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Fluctuations in ‘‘Brown-Rho scaled’’ chiral Lagrangians
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We develop arguments for ‘‘mapping’’ the effective chiral Lagrangian whose parameters are given by
‘‘Brown-Rho’’ ~BR! scaling to a Landau Fermi-liquid fixed-point theory for nuclear matter in describing
fluctuations in various flavor~e.g., strangeness! directions. We use for this purpose the effective Lagrangian
used by Furnstahl, Tang, and Serot that incorporates the trace anomaly of QCD in terms of a light-quark
~quarkonium! degree of freedom with the heavy~gluonium! degree of freedom integrated out. The large
anomalous dimensiondan'5/3 for the scalar field found by Furnstahlet al. to be needed for a correct descrip-
tion of nuclear matter is interpreted as an indication for a strong-coupling regime and the ground state given by
the BR-scaled parameters is suggested as the background around which fluctuations can be rendered weak so
that mean-field approximation is reliable. We construct a simple model with BR-scaled parameters that pro-
vides a satisfactory description of the properties of matter at normal nuclear matter density. Given this,
fluctuations around the BR-scaled background are dominated by tree diagrams. Our reasoning relies heavily on
recent developments in the study of nucleon and kaon properties in normal and dense nuclear matter, e.g.,
nucleon and kaon flows in heavy-ion processes, kaonic atoms, and kaon condensation in dense compact-star
matter.@S0556-2813~97!00810-8#

PACS number~s!: 24.85.1p, 12.39.Fe, 21.65.1f, 25.75.2q
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I. INTRODUCTION

In computing fluctuations in various flavor direction
~such as strangeness! in nuclear processes, the standard p
cedure has been to assume that the ground state of had
matter is given by the conventional nuclear matter and
pend in an arbitrary fashion flavor fluctuations on top of t
assumed ground state using effective chiral Lagrangian
low chiral order. In doing this, one usually takes a theory
the ground state from a standard many-body treatment
adds mesonic fluctuations using a chiral Lagrangian w
however, no constraints imposed for consistency between
ground state and the fluctuations. This is clearly an unsa
factory procedure for going beyond the normal matter c
dition, although with some astute intuitive input, one c
make a fairly successful phenomenology of a variety
meson-fluctuation processes at the normal matter densit

In this paper we make an initial step toward bridging t
physics of the ground state to that of fluctuations on top o
in the framework of an effective chiral Lagrangian fie
theory. The problem can be stated as follows. Suppose
wants to describe the property of light-quark mesons i
dense nuclear medium as, for instance, probed in dilep
productions in heavy-ion collisions~e.g., CERES@1#! or in
electroproduction of vector mesons inside nuclear med
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~e.g., CEBAF@2#!. As has been recently shown by Li, Ko
and Brown@3#, such a process can be most economically a
remarkably well described in terms of a chiral Lagrangian
the mean field with the parameters of the Lagrangian sca
according to ‘‘Brown-Rho~BR! scaling’’ @4#. In this ap-
proach, however, one treats the ‘‘matter’’~i.e., nuclear!
property in a way disconnected from, although not incons
tent with, the BR-scaled chiral Lagrangian that is used
describe the vector meson property. The underlying assu
tion here is that the ground state is given by the sameeffec-
tive chiral Lagrangian that is supposed to include high-or
quantum corrections, perhaps as a ‘‘chiral liquid’’ as su
gested by Lynn@5# or as mean field of the BR-scaled chir
Lagrangian as suggested in@6# ~‘‘BR conjecture’’!. It is not
yet fully understood how the Fermi surface is obtained
this scheme. However, given the matter with a Fermi surf
given by such a description, one can thenmapthe BR-scaled
chiral Lagrangian to Landau Fermi-liquid fixed-point theo
in the way explained in@7#. This mapping has been teste
and found to be phenomenologically successful in such st
properties of nuclei as the nuclear gyromagnetic ratiogA

! ,
the nucleon effective massmN

! , etc.@7#. We take this succes
as the first justification for the BR conjecture. This provid
a link between the baryon property and meson property
side a dense medium. It also enables one to extrapolate
normal nuclear matter at equilibrium to hadronic matter u
der extreme conditions.

Further support comes from processes involving kaon
nuclear matter. Given the ground state of the matter with
scaled parameters, fluctuations on top of it into the kao
flavor direction seem to give correct properties of theK6 in
medium as seen in kaonic atom, subthreshold producti
and flows ofK6 in heavy-ion collisions@8# ~e.g., KaoS@9#

:
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56 2245FLUCTUATIONS IN ‘‘BROWN-RHO SCALED’’ CHIRAL . . .
and FOPI@10#!. We take this as the second justification.
A basic problem, however, remains when we apply

theory to kaon condensation in compact-star matter, on
the most fascinating phenomena associated with strange
in dense matter. Here one is dealing with a change of
ground state from that of nonstrange to strange matter
hence the whole system, that is, the bulk involving t
ground state and excitations on top of it has to be treated
the same footing. In works up to date@11,12#, this matter has
not been consistently treated. It is the aim of this pape
attempt to remedy this defect.

This paper is organized as follows. In Sec. II a gene
strategy of an effective chiral Lagrangian as applied to
dense medium is presented and the model of Furnstahlet al.
@13# ~referred to as FTS1! that incorporates both chiral sym
metry and the trace anomaly of QCD is presented in
framework. In Sec. III, the role of anomalous dimension
the scalar field that enters into the trace anomaly of the F
model on the structure of many-body forces and the co
pression modulus of nuclear matter is examined. Section
is devoted to the proposition that the mean-field theory w
the FTS1 Lagrangian corresponds to Lynn’s nontopolog
soliton or a chiral liquid. We discuss how this chiral liqu
can be identified with Landau’s Fermi-liquid structure
drop of nuclear matter in terms of renormalization-gro
flow arguments using developments in condensed-ma
physics. In Sec. V BR scaling is incorporated into a chi
Lagrangian to obtain a weak-coupling description of t
same physics as the~strong-coupling! FTS1 mean-field
theory. This defines the background at a given finite den
around which fluctuations can be made. In Sec. V the B
scaled parameters introduced in the preceding section ca
mapped to Landau Fermi-liquid parameters and a con
with low-energy nuclear properties as well as kaon-nucl
interactions at normal matter and higher densities be m
through the mapping of the parameters. A summary and c
clusions are given in Sec. VI. The Appendix shows h
sensitive the equation of state~EOS! is to the correlation
parameters forr.r0 .

II. EFFECTIVE CHIRAL LAGRANGIAN
FOR NUCLEAR MATTER

We begin by recalling the main result of@6#. Let an ef-
fective LagrangianLeff be defined as

Seff5E d4xLeff, ~1!

where Seff is a Wilsonian effective action arrived at afte
integrating out high-frequency modes of the nucleon a
other heavy degrees of freedom. This action is then give
terms of sum of terms organized in chiral order in the se
of effective theories at low energy. The key point of Ref.@6#
is that the mean-field solution of the chiral effective L
grangian with the parameters given by the BR scaling@4#
approximates the solution

dSeff50. ~2!

Our ultimate aim in this paper~and subsequent papers! is
to ‘‘derive’’ the results of Refs.@6,8# starting with a chiral
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Lagrangian description of the ground state as speci
above, around which fluctuations in various flavor sectors
to be made. To do this, we take a phenomenologically s
cessful mean-field model of Walecka type to describe
ground state. In a recent publication, Furnstahl, Tang,
Serot@13# constructed an effectivequantumnonlinear chiral
model that in mean field reproduces quite well all ba
nuclear properties. This model that we shall refer to as FT
model incorporates the trace anomaly of QCD in terms o
light ~‘‘quarkonium’’! scalar fieldS and a heavy~‘‘gluo-
nium’’ ! scalar fieldx. In a general framework of chiral dy
namics, it is possible to avoid the use of the conform
anomaly of QCD by appealing to other notions of effectiv
field theories such as ‘‘naturalness condition’’ as in@14# ~that
we shall refer to as FTS2! leading to an effective-mean-fiel
theory that gives an equally satisfactory phenomenology
the FTS1. For our purpose, however, it proves to be m
convenient to exploit the role of the light scalar field th
figures in the trace anomaly. In particular, it makes the s
cessful description of the nucleon flow in heavy-ion col
sions obtained by Liet al. @15# ~who use the FTS1 theory!
more readily understandable.

As in FTS1, we shall assume the heavy scalar field
have the canonical scale dimension (d51), while the light
scalar field is taken to transform under scale transforma
as

S~l21x!5ldS~x!, ~3!

with d a parameterthat can differ from unity, the canonica
dimension. The assumption here is that radiative correcti
in the scalar channel can be summarized by an anoma
dimensiondan5d21Þ0. A heuristic justification for this
assumption will be given below in terms of
renormalization-group flow argument. One further assum
tion that FTS1 adopt from Ref.@16# is that there is no mixing
between the light scalarS(x) and the heavy scalarx in the
trace anomaly. Their Lagrangian has the form

Leff5Ls2Hg

x4

x0
4 S ln

x

x0
2

1

4D2HqS S2

S0
2D 2/dS 1

2d
ln

S2

S0
2 2

1

4D ,

~4!

whereLs is the chiral- and scale-invariant Lagrangian co
taining x,S,N,p,v, etc. Herex0 and S0 are the vacuum
expectation values with the vacuumu0& defined in the matter-
free space:

x0[^0uxu0&, S0[^0uSu0&. ~5!

The trace of the improved energy-momentum tensor@17#
from the Lagrangian is

]mDm5um
m52Hg

x4

x0
4 2HqS S2

S0
2D 2/d

, ~6!

whereDm is the dilatation current. The mass scale associa
with the gluonium degree of freedom is higher than that
chiral symmetry,Lx;1 GeV, so it is integrated out in favo
of the light scalar, in which case the FTS1 effective Lagran
ian takes the form
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2246 56SONG, BROWN, MIN, AND RHO
L5N̄@ igm~]m1 ivm1 igvvm1gAg5am!2M1gsf#N

2
1

4
FmnFmn1

1

4!
zgv

4~vmvm!21
1

2 S 11h
f

S0
D

3F f p
2

2
tr~]mU]mU†!1mv

2vmvmG1
1

2
]mf]mf

2
ms

2

4
S0

2d2H S 12
f

S0
D 4/dF1

d
lnS 12

f

S0
D2

1

4G1
1

4 J ,

~7!

where S5S02f, h and z are unknown parameters to b
fixed, and

j25U5eipW •tW / f p,

vm52
i

2
~j†]mj1j]mj†!,

am52
i

2
~j†]mj2j]mj†!.

It is important to note that the FTS1 Lagrangian is an eff
tive ~quantal! Lagrangian in the sense specified above. T
effect of high-frequency modes of the nucleon field and ot
massive degrees of freedom appears in the parameters o
Lagrangian and in the counterterms that render the expan
meaningful. It presumably includes also vacuum fluctuatio
in the Dirac sea of the nucleons@13,18#. In general, it must
be a lot more complicated. Indeed, one does not yet kn
how to implement this strategy in full rigor given that on
does not know what the matching conditions are. In@13,14#,
the major work is, however, done by choosing to fit the r
evant parameters of the FTS1 Lagrangian to empirical inf
mations.

The energy density for uniform nuclear matter with t
static mean fields obtained from Eq.~7! is

«5
g

~2p!3 EkF
d3kAkW21~M2gsf0!2

2
mv

2

2 S 11h
f0

S0
Dv0

21gvrBv02
z

4!
gv

4v0
4

1
ms

2

4
S0

2d2H 1S 2
f0

S0
D 4/dF1

d
lnS 12

f0

S0
D2

1

4G1
1

4 J .

~8!

Hereg is the degeneracy factor.

III. ANOMALOUS DIMENSION

The best fit to the properties of nuclear matter and fin
nuclei is obtained with the parameter setT1 when the scale
dimension of the scalarS is neard52.7. In this section we
analyze how this results and present what we understan
the role of the large anomalous dimensiondan5d21'1.7 in
nuclear dynamics. In what follows, the parameterT1 with
-
e
r
the
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s
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e

of

this anomalous dimension will be taken as a canonical
rameter set.1

A. Scale anomaly

Following Coleman and Jackiw@17#, the scale anomaly
can be discussed in terms of an anomalous Ward iden
DefineGmn(p,q) andG(p,q) by

G~p!Gmn~p,q!G~p1q!

5E d4x d4y eiq•xeip•y^0uT* umn~x!w~y!w~0!u0&, ~9!

G~p!GG~p1q!

5E d4x d4y eiq•xeip•y^0uT* ]mDmw~y!w~0!u0&, ~10!

with the renormalized propagatorG(p) and the renormalized
fields w(x). HereT* is the covariantT product andDm(x)
the dilatation current. A naive consideration on Ward iden
ties would give

gmnGmn~p,q!5G~p,q!2 idG21~p!2 idG21~p1q!,
~11!

with d the scale dimension ofw(x). However,G is ill de-
fined due to singularity and so has to be regularized. W
the regularization, the Ward identity reads

gmnGmn~p,q!5G~p,q!2 idG21~p!2 idG21~p1q!

1A~p,q!, ~12!

A~p,q![ lim
L→`

G~p,q,L!2G~p,q!, ~13!

where the additional termA is the anomaly. This anomaly
corresponds to a shift in the dimension of the field involv
at the lowest loop order, but at higher orders there are ve
corrections. One obtains, however, a simple result when
b functions vanish at zero momentum transfer@17#. Indeed,
in this case, the only effect of the anomaly will appear as
anomalous dimension. In general, this simplification does
occur. However, it can take place when there are nontri
fixed points in the theory. Now using the reasoning dev
oped in condensed-matter physics@19#, we argue as in@7#
and further elaborated later that nuclear matter is given in
absence of BCS channel by a Landau Fermi-liquid fixe
point theory with vanishingb functions of the four-Fermi
interactions and that all quantum fluctuation effects wo
appear in the anomalous dimension of the scalar fieldS. That
nuclear matter is a Fermi-liquid fixed point seems to be w
verified at least phenomenologically as suggested in@7#.
However, that fluctuations into the scalar channel can
summarized into an anomalous dimension is a conjec
that requires a proof. We conjecture here that this is one w
we can understand the success of the FTS1 model.

1Explicitly the T1 parameters ared52.7, gs
2599.3, mS

5509 MeV, S0590.6 MeV, gV
25154.5, j50.0402, and h5

20.496.



ia
i

pr

s

m
m

th

-

io

n-
nd

ten-
pre-

tely

ach
om-

lds
of
total
x-

ri-
e
e

r
n

us
role
the

not
ved
-
ce
di-

ua-

e
ory

esult

the

the

oci-
lar-

criti-
cou-

ed.

Th
i-
.
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B. Nuclear matter properties at dan'5/3

The FTS1 theory has some remarkable features assoc
with the large anomalous dimension. Particularly striking
the dependence on the anomalous dimension of the com
sion modulus and many-body forces.

1. Compression modulus K

Listed in Table I are the compression modulusK and the
equilibrium Fermi momentumkeq vs thed of the scalar field
f. As thed increases, theK drops very rapidly and stabilize
at K;200 MeV for d'2.6 and stays nearly constant ford
.2.6. This can be seen in Fig. 1. The equilibrium Fer
momentum, on the other hand, slowly decreases unifor
as thed increases.

Unfortunately, we have no simple understanding on
mechanism that makes the compression modulusK stabilize
at the particular valuedan'5/3. We believe there is a non
trivial correlation between this behavior ofK and the obser-
vation made below that the scalar logarithmic interact
brought in by the trace anomaly is entirely givenat the satu-

FIG. 1. Compression modulus vs anomalous dimension.
parameter set used here is theT1 in FTS1. This shows the sens
tivity of the compression modulus to the anomalous dimension

TABLE I. Equilibrium Fermi momentumkeq and binding en-
ergy B5M2E/A as a function ofd for Fig. 1.

d K ~MeV! keq ~MeV! B ~MeV!

2.3 1960 313 50.4
2.4 1275 308 37.0
2.5 687 297 27.1
2.6 309 279 20.4
2.7 196 257 16.4
2.8 184 241 14.0
2.9 180 231 12.4
3.0 175 223 11.2
3.1 169 217 10.3
ted
s
es-

i
ly

e

n

ration point by the quadratic term at the samedan with the
higher polynomial terms~i.e., many-body interactions! con-
tributing more repulsion for increasing anomalous dime
sion. At present our understanding is purely numerical a
hence incomplete. We plan to report the results of the ex
sive numerical analyses we have performed and our inter
tation thereof elsewhere@20#.

2. Many-body forces

In the mean field, the logarithmic potential in Eqs.~7! and
~8! containsn-body-force~for n>2! contributions to the en-
ergy density. For the FTS1 parameters, thesen-body terms
are strongly suppressed ford*2.6. This is shown in Fig. 2,
where it is seen that the entire potential term is accura
reproduced by the quadratic term12 ms

2f2 for dan;5/3. Fur-
thermore, a close examination of the results reveals that e
of the n-body terms is separately suppressed. This phen
enon is in some sense consistent with chiral symmetry@21#
and is observed in the spectroscopy of light nuclei@22#.
Since there are additional polynomial terms in vector fie
~i.e., terms such asfv2!, the nearly complete suppression
the scalar polynomials does not mean the same for the
many-body forces. In fact, we should not expect it. To e
plain why this is so, we plot in Fig. 3 the three-body cont
butions of thef3 and fv2 forms. We also compare th
FTS1 results with the FTS2@14# results that are based on th
naturalness condition. In FTS1, thef3 term that turns to
repulsion from attraction ford.8/3 contributes little, so the
main repulsion arises from thefv2-type term. This, togethe
with an attraction from anv4 term, is needed for saturatio
of the nuclear matter at the right density.2

C. Anomalous dimension and the scalar-meson mass

We would like to understand how the large anomalo
dimension needed here could arise in the theory and its
in the scalar sector. Since the trace anomaly arises from
necessity to regularize the theory in the ultraviolet, it can
depend on density as long as the Fermi momentum invol
is less than the chiral scaleLx . Thus the anomalous dimen
sion cannot be due to an effect of density on the tra
anomaly. This means instead that the large anomalous
mension reflects a strong-coupling regime with the fluct
tion around the matter-free vacuum being strong.

As suggested in@7# and elaborated more in Sec. IV, on
appealing way of understanding the FTS1 mean-field the

2This raises the question as to how one can understand the r
obtained by Brown, Buballa, and Rho@23#, where it is argued that
the chiral phase transition in dense medium is of mean field with
bag constant given entirely by the quadratic term; 1

2 ms
2f2. The

answer to this question is as follows. First, we expect that
anomalous dimension will stay locked atdan5d21;5/3 near the
phase transition~this is because the anomalous dimension ass
ated with the trace anomaly, a consequence of ultraviolet regu
ization, is not expected to depend upon density!, so thefn terms for
n.2 will continue to be suppressed as density approaches the
cal value. Second, near the chiral phase transition, the gauge
pling of the vector mesons, as argued in@24#, will go to zero in
accordance with the Georgi vector limit@25#, so the many-body
forces associated with the vector mesons will also be suppress

e
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FIG. 2. Comparison between thef2 interaction and the loga
rithmic self-interaction of the scalar field with FTS1 paramete
The dashed lines representV5 (ms

2/2) f2 and the solid linesV
5 (ms

2/4) S0
2d2

†(12 f/S0)4/d@(1/d) ln(12 f/S0)2
1
4#1

1
4‡ for ~from

top to bottom! d51.0, 2.0, 2.7, and 3.5, respectively.
is to considerall channelsto be at Fermi-liquid fixed points
except that because of the trace anomaly, the scalar
develops an anomalous dimension, thereby affecting
four-Fermi interaction in the scalar channel resulting wh
the scalar field is integrated out. If the anomalous dimens
were sufficiently negative so that marginal terms beca
marginally relevant, then the system would become unsta
as in the case of the Nambu–Jona-Lasinio~NJL! model or
superconductivity, with the resulting spontaneous symme
breaking. However, if the anomalous dimension is positi
then the resulting effect will instead be a screening. T
positive anomalous dimension we need here belongs to
latter case. We can see this as follows. Consider the pote
given with the low-lying scalarS ~with the gluonium com-
ponent integrated out!:

V~S,••• !5
1

4
mS

2d2S0
2S S

S0
D 2/dS 1

d
ln

S

S0
2

1

4D1••• ,

~14!

where mS is the light-quarkonium mass in free space
(;700 MeV) and the ellipses stand for other contributio
such as pions and quark masses that we are not intereste
The scalar excitation on a given backgroundS! is given by
the double derivative ofV with respect toS at S5S!,

mS
!25mS

2S S!

S0
D 4/d 22F11S 4

d
21D ln

S!

S0
G . ~15!

We may identify the ratioS!/S0 with the BR scaling factor
F @7#:

S!

S0
5F5

f p
!

f p
5

mV
!

mV
, ~16!

with the subscriptV standing for light-quark vector mesonsr
andv. Then we have

mS
!

mS
5F~r!kd~r!, ~17!

.

FIG. 3. Three-body contributions to the energy per nucleon
Fermi momentum in FTS models. The short-dashed line repres
the contribution of thef3 term in FTS2 with theQ1 parameters.
The long-dashed and the solid lines represent the contribution
the cubic terms~fv2 and f3, respectively! in FTS1 with theT1
parameters ford52.7.
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with

kd~r!5F2/d 22F11S 4

d
21D ln F G1/2

. ~18!

One can see that ford51, which would correspond to th
canonical dimension of a scalar field, the scalar mass f
much faster, for aF~r! that decreases as a function of de
sity, than what would be given by BR scaling. Increasing
d ~and hence the anomalous dimension! makes the scala
mass fall less rapidly. Withd'2, kd'1 and we recover the
BR scaling. Since the dropping scalar mass is associ
with an increasing attraction, we see that the anomalous
mension plays the role of bringing in an effective repulsio
One may therefore interpret this as a screening effect of
scalar attraction. In particular, thatd22'0.7.0 means that
in FTS1, an additional screening of the BR scaled sca
exchange~or an effective repulsion! is present.

IV. CHIRAL LIQUID AND FERMI-LIQUID FIXED POINT

In a more recent paper, Furnstahl, Serot, and Tang@14#
reformulated their theory in terms of a chiral Lagrangi
constructed by applying the ‘‘naturalness’’ condition for a
relevant fields. In doing this, Georgi’s ‘‘naive dimension
analysis’’ @26# was used instead of the trace anomaly and
large anomalous dimension. It was argued therein that a
grangian so constructed contains in principle higher-or
terms in chiral counting including those loop corrections t
can be expressed as counterterms involving matter fi
~e.g., baryons!. This is essentially equivalent to Lynn’s e
fective action@5# that purports to include all orders of qua
tum loops in chiral expansion supplemented with coun
terms consistent with the order to which loops are calcula
This means that the mean-field solution with the FTS1~or
equivalently@14#! should correspond to the ‘‘chiral liquid’
as the ground-state matter that arises as a nontopolo
soliton proposed by Lynn. Fluctuations around this me
field should then give an accurate description of the obs
ables that we are dealing with.

We shall here extend this argument further and mak
connection with Landau’s Fermi-liquid theory of nucle
matter by using the argument of Matsui@27#, who described
the link between Walecka model in mean-field and Land
Migdal Fermi-liquid theory. This will allow us to understan
BR scaling in terms of chiral Lagrangians and Fermi-liqu
fixed-point theory, thereby giving a unified picture of ord
nary nuclear matter and the extreme state of matter probe
heavy-ion collisions, e.g., CERES@1#. As far as we know,
this is the first such attempt to connect the physics of the
vastly different regimes. The seed for such a scheme and
basic idea were mentioned in the work of Friman and R
@7#.

The basic assumption we start with is that the chiral liq
arises from a quantum effective action resulting from in
grating out the degrees of freedom lying above the ch
scaleLx;4p f p;1 GeV. This corresponds to the first sta
of ‘‘decimation’’ @30# in our scheme. The mean-field solu
tion of this action is then supposed to yield the ground s
of nuclear matter with the Fermi surface characterized by
Fermi momentumkF . In FTS1, the effective Lagrangian wa
lls
-
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given in terms of the baryon, pion, quarkonium scalar, a
vector fields with the gluonium scalars integrated out.
stead of treating the scalar and vector fieldsexplicitly as in
FTS1, we will consider here integrating them out furth
from the effective Lagrangian. This would lead to fou
Fermi, six-Fermi, etc., interactions in the Lagrangian w
various powers of derivatives acting on the Fermi field. T
resulting effective Lagrangian will then consist of the bar
ons and pions coupled bilinearly in the baryon field and fo
Fermi and higher-Fermi interactions with various powers
derivatives, all consistent with chiral symmetry. A minimu
version of such a Lagrangian in the mean field can be sho
to lead to the original~naive! Walecka model@28#. In prin-
ciple, a sophisticated version of this procedure should giv
theory equivalent to the full FTS1 theory or a generalizat
thereof.

Leaving out the pion for the moment3 and formulated
nonrelativistically,4 the next step is to decimate successive
the degrees of freedom present in the excitations with
scaleE,Lx as follows.5 To do this we consider excitation
near the Fermi surface, which we shall take to be spher
for convenience characterized bykF . First integrate out the
excitations with momentump>6L ~where p5upW u and L
,Lx! measured relative tokF ~corresponding to the particle
hole excitations with momentum greater than 2L!. We are
thus restricting ourselves to the physics of excitations wh
momenta lie below 2L. This defines the starting point of a
in-mediumrenormalization-group procedure. The approp
ate action to consider can be written in a simplified and sc
matic form as

S5E
L

c̄@ iv2vF
!k#c1dm!E

L
c̄c1E

L
uc̄c̄cc, ~19!

where

E
L

:5E dV

~2p!2 E
2L

L dk

~2p!
E

2`

` dv

~2p!
. ~20!

Here vF
!5kF /m!, where m! is the effective mass of the

nucleon, which will be equal to the Landau massmL
! as will

be elaborated on later. The term withdm! is a counter term
added to ensure that the Fermi momentum is fixed~that is,
the density is fixed!. What his term does is to cancel loo
contributions involving the four-Fermi interaction to th
nucleon self-energy~i.e., the ‘‘tadpole’’! so that thevF

! is at
the fixed point. This means that the counterterm essenti
ensures that the effective massm! be at the fixed point.

3The pion will be introduced in Sec. V in terms of a nonloc
four-Fermi interaction that enters in the ground-state property
gives the nucleon Landau mass formula in terms of BR scaling
pionic Fock term. See later.

4One could do this relativistically as shown by Baym and Ch
@29#, which will be necessary for heavy-ion collisions, but we w
present the arguments in nonrelativistic form.

5Here we are relying on the procedure of decimation formula
rigorously by Chen, Fro¨hlich, Seifert @30# in condensed-matte
physics.
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2250 56SONG, BROWN, MIN, AND RHO
Without this procedure, the term quadratic in the fermi
field would be ‘‘relevant’’ and hence would be unnatur
@19#.

In nuclear matter, the spin and isospin degrees of freed
need to be taken into account into the four-Fermi interacti
We have written all these symbolically in the action~19!.
The functionu in the four-Fermi interaction term can ther
fore contain spin and isospin factors as well as a space
pendence that takes into account nonlocality and derivati
For simplicity we will consider it to be a constant dependi
in general on spin and isospin factors. Nonconstant te
will be ‘‘irrelevant.’’ We shall ignore in the following sec-
tions the spin dependence, which will be considered e
where, thus confining ourselves to the Landau parameteF
and F8 corresponding to the particle-hole vibrational cha
nel. In our discussions, the BCS channel that correspond
a particle-particle channel does not figure and hence will
be considered explicitly.

The upshot of the analyses in@19# and@30# that we apply
to our system is that in addition to the Fermi surface fix
point with them!, the four-Fermi interactions in the phono
channelF are also at the fixed points. In general, four-Fer
interactions are irrelevant except for special kinematics
which the interaction becomes marginal leading to fix
points. Six-Fermi and higher-Fermi interactions are alwa
irrelevant and can contribute at most to screening of
fixed-point constants. Since the parameters of the fixed-p
theory are taken from experiments, we need not worry ab
this renormalization. The resulting theory is the Fermi-liqu
fixed-point theory. Shankar arrives at this theory by showi
in the absence of BCS interactions, that in the large-N limit,
where 1/N5L/kF , only one-loop contributions survive
Fröhlich et al. obtain the same result in the 1/N expansion,
where theirN is taken to beN;l, with 1/l being the width
of the effective wave-vector space around the Fermi s
which can be considered as the ratio of the microscopic s
to the mesoscopic scale. More specifically, if one rescales
four-Fermi interaction such that one defines the dimens
less constantg, u0;g/kF

2, whereu0 is the leading term~i.e.,
constant term! in the Taylor series of the quantityu in Eq.
~19!, then the fermion wave-function renormalizationZ, the
Fermi velocityvF , and the constantg are found not to flow
up to O(g2/N). Thus, in the large-N limit, the system flows
to Landau fixed-point theory to all orders of loop correction
This result is correct provided there are no long-range in
actions and the BCS channel is turned off. One can show
also in terms of bosonization, which turns out to be poss
because of dimensional reduction of the Fermi-liquid syst
to an effective one-dimensional Dirac system as shown
@31#.

In sum, we arrive at the picture where the chiral liqu
solution of the quantum effective chiral action gives t
Fermi-liquid fixed-point theory. The parameters of the fou
Fermi interactions in the phonon channel are then identi
with the fixed-point Landau parameters. This identificati
would allow the mapping of the BR-scaled parameters to
quantities governed by the Landau parametersF andF8 dis-
cussed in the following section.
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V. BR SCALING AND MORE EFFECTIVE CHIRAL
LAGRANGIANS

A. The power of BR scaling

If the large anomalous dimension of the scalar field
FTS1 is a symptom of a strong-coupling regime, it sugge
that one should redefine the vacuum in such a way that
fluctuation around the new vacuum becomes weak coupl
This is the basis of the BR scaling introduced in@4#. The
basic idea6 is to fluctuate around the ‘‘vacuum’’ defined a
r'r0 characterized by the quark condensate^q̄q&r

[^q̄q&!. In @4,24#, this theory was developed with a chira
Lagrangian implemented with the trace anomaly of QC
The Lagrangian used was the one valid in the large-Nc limit
of QCD and hence given entirely in terms of boson fie
from which baryons arose as solitons~skyrmions!: Baryon
properties are therefore dictated by the structure of
bosonic Lagrangian, thereby leading to a sort ofuniversal
scaling between mesons and baryons. One can see usi
dilated chiral quark model that the BR scaling is a gene
feature also at high temperature in the large-Nc limit @32#.

In this description, one is approximating the complicat
strong interaction process at a nuclear matter density in te
of ‘‘quasiparticle’’ excitations for both baryons and boso
in medium. This means that the properties of fermions a
bosons in medium atr'r0 are given in terms of tree dia
grams with the properties defined in terms of the masses
coupling constants universally determined by the quark c
densates at that density.

The question then is, How can one ‘‘marry’’ the FTS
Lagrangian with the BR-scaled Lagrangian? The next qu
tion is how to identify BR-scaled parameters with the La
dau parameters. In the rest of this section we will prov
some answers to these two questions.

B. A hybrid model

As a first attempt to answer this question we consider
hybrid model in which the ground state is given by the me
field of the FTS1 LagrangianLFTS1 and the fluctuation
around the ground state is described by the tree diagram
the BR-scaled LagrangianDL,

Leff5LFTS11DL. ~21!

Note that the fluctuation in the strangeness direction~58!
discussed below corresponds to one of the terms figurin
DL. This model with the canonical parameters (T1) for the

6For completeness, we briefly summarize the key argument of@4#.
Consider an extended chunk of nuclear matter. If the system
sufficiently dilute, one can start with a chiral Lagrangian co
structed with parameters fixed in the matter-free space characte
by a corresponding scale, say,L0 . Now suppose that the matter i
‘‘squeezed’’ to a densityr with its scale characterized by, say,Lr .
Our basic assumption is that to describe this dense system, we
impose the same symmetry~such as chiral symmetry and conform
anomaly! constraints as in the matter-free space while replacing
the effective chiral Lagrangian the free-space parameters, ma
and coupling constants, by those defined at that density. BR sca
is one specific way of defining these modified parameters.
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ground state and a BR-scaled fluctuation Lagrangian in
nonstrange flavor sector was recently used by Li, Brow
Lee, and Ko@15# for describingsimultaneouslynucleon flow
and dilepton production in heavy-ion collisions. The nucle
flow is sensitive to the parameters of the baryon sector
particular the repulsive nucleon vector potential at high d
sity, whereas the dilepton production probes the parame
of the meson sector. With a suitable momentum depende
implemented to the FTS1 mean-field equation of state,
nucleon flow results in good agreement with experimen
Furthermore, the scaling of the nucleon mass in the FT
theory in dense medium, say, atr;3r0 , is found to be
essentially the same as that given by the NJL model. Th
fore, we can conclude that the nucleon in FTS1 scales in
same way as BR scaling.

The dilepton production involves both baryon and mes
properties, the former in the scaling of the nucleon mass
the latter in the scaling of the vector meson~r! mass. The
equation of state correctly describing the nucleon flow a
the BR-scaled vector meson mass is found to fit the dilep
data equally well, comparable to the fit obtained in@3# using
the Walecka mean field. What is important in this proces
the scalar mean field that governs the BR scaling and he
the production rate is essentially the same for FTS1 and
lecka mean fields. The delicate interplay between the att
tion and the repulsion that figures importantly in the co
pression modulus@20# does not play an important role in th
dilepton process.

Let us see how the particles behave in the backgroun
the FTS1 ground state given byLFTS1. The nucleon of
course scales in the manner of Brown and Rho as mentio
above. We can say nothing on the pion and ther meson with
the FTS1 theory. However there is nothing that would p
clude ther scaling in the manner of Brown and Rho and t
pion nonscaling within the scheme. What is encoded in
FTS1 theory is the behavior of thev and the scalarS that
figure importantly in Walecka mean fields. Let us therefo
focus on these two fields in the medium near normal nuc
matter density.

We have already shown in Sec. III C that the mass of
scalar fieldS drops less rapidly than BR scaling ford.2.
One can think of this as a screening of the four-Fermi int
action in the scalar channel that arises when the scalar m
with the BR scaled mass is integrated out. This feature
the property of thev field can be seen by the toy model
the FTS1 Lagrangian~that includes terms corresponding u
to three-body forces!

Ltoy FTS15LBR1
mv

2

2
~21h!

f

S0
v22

ms
2f3

3S0
, ~22!

where

LBR5N̄@ igm~]m1 igvvm!2M1gsf#N1
mv

2

2
v2S 12

2f

S0
D

2
ms

2

2
f2S 12

2f

3S0
D . ~23!
e
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n
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We have writtenLBR such that the BR scaling is incorpo
ratedat the mean-field levelas7

F~r!5
M !

M
5

ms
!

ms
5

mv
!

mv
'12

f

S0
, ~24!

with

S05^0uSu0&5M /gs . ~25!

We can see from Eq.~22! that the FTS1 theory brings in a
additional repulsive three-body force coming from a cub
scalar field term, while if one takesh522, thev field will
have a BR-scaling mass in nuclear matter. The fit to exp
ments favorsh'21/2 instead of22, thus indicating that
the FTS1 theory requires a many-body suppression of
repulsion due to thev exchange two-body force.~In the
simple model with BR scaling that we will construct below
we shall use this feature by introducing a ‘‘running’’ vect
couplinggv

! that drops as a function of density.! The effec-
tive v mass may be written as

mv
!2'F11h

f0

S0
Gmv

2 . ~26!

For h,0, we have a fallingv mass corresponding to BR
scaling ~modulo, of course, the numerical value ofh!. In
FTS1, there is a quartic term;v4, which is attractive and
henceincreasesthev mass. In fact, because of the attracti
quarticv term, we have

mv
!

mv
'1.12 ~27!

at the saturation density with theT1 parameter set. This
would seem to suggest that due to higher polynomial~many-
body! effects, thev mass does not follow BR scaling in th
medium. Furthermore, thev effective mass increases slow
around this equilibrium value:

]mv
!

]kF
;

0.0004

MeV2 a, ~28!

with a[ (g/2p2) kF
2 , if one uses

f0'
gs

ms
2

g

6p2 kF
3, ~29!

v0'
gv

mv
2

g

6p2 kF
3, ~30!

with the degeneracy factorg and theT1 parameters.

C. Model with BR scaling

The above hybrid model suggests how to construct
effective Lagrangian model that implements BR scaling a

7Here we are ignoring the deviation of the scaling of the effect
nucleon mass~denoted later asmL

!! @7# from the universal scaling
F~r!. This will be incorporated in Sec. V C.
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2252 56SONG, BROWN, MIN, AND RHO
contains the same physics as FTS1 theory. The crucial p
is that such a Lagrangian is to give in the mean field
chiral liquid soliton solution. This can be done by making t
following replacements in Eq.~23!:

M2gsf0→M !,

mv
2 S 12

2f0

S0
D→mv

!2,

ms
2S 12

2f0

S0
D→ms

!2 ~31!

and write

LBR5N̄@ igm~]m1 igvvm!2M !1hf#N2
1

4
Fmn

2 1
1

2
~]mf!2

1
mv

!2

2
v22

ms
!2

2
f2, ~32!

with

M !

M
5

mv
!

mv
5

ms
!

ms
5F~r!. ~33!

The additional termN̄hfN is put in to account for the dif-
ference between the Landau massmL

! to be given later and
the BR-scaling massM !. In the chiral Lagrangian approac
with BR scaling, the difference comes through the Fock te
involving nonlocal pion exchange@7#. This will be discussed
further in Sec. V D. For simplicity we will take the scaling i
the form

F~r!5
1

11yr/r0
, ~34!

with y50.28, so as to giveF(r0)50.78 ~corresponding to
kF5260 MeV! found in QCD sum-rule calculations@7# as
will be discussed shortly, as well as from the in-mediu
Gell-Mann-Oakes-Renner relation@24#. Note that the La-
grangian~32! treated at the mean-field level would give
Walecka-type model with the meson masses replaced by
BR-scaling mass.

Now in order to describe nuclear matter in the spirit of t
FTS1 theory, we introduce terms cubic and higher inv and
f fields to be treated as perturbations around the BR ba
groundas

Ln body5afv21bf31cv41df41ef2v21••• ,
~35!

wherea–e are ‘‘natural’’ ~possibly density-dependent! con-
stants to be determined. By inserting for thef andv fields
the solutions of the static mean field equations given byLBR,

ms
!2f5h(

i
N̄iNi , ~36!

mv
!2v5gv(

i
Ni

†Ni , ~37!
int
e

he

-

we see that at the mean-field levelLn body generates three
and higher-body forces with the exchanged masses den
dependent in the manner of Brown and Rho. Note that at
point, the scaling factorF and the mean-field value~36! are
not necessarily locked to each other by self-consistency.

As the first trial, we will consider the drastically simpl
fied model by dropping then-body term~35! and minimally
modifying the BR Lagrangian~32!. We shall do this by let-
ting, as mentioned above, the vector coupling run as a fu
tion of density. For this, we use the observation made in@15#
that the nucleon flow probing higher density requires t
gv

!/mv
! be independent of density at low densities and

crease slightly at high densities. We shall therefore take
simulate this particular many-body correlation effect, t
vector coupling to scale as

gv
!

gv
5

1

11zr/r0
, ~38!

with z equal to or slightly greater thany.8 The truncated
Lagrangian that we shall consider then is

LBR5N̄@ igm~]m1 igv
!vm!2M !1hf#N2

1

4
Fmn

2

1
1

2
~]mf!21

mv
! 2

2
v22

ms
!2

2
f2. ~39!

8This scaling seems at odds with the prediction made with
Skyrme model@33# where using the Skyrme model with the quart
Skyrme term inversely proportional to the couplinge, it was found
thate/e! ;AgA

! /gA. It is tempting to identify@via SU~6! symmetry#
e with the gv that we are discussing here since the Skyrme qua
term can formally be obtained from a hidden gauge-symmetric
grangian by integrating out ther meson field. If this were correct
one would predict that the vector coupling increases~not decreases!
as density increases since we know thatgA

! is quenched in dense
matter. This identification could be too naive and incomplete in t
respects, however. First of all, this skyrmion formula is a large-Nc

relation and second, the Skyrme quartic term embodiesall short-
distance physics in one dimension-four term in a derivative exp
sion. Thus the constant 1/e must represent a lot more than just th
vector-meson~r! degree of freedom. Furthermore, we are co
cerned with thev degree of freedom that in a naive derivativ
expansion would give a six-derivative term. The BR-scaled mo
we are constructing should involve not only short-distance phy
presumably represented by the 1/e term ~consistent with the under
standing that the quenching ofgA is a short-distance phenomeno!
but also longer-range correlations. Therefore, the qualitative dif
ence should surprise no one.

TABLE II. Parameters for the Lagrangian~39! with y50.28,
ms5700 MeV, mv5783 MeV, andM5939 MeV.

Set h gv z

S1 6.62 15.8 0.28
S2 5.62 15.3 0.30
S3 5.30 15.2 0.31
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In Table II three sets of parameters are listed. We take
measured free-space masses for thev and the nucleon, and
for the scalarf for which the free-space mass cannot
precisely given we takems5700 MeV ~consistent with what
is argued in@24#!, so that at nuclear matter density it com
close to what enters in the FTS1. The resulting fits to
properties of nuclear matter are given in Table III for t
parameters given in Table II. These results are encourag
Considering the simplicity of the model, the model, in pa
ticular with the S2 and S3 sets, is remarkably close i
nuclear matter to the full FTS1. The compression modu
comes down toward the low value that is currently favor
In fact, the somewhat higher value obtained here can be
ily brought down to about 200 MeV without modifying othe
quantities if one admits a small admixture of theresidual
many-body terms~35!, as we shall shortly show. The effec
tive nucleon Landau massmL

!/M'0.67 is in good agreemen
with what was obtained in QCD sum-rule calculations~see
@7#! and also below~i.e., 0.69! by mapping BR scaling to
Landau-Migdal Fermi-liquid theory. We shall see below th
this has strong support from low-energy nuclear propert
What is also noteworthy is that the ratioR[(gv

!/mv
!)2

forced upon us, though not predicted, is independent of
density~setS1! or slightly decreasing with density~setsS2
andS3!, as required in the nucleon flow data as found by
Brown, Lee, and Ko@15#.9

The assumption that the many-body correlation terms
Eq. ~35! can be entirely subsumed in the dropping vec
coupling may seem too drastic. Let us see what small
sidual three-body and four-body terms in Eq.~35! as many-
body correlations~over and above what is included in th
running vector coupling constant! can do to nuclear matte
properties. For convenience we rewrite Eq.~35! by inserting
dimensional factors as

Ln body5
h0

2
mv

2 f

f p
v22

k3

3!
ms

2 f3

f p
1

z0

4!
gv

2v42
k4

4!
ms

2 f4

f p
2

1
h1

2
mv

2 f2

f p
2 v2 ~40!

and demand that the coefficientsh, z, and k so defined be
natural. The results of this analysis are given in Table IV a

9In FTS1 theory, it is the higher polynomial terms inv and f
defining the mean fields that are responsible for the reduction iR
needed in@15#. In Dirac-Brueckner-Hartree-Fock theory, it is foun
@34# that whileR takes the free-space valueR0 for r'r0 , it de-
creases toR'0.64R0 at r'3r0 due to rescattering terms, which i
our language would correspond to the many-body correlations.

TABLE III. Nuclear matter properties predicted with the param
eters of Table II. The effective nucleon mass~later identified with
the Landau mass! is mL

!5M* 2hf0 .

Set E/A2M ~meV! keq ~MeV! K ~MeV! ML
!/M F (keq)

S1 216.0 257.3 296 0.619 0.79
S2 216.2 256.9 263 0.666 0.79
S3 216.1 258.2 259 0.675 0.78
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Fig. 4 for various values of the residual many-body ter
and compared with those of the truncated model~39! with
the S3 parameter set. The coefficients are chosen somew
arbitrarily to bring our points home, with no attempt ma
for a systematic fit.~It would be easy to fine-tune the param
eters to make the model as close as one wishes to F
theory.! It should be noted that while the equilibrium densi
or Fermi momentumkeq , the effective nucleon massmL

!,
and the binding energyB stay more or less unchange
within the range of the parameters chosen, from wha
given by the BR-scaled model~39! with the S3 parameters,
the compression modulusK can be substantially decrease
by the residual many-body terms. Figure 4 shows that,
expected, lowering of the compression modulus is accom
nied by softening of the equation of state atr.r0 . While
the equilibrium property other than the compression modu
is insensitive to the many-body correlation terms, the EOS
larger density can be quite sensitive to them. This is beca
for the generic parameters chosen, themL

! can vanish at a
given density abover0 at which the approximation is ex
pected to break down and hence the resulting result ca
be trusted. TheB2 andB4 models do show this instability a
r*1.5r0 . ~See Fig. 5 in the Appendix.!

It is quite encouraging that the simple minimal model~39!
with BR scaling captures so much of the physics of nucl
matter. Of course, by itself, there is no big deal in what
obtained by the truncated model: It is not a prediction. W
is not trivial, however, is that once we have a Lagrangian
the form ~39!, which defines the mean fields, then we a
able to control with some confidence the background aro
which we can fluctuate, which was the principal objective
set at the beginning of our paper. The power of the sim
Lagrangian is that we can now treat fluctuations athigher
densitiesas one encounters in heavy-ion collisions, not ju
at an equilibrium point. The description of such fluctuatio
does not suffer from the sensitivity with which the EOS d

FIG. 4. E/A2M vs r for FTS1 theory~T1 parameter!. TheS3,
B1, andB3 models are defined in Table IV.
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TABLE IV. Effect of many-body correlations on nuclear matter properties using the Lagrangian~39! plus
~40!. We have fixed the free-space massesms5700 MeV, mc5783 MeV, andM5939 MeV and seth1

50 for simplicity. The equilibrium densitykeq , the compression modulusK, and the binding energyB
5M2E/A are all given in units of MeV.

Set h gv y z h0 z0 k3 k4 keq mL
!/M K B

S3 5.30 15.2 0.28 0.31 258.2 0.675 259 16.
B1 5.7 15.3 0.28 0.30 0.5 24.9 256.0 0.666 209 16.2
B2 5.7 15.3 0.28 0.30 20.055 0.18 257.3 0.661 201 16.1
B3 5.6 15.27 0.28 0.30 0.31 24.1 259.1 0.659 185 16.1
B4 5.6 15.3 0.28 0.31 0.9 28.1 256.4 0.669 191 16.1
C1 5.7 15.3 0.28 0.30 20.05 0.155 256.3 0.665 218 16.2
C2 5.8 15.3 0.28 0.30 20.11 0.35 256.1 0.662 161 16.2
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pends atr.r0 on the many-body correlation terms~35!.
Some of these issues are illustrated in the next subsecti

D. Some consequences

1. The v in medium

Suppose one probes the propagation of anv meson in
nuclear medium as in HADES@35# or CEBAF @2# experi-
ments, say, through dilepton production. Thev’s will decay
primarily outside of the nuclear medium, but let us suppo
that experimental conditions are chosen so that the lep
from thev decaying inside dense matter can be detected.
@36# for discussions on this issue. The question is whet
the dileptons will probe the BR-scaled mass or the quan
given by Eq.~27!. The behavior of thev mass would differ
drastically in the two scenarios. A straightforward applic
tion of FTS1 theory would suggest that at a densityr&r0 ,
thev mass as ‘‘seen’’ by the dileptons will increase sligh
instead of decrease. Since in FTS1 theory the vector c
pling gv does not scale, this means thatgv

!/mv
! will effec-

tively decrease. On the other hand, if the vector coupl
constant drops together with the mass at increasing den
as in the BR-scaling model,10 the situation could be quite
different, particularly if dileptons are produced at a dens
r;3r0 as in the CERES experiments@1#: Thev will then be
expected to BR scale up to the phase transition.11 Thus mea-
suring thev mass shift could be a key test of the BR-scali
idea as opposed to the FTS1-type interpretations. This in
esting issue is planned to be studied in forthcoming exp
ments at GSI@35# and CEBAF@2#.

2. Nuclear static properties

Given the link between BR-scaled chiral Lagrangians a
Fermi-liquid fixed-point theory, one should be able to ma

10It is interesting that the droppingv mass is also found in a
recent QCD sum-rule calculation based on current correlation fu
tions by Klingl, Kaiser, and Weise@37# who, however, do not see
the dropping of ther mass.

11It has been suggested recently@38# that at some high density
Lorentz symmetry can be spontaneously broken, giving rise to l
v mesons as ‘‘almost Goldstone’’ bosons. Such mesons could
source of copious dileptons at some density higher than nor
matter density.
.
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a connection between the parameters that enter into s
nuclear static properties asdgl , referred to in the literature
as the ‘‘exchange-current’’ contribution to the orbital gyr
magnetic ratio, and the effective mass of the vector mes
v andr. In this subsection we shall show that this is inde
possible. The results were already reported in@7#, but we
shall discuss them in the context developed in this paper.
key element that is intimately related to the Landau para
eterF1 is the universal scaling factorF, not the FTS1 effec-
tive mass discussed above that includes many-body cor
tions. To clarify this point, consider the Landau effecti
mass of the nucleonmL

! given in terms of the Landau param
eterF1 :

mL
!

mN
511

F1

3
5S 12

F̃1

3 D 21

, ~41!

whereF̃15(mN /mL
!)F1 . Including the pion contribution, we

have a short-range term and a long-range term

F̃15F̃1
v1F̃1

p , ~42!

where

F̃1
v5

mN

mL
! F1

v52Cv
2

2kF
3

p2mN
s , ~43!

F̃1
p523

mN

kF

d

dp
Sp~p!up5kF

, ~44!

where the superscript denotes the relevant meson exchan
Sp is the nucleon self-energy~Fock term! involving one-
pion exchange~a nonlocal four-Fermi interaction!, and

mN
s :5mNF, ~45!

the BR-scaled nucleon mass in the absence of pions.12 It
follows from the quasiparticle velocity at the Fermi surfa
@7#

c-

t
a

al 12Note that mN
s corresponds toM ! in the toy model with BR

scaling~39!.
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d

dp
e~p!up5kF

5
kF

mL
! 5

kF

mN
s 1

d

dp
Sp~p!up5kF

, ~46!

given by the BR-scaled Lagrangian together with Eqs.~41!
and~42!, that thev contribution to the Landau parameterF1
is governed only by the factorF:

F̃1
v53~12F21!. ~47!

This is the key relation that links the nucleon scaling pres
in mean-field theories to the scaling of the vector meson
a medium derived via chiral symmetry plus scale anomaly
is also this relation that connects the behavior of hadron
heavy-ion collisions to low-energy nuclear spectrosco
properties as we shall describe below. Understanding
relation would be crucial if one wanted to have a unifi
description based on an effective chiral Lagrangian.

The scaling factorF~r! is known from the QCD sum-rule
calculation for the in-medium mass of ther meson atr
5r0 @39#,

F~r0!50.7860.08, ~48!

which can also be extracted from an in-medium Gell-Man
Oakes-Renner formula for the pion mass@20#. Since the con-
tribution from the pion exchange is fixed by chiral symme
for a given density, i.e., atr5r0 ,

1

3
F̃1

p52
3 f pNN

2 mN

8p2kF
Fmp

2 12kF
2

2kF
2 ln

mp
2 14kF

2

mp
2 22G'20.153,

~49!

the Landau mass for the nucleon is entirely given once
assume thev mass scales in the manner of Brown and R
@6#:

mL
!

mN
5FS 11

1

3
F1

pD
5S F212

1

3
F̃1

pD 21

5~1/0.7810.153!2150.69~7!, ~50!

which should be identified with the nucleon effective ma
determined by QCD sum rule atr5r0 @40#,

mN
!

mN
50.6920.14

10.06. ~51!

The effective mass for the nucleon found with the toy mo
with BR scaling~39! ~with the setS3! denoted there asmL

! ,
mL

!/mN'0.68, is consistent with this QCD sum-rule valu
This provides more support for our assertion.

The strongest support for this identification comes fro
the role that theF factor plays indgl , the exchange-curren
correction to the orbital gyromagnetic ratio of nuclei. T
response to a slowly varying electromagnetic field of an o
nucleon with momentumpW added to a closed Fermi sea ca
in Landau theory, be represented by the current
t
in
It
in
c
is

-

e
o

s

l

.

d
,

JW5
pW

mN
S 11t3

2
1

1

6

F182F1

11F1/3
t3D , ~52!

where mN is the nucleon mass in medium-free space. T
long-wavelength limit of the current is not unique. Th
physically relevant one corresponds to the limitq→0, v→0,
with q/v→0, where (v,q) is the four-momentum transfer
The current~52! defines the gyromagnetic ratio

gl5
11t3

2
1dgl , ~53!

where

dgl5
1

6

F182F1

11F1/3
t35

1

6
~ F̃182F̃1!t3 . ~54!

This expression is recovered simply if one calculates the
change of anv and ar with BR-scaling masses. The resu
obtained recently in@7# is

dgl5
4

9 FF21212
1

2
F̃1

pGt3 . ~55!

This result is highly nontrivial in that~i! the v contribution
restores the single-particle moment defined in terms of
free-space massmN , not of the BR-scaled mass,13 as re-
quired by Ward identities and~ii ! the correction occursonly
in the isovector part. The numerical value fordgl at nuclear
matter density

dgl50.227t3 ~56!

agrees perfectly with the experimental value obtained fr
giant dipole resonances in heavy nuclei@41#

dgl
p50.2360.03. ~57!

We should emphasize that the link between the Landau
rameter that figures in the Fermi-liquid structure of nucle
matter and the BR scaling that figures in an effective ch
Lagrangian supplies a stringent consistency check of
theory. Another nontrivial consistency check is given in t
strange-flavor sector, which will be described below
though the results have been reported elsewhere.

3. Fluctuations in the strange-flavor direction

In considering kaonic fluctuations inside nuclear mediu
the general argument developed above suggests that w
to take theO(Q2) SU~3! chiral Lagrangian with BR-scaled
parameters and with bilinears in the baryon field taken in

13This is reminiscent of the Kohn theorem for the cyclotron fr
quency of an electron in the metal in a magnetic field where
free-space mass of the electron, not the Landau mass, enters
formula for the frequency.
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mean field. In the kaon direction, this then gives~modulo the
‘‘range term’’ discussed below! for symmetric nuclear mat
ter

LKN
eff 5

26i

8 f p
!2 K̄] tK^B†B&1

SKN

f p
!2 K̄K^B̄B&[Lv1Ls ,

~58!

where KT5(K1K0). The constantf p
! in Eq. ~58! can be

identified as the pion decay constant scaling as the squ
root of the quark condensate^q̄q& @4,24#. The appearance o
f p

! indicates the BR scaling.14 The potential felt by the kaon
in the background of nuclear matter is then given by

VK656
3

8 f p
!2 r, ~59!

SK652
SKN

2mKf p
!2 rs , ~60!

wherer5^B†B& and rs5^B̄B&. At nuclear matter density
r5r0 , we can identify these results as one-third of the c
responding potentials for nucleons, so we write

VK6'6
1

3
VN ~61!

and

SK6'
1

3
SN . ~62!

One way of understanding this result is that when written
terms of BR scaling, we are essentially getting aquasiquark
description and the factor 1/3 represents that the kaon ca
1/3 of the number of chiral quarks lodged in the nucleon. W
expect the quasiquark description to be good once the m
mass has decreased substantially with density as in theK2

case@6#, but possibly not in theK1 case where the mas
does not move down with density. In the latter case
pseudo-Goldstone description should continue to be corr
~In particular, the range term is important for theK1.!

Given Walecka-type mean fields for the nucleons, we
now calculate the corresponding mean-field potential forK2

nuclear interactions in symmetric nuclear matter. From
results obtained above we have

SK21VK2'
1

3
~SN2VN!. ~63!

14As noted in@6#, there can be no nonderivative direct couplin
between a Goldstone boson and a baryon like the second ter
Eq. ~58! in the chiral limit. Thus the direct coupling arises entire
through a chiral symmetry breaking, or quark masses, in QC
Pions couple nonderivatively to baryons in the same way with
coefficientSpN / f p

!2. In @6#, this relation is given an interpretatio
in terms of theS exchange, the identification exploited below.
re-

-

n

ies
e
on

e
ct.

n

e

Phenomenology in Walecka-type mean-field theory giv
SN2VN&2600 MeV for r5r0 @42#. This leads to the pre-
diction that at nuclear matter density

SK21VK2&2200 MeV. ~64!

This seems to be consistent with the result of the analysi
K mesic atoms made by Friedman, Gal, and Batty@43#, who
fond attraction atr'0.97r0 of

SK21VK252200620 MeV. ~65!

As noted in@6#, there is a correction called ‘‘range term
that appears at the same order of the chiral counting as
scalar potential~60! that is proportional to second derivativ
on the kaon field and hence;vK

2 for anS-wave kaon where
vK is the frequency of the kaon field. This correction can
approximately implemented by multiplying the scalar term
Eq. ~60! by the factor (120.37vK

2 /mK
2 ). With this correc-

tion, we find forr5r0 @6#

SK21VK2;2192 MeV. ~66!

For theK2, the range correction is not numerically signifi
cant. However, the situation is different forK1 nuclear in-
teraction. In fact, including the range correction makes
K1 effective massincreasewith density in contrast to the
K2: We find theK1 potential at nuclear matter density to b
effectively repulsive by the amount

SK11VK1;25 MeV at r5r0 . ~67!

4. Going to higher densities in strange matter

The simple description given by the Lagrangian~58!, cor-
responding to the tree order with the BR-scaled Lagrang
seems to work fairly well up tor;r0 , but it must require
corrections as density is further increased. This is alre
indicated in the construction of the BR-scaled chiral L
grangian that reproduces FTS1 theory, i.e., the effective s
ing of the coupling constantgv needed in describing nuclea
matter. More significantly, the Lagrangian~58!, when na-
ively extrapolated tor;3r0 , would be inconsistent with
what was observed in the KaoS kaon flow data@8#.

The most efficient way to go higher in density is to brin
in massive fields in Eq.~58!. To do this, one can think of the
first term of Eq.~58! as arising from anv exchange~and ar
exchange for nonsymmetric nuclear matter! and the second
term as coming from a scalarf exchange. This means tha
1/f p

!2 in the first term is to be replaced, in the notation of t
Lagrangian~39!, by 2gv

!2/mv
!2 and SKN / f p

!2 in the second
term by 2mKh2/3ms

!2. ~This also means that th
Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin~KSRF! re-
lation for the vector meson mass cannot be naively applie
medium.! From the foregoing discussion, we expect that t
first term will remain unscaled and the second term scale15

of

.
e

15In order to compare with the analysis of@8#, one should note
that h is smaller~by about 1/2! than the scalar coupling in FTS
theory. In addition, one should not forget the range term that te
to compensate the 1/F2 scaling.
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asF22 as one increases the density up to the regime pro
in the KaoS and FOPI experiments@8#.

5. Kaon condensation in compact-star matter

The Lagrangian~58! or, more precisely, the vector
meson-implemented version of it was used in@6# to calculate
the critical density for condensingK2’s in dense neutron
matter. For this, nuclear matter information provided by
FTS1 Lagrangian needs to be supplemented by isovecto
grees of freedom to describe the neutron matter initia
present in compact stars. This has not been yet worked o
terms of the FTS1 Lagrangian, although this could be eff
tuated by incorporating the isovector vector mesonsr anda1
into the FTS1 Lagrangian. Using the symmetry energy fit
at nuclear matter density of heavy nuclei and extrapolatin
to densities greater than the normal matter density,16 together
with an estimate of the chemical potential for the electr
the Lagrangian~58! predicts@6,45#

rc&3r0 . ~68!

That the critical density is of the order of a few times norm
matter density ensures that the Lagrangian~58! is an appro-
priate one since the same Lagrangian is checked in nuc
matter through the heavy-ion experiments FOPI@10# and
KaoS@9# up to r;3r0 . But are there any important correc
tions missed in this treatment?

To answer this question we should note that the me
field prediction made above contains certain nonperturba
contributions that are not accessible in low-order chiral p
turbation expansion. For instance, in@12#, where the critical
density is calculated to orderQ3 ~or one-loop order! in chiral
perturbation theory, one out of two constants that appea
the four-Fermi interaction terms in the Lagrangian was fix
to reproduce the Friedman-Gal-Batty attraction of 200 M
in the kaonic atom data as does the Lagrangian~58!. Thus it
invokes an ingredient that is not directly extracted from
set of available on-shell data. Indeed, a recent calcula
@46# to O(Q2) in chiral perturbation theory that is highl
constrained by the ensemble of on-shell kaon-nucleon
and that includes both Pauli and short-range correlations
many-body effects is found to give at most about 120-M
attraction at nuclear matter density. Thus the crucial in
here is the strength of theK2 nuclear interaction in dens
medium. If the analysis of theK mesic atom by Friedman
et al. indicating the 200-MeV attraction turned out to be i
correct and the attraction came down to 100– 120 MeV
found in @46#, this would give a strong constraint on th
constants that enter in four-Fermi interactions in the ch
Lagrangian. This would presumably account for the need
a dropping vector couplinggv

! required forr*r0 . This cru-
cial information is also expected to come from ongoi
heavy-ion experiments.

16A recent realistic calculation of the symmetry energy in t
formalism of Dirac-Brueckner approach@44# confirms the extrapo-
lation ~to a densityr;3r0! used in@6,12#.
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VI. SUMMARY AND CONCLUSIONS

In this paper an attempt is made to go from an effect
~quantal! chiral Lagrangian to an effective-field theory fo
nuclear matter at variable densities, with the aim to build
bridge between~low-energy! nuclear spectroscopic prope
ties under normal condition and~higher-energy! physics of
dense matter under extreme conditions expected to be fo
in relativistic heavy-ion collisions and in compact stars su
as neutron stars. A construction of this sort will be necess
to eventually understand the QCD phase transition~s! be-
lieved to take place at high temperature and/or high dens
For this purpose, we take the FTS1~the effective chiral La-
grangian model of Furnstahlet al.! @13#, which is found to be
highly successful in the phenomenology of finite nuclei a
nuclear matter, to argue that an effective chiral Lagrang
constructed in high chiral orders corresponds,in mean field,
to Lynn’s chiral soliton@5# with chiral liquid structure. This
provides an efficient background around which quant
fluctuations can be reliably calculated. We should perh
stress that we are not implying that the FTS1 theory is
best one can construct as an effective theory of hadro
matter. We are simply taking it as one of the phenome
logically successful theories presently available that are c
structed in a way consistent with chiral symmetry of QCD

Next, using the renormalization-group-flow arguments d
veloped in condensed-matter physics, we proceed to prop
that the chiral liquid theory with the FTS1 Lagrangian~in the
mean field! corresponds to Landau’s Fermi-liquid fixed-poi
theory @19,30#. We develop the notion that the FTS1 theo
in the mean field is at fixed points, except for the sca
sector, which develops a large anomalous dimension tha
attribute to a strong-coupling situation. We then suggest
the strong-coupling theory with the parameters defined
matter-free space can be transformed into a weak-coup
theory if the chiral Lagrangian is rewritten in terms of BR
scaled parameters. We construct a simple model with B
scaled masses that gives a fairly good description of grou
state properties with fits comparable to the full FTS1 theo
The simple BR-scaling Lagrangian provides the backgrou
at an arbitrary density around which fluctuations can be c
culated with the tree diagrams yielding the dominant con
butions. We have thus obtained a quasiparticle picture o
strongly correlated system at densities away from the e
librium point.

The identification of the BR-scaling parameterF with the
Landau-Migdal Fermi-liquid parameterF1 leads to a set of
relations that connect the physics that governs heavy-ion
lisions, e.g., the CERES@1# dilepton data and the nucleo
and kaon flow data of FOPI@10# and KaoS@9#, etc., to such
low-energy spectroscopic properties as effective~Landau!
nucleon mass, effectivegA , and the exchange-current co
rection to the orbital gyromagnetic ratio,dgl , etc. These
relations are found to be satisfied to a surprising accura
Finally, the formalism allows a consistent calculation
kaon condensation in dense star matter, which is propose
play an important role in supernovae explosion with the re
nant forming ‘‘nucleon’’ or ‘‘nuclear’’ stars or going into
small black holes@45,47#.

While for an exploration our results are satisfying, the
are several crucial links that remain conjectural in the wo
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and require a lot more work. We have not yet establishe
a convincing way that a nontopological soliton coming fro
a high-order effective chiral Lagrangian accurately descri
nuclear matter that we know of. The first obstacle here is
a realistic effective Lagrangian that contains sufficien
high-order loop corrections including nonanalytic terms h
not yet been constructed. Lynn’s argument for the existe
of such a soliton solution and identification with a drop
nuclear matter is based on a highly truncated Lagrang
~ignoring nonanalytic terms!. We are simply assuming tha
the FTS1 Lagrangian is a sufficiently realistic version~in
terms of explicit vector and scalar degrees of freedom
are integrated out by Lynn! of Lynn’s effective Lagrangian.
To prove that this assumption is valid is an open proble
Our argument for interpreting the FTS1 with the anomalo
dimensiondan'5/3 for the quarkonium scalar field as
strong-coupling theory that can be reinterpreted in terms
weak-coupling theory expressed with BR scaling is heuri
at best and needs to be sharpened, although our re
strongly indicate that it is correct. Furthermore, transcrib
the renormalization-group arguments developed
condensed-matter physics to dense hadronic matter, inv
ing more degrees of freedom and more length scales, rem
to be made rigorous. This is an issue that is of the sa
nature as transcribing Landau Fermi-liquid theory to nucl
matter as in the work of Migdal and also as going from t
relativistic mean-field theory of Walecka type to Land
Fermi-liquid theory as in the work of Matsui and others.

There is also the practical question as to how far in d
sity the predictive power of the BR-scaled effective Lagran
ian can be pushed. In our simple numerical calculation,
used a parametrization for the scaling functionF~r! of the
simple geometric form, which can be valid, if at all, up to t
normal matter density as seems to be supported by Q
sum-rule and dynamical model calculations. At higher d
sities, the form used has no reason to be accurate. By u
the empirical information coming from nucleon and ka
flows, one could infer its structure up to, say,r;3r0 and if
our argument for kaon condensation is correct, and he
kaon condensation takes place atr&3r0 , then this will be
good enough to make a prediction for the critical density
kaon condensation. In calculating compact-star propertie
supernovae explosions, however, the EOS for densities
siderably higher than the normal matter density, sayr
*5r0 , is required. It is unlikely that this high density can b
accessed within the presently employed approximations.
only will the structure of the scaling functionF be more
complicated but also the correlation terms that are small
turbations at normal density may no longer be so at hig
densities, as pointed out by Pandharipandeet al. @48#, who
approach the effect of correlations from the high-dens
limit. In particular, the notion of the scaling functionF will
have to be modified in such a way that it will become
nonlinear function of the fields that figure in the proce
This would alter the structure of the Lagrangian field theo
Furthermore, there may be a phase transition~such as spon-
taneously broken Lorentz symmetry, Georgi vector lim
chiral phase transition, or meson condensation! lurking
nearby, in which case the present theory would have alre
broken down. These caveats will have to be carefully exa
ined before one can extrapolate the notion of BR scaling
in
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high-density regime as required for a reliable calculation
the compact-star structure.

Finally, one could ask more theoretical questions as to
what way our effective Lagrangian approach is connected
QCD proper and if the theory is to be fully predictive, ho
one can proceed to calculate the corrections to the t
diagram results we have obtained. The second issue i
course closely tied with what the appropriate expansion
rameter is in the theory. These matters are addressed in
paper, but they are somewhat scattered all over the place
it might be helpful to summarize them here. The answers
these questions are not straightforward since there are
stages of ‘‘decimation’’ in the construction of our effectiv
Lagrangian: The first is the elimination of high-energy d
grees of freedom for the effective Lagrangian that gives r
to a soliton~i.e., chiral liquid! and here the relevant scale
the chiral symmetry-breaking scale;1 GeV; the second is
that given a chiral liquid, which we argued can be identifi
as the Fermi-liquid fixed point, the decimation involved he
is for the excitations of scaleL above~and below! the Fermi
surface for which the expansion is made in 1/N. As dis-
cussed in Sec. IV, 1/N;L/kF , whereL is the cutoff in the
Fermi system. In bringing in a ‘‘BR-scaled’’ chiral Lagrang
ian, we are relying on chiral symmetry considerationsap-
plied to a system with a density defined by nuclear matt
Thus the link to QCD proper of the effective theory we u
for describing fluctuations around the nuclear-matter grou
state must be tenuous at best. However, as recently
emphasized by Weinberg@49#, low-energy effective theories
need not be in a one-to-one correspondence with a ‘‘fun
mental theory’’ meaning that one low-energy effecti
theory could arise through decimation from several differ
‘‘fundamental’’ theories. This applies not only to theorie
with global symmetry but also to those with local gau
symmetry. In the present case, this aspect is more rele
since there is a change in degrees of freedom between
nonperturbative regime in which we are working and t

FIG. 5. E/A2M vs r for theB1, B2, B3, andB4 models given
in Table IV compared with FTS1 theory.
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perturbative regime in which QCD proper is operative.
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APPENDIX: EFFECT OF MANY-BODY CORRELATIONS
ON THE EOS

In this appendix we briefly discuss the sensitivity of t
EOS to the correlation parameters of Eq.~40! at a density
r.r0 . This is shown in Fig. 5. While the parameter setsB1,
B2, B3, and B4 give more or less the same equilibriu
density and binding energy~see Table IV!, the parameter se
B2 has an instability andB4 a local minimum at;2 times
the normal matter density, whereas the setsB1 andB3 give
a stable state at all densities, possibly up to meson con
sations and/or chiral phase transitions. It is not clear w
this means for describing fluctuations at a density abover0 ,
but it indicates that given data at ordinary nuclear ma
density, it will not be feasible to extrapolate in a unique w
to higher densities unless one has constraints from exp
mental data at the corresponding density. In our discuss
we relied on the data from KaoS and FOPI collaborations
avoid the fine-tuning of the parameters.
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