
PHYSICAL REVIEW C OCTOBER 1997VOLUME 56, NUMBER 4
Yang-Mills radiation in ultrarelativistic nuclear collisions
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The classical Yang-Mills radiation computed in the McLerran-Venugopalan model is shown to be equivalent
to the gluon bremsstrahlung distribution to lowest (g6) order in pQCD. The classical distribution is also shown
to match smoothly onto the conventional pQCD minijet distribution at a scalek'

2 ;x, characteristic of the
initial parton transverse density of the system. The atomic number and energy dependence ofx is computed
from available structure function information. The limits of applicability of the classical Yang-Mills descrip-
tion of nuclear collisions at RHIC and LHC energies are discussed.@S0556-2813~97!04209-X#

PACS number~s!: 25.75.2q, 12.38.Bx, 12.38.Aw, 24.85.1p
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I. INTRODUCTION

In this paper, we compare recent classical and qua
derivations of induced gluon radiation for applications to
trarelativistic nuclear collisions. The classical distributio
based on the McLerran-Venugopalan model@1#, was recently
computed to orderg6 in Ref. @2#. The soft gluon bremsstrah
lung distribution was computed via pQCD by Bertsch a
Gunion in Ref.@3# within the Low-Nussinov approximation
Another quantal distribution, based on the Gribov-Lev
Ryzkin ladder approximation@4#, was recently applied by
Eskolaet al. @5#. Finally, there has been considerable rec
effort to compute moderatep' ~minijet! distributions based
on the conventional collinear factorized pQCD approa
@6–8#.

Interest in the moderatep' gluon distributions arises in
connection with estimates of the initial conditions and ea
evolution of the quark-gluon plasma formed in ultrarelat
istic nuclear collisions at RHIC (As5200A GeV! and LHC
(As56500A GeV! energies. Until recently, the main sourc
of midrapidity gluons was assumed to be copious min
production as predicted via the conventional pQCDgg→gg
processes@6–8#. However, in Refs.@1,2# it was suggested
that another important source of midrapidity gluons could
the classical Yang-Mills bremsstrahlung associated with
passage of two heavy nuclei through each other. In the c
ventional approach, beam jet bremsstrahlung is assume
influence only the nonperturbative low transverse mom
tum beam jet regions. Beam jets are then typically mode
by pair production in Lund or dual parton model strings. S
for example Refs.@7,8#, and references therein.

The novel suggestion in@1# was that for sufficiently large
A nuclei and high energy, the initial nuclear parton dens
per unit area could become so high that the intrinsic tra
verse momentum of the partonsAx}A1/6LQCD could extend
into the minijet perturbative regimek';224 GeV. It was
suggested that beam jet bremsstrahlung could even dom
that few GeV transverse momentum region because it is
mally of lower order inas than minijet production. Such a
new source of moderatep' partons would then significantly
modify the early t;1/Ax evolution and hence possibl
560556-2813/97/56~4!/2219~10!/$10.00
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modify many of the proposed signatures of the quark-glu
plasma in such reactions@9#.

One of the aims of the present paper is to show in fact t
the classical and quantal bremsstrahlung and minijet sou
of midrapidity gluons are actually equivalent up to form fa
tor effects over a continuous range ofp';Ax regime. In
addition we explore the limits of the validity of each a
proximation and compute numerically the energy and ato
number dependence of the McLerran-Venugopalan den
parameterx. This parameter is the total color charge squa
per unit area of partons with rapidities exceeding some
erence value.

The calculation of this paper checks that there is a reg
of overlap between the classical and quantum computat
The quantum calculation should be valid at large transve
momenta. The classical calculation is valid at mome
LQCD!k'!As. Most of the gluons are produced in the r
gion appropriate for the classical calculation. It is we
known that perturbative calculations of gluon production a
power law sensitive to an infrared cutoff. The classical co
putation has this infrared cutoff built into the calculation a
may ultimately lead to a proper computation of gluon pr
duction. The region where we can compare the calculati
is at k' much greater than this cutoff.

The plan of this paper is as follows. In Sec. II, we revie
the classical derivation of induced gluon radiation in t
McLerran-Venugopalan model. We correct the treatmen
@2# of the contact term in the classical equations of mot
for a single nucleus. We extend further that derivation
treat properly the renormalization group corrections to
density parameterx. Those corrections@10# increase signifi-
cantly the color charge squared per unit area relative to
contribution of the valence quarks thus far conside
@2,11,12#. We also correct omitted factors of 2 and 2p in the
original computation@2#.

In the third section, we review pQCD based derivations
induced gluon radiation@3,4#. We show that the classica
result agrees with the quantal results of Bertsch and Gun
@3# and also with the Gribov-Levin-Ryskin~GLR! formula-
tion @4# if Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
~DGLAP! evolution of the structure functions is assume
We then compare the bremsstrahlung distribution to
2219 © 1997 The American Physical Society
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2220 56M. GYULASSY AND L. McLERRAN
minijet distribution and show that while the latter dominat
at high transverse momentump'@Ax, the former dominates
at p'!Ax. However, there is a continuous range of m
menta ;Ax where both results agree at the level
20240 %.

In the fourth section, we compute the parameterx of the
McLerran-Venugopalan model. We find that due to the ra
rise of the smallx gluon structure functions,Ax approaches
on the order of 1 GeV by LHC energies forA;200. Possible
implications and further extensions of this model conclu
the paper.

II. CLASSICAL YANG-MILLS RADIATION

The basic assumption of the classical approach that
lows is that the coupling strength is small at the scale

L25
1

pR2

dN

dy
@LQCD

2 . ~1!

The parameterL2 is the number density of gluons per un
rapidity per unit area.

The gluon distribution was shown in Ref.@10# to solve an
evolution equation which in various limits is the Balitski
Fadin-Kuraev-Lipatov~BFKL! equation @13#, the DGLAP
equation@16#, or its nonlinear generalization@4#. In the ul-
trarelativistic domain, also the rate of change of the mu
plicity per unit rapidity

d2N/dy2

dN/dy
;as ~2!

is small. The smallness of this parameter means that if
compute the gluon distribution in a small regionDy;1
aroundy50, then the source of those gluons is domina
by hard partons with rapidities much larger than 1. The
hard partons can be integrated out of the effective ac
which describes the color field source aty;1, and they lead
to an effective external classical static source for the glu
field.

Since this can be done at any reference rapidity, the c
sical gluon field may be thought of as arising from a rapid
dependent classical source. For a single nucleus moving
the positive light cone, we have

DmFmn5g2dn1r~x2,x'! ~3!

with the source approximately independent
x15(t1z)/A2. Two types of rapidity variables must be di
ferentiated. In the classical equation of motion, the coo
nate space rapidity is relevant as defined by

y5 ln1/x25yproj2 ln~x2/xproj
2 !, ~4!

andx25(t2z)/A2. The momentum space rapidity is, on t
other hand,

y5
1

2
ln~p1/p2!, ~5!

where
-
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p65
1

A2
~p06p3! ~6!

are the conjugate momenta tox6. For a hadron with
p15pproj

1 , we definexproj
2 5exp(2yproj);1/pproj

1 .
The coordinate space rapidity is of the same order as

momentum space rapidity, since by the uncertainty princi
Dx2;1/p1. Qualitatively, these rapidities may thus b
thought of as interchangeable. On the other hand, the cla
cal equations of motion are described by coordinate sp
variables, and we must use the coordinate space rapidity

In the McLerran-Venugopalan model, the source rapid
density

r~y,x'![x2r~x2,x'! ~7!

is assumed to be a stochastic variable which is integra
over with a Gaussian weight,

E @dr#expS 2E dyd2x'

1

m2~y!
Trr2~y,x'! D . ~8!

This Gaussian assumption ignores correlations which we
see later are needed to regulate the infrared singulari
Here m2(y) is the average charge squared per unit rapid
per unit area scaled by 1/(Nc

221)

m2~y!5
1

Nc
221

1

pR2

dQ2

dy
. ~9!

Note that thism2(y) specifies the rms fluctuations of th
charge transverse density at a fixed rapidity. The quan
analogous to the rapidity independentm used in@2# is the
integrated transverse density of color charge arising fr
hard partons exceeding a reference rapidity. To empha
this distinction we denote this quantity by

x~y!5E
y

yproj
dy8m2~y8!. ~10!

This quantity will be related below to the integrated glu
structure function.

The solution to the above equations may be found in
light cone gauge by assuming that

A650, Ai5Ai~y,x'!.

The index i 51,2 ranges over only the two-dimension
transverse coordinates. The fieldAi solves

2Di

d

dy
Ai5g2r~y,x'!. ~11!

Equation~11! is solved by letting@10,11#

Ai~y,x'!5
1

i
~Pei *yproj

y dy8L~y8,x'!!†¹ i~Pei *yproj

y dy8L~y8,x'!!.

~12!

In this equation,P denotes path ordering along the integr
tion in rapidity.
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56 2221YANG-MILLS RADIATION IN ULTRARELATIVISTIC . . .
If we now change variables~with unit determinant in the
integration over sources!

~Pei *yproj

y dy8L~y8,x'!!r~Pei *yproj

y dy8L~y8,x'!!†→r, ~13!

thenL is seen to obey the two dimensional Poisson’s eq
tion

2¹'
2 L~y,x'!5g2r~y,x'!. ~14!

Note that due to the expected slow variation of the sou
density as a function of rapidity, the field is almost const
in y. At zero rapidity, therefore, the field may be taken a
proximately as

Ai~x2,x'!5u~x2!a i
1~x'!, ~15!

where

a i
1~x'!5

1

i
~Pei *yproj

0 dy8L~y8,x'!!†¹ i~Pei *yproj

0 dy8L~y8,x'!!.

~16!

This is the non-Abelian Weizsa¨cker-Williams field of the
projectile nucleus which must still be averaged over the
semble~8!.

In order to generalize the above solution to the case
two colliding nuclei, we use the same variables as above
the projectile nucleus propagating in the1z direction. For
the target nucleus propagating in the2z direction, we use
the rapidity variable

y52yc.m.1 ln~x0
1/x1!. ~17!

Here we denote the projectile rapidity with the center-
mass rapidity asyc.m.5yproj . We will also henceforth use th
index1 to refer toy.0 and2 to y,0, when no confusion
will arise with respect to light cone variable indices.

In the neighborhood ofy50, we can ignore the sma
rapidity dependence of the fields. The solution to the eq
tions of motion in the

x1A21x2A150 ~18!

gauge is approximately given by

A656x6u~x1!u~x2!b~t,x'! ~19!

and

Ai5u~x1!u~x2!a i
3~t,x'!1u~2x1!u~x2!a i

1~x'!

1u~x1!u~2x2!a i
2~x'!. ~20!

Here t5At22z2 is a boost covariant time variable.~Note
that the above notation corresponds tob5a anda i

35a i' of
@2#.!

The fields

a i
65

1

i
~Pei *6yc.m.

0 dy8L~y8,x'!!†¹ i~Pei *6yc.m.

0 dy8L~y8,x'!!,

~21!

where
-

e
t
-

-

f
or

-

a-

2¹'
2 L~y,x'!5g2r~y,x'! ~22!

and where

r~y,x'!5u~y!r1~y,x'!1u~2y!r2~y,x'!. ~23!

Notice that in this solution, the fieldsa i
6 are two-

dimensional gauge transforms of vacuum fields. Their sum
of course not a gauge transform of vacuum fields, and th
fore the solution cannot continue into the regionx6.0.
There is in fact a singularity in the solution atx150 and
x250, at x150 for x2.0, and atx250 for x1.0. For
x6.0, the form of the fields chosen above solves the cl
sical equations of motion. In this region, the solution is
boundary values problem with the boundary values speci
on the edge of the forward light cone.

To determine these boundary values, we solve

DmFm65g2r ~24!

and

DmFm i50. ~25!

First we find the singularities of Eq.~25!. In this equation,
there is ad(x1)d(x2) singularity, that is a singularity at the
tip of the light cone. The absence of such a singularity
quires that

a i
3ut505a i

1~x'!1a i
2~x'!. ~26!

There are also singularities of the formd(x6) for x7.0.
The absence of these singularities requiresa3 be analytic as
t→0.

The solution for the Eq.~24! is a little trickier since there
are some potentially singular contact terms. It can be sho
that if the fieldsa i

6 are properly smeared in rapidity so th
they really solve the equations of motion in the backwa
light cone, then all such contact terms disappear. We
that b must be analytic att50 and that

but505
i

2
@a i

1 ,a i
2#. ~27!

The boundary conditions are precisely those of Ref.@2#.
They have been rederived here to properly account for
singularities arising from contact terms in the equations
motion. These contact terms when properly regulated do
affect the boundary conditions.

We now construct an approximate solution of the eq
tions of motion in the forward light cone. We do this b
expanding around the solution which is a pure tw
dimensional gauge transform of vacuum which is closes
a11a2. To do this, we introduce the projectile and targ
source charge per unit area at a reference rapidityy as

q6~y,x'!56E
y

6yc.m.
dy8r~y8,x'! ~28!

and

h6~y,x'!56E
y

6yc.m.
dy8L~y8,x'!. ~29!
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2222 56M. GYULASSY AND L. McLERRAN
Note that

^qa
6~y,x'!qb

6~y,x'8 !&5x6~y!da,bd2~x'2x'8 ! ~30!

in terms ofx6(y) defined as in Eq.~10!.
By direct computation, as in@2#,

a i
65¹ ih

62
i

2
@h6,¹ ih

6# ~31!

and

h65g2
1

¹'
2 q6. ~32!

The sum of a11a2 can be written as a pure two
dimensional gauge transform of vacuum plus a correction

a i
11a i

25a i
01da i

0, ~33!

where

a i
05¹ i~h11h2!2

i

2
@h11h2,¹ i~h11h2!# ~34!

and where

da i
05

i

2
$@h2,¹ ih

1#1@h1,¹ ih
2#%. ~35!

This decomposition into a gauge transform of the vacuum
accurate up to and including orderg4.

Now we expanda i
35a i

01da i
3(t,x'). Both da3 and b

are the small fluctuation fields corresponding to radiati
We find thatda3 andb solve exactly the same equations
were incorrectly derived in Ref.@2#. So even though the
original derivation was incorrect, the final result remains f
tunately valid.

In Eq. ~42! of @2#, a factor of 2p was however omitted
and as well in Eqs.~45!, ~47!, ~49!, and~50!. In addition, in
going from the first of Eqs.~49! to the second, a factor of 1/
from the trace was omitted.

The final result corrected for the above factors and gen
alized to include the source of hard gluons is

dN

dyd2k'

5pR2
2g6x1~y!x2~y!

~2p!3

Nc~Nc
221!

k'
2

3E d2q'

~2p!2

1

q'
2 ~q'2k'!2

5pR2
2g6x1~y!x2~y!

~2p!4

Nc~Nc
221!

k'
4

L~k' ,l!.

~36!

The q'50 andq'5k' divergences arise in the above cla
sical derivation because of the neglect of correlations in
sources ensemble. A finite logarithmic factorL(k' ,l) is ob-
tained only if we include a finite color neutralization corr
lation scalel.

This scale arises from dynamical screening effects
may be seen in models such as the onium valence q
s

is

.

-

r-

e

d
rk

model of Kovchegov@11# as developed in@12#. In the clas-
sical calculation, this cutoff appears after averaging o
various values of the background charge density@10#. The
cutoff scale turns out to bel;aAx. Below this cutoff scale,
the factors of 1/k'

2 moderate and become of order ln(k').
This cutoff scale acts somewhat as a Debye mass, altho
this is not quite the case since the logarithmic depende
implies power law fall off in coordinate space whereas
Debye mass corresponds to exponential decay. In any c
for evaluatingL(k' ,l) at k'@l the precise form of the
cutoff is unimportant, only that the 1/k'

2 singularities in the
integrand are tempered at some scale. This is because
rithmically divergent integrals are insensitive in leading o
der to the precise form of the cutoff. The generic form of t
logarithmic factor is therefore expected to be of the form

L~k' ,l,y!5k'
2 E d2q'

2p

F~y,q'
2 !F @y,~q'2k'!2#

q'
2 ~q'2k'!2 ,

~37!

whereF is a suitable form factor. In@3# a dipole form factor
was considered. A gauge invariant screening mass was
sidered in@14#. Such dipole form factors lead to

L~k' ,l!5k'
2 E d2q'

2p

1

~q'
2 1l2!@~q'2k'!21l2#

' ln~k'
2 /l2!, ~38!

where the logarithmic form is remarkably accurate f
k' /l.2. A finite but nonlogarithmic form ofL can also
arise if other functional forms for the form factors are co
sidered as in@11,12#.

It is also important to stress that in any case, the ab
classical derivation neglected nonlinearities that can be
pected to distort strongly the above perturbative solution
the k'

2 ,a2x region. Thus, the solution should not be e
tended belowl;aAx in any case. In future studies, it wil
be important to investigate just how the full nonlinear Yan
Mills equations regulate these infrared divergences.

A. Classical color current fluctuations

For two colliding nuclei the effective classical source cu
rent for midrapidity gluons is assumed to be

j a
m~x!5dm1d~x2!qa

1~0,x'!1dm2d~x1!qa
2~0,x'!,

~39!

where ^q6&50 but the ensemble averaged squared co
charge density of each of theNc

221 components is given by
x6(0) as in Eq.~30!.

In Refs.@11,12#, x was estimated using the valence qua
density and with the classical color density interpreted a
color transition density associated with the radiation o
color a gluon

qa~x'!5 (
n51

N

~Tn
a!c8,cd

2~x'2x'n!, ~40!

where the sum is over the valence quarks, andTn
a is a gen-

erator of dimensiondn appropriate for partonn. In this in-
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56 2223YANG-MILLS RADIATION IN ULTRARELATIVISTIC . . .
terpretation, products of color densities involve matrix m
tiplication and the ensemble average leads to a tr
associated with averaging over all initial colors of the v
lence partons and a summing over all final colors. Theref

^qi
a~x'!&50, ~41!

since TrTa50 in any representation while

^qa~x'!qb~x'8 !&5 (
n51

N
1

dn
Tr~Tn

aTn
b!n~x'!d2~x'2x'8!,

~42!

where n(x')5^d@x'2x'(n)#& is the transverse density o
partons of typen. From now on we assume identical proje
tile and target combinations and fixy50 so that we can drop
the distinction between6 sources and the rapidity variable

Taking into account both the valence quark and h
gluon contributions in the nuclear cylinder approximati
used in @2#, the relevantx5x6(0) parameter is therefor
given by

x5
1

pR2S Nq

2Nc
1

NcNg

Nc
221

D 5
1

pR2
~CFNq1CANg!/dA ,

~43!

where the transverse density of quarks isnq(x')5Nq /pR2

and the gluon transverse density isng(x')5Ng /pR2,
Because this interpretation allows for complex co

~transition! densities that do not arise in the classical limit,
is useful to show that it can also be derived from a m
conventional classical Yang-Mills~YM ! treatment. For that
purpose we use the Wong formulation of classical YM
netic theory@15#. In that formulation, the parton phase spa
is enlarged to incorporate a classical charge vectorLa(t) in
addition to the usual@xm(t),pm(t)5mum(t)# phase space
coordinates. The phase space density,f , obeys the Liouville
equation

d

dt
f @x~t!,p~t!,L~t!#50 ~44!

with dxm/dt5um and

m
dum

dt
5gunFa

mnLa,

dLa

dt
5g fabcumAmbLc52 i ~T bub!acL

c, ~45!

where (T b)ac5 i f abc are the generators in the adjoint repr
sentation andub5gumAmb. The color currentg jma(x) in this
kinetic theory is computed via

j ma~x!5E dtum~t!La~t!d4@x2x~t!#. ~46!

The color charge vector precesses around the localAma field
but its magnitude remains constant. Its length is fixed by
specified color CasimirC25(aLa

2 . In the ultrarelativistic
case withpz/p0'1, the current reduces to Eq.~39! with the
transverse density
-
ce
-
re

d

r

e

e

qa~x'!5(
n

UacLn
c~t0!d2~x'2x'n!, ~47!

where the unitaryU5Pexp$2ig*0
1dsT bumAmb@x(s)#% ac-

counts for the color precession along the parton trajecto
The ensemble average in this formulation involves an in
gration over the initial colorsLn

a(t0) with a measure

dLn})
c51

dA

dLn
cd~Ln

aLn
a2C2n! ~48!

normalized such that*dLn51 and thus

E dLnLn
aLn

b5dabC2n /dA . ~49!

BecauseU is unitary, this leads to the same expression
the color charge squared correlation parameterx as Eq.~43!.

B. Yang-Mills radiation distribution

Inserting the above expression forx into the classical
formula for radiation, we obtain

dN

dyd2k'

5
1

pR2S Nq

2Nc
1

NcNg

Nc
221

D 2
2g6

~2p!3

Nc~Nc
221!

k'
2

3E d2q'

~2p!2

1

q'
2 ~q'2k'!2

5
1

pR2
~CFNq1CANg!2

1

dA

2g6Nc

~2p!4

1

k'
4

L~k' ,l!.

~50!

If only valence quarks are included then this reduces to

dN

dyd2k'

5
Nq

2

pR2S 2g6Nc

~2p!4 D S CF
2

dA
D

el

1

k'
4

L~k' ,l!. ~51!

In the opposite limit, if only hard glue is included, the radi
tion distribution reduces to

dN

dyd2k'

5
Ng

2

pR2S 2g6Nc

~2p!4 D S CA
2

dA
D

el

1

k'
4

L~k' ,l!. ~52!

Note that the color factor in the second brackets mar
‘‘el’’ is that associated with the elastic scattering of two pa
tons

Cnm
el 5S 1

dn
TrTn

aTn
bD S 1

dm
TrTm

a Tm
b D5

C2nC2m

dA
, ~53!

so thatCel52/9,9/8 forqq,gg. The elastic Rutherford cros
section is in this approximation

snm
el 5

g4Cnm
el

~2p!2E d2q'

q'
4

5E dt
pa2

t2

4C2nC2m

dA
. ~54!

The infrared divergence is regulated by the color screen
scalel or form factors as in@3#.
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2224 56M. GYULASSY AND L. McLERRAN
The geometrical Glauber factor in Eqs.~51!, ~52! counts
the average number of binary parton-parton collisions
unit area inb50 collisions of cylindrical nuclei. More gen
erally,

TAB
nm~b!5

1

snm
E d3xrn/A~x!E dzBsnmrm/B~x'2b,zB!.

~55!

For b50 collisions of cylindrical nuclei this reduces to

Tnm~0!5
NnNm

pR2
. ~56!

Therefore we can write

dN

dyd2k'

5Tnm~0!
dsnm→g

dyd2k'

, ~57!

where

dsnm→g

dyd2k'

5Cnm
el S 2g6Nc

~2p!3 D 1

k'
2 E d2q'

~2p!2

1

q'
2 ~q'2k'!2

.

~58!

III. QUANTUM RADIATION

A. pQCD bremsstrahlung

We compare Eq.~58! with the quantum radiation formula
derived in@3#. In theA150 gauge and for gluon kinematic
k5@xP1,k'

2 /xP1,k'# with x!1, the three dominant dia
grams sum in the small momentum transfer limit to

iM @nm→g~k,e,c!#5@Tn
a ,Tn

c#Tm
a S 2g2s

q'
2 D

3S 2ge'H k'

k'
2

2
k'2q'

~k'2q'!2J D . ~59!

Taking the square and averaging over initial and summ
over final colors, one finds that

ds

dq'
2 dyd2k'

5S Cnm
el 4pa2

t2 D S aNc

p2

q'
2

k'
2 ~k'2q'!2D

5
dsnm

el

dq'
2

dN

dyd2k'

. ~60!

This is the basic factorized form of the soft QCD radiati
associated with elastic scattering. Integrating over the ela
momentum transferq' yields

ds

dyd2k'

5E d2q'

p S Cnm
el 4pa2

q'
4 D S aNc

p2

q'
2

k'
2 ~k'2q'!2D

5Cnm
el 2g6Nc

~2p!3

1

k'
2 E d2q'

~2p!2

1

q'
2 ~k'2q'!2

. ~61!
r

g

tic

This is exactly the same as the classical result in Eq.~58!.
In Ref. @3# thepp→g cross section was computed takin

a dipole form factor into account with the result

dspp→g

dydk'
2

5S CAa3

p2k'
2 D E d2q'

~2p!2

22Fp~q'
2 !Fp@~q'2k'!2#

q'
2 ~q'2k'!2

,

~62!

where

Fp~q2!5
4q2

4q21mr
2

. ~63!

Again we can read off the elementaryqq→g cross section
by dividing by the number of parton pairsNq

254 in this
reaction and neglecting interference by settingFp51. This
leads to

dsqq→g

dydk'
2

5
1

4S 2g6Nc

~2p!3 D 1

k'
2 E d2q'

~2p!2

1

q'
2 ~q'2k'!2

, ~64!

where the first factor 1/4 is just the largeNc limit of
Cqq

el→1/4 used implicitly in Eq.~17! of @3#.

B. Comparison with GLR formula

It is also of interest to connect the classical YM formu
with the pp→g formula of Gribov, Levin, and Ryskin
~GLR! @4# and used recently in Ref.@5# to compute midra-
pidity gluon production at LHC energies:

ds

dyd2k'

5KN

aNc

p2k'
2 E d2q'

f ~x1 ,q'
2 ! f @x2 ,~k'2q'!2#

q'
2 ~k'2q'!2

,

~65!

where

f ~x,Q2!5
d

dlnQ2
xG~x,Q2! ~66!

and

x1'x2'x'[k' /As ~67!

are fractional momenta which are assumed to be small
this relation, the radiation resulting from the fusion of tw
off-shell y1;y2;0 gluons is estimated. Unfortunately, the
is variation in the literature as to the magnitude of the fac
KN @4#. This is partly due to variations in the definition o
f (x,Q2). We find below that in order to reproduce the pe
turbative QCD and classical Yang-Mills result, Eqs.~61!,
~58!, we must take

KN5
~2p!2

Nc
221

'5. ~68!

From private communication with Levin, this factor is re
quired if f is defined as in Ref.@5# via Eq.~66!. This implies
that the results quoted for the BFKL contribution to minije
in @5# taking KN51 are approximately a factor 5 too sma
With the value in Eq.~68!, the BFKL and conventional mini-
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jet rates would coincide more closely. In Sec. III C we arg
that at least in the asymptotic domain these distributi
should in fact coincide over a range ofk';Ax.

To compare to the GLR formula with the classical resu
we approximate theQ2 evolution using DGLAP evolution
@16#:

f ~x,Q2!5
dxG~x,Q2!

dlnQ2

'
a

2pEx

1dx8

x8
G~x8,Q2!xPg→g~x/x8!. ~69!

In the smallx semiclassical domain

Pgg~x!'2Nc /x. ~70!

Therefore, we have the approximate relation at highQ2:

f ~x,Q2!'
aNc

p E
x

1

dx8G~x8,Q2!5
aNc

p
Ng~x,Q2!.

~71!

Consequently, from Eqs.~66!, ~71!

ds

dyd2k'

5KN

aNc

p2k'
2 E d2q'

dxG

dq'
2 S dxG

dq'8
2D

~k'2q'!2

'KN

aNc

p2k'
2

a2Nc
2

p2

3E d2q'

Ng~x1 ,q'
2 !Ng@x2 ,~k'2q'!2#

q'
2 ~k'2q'!2

.

~72!

Equation~72! reduces to the classical expression~52! if we
approximate the integral by factoring out the integra
gluon numbers at the average scale;k'

2 divide bypR2, and
take the normalization factorKN from Eq. ~68!.

C. Matching 2˜3 to 2˜2

Up to this point, we have shown that the classical a
quantum bremsstrahlung formulas agree for the 2→3 pro-
cess up to specific form factors. The problem addresse
this section is the relationship between the bremsstrah
spectrum and the minijet spectrum based on the pQCD
torized 2→2 processes. Recall@6# the factorized differential
cross section for two gluon jet production with transve
momenta6k' and rapiditiesy1 andy2, is given by

dsAB→g1g2X

dy1dy2d2k'

5Kx1GA~x1 ,k'
2 !x2GB~x2 ,k'

2 !
1

p

dsgg→gg

dt
,

~73!

where x15x'@exp(y1)1exp(y2)# and x25x'@exp(2y1)
1exp(2y2)#, with x'5k' /As, and where the pQCD
gg→gg cross section for scattering wit
t52k'

2 @11exp(y22y1)# andy22y15y is given by
e
s

,

d

d

in
g

c-

e

dsgg

dt
5Cgg

el 4pa2

k'
4

~11ey1e2y!3

~ey/21e2y/2!6
. ~74!

This reduces to the naive Rutherford expression Eq.~54!
only if the unobserved gluon has a rapidityuyu*3. For
uyu&1, the exact form~74! is 27/64'0.42 smaller than the
Rutherford approximation.

We concentrate here only on the dominant gluon-glu
contribution for symmetric systems,A1A, with G5GA .
The inclusive gluon jet production cross section is obtain
by integrating overy2 with y15y andk' fixed. For an ob-
served midrapidity gluon withy50, 2y* ,y2,y* , where
exp(2y* )5x' /(12x'), we must evaluate

I ~x' ,k'
2 !

5E
2y*

y*
dy2x1G~x1 ,k'

2 !x2G~x2 ,k'
2 !

~11ey21e2y2!3

~ey2/21e2y2/2!6
.

~75!

In the Rutherford approximation, implicit in the classical a
proximation, we neglect they dependence of Eq.~74! and
therefore approximateI by

I R~x' ,k'
2 !5E

2y*

y*
dy2x1G~x1 ,k'

2 !x2G~x2 ,k'
2 !

'2x'G~x' ,k'
2 !E

x'

1

dx2G~x2 ,k'
2 !

'2x'G~x' ,k'
2 !Ng~x' ,k'

2 !. ~76!

For xG}x2d(12x)g with d;0.2,g;8.5, as HERA data
@17,18# indicate in the moderateQ2;5 GeV2 range, the last
approximation toI R is found to agree remarkably within
10% of the numerical integral of the first line as long
x'&0.01. However, fork'

2 55 GeV2, the neglect of the ra-
pidity dependence ofdsgg /dt in the Rutherford approxima
tion leadsI R to overestimateI by ;55% at RHIC energies
(x';0.01) and by;34% even at LHC energiesx';0.001.
This is due to the factor;2 suppression of the pQCD rate i
the uy12y2u,1 range. On the other hand, next-to-leadi
order corrections modify Eq.~73! by a factorK;2 in any
case, and the next to leading order corrections to the clas
formula are not yet known. Since neither the minijet nor t
classical radiation can be determined at present to better
;50% accuracy, the following simplified Rutherford fo
mula for the single inclusive pQCD minijet distribution
adequate:

ds

dydt
'2Ng~x,t !xG~x,t !S dsgg

el

dt D
R

~77!

or

dN

dydt
'

2Ng~x' ,t !

pR2 x'G~x' ,t !S dsgg
el

dt D
R

. ~78!

In order to compare the above minijet distribution wi
the classical bremsstrahlung result~52!, we need to replace
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the Ng
2 factor in Eq.~52! by Ng(x' ,q'

2 )Ng@x' ,(k'2q')2#
and move that factor inside the logarithmic integrand. T
generalization is essential since the effective classical so
due to hard gluons depends on thex' and scale of resolution
of the radiated gluon. This requires thatk'

2 be sufficiently
large so that the variation of the structure function with th
scale be small. In this case, the classical bremsstrahlung
mula generalizes into the GLR form~72!

dN

dydt
5

1

pR2
4aNc

dsgg
el

dt
k'

2

3E d2q'

~2p!2

Ng~x' ,q'
2 !

q'
2

Ng@x' ,~k'2q'!2#

~k'2q'!2

'
1

pR28aNcNg~x' ,k'
2 !

dsgg
el

dt

3E d2q'

~2p!2

Ng~x' ,q'
2 !

q'
2 u~k'

2 *q'
2 !

'
1

pR2 2N~x' ,k'
2 !

dsgg
el

dt E
0

k'
2

dq'
2 d

dq'
2

x'G~x' ,q'
2 !,

~79!

where in the last step we used the DGLAP evolution~71!.
Thus, we recover the same minijet formula as Eq.~78!.

The use of the DGLAP evolution is essential to prove
duality between classical bremsstrahlung and the conv
tional minijet distributions. We note that in order for corre
tions to the classical result to remain small, it is necess
that a(x)ln(k'

2/a2x)!1. Recall that in the classical analysi
a is always to be evaluated at some scale of or
Ax@LQCD. This requirement is therefore thatk';Ax. If
this is satisfied, then the formulas should agree in thex'!1
regime.

We see therefore that all the formulas used for hard s
tering agree with the classical result in the range of mom
tum a2x!k'

2 &x. This range of momenta is outside the typ
cal scale k'

2 ;a2x on which nontrivial behavior of the
transverse momentum distributions is expected on accou
screening. In the region of smallerk' , the full nonlinearity
of the Yang-Mills equations must be taken into account.
large k'.Ax, the hard scattering pQCD formula proper
sums up higher order DGLAP corrections to the class
formula. It is important that there is a range of momen
where the classical and hard scattering results match a
level of ;50%.

IV. ESTIMATE OF x„A,s,Q2
…

We turn finally to the estimate of the McLerran
Venugopalan scale densityx in the range ofA and s in
future RHIC and LHC experiments.

A. Valence quark contribution

The initial assumption in@1# and further developed in
@11,12# was that forA@1, the valence quarks could provid
a very high density of hard color source partons for wh
s
ce

t
r-

e
n-

ry

r

t-
-

of

t

l
a
he

recoil effects are negligible and thus treated classically.
the nuclear cylinder approximation, the transverse densit
valence quarks is simply

nq5
NcA

pR2
5

NcA
1/3

pr 0
2

, ~80!

where r 051.18 fm. Since each quark contributes with
color factorCF /dA51/2Nc the valence quark contribution t
the color charge squared density

xval5
A1/3

2pr 0
2

5~A1/6 0.07 GeV!2&LQCD
2 , ~81!

where the bound arises because onlyA,200 beams will be
available. One would need astronomicalA;106 to reach
Axval51 GeV because of the extremely slowA1/6 growth.
Thus, the valence quark contribution is in practice too dilu
to contribute into the perturbative domain. Fortunately,
non-Abelian Weizsa¨cker-Williams field has a very large
number of ‘‘semihard’’ gluons withx*x' in thes→` limit.
The question then is how large doess have to get in order to
pushx into the perturbative regime.

B. The hard gluon source

The number of hard gluons that can act as a class
source for midrapidity gluons depends not only onx' but
also the resolution scaleQ:

Ng~x' ,Q2!5E
x'

1

G~x,Q2!dx. ~82!

Each gluon contributes tox with a color factor
CA /dA53/8. In order to get an upper bound, we will negle
possible nuclear glue shadowing and assume thatNg}A.
There could be some suppression of the lowx gluon number
in nuclei due to shadowing as observed for nuclear quarks
the McLerran-Venugopalan model, only a mild logarithm
; ln(A) modification ofNg}A is expected. Including valenc
and sea quarks and antiquarks as well as gluons leads th

x~A,s,Q2!'
A1/3

pr 0
2Ex0

1

dx S 1

6
q~x,Q2!1

3

8
g~x,Q2! D .

~83!

The lower bound,x0, is determined up to a factor of;2 by
the minimum momentum fraction needed to justify the n
glect of recoil associated with the radiation of a midrapid
gluon with a givenk' . In the estimate below we vary tha
bound betweenx05x' and 2x' . For xg(x)}1/xd with
d;0.220.3, this leads to an uncertainty,dx/x;d, well
within the present overall normalization uncertainties of t
small x gluon structure function.

In order to computex we use the Gluck-Reya-Vog
~GRV95! NLO(MS̄! parametrization@19# of the nucleon
structure functions. Figure 1 shows how the parametriza
of the gluon structure compares to preliminary ‘‘data’’
Q257 GeV2 from HERA @17,18# obtained via a DGLAP
analysis of the scaling violations fromF2(x,Q2). Also
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shown is the BFKL-like parametrization of the gluon stru
ture used in@5# for comparison. Both the GRV95 and th
BFKL parametrizations significantly overestimate the mo
erateQ2 data of interest here atx,1023. The preliminary
Q2520 data from H1@18# ~not shown Fig. 1! also lie below
the GRV95 parametrization. For our purposes, it is only i
portant that the use of GRV95 and the neglect of gluon sh
owing should lead to a reasonable upper bound onx.

As discussed in the previous sections, the classical reg
extends up tok'&QYM where

QYM~A,s!5Ax~A,s,QYM
2 !;~1 GeV! S A

200D
1/6S 1024

x'
D d/2

,

~84!

andd;0.220.3. In principle, this must be determined se
consistently given the scale dependence of the glue. In p
tice, as shown below,QYM is only weakly dependent of th
reference scale if it’s above;2 GeV2. The approximate
formula for QYM summarizes the numerical results below

In Fig. 2, QYM is plotted forAs50.2,6.5,100A TeV for
heavy nuclear beams withA5200 as a function of the scal
Q with which the GRV95 structure functions are evaluat
in Eq. ~83!. The upper solid curves for each energy cor
spond to Eq.~83! with x05x' . The lower curves are ob
tained by increasing the lower cutoff fromx' to 2x' . The
two long dashed curves at the bottom show the contribu
of only the valence quarks toQYM at As50.2,100A TeV us-
ing x05x' . The curves show that the hard nuclear gl
dominates for finite nuclei at all collider energies. Note a

FIG. 1. The GRV95 NLO@19# and BFKL-like @5# parametriza-
tions of the gluon structure functionxG(x,Q2) for Q257,20
GeV2 are compared topreliminary ZEUS ‘‘data’’ @17# from
HERA.
-

-
d-

e

c-

-

n

o

thatQYM is remarkably independent of the referenceQ scale
because of a compensation of two competing effects.
increase ofxG with Q is compensated by its decrease w
increasing value of the minimum hard fractionx0;Q/As
contributing to the classical source.

At RHIC energies, the boundary of the classical regim
remains rather low (&500 MeV! because the relevantx
range,x'.0.005, is not very small. By LHC energies, on th
other hand, gluons down tox';0.0001 can contribute, an
the classical Yang-Mills scale increases toQYM;1 GeV.
Note that to double theQYM scale at a fixed energy woul
require an increase ofA to 263200 if shadowing can be
ignored. To double the value ofQYM at fixed A requires
decreasingx' by a factor 2210;1023. Although asymptoti-
cally the scale ofQYM becomes arbitrarily large, this
asymptotic behavior is approached slowly. We conclude t
at RHIC energies the classical Yang-Mills radiation dyna
ics is likely to modify mainly the nonlinear, nonperturbativ
beam jet regime. In that regime the perturbative analy
must certainly be extended into the full nonlinear regime
detailed numerical simulations. By LHC energies it appe
that the classical Yang-Mills radiation begins to overlap in
the perturbative minijet domain withk';1 GeV.

The very smallx and very largeA limits, where pertur-
bative classical radiation can be computed, provide an no
calculable theoretical limit. It provides qualitatively usef
insight at RHIC energies and may be semiquantitative
ready at LHC energies. In future studies it will be especia
important to extend work with this model into the nonline
regime to clarify the mechanisms for color screening
A1A reactions at the lowerk';aQYM scale. Present esti
mates for initial conditions inA1A based on minijet pQCD
analysis@6–8# vary considerably because of the necessity

FIG. 2. The classical Yang-Mills scaleQYM from Eq. ~83! is
shown for A5200 nuclei at collider energiesAs50.2,6.5,100A
TeV as a function of the reference scaleQ used to evaluate the
GRV95 @19# structure functions. Upper curves and lower curves
each energy correspond to taking the lower cutoff sc
x05x',2x' , respectively. The bottom two dashed curves give
valence quark contributions atAs50.2,100A TeV.
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2228 56M. GYULASSY AND L. McLERRAN
introduce a cutoff scalep0;122 GeV to regulate the naive
infrared divergent Rutherford rates. That cutoff has thus
been estimated either~i! phenomenologically by imposing
observed constraints from extensivepp,p p̄→p,K,p,X sys-
tematics as in@7,8# or ~ii ! using kinetic theory estimates@20#
which are sensitive to formation physics effects. One of
great theoretical advantages of the classical Yang-Mills
proach is that the long wavelength nonlinear dynamics
volving preasymptotic field configurations can be taken i
account ~at least numerically! without invoking kinetic
theory or formation physics assumptions. In the theoret
aQYM@1 GeV domain, that physics may be accessible
ing perturbative techniques. In the experimentally access
aQYM,1 GeV regime, numerical solutions of the Yan
Mills equations, as for example in@21#, are likely to provide
additional insight into that problem. The classical Yan
Mills model @1,2# is one of the practical tools at present
.
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approach the study of asymptotically high energy reactio
where many unsolved and interesting theoretical proble
remain.
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