rR; s in uncoupled channels satisfies tie equation:

n? £2JJ+1) — n
st Er—z"_UJ,S_)\J,S(k) Uys= K Uss, (B7)
and is normalized such that
Uy s(r=dy)=rj (kr). (B8)

The \; 5(k) are constants, which are varied to match the boundary conditions:

U5 (r=dy) =] (kn)+rj (kr), (B9)

whered,=d; in the spin-singlet state, ard}=d; in the uncoupled spin-triplet state, which is affected by the tensor correla-
tions.
In the coupled channel§=1*=1, S=1, we obtain a pair of coupled equations:

h? R2J_(J_+1) — 6VI(J+1) — 12

R R _yC VN T\t — _ |2
o u”+ o 2 +v;y 12— A(K) Jut 5371 [vy1—N(K)]o mk u, (B10)
h? £2J3,(J3.+1) — 6yI(J+1) — h?

RN R D _yC YN T\t — _ K2
el = ® tvy, 1= A(K) ot 23+ 1 [vy1—N(K)]u mk w. (B11

|
These equations have two sets of solutions, denoted by u.(r=d)=0, w,.(r=d)=rj; (kr),
.

(u_,w_) and (U, ,w,), with boundary conditions
UL (r=d)=0, w'(r=dy=], (kn+rj; (k).

u_(r=dy=rj_(kr), w_(r=dy)=0,
I- (B13)

u'(r=dy)=j, (kn)+rj! (kr), ' (r=dy)=0, The\®(k), is adjusted to match the derivative boundary con-
(B12) dition on the dominant waveu( or w.), while \'(k) is
varied to match the zero derivative condition on the second-
whered,=d, for J=1,1=J_=0, 33, state, andd, other- ary wave (i, andw_). Thus,A(k) and\'(k) depend onJ
wise, and and thel of the dominant wave.
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TABLE V. Contributions tosE, from |,S,J channels for A18-1X model in MeV.

p (fm~3) 'S, Py 'D, 'Fs *Po Py °D, °Fs P, —3F,
0.16 (SNM LDP) 0.00 000 -0.01 0.00 -—-0.20 -0.80 -—-0.15 0.00 —-0.94
0.28(SNM LDP) —-0.03 0.00 —-0.03 0.00 0.00 -1.74 -0.24 0.00 —2.16
0.36(SNM HDP —-0.05 0.00 —-0.05 0.00 -0.14 -297 -0.35 0.00 —2.80
0.16 (PNM LDP) 0.00 —-0.01 -0.15 -0.62 0.00 -0.70
0.20(PNM LDP) 0.00 —-0.01 -0.16 —-0.83 —-0.01 -0.15
0.24(PNM HDP)  —0.22 ~0.09 041 -1.10 000  —0.20

The R'JVL can be expressed as superpositions of the twdor C,(1,S,J.k,.k,) are then integrated over the Fermi sea.
solutions, which match the boundary condition; In order to ensure that the correlations functiofs,in
RJ (r—o)= gJ (r—). Evaluating the Clebsch-Gordon coupled channels are positive, the solutions are matched to
the asymptotic forms at the first node of the bessel function,

we find rather than at the healing distana#;, ©r d,) for values ofk

coefficients |n§J+ ,

large enough such that the node occurs within the healing
Mes1 1 J+1 J .
RM=*1=Cly_ —u,\/=|, distance.
- r 2 2 The momentum-dependence 6l,S,J,k) is not very
large, however the dependencel98,J channels is signifi-
RM /‘H' 1_ ® \ﬂ} cant. We find that no additional attraction is obtained in the
I+ “ Vo2 N2 35,—3D, channel, and very little comes from tH&, and

other singlet channels as can be seen in Table V. This pre-
sumably indicates that the parametdgs d;, and« are op-
timum for those channels. The bulk of the additional attrac-
tion due to channel- and momentum-dependent correlations
is in the 3P,—3F, and 3P, channels, with somewhat less
coming from the®D, channel. The presefifOP correlation
operator, withd? chosen according to Eg&.8) and(3.9), is

With the wave function in hand, we can calculate theprobably inadequate to simultaneously describe correlations
two-body cluster energy, and thereby determdg(l,S,J).  in S and P waves accurately. However, th#, correction
The differential equations for the wave functions are solvechas little effect on the critical density of the predicted phase
at several values df on a grid from O tdk; . The expressions transition.

1
R} =0= —lu- JI+u, \a+1],

1
RY=0= F[w,ﬁJr w,\I+1].

(B14)
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