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Yang-Mills radiation in ultrarelativistic nuclear collisions
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The classical Yang-Mills radiation computed in the McLerran-Venugopalan model is shown to be equivalent
to the gluon bremsstrahlung distribution to lowegt)order in pQCD. The classical distribution is also shown
to match smoothly onto the conventional pQCD minijet distribution at a sk%ﬂex, characteristic of the
initial parton transverse density of the system. The atomic number and energy dependgrisecofmputed
from available structure function information. The limits of applicability of the classical Yang-Mills descrip-
tion of nuclear collisions at RHIC and LHC energies are discu§&@b56-28137)04209-X]

PACS numbgs): 25.75—-q, 12.38.Bx, 12.38.Aw, 24.8%p

I. INTRODUCTION modify many of the proposed signatures of the quark-gluon
plasma in such reactiori9].

In this paper, we compare recent classical and quantal One of the aims of the present paper is to show in fact that
derivations of induced gluon radiation for applications to ul-the classical and quantal bremsstrahlung and minijet sources
trarelativistic nuclear collisions. The classical distribution, of midrapidity gluons are actually equivalent up to form fac-
based on the McLerran-Venugopalan mdda) was recently  tor effects over a continuous range pf~ \x regime. In
computed to ordeg® in Ref.[2]. The soft gluon bremsstrah- addition we explore the limits of the validity of each ap-
lung distribution was computed via pQCD by Bertsch andProximation and compute numerically the energy and atomic
Gunion in Ref[3] within the Low-Nussinov approximation. number dependence of the McLerran-Venugopalan density
Another quantal distribution, based on the Gribov-Levin-Paramete. This parameter is the total color charge squared
Ryzkin ladder approximatiofi4], was recently applied by per unit area of partons with rapidities exceeding some ref-

Eskolaet al. [5]. Finally, there has been considerable recent'€Nce value.

effort to compute moderate, (minijet) distributions based The calculation of this paper checks that there is a region
of overlap between the classical and quantum computation.

on the conventional collinear factorized pQCD approachThe guantum calculation should be valid at large transverse
[6-8] . C . . momenta. The classical calculation is valid at momenta
Intergst in _the m_oderataL gluqn_c_hstnbun_o_ns arises in Aqco<k, <s. Most of the gluons are produced in the re-
connection with estimates of the initial conditions and earlygion appropriate for the classical calculation. It is well
evolution of the quark-gluon plasma formed in ultrarelativ- oy that perturbative calculations of gluon production are
istic nuclear collisions at RHIC\(s=200A GeV) and LHC  power law sensitive to an infrared cutoff. The classical com-
(\/s=6500A GeV) energies. Until recently, the main source putation has this infrared cutoff built into the calculation and
of midrapidity gluons was assumed to be copious minijetmay ultimately lead to a proper computation of gluon pro-
production as predicted via the conventional pQ@®-9gg  duction. The region where we can compare the calculations
processe$6—8]. However, in Refs[1,2] it was suggested s atk, much greater than this cutoff.
that another important source of midrapidity gluons could be  The plan of this paper is as follows. In Sec. II, we review
the classical Yang-Mills bremsstrahlung associated with theéhe classical derivation of induced gluon radiation in the
passage of two heavy nuclei through each other. In the corvcLerran-Venugopalan model. We correct the treatment in
ventional approach, beam jet bremsstrahlung is assumed [@] of the contact term in the classical equations of motion
influence only the nonperturbative low transverse momenfor a single nucleus. We extend further that derivation to
tum beam jet regions. Beam jets are then typically modelegreat properly the renormalization group corrections to the
by pair production in Lund or dual parton model strings. Seedensity parametey. Those correctiongL0] increase signifi-
for example Refs[7,8], and references therein. cantly the color charge squared per unit area relative to the
The novel suggestion ifL] was that for sufficiently large contribution of the valence quarks thus far considered
A nuclei and high energy, the initial nuclear parton density[2 11,13. We also correct omitted factors of 2 ang-2n the
per unit area could become so high that the intrinsic transgriginal computatiorf2].
verse momentum of the partom@mAl’GAQcD could extend In the third section, we review pQCD based derivations of
into the minijet perturbative regimke, ~2—4 GeV. It was induced gluon radiatiori3,4]. We show that the classical
suggested that beam jet bremsstrahlung could even dominatesult agrees with the quantal results of Bertsch and Gunion
that few GeV transverse momentum region because it is fof-3] and also with the Gribov-Levin-Ryski(GLR) formula-
mally of lower order inag than minijet production. Such a tion [4] if Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
new source of moderaie,_partons would then significantly (DGLAP) evolution of the structure functions is assumed.
modify the early 7~1/\/x evolution and hence possibly We then compare the bremsstrahlung distribution to the
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minijet distribution and show that while the latter dominates

1
at high transverse momentym > \/y, the former dominates p==—(p°+p% (6)
at p, <+/x. However, there is a continuous range of mo- \/E
menta ~+/y where both results agree at the level of

are the conjugate momenta to~. For a hadron with

+_ At : - _ _ N +

In the fourth section, we compute the paramgtesf the P 'Fh%prggov;/;ndeign: ngje r(Z\XFi)élit yFi)éojz)f tﬁlsggﬁe order as the

McLerran-Venugopalan model. We find that due to the rapidmomentum space rs idit gincgb the uncertainty brinciole
rise of the smalk gluon structure functions,y approaches P piaity, y yp P

) . AX~~1/p". Qualitatively, these rapidities may thus be
i?]r": tlri]c?a(t)i:)dnesr g;é (fsuer;ﬁ 2?’ Ié;gni?oer:glce)? Iﬁg fggagocsggﬁj dethought of as interchangeable. On the other hand, the classi-
th(l,opaper cal equations of motion are described by coordinate space

variables, and we must use the coordinate space rapidity.

In the McLerran-Venugopalan model, the source rapidity
Il. CLASSICAL YANG-MILLS RADIATION density

20—40 %.

The basic assumption of the classical approach that fol-

lows is that the coupling strength is small at the scale p(Y, X )=X"p(X",X,) (7)

1 dN is assumed to be a stochastic variable which is integrated
i N (1) ~ over with a Gaussian weight,
mR? dy QcDr
1
The parameten? is the number density of gluons per unit f [dp]eXF< —f dyd’x, mTfPZ(y,XL) . (3
rapidity per unit area.

The gluon distribution was shown in R¢10] to solve an  This Gaussian assumption ignores correlations which we will
evolution equation which in various limits is the Balitskii- see |ater are needed to regulate the infrared singularities.

Fadin-Kuraev-Lipatov(BFKL) equation[13], the DGLAP  Here 4,2(y) is the average charge squared per unit rapidity
equation[16], or its nonlinear generalizatiom]. In the ul- per unit area scaled by Né—l)

trarelativistic domain, also the rate of change of the multi-

plicity per unit rapidity 1 1 d@?
W)= 21 782 gy ©
d?N/dy? NZ—1 7R? dy
dN/dy 9 2) o N _
y Note that thisu“(y) specifies the rms fluctuations of the

. . . charge transverse density at a fixed rapidity. The quantity
is small. The smallnegs pf thls parameter means that if W&nalogous to the rapidity independentused in[2] is the
compute the gluon distribution in a small regidy~1 i ieqrated transverse density of color charge arising from

aroundy=0, then the source of those gluons is dominateth,rq partons exceeding a reference rapidity. To emphasize
by hard partons with rapidities much larger than 1. Thesgy;s distinction we denote this quantity by
hard partons can be integrated out of the effective action

which describes the color field sourceyat 1, and they lead Yproj )
to an effective external classical static source for the gluon x(y)= L dy’ u(y"). (10
field.

. Since thi§ can be done at any referer.]c.e rapidity, the.c!asl'his guantity will be related below to the integrated gluon
sical gluon field may be thought of as arising from a rap'd'tystructure function.

dependent classical source. For a single nucleus moving near The solution to the above equations may be found in the
the positive light cone, we have light cone gauge by assuming that

D F#'=g28"* p(x",x,) 3 AZ=0, A'=A(yx).
with  the source approximately independent ofThe indexi=1,2 ranges over only the two-dimensional

x*=(t+2)/\/2. Two types of rapidity variables must be dif- transverse coordinates. The fied solves
ferentiated. In the classical equation of motion, the coordi-

nate space rapidity is relevant as defined by d .
—DiaA'=g Py, Xy). (11
Y=INLX" = Ypro= IN(X™/Xprq)), (4)
Equation(11) is solved by lettind 10,11]
andx~ = (t—2z)/\/2. The momentum space rapidity is, on the

other hand, ) . . )
Al(y,x,)= i&( Py A XYY (P ey, A AY L),

y= %In(p*/p*), (5) (12

In this equationP denotes path ordering along the integra-
where tion in rapidity.
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If we now change variable@vith unit determinant in the

integration over sources

(P BV AV X0 p(Ply, YAV XN (13)

then A is seen to obey the two dimensional Poisson’s equa-

tion

—V2A(y, %) =0%p(y,X,). (14)

YANG-MILLS RADIATION IN ULTRARELATIVISTIC ...
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—VEA(Y.X)=g%p(y X)) (22)

and where
p(y.x)=0(y)p (Y. x )+ 0(=y)p (y.x)). (23

Notice that in this solution, the fields;,” are two-
dimensional gauge transforms of vacuum fields. Their sum is
of course not a gauge transform of vacuum fields, and there-
fore the solution cannot continue into the regigh>0.

Note that due to the expected slow variation of the sourc&here is in fact a singularity in the solution at =0 and
density as a function of rapidity, the field is almost constantx™ =0, atx™ =0 for x>0, and atx =0 for x*>0. For
in y. At zero rapidity, therefore, the field may be taken ap-x=>0, the form of the fields chosen above solves the clas-

proximately as
A(XT X )= 0(x)ai (x,), (15

where

1 -0 ’ ’ i 0 ’ ’
TPy Y AV )T (Pl A1),

(16)

aﬁ(XL)=

This is the non-Abelian Weizs&er-Williams field of the

projectile nucleus which must still be averaged over the en-

semble(8).

sical equations of motion. In this region, the solution is a
boundary values problem with the boundary values specified
on the edge of the forward light cone.

To determine these boundary values, we solve

D, F* =g (24)

and
D, F#=0. (25)

First we find the singularities of E¢25). In this equation,
there is ad(x*) 8(x~) singularity, that is a singularity at the

In order to generalize the above solution to the case ofiP Of the light cone. The absence of such a singularity re-
two colliding nuclei, we use the same variables as above fofiuires that

the projectile nucleus propagating in thez direction. For
the target nucleus propagating in thez direction, we use
the rapidity variable

Y=—"Yem™t |I’](X8r/X+).

17

Here we denote the projectile rapidity with the center-of-
mass rapidity ag. m=Yproj- We will also henceforth use the

index + to refer toy>0 and— to y<<0, when no confusion
will arise with respect to light cone variable indices.

In the neighborhood off=0, we can ignore the small
rapidity dependence of the fields. The solution to the equ

tions of motion in the

xtA"+x AT=0 (18
gauge is approximately given by
AT=+xT0(x")O(x")B(7,X,) (19

and
Ai=0(xH)0(x ) a(1,x )+ 0(—x) (X ) (X))
+O(xT)O(—x ) ey (X,). (20)

Here 7= t?—Z? is a boost covariant time variabléNote
that the above notation correspondsste « and a?= a;, of

[2])
The fields

l H ! ! H r !
o == (P2, Y A )Y (PS8 A0 X)),

(21)

where

o] 0= oy (X)) +a (X)), (26)
There are also singularities of the fora{x™) for x*>0.

The absence of these singularities requirdde analytic as
7—0.

The solution for the Eq(24) is a little trickier since there
are some potentially singular contact terms. It can be shown
that if the fieldse;” are properly smeared in rapidity so that
they really solve the equations of motion in the backwards
light cone, then all such contact terms disappear. We find
gthat 8 must be analytic at=0 and that

[
:8|T:O:§[ai+iai7]' (27)

The boundary conditions are precisely those of R2¥.
They have been rederived here to properly account for any
singularities arising from contact terms in the equations of
motion. These contact terms when properly regulated do not
affect the boundary conditions.

We now construct an approximate solution of the equa-
tions of motion in the forward light cone. We do this by
expanding around the solution which is a pure two-
dimensional gauge transform of vacuum which is closest to
a®+a~. To do this, we introduce the projectile and target
source charge per unit area at a reference rapidig

+

=Yem.
<:r(y,><L)=tfy dy’'p(y’,x,) (28)
and

+ *Yem.
n(y,xi)=tfy dy" Ay’ x,). (29)



2222 M. GYULASSY AND L. McLERRAN 56

Note that model of Kovchego11] as developed ifi12]. In the clas-
. . . sical calculation, this cutoff appears after averaging over
(A3 (¥, )05 (Y, X)) =x"(¥)8ap8°(x. —x[) (300  various values of the background charge denfdfl. The
cutoff scale turns out to be~ ayx. Below this cutoff scale,
the factors of ? moderate and become of order Ky,
This cutoff scale acts somewhat as a Debye mass, although
i this is not quite the case since the logarithmic dependence
aii=Vi77i—§[77i,Vini] (31  implies power law fall off in coordinate space whereas a
Debye mass corresponds to exponential decay. In any case,
and for evaluatingL(k, ,\) at k, >\ the precise form of the
cutoff is unimportant, only that the Iii’ singularities in the
P S integrand are tempered at some scale. This is because loga-
7 =9 Wq_- (32 rithmically divergent integrals are insensitive in leading or-
* der to the precise form of the cutoff. The generic form of the
The sum ofa™+a~ can be written as a pure two- logarithmic factor is therefore expected to be of the form
dimensional gauge transform of vacuum plus a correction as ) ) )
doq, Fy.q1)FLy.(q, —k,)]

_ L2
ar+ai7:ai0+5aio, (33) L(kL ,)\,Y)—ka 20 qu_(qj__kj_)z

in terms of y=(y) defined as in Eq(10).
By direct computation, as if2],

(37

i whereF is a suitable form factor. Ifi3] a dipole form factor
O U (ot ™Y T on T 0= U (ot was considered. A gauge invariant screening mass was con-
=V + +7,V + 34 ' ) ,
* () 2[77 7 Vil )] (34 sidered in[14]. Such dipole form factors lead to

where

and where 1

L(k M:szdqu
- )27 (qF+AD[(a.—k )P+

~In(k?/)\?), (39

5a?=|§{[77’,Vi77*]+[77+,Vi77’]}- (35

This decomposition into a gauge transform of the vacuum isvhere the logarithmic form is remarkably accurate for
accurate up to and including ordef. k, /N>2. A finite but nonlogarithmic form oL can also
Now we expanda;’= a+ da(7,x,). Both sa® and 8 arise if other functional forms for the form factors are con-
are the small fluctuation fields corresponding to radiationsidered as in11,12.
We find thatsa® and B solve exactly the same equations as |t is also important to stress that in any case, the above
were incorrectly derived in Ref.2]. So even though the classical derivation neglected nonlinearities that can be ex-
original derivation was incorrect, the final result remains for-pected to distort strongly the above perturbative solution in
tunately valid. the k? <a?y region. Thus, the solution should not be ex-
In Eq. (42) of [2], a factor of 2r was however omitted, tended below\ ~ a\y in any case. In future studies, it will
and as well in Egs(45), (47), (49), and(50). In addition, in e jmportant to investigate just how the full nonlinear Yang-

going from the first of Eqs(49) to the second, a factor of 1/2 \jjis equations regulate these infrared divergences.
from the trace was omitted.

The final result corrected for the above factors and gener-

. . . A. Classical color current fluctuations
alized to include the source of hard gluons is

For two colliding nuclei the effective classical source cur-

dN 229‘5){f(y)x‘(y) NC(NE— 1) rent for midrapidity gluons is assumed to be
dydk, " (2m)3 %
L L JEX)= 8" 8(x7)a, (0x, )+ 8 8(x*)g, (0x,),
J d%q, 1 (39
(2m)? g7 (q. —k.)? where (q©)=0 but the ensemble averaged squared color
6 4 N 2 crlarge density of each of tm%—l components is given by
(2m) Kkt In Refs.[11,12, x was estimated using the valence quark

density and with the classical color density interpreted as a
color transition density associated with the radiation of a

Theq, =0 andq, =k, divergences arise in the above clas- color a gluon
sical derivation because of the neglect of correlations in the

(36)

N
sources ensemble. A finite logarithmic factqik, ,\) is ob- arx, )= T, 82(x. —x 40
tained only if we include a finite color neutralization corre- ax.) ngl (Ther,c0" (X, =X.n), (40
lation scalex.

This scale arises from dynamical screening effects antvhere the sum is over the valence quarks, @fids a gen-
may be seen in models such as the onium valence quasator of dimensiord,, appropriate for partom. In this in-
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terpretation, products of color densities involve matrix mul- a . )

tiplication and the ensemble average leads to a trace q (XJ_):; UacAn(70) 65X =X, ), (47
associated with averaging over all initial colors of the va-

lence partons and a summing over all final colors. Thereforg nere the unitaryU = Pexp{—igfédsfbu Aﬂb[x(s)]} ac-
y23

(43(x,))=0 (41) counts for the color precession along the parton trajectory.
4t ' The ensemble average in this formulation involves an inte-
since TT2=0 in any representation while gration over the initial colord\3( 7o) with a measure
Ny da
(q""(xL)qt’(xi)>=nE1 d—Tr(TﬁTﬁ)n(xL)éz(xL—XL’), dAn“CE[l dARS(ARAR—Can) (48)
= n
(42)

normalized such thafdA,=1 and thus
wheren(x,)=(d[x, —x,(n)]) is the transverse density of
partons of typen. From now on we assume identical projec- arb_ cab
tile and target combinations and fp<= 0 so that we can drop f dAnAAR=5"Can/da. 49
the distinction betweert sources and the rapidity variable.
Taking into account both the valence quark and har
gluon contributions in the nuclear cylinder approximation

used in[2], the relevanty=x~(0) parameter is therefore _ o o
given by B. Yang-Mills radiation distribution

ecausel is unitary, this leads to the same expression for
the color charge squared correlation paramgtes Eq.(43).

Inserting the above expression fqr into the classical

1[N NcN 1 formula for radiation, we obtain
q cNg ,
X 7R2\ 2N, Ng—l) WRZ(CFNq CANg)/dA, 2 2
(43) dN 1 [ Ng . NeNg | “ 29° Ng(Ng—1)
dyd’k, #R?\2Nc N2-1) (2m)°® K?

where the transverse density of quarkmj;éxL)=Nq/7rR2
and the gluon transverse densityn'@(xi)zNg/sz, d2q, 1

Because this interpretation allows for complex color f
(transition densities that do not arise in the classical limit, it (2m)2 of (0, —k,)?
is useful to show that it can also be derived from a more 1 1 26N, 1
conventional classical Yang—M|II$YM.) treatment. For that_ = = (CeNg+CaN )2 9" N¢ (k).
purpose we use the Wong formulation of classical YM ki- 2 q 97 da (2m)* kf
netic theory{15]. In that formulation, the parton phase space
is enlarged to incorporate a classical charge vedf{rr) in (50
addition to the usualx*(7),p*(7)=mu*(7)] phase space
coordinates. The phase space dengitygbeys the Liouville

equation dN Ng { 2g°N,

If only valence quarks are included then this reduces to

(c,%) 1
—| =L(k, ,\). (5D
da

d dycPk, =R\ (2m) K4
32 X(7).p(7),A(7)]=0 (44) . o
In the opposite limit, if only hard glue is included, the radia-
with dx“/dr=u* and tion distribution reduces to
du* dN N2 (2gGNC (ci) 1
m—— =gu,F£"A?, = —| =Lk, \). (52
dr 9%"a dyd’k, =R2\ (2m)%) \da/ k4 (kih)
dA? abe, ambaC_ b . Note that the color factor in the second brackets marked
dr =gf*u, A*PA"= —i(T°6°)acA", (45) “el” is that associated with the elastic scattering of two par-
tons
where (7°),.=if2"¢ are the generators in the adjoint repre-
sentation and?t_’=guMA”b. The color currengj#3(x) in this cel = (iTrTﬁTﬁ) (iTrT%TPn _ CZ“CZ’“' (53)
kinetic theory is computed via dn dm da
_ so thatC®'=2/9,9/8 forqq,gg. The elastic Rutherford cross
J”a(X):f drur(7)A%(r) 8 [x—x(7)]. (46)  section is in this approximation
The color charge vector precesses around the latalfield ol _94Cﬁ|m d’q, 7ma® 4C,Con, 54
but its magnitude remains constant. Its length is fixed by the ‘Tnm_(zw)z Qi - t t2 dy (54)

specified color CasimiIC2=EaA§. In the ultrarelativistic
case withp*/pgy=~1, the current reduces to E@9) with the  The infrared divergence is regulated by the color screening
transverse density scalen or form factors as in3].
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The geometrical Glauber factor in Eq&.1), (52) counts
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This is exactly the same as the classical result in(&§).

the average number of binary parton-parton collisions per In Ref.[3] the w7— g cross section was computed taking

unit area inb=0 collisions of cylindrical nuclei. More gen-
erally,

1

ng(b): j d3Xpn/A(X)J dzgonmpmye(X. —Db,zg).

(59

Onm

For b=0 caollisions of cylindrical nuclei this reduces to

NN
T"M0)= . 56
0=—2 (56)
Therefore we can write
nm—g
=T"(0 , 5
dydPk, ( )dydzki 67
where
do-nmag: el 29°N, if d?q, 1
dyc’k, "M\ (2m?®/K2J (2m)? ol (q,—k,)?
(59

IIl. QUANTUM RADIATION
A. pQCD bremsstrahlung

We compare Eq(58) with the quantum radiation formula
derived in[3]. In the A" =0 gauge and for gluon kinematics
k=[xP",k?/xP" k] with x<1, the three dominant dia-
grams sum in the small momentum transfer limit to

22
|M[nm—>g(k,e,c)]=[Tﬁ,Tﬁ]Tﬁ] gZS>
q;
kj_ kJ__qJ_ ])
X|29€y 5 ———( | (59
( l[kf (k.—a.)?

a dipole form factor into account with the result

do™™9 [ Cpa® f d*q, 2%F.(q%)F[(q. —k,)’]
dyd |\ 722 ) (2m)? a%(q,—k,)? ’
(62)
where
402
F(¥)=——. 63
(@) 497+ m? (3

Again we can read off the elementagg— g cross section
by dividing by the number of parton pairN§:4 in this
reaction and neglecting interference by settihg=1. This

leads to
do9979  1[2¢°N.| 1 [ d?q,
e e e (64
dyd 4\ (2m)3/k? ) (2m)% 9% (g, —k,)?

where the first factor 1/4 is just the largd, limit of
Cey— 1/4 used implicitly in Eq(17) of [3].

B. Comparison with GLR formula

It is also of interest to connect the classical YM formula
with the pp—g formula of Gribov, Levin, and Ryskin
(GLR) [4] and used recently in Ref5] to compute midra-
pidity gluon production at LHC energies:

. . - ._and
Taking the square and averaging over initial and summing

over final colors, one finds that

Cﬁ|m47ra2
t2

do B
dg?dyd’k,

aN¢ qu_
w° ki(kL_qL)z

do®, dN
~dq? dydk,

(60

do _ ach o FOx, G0 f[xa,(k — )%
dydk, " w2K? t ik, —q,)?
(65)
where
f(x,Q?) = d xG(x,Q?) (66)
’ dIinQ? '
X1 ~Xp~X, =k, /\[s (67)

are fractional momenta which are assumed to be small. In
this relation, the radiation resulting from the fusion of two
off-shelly;~y,~0 gluons is estimated. Unfortunately, there
is variation in the literature as to the magnitude of the factor
Ky [4]. This is partly due to variations in the definition of
f(x,Q?). We find below that in order to reproduce the per-
turbative QCD and classical Yang-Mills result, Eq61),

This is the basic factorized form of the soft QCD radiation (58), we must take
associated with elastic scattering. Integrating over the elastic

momentum transfeq, yields

do _j dqu/C§|m47Ta/2 aN¢ qr
dyck, J 7| g w? K2 (k,—q,)°
o 20°Ng 1 d?q, 1

nm . (61)
(2m?®Kk2) (2m)? q?(k.—q,)?

_(2m)?
NZ-1

K (68)

From private communication with Levin, this factor is re-
quired if f is defined as in Ref5] via Eq.(66). This implies
that the results quoted for the BFKL contribution to minijets
in [5] taking Ky=1 are approximately a factor 5 too small.
With the value in Eq(68), the BFKL and conventional mini-
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jet rates would coincide more closely. In Sec. lll C we argue
that at least in the asymptotic domain these distributions

should in fact coincide over a range lof ~ /.

To compare to the GLR formula with the classical result,

we approximate th&)? evolution using DGLAP evolution
[16]:
_ dxG(x,Q%)

Q) dinQ?

a (idx

' 2 ’
T G(X",Q9)xPy_4(x/x"). (69
In the smallx semiclassical domain
Pgg(X)~2N¢/x. (70

Therefore, we have the approximate relation at Hgfh

2%aN°fl rempr o2y @Ne 2
fx,Q%)~— ) dx'G(x',Q%) —Ng(x,Q%).
(71
Consequently, from Eq$66), (71)
do < achdz de(de
=Ky Q——\| 773
dydk, w2k} dg? | dq;? (k, —q,)2
< aN, a®N?
N'n'zkf 2
o Ng(x1,a7)Ng[xz, (k; —q;)?]
X | d°q, > > .
qi(k,—ay)
(72

Equation(72) reduces to the classical expressiéR) if we

YANG-MILLS RADIATION IN ULTRARELATIVISTIC ...
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do99 ol 4o’ (1+eV+e™Y)3
dt 99 kj (ey/2+e7y/2)6 ’

(74)

This reduces to the naive Rutherford expression &4)
only if the unobserved gluon has a rapidity|=3. For
ly|=1, the exact form(74) is 27/64~0.42 smaller than the
Rutherford approximation.

We concentrate here only on the dominant gluon-gluon
contribution for symmetric system#\+A, with G=G,.
The inclusive gluon jet production cross section is obtained
by integrating overy, with y;=y andk, fixed. For an ob-
served midrapidity gluon witly=0, —y* <y,<y*, where
exp(-=y*)=x, /(1—x,), we must evaluate

2
1(x, ,KT)
(1+e¥2+eY2)3
(e¥22 4 g ¥22)6 "

(75

y*
[ dvoGix K xGixe )

In the Rutherford approximation, implicit in the classical ap-
proximation, we neglect thg dependence of Eq74) and
therefore approximate by

y*
1 k)= [ dyaxGe, K606 k)
y

1
~2x,G(x, ,k?) f dx,G(Xz,k?)
Xy

~2x, G(x, ,K2)Ng(x, ,k?). (76)
For xGox %(1—x)” with 6~0.2,y~8.5, as HERA data
[17,18 indicate in the moderat®?~5 GeV? range, the last
approximation tolg is found to agree remarkably within
10% of the numerical integral of the first line as long as
X, =0.01. However, forkf=5 GeV?, the neglect of the ra-
pidity dependence adoyy/dt in the Rutherford approxima-

approximate the integral by factoring out the integratedtion leadsl to overestimaté by ~55% at RHIC energies

gluon numbers at the average scaikf divide by wR?, and
take the normalization factd€y from Eg. (68).

C. Matching 2—3 to 2—2

Up to this point, we have shown that the classical an
guantum bremsstrahlung formulas agree for the 2 pro-
cess up to specific form factors. The problem addressed

this section is the relationship between the bremsstrahlun%
spectrum and the minijet spectrum based on the pQCD fa

torized 2— 2 processes. Recdl] the factorized differential

cross section for two gluon jet production with transverse

momenta*+k, and rapiditiesy; andys,, is given by
dgAB—9192X

1 dg99—99
dY1dy2d2k¢

= KXlGA(leki)XZGB(XZrki); i
(73

where x;=x,[expf)+expl,)] and x;=x [exp(-yi)
+exp(-y,)], with x, =k, /\/s, and where the pQCD
gg—agd cross section for scattering with

t=—k?[1+expf,—y1)] andy,—y, =y is given by

C_

(x, ~0.01) and by~34% even at LHC energieg ~0.001.
This is due to the factor 2 suppression of the pQCD rate in
the |y, —Yy,|<1 range. On the other hand, next-to-leading
order corrections modify Eq.73) by a factorK~2 in any
ase, and the next to leading order corrections to the classical
ormula are not yet known. Since neither the minijet nor the

i%Iassical radiation can be determined at present to better than

50% accuracy, the following simplified Rutherford for-
ula for the single inclusive pQCD minijet distribution is
adequate:

o ) daglg
m’v Ng(X,t)XG(X,t) T . (77)
or
dN  2Ng(x, ,t) do®
~ 97 99

In order to compare the above minijet distribution with
the classical bremsstrahlung res(#g), we need to replace
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the NS factor in Eq.(52) by Ng(x, ,qf)Ng[xL .(k, —q,)?] recoil effects are negligible and thus treated classically. In
and move that factor inside the logarithmic integrand. Thisthe nuclear cylinder approximation, the transverse density of
generalization is essential since the effective classical souraglence quarks is simply

due to hard gluons depends on theand scale of resolution

of the radiated gluon. This requires thet be sufficiently _NA  NAY

large so that the variation of the structure function with that Na= ~R2 w3 ' (80
scale be small. In this case, the classical bremsstrahlung for-
mula generalizes into the GLR for(i2) where ro=1.18 fm. Since each quark contributes with a
color factorCr /d,=1/2N. the valence quark contribution to
dN 1 dUS'@, 2 the color charge squared density
= 4aN, kT
dydt 7R2 dt A3
d?q, Ng(x,,97) Ng[x, ,(k, —q;)?] Xval= 2Wr2=(A”6 0.07 GeV?<A3cp (8D
@’ o (k. —q,)? °
ol where the bound arises because ofty 200 beams will be
~i 2, dogg available. One would need astronomidat10° to reach
~ 28aNcNg(XL KT)
mR dt Vxva=1 GeV because of the extremely slod'® growth.
2q. N 2 Thus, the valence quark contribution is in practice too dilute
d®q, Ng(x,,q7) o(k2=q?) to contribute into the perturbative domain. Fortunately, the
(2m? 7 L non-Abelian Weizseker-Williams field has a very large
ol number of “semihard” gluons witlx=x, in thes— o limit.
- 1 IN(x, ,k?) ”ggfkfd 2 ix G(x, .o?) The question then is how large dagbave to get in order to
7R? LR gt td L4 pushy into the perturbative regime.
(79) B. The hard gluon source
where in the last step we used the DGLAP evolut{@). The number of hard gluons that can act as a classical
Thus, we recover the same minijet formula as &@). source for midrapidity gluons depends not only xon but

The use of the DGLAP evolution is essential to prove thealso the resolution scal®:
duality between classical bremsstrahlung and the conven-
tional minijet distributions. We note that in order for correc- 1
tions to thJe classical result to remain small, it is necessary Ng (X, Q%)= LLG(X’QZ)dX' (82
that a(x)In(K*/a?x)<1. Recall that in the classical analysis,
a is always to be evaluated at some scale of order Each gluon contributes toy with a color factor
\/;>AQCD. This requirement is therefore thiat ~/y. If Ca/d,=3/8. In order to get an upper bound, we will neglect
this is satisfied, then the formulas should agree inxth& 1 possible nuclear glue shadowing and assume hatA.
regime. There could be some suppression of the logluon number

We see therefore that all the formulas used for hard scain nuclei due to shadowing as observed for nuclear quarks. In
tering agree with the classical result in the range of momenthe McLerran-Venugopalan model, only a mild logarithmic
tum a’y < kf =< x. This range of momenta is outside the typi- ~In(A) modification ofNy> A is expected. Including valence
cal scale kf~a2)( on which nontrivial behavior of the and sea quarks and antiquarks as well as gluons leads then to
transverse momentum distributions is expected on account of
screening. In the region of smallkr , the full nonlinearity 5
of the Yang-Mills equations must be taken into account. At X(A,8,Q%)~ ? Xodx

U3 g

1 2 3 2

EQ(X!Q )+§g(X1Q ) .
large k, > \/x, the hard scattering pQCD formula properly 0 (83
sums up higher order DGLAP corrections to the classical
formula. It is important that there is a range of momentarhe lower boundy,, is determined up to a factor 6f2 by
where the classical and hard scattering results match at thRe minimum momentum fraction needed to justify the ne-
level of ~50%. glect of recoil associated with the radiation of a midrapidity

gluon with a givenk, . In the estimate below we vary that
IV. ESTIMATE OF x(A,s,Q?) bound betweerx,=x, and 2, . For xg(x)<1/x° with

6~0.2—-0.3, this leads to an uncertaintgy/x~ 8, well
within the present overall normalization uncertainties of the
small x gluon structure function.

In order to computey we use the Gluck-Reya-Vogt
(GRV95 NLO(MS) parametrization[19] of the nucleon
structure functions. Figure 1 shows how the parametrization

The initial assumption irf1] and further developed in of the gluon structure compares to preliminary “data” at
[11,12 was that forA> 1, the valence quarks could provide Q?=7 GeV? from HERA [17,1§ obtained via a DGLAP
a very high density of hard color source partons for whichanalysis of the scaling violations frorf,(x,Q?%). Also

We turn finally to the estimate of the McLerran-
Venugopalan scale density in the range ofA ands in
future RHIC and LHC experiments.

A. Valence quark contribution
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50 L A T T T 2.0 T T T T T T T

\ with GRV95 NLO
\ BFKLELR) 1 X=X =Q/s"
\

2 2
\ f\ Q=20 GeV i 15
=7 GeV*

40 1 100 ATeV

S
[
30 i S 10+
G 20 GRvos g
X LHC 6.5ATeV
< 7
20 i 0.5
ZEUS Preliminary
_ RHIC 0.2 ATe
1994 NLO fit =‘f‘§r£e___ ______________ —
0.0 1 1 Il 1 Il 1 1 1 1
10 - 0 2 4 6 8 10 12 14 16 18 20
Q (GeV)
| GRV95 Q%=0.5 | FIG. 2. The classical Yang-Mills sca®yy from Eq. (83) is
- shown for A=200 nuclei at collider energie§'s=0.2,6.5,108
0 g 3 Lo 3 0 TeV as a function of the reference scd&leused to evaluate the
10 10 10 10 10

GRV95[19] structure functions. Upper curves and lower curves for
each energy correspond to taking the lower cutoff scale

FIG. 1. The GRV95 NL(19] and BFKL-like[5] parametriza- Xo=X_,2X, , respect?vely. The bottom two dashed curves give the
tions of the gluon structure functionG(x,Q?) for Q2=7,20  valence quark contributions a5=0.2,100 TeV.

2 Fs m ”
(HBE\F/{A are compared topreliminary ZEUS “data” [17] from thatQvy is remarkably independent of the referel@@ecale

because of a compensation of two competing effects. The
increase ofkG with Q is compensated by its decrease with
increasing value of the minimum hard fractiooa~Q/\/§
contributing to the classical source.

At RHIC energies, the boundary of the classical regime

shown is the BFKL-like parametrization of the gluon struc-
ture used in[5] for comparison. Both the GRV95 and the
BFKL parametrizations significantly overestimate the mod-
er?teQz data of interest here at< 107.3' The pre_liminary remains rather low £500 MeV) because the relevant
Q°=20 data from H118] (not shown Fig. 1also lie below 5,00 ~0.005, is not very small. By LHC energies, on the
the GRV95 parametrization. For our purposes, it is only im-gia, hand, gluons down to, ~0.0001 can contribute, and
portant that the use of GRV95 and the neglect of gluon shadye classical Yang-Mills scale increases @yy~1 GeV.
owing should lead to a reasonable upper boungcon _ Note that to double th€y,, scale at a fixed energy would

As discussed in the previous sections, the classical regimquire an increase ok to 2°x200 if shadowing can be
extends up tk, =Qvy where ignored. To double the value ddyy at fixed A requires

4. s  decreasing, by a factor 2 *°~10". Although asymptoti-
10 cally the scale ofQyy, becomes arbitrarily large, this
X\ asymptotic behavior is approached slowly. We conclude that
(84) at RHIC energies the classical Yang-Mills radiation dynam-

o ) _ ics is likely to modify mainly the nonlinear, nonperturbative
and 6~0.2-0.3. In principle, this must be determined self- heam jet regime. In that regime the perturbative analysis

consistently given the scale dependence of the glue. In pragnust certainly be extended into the full nonlinear regime via
tice, as shown belowQyy is only weakly dependent of the detailed numerical simulations. By LHC energies it appears
reference scale if it's above-2 GeV?. The approximate that the classical Yang-Mills radiation begins to overlap into
formula for Qyy summarizes the numerical results below. the perturbative minijet domain witk, ~1 GeV.

In Fig. 2, Qyy is plotted for\s=0.2,6.5,108 TeV for The very smallx and very largeA limits, where pertur-
heavy nuclear beams with=200 as a function of the scale bative classical radiation can be computed, provide an novel
Q with which the GRV95 structure functions are evaluatedcalculable theoretical limit. It provides qualitatively useful
in Eqg. (83). The upper solid curves for each energy corre-insight at RHIC energies and may be semiquantitative al-
spond to Eq.(83) with xo=x, . The lower curves are ob- ready at LHC energies. In future studies it will be especially
tained by increasing the lower cutoff from to 2x, . The  important to extend work with this model into the nonlinear
two long dashed curves at the bottom show the contributiomegime to clarify the mechanisms for color screening in
of only the valence quarks Qv at ys=0.2,10A TeV us- A+ A reactions at the lowek, ~aQyy scale. Present esti-
ing Xo=x, . The curves show that the hard nuclear gluemates for initial conditions i®A+ A based on minijet pQCD
dominates for finite nuclei at all collider energies. Note alsoanalysis[6—8] vary considerably because of the necessity to

A 1/6
QYM(A’S):\/;(A,S,Q\Z(M)N(]. GeV) (ﬁ)) (
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introduce a cutoff scalpy~1—2 GeV to regulate the naive approach the study of asymptotically high energy reactions,
infrared divergent Rutherford rates. That cutoff has thus fawhere many unsolved and interesting theoretical problems
been estimated eithdi) phenomenologically by imposing remain.

observed constraints from extensipg,pp— 7,K,p, X sys-
tematics as ii7,8] or (ii) using kinetic theory estimat¢20]
which are sensitive to formation physics effects. One of the We are grateful to the Institute of Nuclear Theory and
great theoretical advantages of the classical Yang-Mills apwick Haxton for supporting the INT-96-3 program where
proach is that the long wavelength nonlinear dynamics inthis work was performed. Numerous useful discussions with
volving preasymptotic field configurations can be taken intok. Eskola, X. Guo, Y. Kovchegov, A. Kovner, J. Jalilian-
account (at least numerically without invoking kinetic Marian, K. Lee, A. Leonidov, E. Levin, A. Makhlin, A.
theory or formation physics assumptions. In the theoreticaMueller, D. Rischke, S. Ritz, R. Venugopalan, and B. Zhang
aQyy>1 GeV domain, that physics may be accessible usand other participants during that program are also gratefully
ing perturbative techniques. In the experimentally accessiblacknowledged. This work was also supported by the Direc-
aQyy<1 GeV regime, numerical solutions of the Yang- tor, Office of Research, Division of the Office of High En-
Mills equations, as for example [21], are likely to provide ergy and Nuclear Physics of the U.S. Department of Energy
additional insight into that problem. The classical Yang-under Contract Nos. DOE-FG02-93ER40764 and DOE-
Mills model [1,2] is one of the practical tools at present to FG02-87ER40328.
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