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We recapitulate a thermodynamically consistent excluded volume hadron gas model and examine its differ-
ences with other “thermal models” used in the literature. Preliminary experimental data for particle number
ratios in the collisions of AsrAu at the BNL AGS (1A GeV/c) and Pb-Pb at the CERN SPS
(160A GeV/c) are analyzed. For equal values of the hadron hard-core parameters the excluded volume model
gives essentially the ideal gas predictions for the particle number ratios, which is similar to other thermal
models. We observe, however, the systematic excess of experimental pion abundances compared to the ideal
gas results. This effect can be explained in our model by a smaller pion hard-core volume compared to those
of other hadrons. The absolute values for particle number and energy densities at the chemical freezeout are
predicted with a simultaneous fit to all these AGS and SPS particle number {&556-28187)05510-9

PACS numbegps): 25.75—q, 24.10.Pa

[. INTRODUCTION densities which are much higher than any reason@ol&in-
_ . tuitively expected’) ones at the freeze-out. The total particle
_Preliminary data for nucleus-nucleu\ £ A) collisions ,mper density at the chemical freeze-out within the ideal
with truly heavy beams have recently become avallable'gas approach i8,,~4n, for the AGS andh,,~8n, for the
Au+Au at 11A GeV/c at the BNL AGS and PbPb at  SpS, wheren,=0.16 fm 2 is the normal nuclear density.
160A GeV/c at the CERN SP§L]. A systematic analysis of These numbers also exceed any experimental estimate ob-
these data could yield clues to whether a short-lived phastined from the particle multiplicities and from the measure-
with quark and gluon constituents, the quark-gluon plasmament of the volume of the system at the freeze-out with
exists during the hot and dense stage of these reactions. Pion-interferometry method. To suppress undesirable large
For the studies of matter propertiesAn- A collisions, it ~ values of particle number densities, the van der Waals
is of vital importance to determine whether local thermody-(YPW) excluded volume procedure is used. We will follow
namical equilibrium in the system is reached. Assuming suc [ the present paper the thermodynamically consistent ex-

. L X cluded volume model of Ref§2, 3] which will be recapitu-
a local thermodynamical equilibrium at the finfleeze-oux lated in the next section. Ssomg other “thermal mpodels”

stage of the process, one can calculate the particle numbﬁefs_[4_8] also include VDW “corrections,” but in some
ratios without detailed knowledge of the very complicatedaq hocand inconsistent ways. It is often believed that the
dynamical evolution history of the system. We remind thatspecific details of these VDW corrections are of minor im-
the chemicalfreeze-out which determines the hadron numberportance_ This is, however, not the case. The VDW repulsion
ratios does not necessarily coincide with thermalfreeze-  does not essentially alter the particle number ratios, but it
out which defines hadron momentum spectra. does always give a very strong suppression effect on the

The aim of the present paper is to analyze the preliminaryalues of particle number densities themselves. As we shall
data for particle number ratios of AuAu (AGS) and Pb-Pb  see below the total values of particle number densities are
(SPS collisions within the framework of the thermodynami- suppressed by a factor of 8 and 14 for AGS and SPS chemi-
cal equilibrium hadron gas model. The name “thermalcal freeze-out states, respectively. Therefore, the influence of
model” has often been used in the literature for this type ofthe VDW excluded volume procedure on particle densities,
calculations. We stress, however, that those “thermal modas well as on all other thermodynamical functions of the
els” used in the literature to calculate particle number ratio’dron gas, is very strong, and hence the correct form of the
are, in fact, very different. Therefore, our first step is to ex-€xcluded volume model formulation should be employed.
plain our model and clarify its difference from other versions
of “thermal model.”

It seems natural to start with the ideal hadron gas at the
freeze-out stage. All known particles and resonances should For nonrelativistic statistical mechanics, the use of a
be included in this gas and the resonance decay modes to theand canonical ensemble is usually just a matter of conve-
observed particles must be taken into account as well. Hownience. However, in the hadron gas considered below it is
ever, such an ideal gas model becomes inadequate in highnavoidable. In a relativistic theory one can not fix the num-
energyA+ A collisions. The chemical freeze-out parametersber of particles, the number of pions in a hadron gas system,
temperaturd and baryonic chemical potential,, obtained for example. The average number of particles only makes
from fitting the particle number ratios at AGS and SPS ensense in an equilibrium system, like in the case of a photon
ergies lead to artificially large values of total particle numbergas. This average number is not conserved, but increases

Il. van der WAALS REPULSION
IN THE GRAND CANONICAL FORMULATION
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with increasing temperature of the system. This takes place _ > uN\

at all temperatures, even at very low ones when the thermal 29T, u,V)= > ex —)Z'd(T,N,V) 5)

motion of each individual pion can be treated nonrelativisti- N=0 T

cally. The canonical ensemble with a fixed number of pion

has no physical meaning. This statement is also valid, o

course, for other hadrons. Particle chemical potentials, in P N

general, regulate not particle numbers but the values of con- z(t ,, v)= > ex 'U“_> Z'4(T,N,V—0N)a(V—ovN).

served charges. Strongly interacting matter has three con- N=0 T

served charges, viz., baryonic numisrstrangeness, and (6)

electric chargeQ (strangeness is conserved as we neglect . e . . .

“slow” weak interactions. Therefore, the canonical en- There is a difficulty in the evaluation of the sum owerin

semble can only be defined with fixed valuesofS, andQ, Eq. ((?") because of thé\ depepdence of the “available vol-

not the fixed numbers of pions, nucleons and other hadron§'™M€: V—uN. To overcome it, we perform a Laplace trans-
Let us start with the ideal gas of one particle species witd°™M ©n Eq.(6) [2] and obtain

temperatureT, chemical potentialu and volumeV. The -

pressurep'd is related to the grand canonical partition func- é(T,M,X)Ef dV exp(—xV) Z(T,u,V)

tion Z' and in thermodynamical lim¥—, it has the fol- 0

lowing expression:

hen becomes

:fwd\A/exp(—x\A/)Z"d(T,[L,\A/), )
0

. In Z2'9(T,u,V
pY(T, 1) =T lim %
Vo whereu=u—vTx andV=V—uN. The second equality in
d » K4 Eqg. (7) can be easily understood as follows. We substitute
=672 J dk—2—2—,2(k Tm3)t f(k), (1 Z(T,u,V) by the infinite sum of Eq(6), change the integra-
0 . . . .
tion variableV to V in each term of the series and then use
with Eq. (5) to sum up the series again.
From the definition of the pressure function
(k2+m2)1/2—,u, -1
_ In Z(T,u,V
f(k) exp( = +7 2 o(T.1)=T lim (VM ) ®

V—oo
being the momentum distribution functiod.is the number . N ]
Of partic'e internal degrees Of freedqdegenerac)]andm is one Concludes that the grand Can0n|ca| partltlon fUnCtlon Of
the mass. The value ofis — 1 for bosons;+ 1 for fermions, ~ the system, in the thermodynamical limit, approaches
and »=0 gives the classica{Boltzmann approximation. o(T. )V
The ideal gas particle number density is given by Z(T,,LL,V)IV_,x~eXL{ z } (9)
ap'(T, )

n'(T, )= ™

d S
) =572 f dkk’f(k).  (3)  From the first equality in Eq(7) one sees that this exponen-
T 0 tially increasing part ofZ(T,u,V) generates an extreme

Furthermore, the entropy density is defined &Y right singularity in the functiorg(T, u,x) at some poink*.
—(ap'9/4T),,. The energy density can be found from an- Forx<<p/T the integration oveV¥ for Z(T,u,X) diverges at
other therm%dynamical relatiofl?=Ts9— p'd+ 4nid and is its upper limit. Therefore, the extreme right singularity of
written as Z(T,u,X) atx*(T,u) gives us the system pressure,

% (T,w)=TxX*(T,w). (10
(T, n)= % f dkke(k?+m?)Y2f (k). (4) PLh g
T Jo Note that this direct connection of the extreme right
singularity of Z to the asymptotic behavidr—o of Zis a
eneral mathematical property of the Laplace transform. Us-
g the above equations we find

For a fixed particle numbeN, the VDW excluded vol-
ume procedure means the substitution of the volume of th
systemV by V—uN, wherev is the parameter correspond-
ing to the proper volume of the particle. Note that this VDW In Z9(T, \A/)
procedure, interpreted in statistical mechanics as the gas ofyx (T, ;)= fim — """
hard-sphere particles with radius requires that the volume Voo \%
parameterv equal to the “hard-core particle volume,” (12)
4713, multiplied by a factor of 49]. To introduce the ex-
cluded volume(a la van der Waalsin our grand canonical With Egs.(1) and (10) we find from Eq.(11) the transcen-
ensemble formulation, we start with the volume substitutiondental equation for the pressugT,u) of the gas with
of V by V—vN in the canonical partition functio for each  VDW repulsion in the grand canonical ensemble:
fixedN separately. The grand canonical partition function for _
the ideal gas system P(T,w)=p T ), m=p—vp(Tu. (12

v M=p—oTXN(T,u).
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At this point some comments are appropriate. First, we With p(T,«) as the solution of Eq12) the particle num-
remind the reader that the singularitj of the Z(T,u,X) ber o_le_nsity is given by Eq14). The entropy and energy
function has nothing to do with phase transition singularitiesdensities are

of the system. A singularity at* (T,u) exists for the ideal

gas as well — one can easily recover the ideal gas formulas ap(T, ) S9(T, )
by puttingv =0 in the above equations. Another result which S(T,M)E( 0T ) = Tron (T3 (17
can puzzle a reader is the difference between the familiar © H
form of the VDW repulsion,
(T, )
p(V—uN)=NT, (13 S(T-M)ETS_p+Mn:—B—1+Un| T3 (18

and our Eq{12). According to Eq.(13) the ideal gas pres- Equationg14), (17), and(18) reveal two suppression effects

id_— P
sure,p= NT/V, Increases .due to the excluded volume " on the particle number, entropy and energy densities because
pulsion as expected intuitively while Eg$l) and (12) of the VDW repulsion, namely

plearly shows that the ideal gas pressure decreases Wlth_the (1) The modification of the chemical potential—7 as
inclusion of the excluded volume repulsion. To resolve this

. o L : . given in Eq.(12). In Boltzmann approximation it just leads
paradox,” one should keep in mind the important differ- to an additional factor exp{up/T).

ence between standard VDW gas treatment with(E8). for (2) A suppression factdil +pni(T, )] 1< 1

fixed particle numbeN and our system with fixed chemical bp M :

. ) . . ) For a ideal gas system of several particle spedies
potential  in the grand canonical ensemble. To clarify this _ . . o
. . Y =1,... h, the thermodynamical functions are additive and
point, let us calculate the particle number density:

equal to the sums of their partial values for different particle
species:
ap(T,u) P

I

0T )
“Teonira M h
pY(T, uq, ... .Mh)=i§1 pIo(T, i), (19

n(T,u)=
.

To have a direct comparison with E(.3) we now make the
Boltzmann approximation, i.e., withp=0 in Eq. (2). We
shall see later that at the AGS and SPS chemical freeze-ound similar expressions fa&?, n'®, and&'?. Note that the
the Boltzmann approximation leads to a very good agreeindex i includes all the information about th¢h particle,
ment(only a few percent deviatiopgor all thermodynami- m;, d;, %, u;, €tc.

cal functions with those calculated with exact Bose and The extension of the excluded volume procedure for sev-
Fermi distributions. In Boltzmann approximation, the distri- eral particle species is straightforward. The grand canonical
bution functionf(k), as well as all thermodynamical func- partition function of the ideal gas equals to the product of
tions of the ideal gas, possesses a momentum-independeBf(T,x;,V) for each particle speciesi:” The excluded

factor exp/T). One can easily find that volume grand canonical partition function for several particle

species,i=1,... h, with proper volumes,..., vy can
vp(T,u) » then be written as
P(T.w)=exp — —=—|P*(T.u),
) o h
. . ‘N
PA(T, ) =TT, ). (15 2T gy on V)= - 2 ] ex h)
Ni=0  Nyj=0i=1 T
After some simple algebra, Eg&l4) and (15) give XZEd(T,Ni ,\A/) 0(\7) (20

P(T, ) [1—on(T,u)]=n(T,u)T. (16) -
with available volum&/=V—="_,v;N;. The Laplace trans-

The form of Eq.(16) amazingly coincides with that of Eq. form of Eq.(20) gives
(13), and therefore, we have no contradiction with the stan-
dard VDW gas physics. The crucial difference is that we CIn Z(Tuq, e tns V)
have in Eq(16) an(T,«) function instead of a fixed number ~ P(T, 41, ... ,up)=TIiM v
N (or a fixed particle densitil/V) as is the case in E413). Vo
In the grand canonical ensemble with fixed temperature and h
chemical potential, the VDW repulsion leads to a strong sup- =p 4T, &y, .. wn) =2 PI(T, ),
pression of the particle number density. It is just this sup- =1
pression on the number of particles which leads to the de- (22)
crease of the ideal gas pressure after the VDW repulsion
begins to come into effect. Equatiori$6) and (13) have -
similar form, but their physical meaning are very different. mi=pi—vip(T,pmq, ...
Equation(13) calculates the pressure as the functioiNoiVv,
T while Eqg. (16) gives particle number density(T,u), but  Particle number density for th¢h species can be calculated
only after Eq.(15) for p(T,u) function is solved. from Egs.(21) and(22) and is found to be

an), i=1,...h (22
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ap pare it with ansatz of Eq26), let us make again the Boltz-
ni(T, g, .- ,Mh)E(T) mann approximation in Eq21). Using Egs.(5) and(1) one
FlT g, finds from Eq.(21) that

(T, ) h
= h id —_ . — Uip id
1+= 00T, 7)) p(T,m,...,uh)=§l expl — — | Pl(Toi) . (27)

(23

The total particle number density is the sum of the partial . 1

valuesn; fromi=1 toi=h. Note that particle number den- ASSUMingv;p/T<1 so that expv; p/T)~(1+v; p/T)"", we

sity n; depends on all proper volume parameteys. .. v,.  US€ then the expansion

The partial pressurgs, = p}d(T,ﬁi) are reduced to the ideal id
i i - : . = o + i

gas onesp'%(T,u;) in the limit v;—0. This, however, P(Topns o tn) =PE(Tons - oin) T0(v)

does. not take place foni because the particle number ;.4 the relation

density n; with v;=0 still feels the presence of other

particles with v;#0 due to the suppression factor _ ho h

[1+3"50;n%(T, 1)1 Y in Eq. (23). N PUT, g, - ) =2 PAT, ) =T, ni(T,u)

Moreover, the total entropy and energy densities of the =1 =1

VDW hadron gas are given as (28)

sh ddp = [the second equality in E@28) follows because of the Bolt-
s(T )= a_p) = =181 (T, 14) zmann approximatiopto find finally
M1y - p)= oT P 1+2T:1UJn;d(T,TLJ)'
(24) p*(T, 1)
i(T,ui) =~ . (29
A Pi(T, i 1+UiEF=1n}d(T,/vL,‘)

a(Topa, - on) =TS~ p+zl min Equation(29) is still rather different from the prescription of

b g Eq. (26) used in Ref[8]. In Eq. (29 p;=p¢ whenv;=0.

i1 (T i) (25) This is generally true as can be clearly seen in the last equal-

ity of Eq. (21). However, this does not take place in E26)

if some otherv;#0. We conclude therefore that the “ex-

cluded volume correction” in Eq.26) [8] has nothing to do

with VDW excluded volume procedure even in the limit
We recapitulate in the last section a thermodynamicallywhen allv;’s are small, i.e., in the first order expansion over

consistent formulation of the VDW repulsion in the grandv;.

canonical ensemble. The problem appeared to be not trivial

TS 0T

IIl. COMPARISON WITH OTHER “THERMAL MODELS”

and many thermal model formulations of the VDW *“correc- IV. PARTICLE NUMBER RATIOS

tions” used in the literature do not meet the requirement of AT AGS AND SPS ENERGIES
self-consistency. The essential difference between the model ) ) ] ]
that we use and those of Refd—7] is the modification of As mentioned before, particle chemical potentials

the hadron chemical potentials according to E2p). The regulate the values of conserved chqrges. For'simplicity we
VDW “correction” of the ideal gas formulas by the suppres- neglect the effects of nonzero electrical chemical pOtentlal
sion factor[1+E}lejn}d(T,,uj)]‘l was postulated in Refs, Which were considered in Ref10]. Electrical chemical po-
[4—7] for all thermodynamical functions including the pres- tential is responsible, for example, for” =~ asymmetry
sure. These “corrected” functions, howevety notsatisfy ~ When colliding ions are heavy and therefore have isotopic
fundamental thermodynamical relations. Besides, the consi@Symmetry, i.e., their number of neutrons is larger than num-

tent formulation allows the dependence on the excluded volP€r Of protons. These interesting effects are, however, not
umesv,’s for particle number ratios, while in the formulation 'arge numerically at AGS and especially at SPS energies.

of Refs.[4—7], particle ratios are always the same as in the The chemical potential of thieh particle can be written as

ideal gas for any choices af; values because the suppres-
sion factor in the denominator is identical for edth par- i =DPipn+ Siges, (30)
ticle and therefore cancel each other out.

In Ref.[8], the VDW “correction” was postulated in the
form of

in terms of baryonic chemical potential, and strange
chemical potentials, whereb; ands; are the corresponding
baryonic number and strangeness of ille particle. The
pid(T,,ui) hadronic gas state is defined by two independent thermody-
pi(T,ui)= R d . (26) namical parameterg, and i, . The strange chemical poten-
1+ 2 (Tou)) tial wg(T,wp) is determined from the requirement of zero
strangeness

The total pressurp is just the sum of above partial pressures
over all particle specieis As we have shown in the previous h
section, the VDW formulation leads to the transcendental = —

) Ng(T, wp,pms)=_2, SiNi(T,ui)=0. 31
equations(21) and (22) for the pressure function. To com- s(Tutp o tas) .21 (i) S
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In addition toT andu,, the thermodynamical functions also
depend on the excluded volume parametgtsecause of Eq. 0 ¥ Kok 1
(22). %y

Baryon and meson resonances and their subsequent de- -4
cays to observed hadrons are of great importance for the 10° + _ E
measured particle number ratios at AGS and SPS energies. ANA
All known resonance states with mass up to 2 GeV are in- p/p @
cluded in our calculations. Preliminary experimental data for 10" 2 - E
particle number ratios in the collisions of AAu at the 3 SPS
BNL AGS (11A GeV/c) and Pb-Pb at the CERN SPS T
(160A GeV/c) are analyzed. We use the compilation of the T, 102
experimental data which were presented by Stachel at B 19t 4 4
QM'96 (see Ref[11] and references thersin = -

The enhancement of strange particle productioi A o 100 KK 3
collisions has attracted special attention as a possible signal .
of the quark-gluon plasma formatiofi2]. However, the Ll 4 - 3
“thermal models” of Refs.[4—7] which, in fact, gives the 1024 AN ]
same results as the ideal hadron gas model have been suc-
cessful in reproducing many of the ratios with strange had- 10° + p/p 1
rons measured at the AGS and SPS without any additional —— AGS
parameter to control strangeness abundance. Instead, they 104 ¢ E

have a problem with pion abundances—for the SPS data it
has been observed—6] that a simple ideal gas model is
unable, within a single set of freeze-out parameters, to repro- FIG. 1. Points are the preliminary experimental data for the
duce simultaneously the strange particles yields and antparticle number ratiogsee Ref.[11] and references thergirior
baryon to baryon ratios together with ratios where pions ar@u+Au AGS and Pk-Pb SPS collisiongin the lower and upper
involved. Specifically, experimental pion to nucleon ratio part of the figure, respectivelyThe short horizontal lines are the
and ratios of pions to other hadrons are larger than the ideahodel fit with T=140 MeV, u,=590 MeV (AGS), and T
gas predictions. As pion multiplicity can be related to the=185 MeV, u,=270 MeV (SPS.

entropy of the system, the ideal hadron gas model appears

unable to account for the large entropy per baryon of theatios are almost independent on the value» aind are the
freeze-out system. The deficiency of pions in the ideal hadsame as in the ideal gas and as in Ré#s-7]. It occurs
ron gas calculations has become the main problem in theecause of the relation

theoretical “thermal model” in the interpretation of the SPS

particle production data. Several mechanig®$,13 have 9T T =exd — vp(T, up) AT ) 33
been proposed to remedy this problem, but no satisfactory AN T AN

answer has yet been found.

Our model procedure is as follows. For given valueJ of Note that the above equality becomes exact in the Boltzmann
and u,, we solve the system of equations, E(&l), (22),  approximation. In this case a common VDW *“denomina-
and (31), to find p(T,up) and ug(T,up). The values off  tor,” 1 +2]-h=1vjn}d(T,ﬁj), and a common “numerator,”
and u, are then determined from the “best fit” to particle exp(—vp/T), are canceled and E{R3) leads to
number ratios not involving pions. These best fits to the _

Au+Au (AGS) and Pb-Pb (SPS preliminary data are ni(Ta#b)Wn:d(Tvﬂi)
shown in Fig. 1. The chemical freeze-out parameters are nj(TiMb): n}d(T,,uj)'
found to beT=140 MeV, u,=590 MeV for Au+Au AGS,

andT=185 MeV, u,=270 MeV for Pb+-Pb SPS collisions. The value of the parameteris, however, still crucial for the

All particle number densities are calculated from E28)  absolute values of particle number densities as well as for all
for all known stable particles and resonances with mass up tgther thermodynamical functions of the hadron gas. At the
2.0 GeV. The total production yield of hadraris then pro-  same fixedT and uy,, all thermodynamical functions of the
portional to the sum of its thermal density and all possiblehadron gas are smaller than in the ideal hadron gas and

particle species

(34)

resonance decay contributions to that hadron strongly decrease with increasiog
We use quantum statistics in our calculations, but some of
nio= n, + ndee=p, + > nja(j,i), (32 our qualltatlve.argt_lments depend on the validity of .the Bolt-
Zi zmann approximation. We have checked for all particle num-

ber ratios that the Boltzmann approximation in the ideal had-
where «(j,i) is the probability(branching ratip for reso- ron gas (i.e., v;=0) gives an accurate estimate to the
nancej to strongly decay into hadroin corresponding quantum statistics valuesl —3% for both
In our calculations we will examine the dependence ofAGS and SPS chemical freeze-out parameters. In our con-
hadron ratios on particle volume parameters. Results sideration withv;>0, each chemical potential is shifted by
shown in Fig. 1 correspond to the same proper volume pa-v;p and the Boltzmann approximation always becomes
rameterv;=v for all hadrons. In this case particle number even much better.
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In the case when not all of the's are equal, the hadron To solve the problem with pion multiplicities in the VDW
volume parameters; do influence the particle number ratios model we now introduce different hard-core radii; for
through the modification of Eq22) in the particle chemical pions andr for all other hadronsr(>r ). Such a possibility
potentials, required by thermodynamical self-consistencywith r_=0 was considered in Ref14]. We remind the
The effect is quite evident that hadrons which take up lesseader that the excluded volume parameters are

space(i.e., smaller values af;), and hence smaller influence :4(477/3)”3' Using Eqs.(32) and(34), we then find
on the excluded volume, have the advantage. The particle

number ratios of those small hadrons to larger ones increase

in comparison with the ideal gas results.

Ny exp— v PITINZ(T, u,=0)+ 2, , exp(—vp/ TN (T,py)a(j, m)

N exp(—up/MIN(T, u) + 24 exp(—vp/TIN (T, u))a(j.i)
L exp A TN, 1, =0)+ 3 (T ) a(j, ) a5
B (T, ) + 2 anf (T aj, m) !
[
where At fixed T and u, the value ofu’ is a complicated func-

tion of r . andr. The ratios in Figs. 2 and 3 feel not specific

. 16m ., values of ¢ ,r) but u* value. From the preliminary experi-
M= =v)p= 72 (r"—r)p(T,up:rr7).  (36)  mental data we finge* =100 MeV for Au+Au AGS colli-
sions andu* =180 MeV for Pb+-Pb SPS ones. We stress
that the problem with pion deficiency observed in R¢Ss.

| for SPS energies looks similar to what we findhoth

GS and SPS data analyzed above. This deficiency of pions
for the preliminary data in PbPb SPS collisions is not so
grastic as in $Pb SPS data, where the pion to nucleon ratio

In Eq. (36) we addr andr . in the arguments of the pressure
function to remind the pressure dependence on particle har
core volumes through Eq€21) and (22). Equation (35
shows that the ratio of pions to any hadrois changed in
comparison to the ideal gas calculations. From the secon
equality of Eq.(35) the increase of the thermal pion density
appears to be due to an effective pion chemical potential 36 4
#> . In the Boltzmann approximation, it leads just to the
additional factor of expg;/T) in the pion number density of

the ideal gas. Note that all chemical potentialsare trans-
formed tou;=u;—v;p and thereforeu ,=—v ,p becomes
negative becausg ,=0. If v, is smaller tharv;=v, in the
ratiosn_./n;, u’ looks like a positive pion chemical poten-
tial in the ideal gas formalism. From this explanation of the
origin of u*, it is clear that there is no restriction on its
possible values by the pion mass, in contrast to the ideal
Bose gas where always<m.

In Figs. 2 and 3 different pion to hadron ratios are shown
for Au+Au AGS and PB-Pb SPS collisions, respectively.
Preliminary experimental values are designated by dotted
lines, while our model results are represented by solid
curves, as functions gf* . The valueu* =0 corresponds to
the ideal gas results. We have already demonstrated that par-
ticle number ratios fov;=0 (the ideal hadron gasemain
the same as those foy=v = constant. For all ratios in Figs.

2 and 3 we find that the experimental values systematically

Particle Ratios

exceed the ideal gas resultg’{=0). To fit data, one needs 0 30 60 90 120 150
ur>0 and from Eq.(36) it meansr>r_. Our T and u,, n* [MeV]

values are already fixed both for AGS and SPS from ratios T

given in Fig. 1. Assuming , different fromr;=r for other FIG. 2. Pion to hadron ratios for AuAu AGS collisions. The

hadrons we obtain no changes in the VDW model values foexperimental datésee Ref[11] and references thereiare shown
the ratios shown in Fig. 1. As pions have no influence orby the dotted horizontal lines. The solid lines are the VDW hadron
those ratios, they remain the same as the ideal hadron ggas model results as the functionsof (see the text for details
results. An agreement with data correspondsith=100 MeV.
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FIG. 3. Pion to hadron ratios for RPb SPS collisions. The FIG. 4. The solutions of the equatiopg’ =constant for AGS
experimental datgsee Re_f{ll] and ref(_ere_nces thergimre shown parameters, Eq37), (the dashed curyeand SPS ones, E438),
by the dotted horizontal lines. The solid lines are the VDW hadron(,[he dotted curveshown in ¢.,r) plane. The intersection point is

gas model results as the functionsof (see the text for details approximately atr ,=0.62 fm, r=0.8 fm).
An agreement with data correspondsuf)=180 MeV.
is close to §15] and is approximately 2 times larger than the V. PARTICLE HARD-CORE RADII
ideal gas result. To have an agreement with data in Figs. 2 Qur fits to the preliminary data of AuAu (AGS) and

and 3 we need only about 30% larger pion to other hadronpp+Pb (SPS on the particle number ratios with VDW had-
ratios than those in the ideal hadron gas. With<r (and  ron gas model are shown in Figs. 1-3. From fitting the data
therefore x> >0) the thermal pion number density would we have found the following model parameters:

increase by a factor of exp{/T). It is about 2 for AutAu

AGS and abput 2.6 for PbPb SPS CO||I$I0nS to have an_ AGS: T=140 MeV, u,=590 MeV, Mz; 100 MeV,
agreement with data. The effect for the pion thermal density (37)

is therefore quite strong. However, it does not strongly alter

the pion to hadron ratios, E¢B5), because at both AGS and .

SPS energies the pion production is essentially dominated bySPS: T=185 MeV, up=270MeV, n7=180 MeV.

the resonance decay contributions. Let us also remind the (38)
possibility of the chemical nonequilibrium effects for pions

discussed in Ref.16]. It would lead to the chemical poten- The set of all possible values of. andr which give the

tial u,,>0 with its values being always smaller than the pionsame value of.* in Eq. (36) for the AGS or SPS defines a
massm,, . Forr_<r, we have obtained in the VDW model curve in ( ,,r)-plane. The two curves corresponding to the
the effective pion chemical potential’ whose value is not AGS and SPS, respectively, are shown in Fig. 4, together
restricted by the pion mass, and no chemical nonequilibriunwith their intersection pointr(,=0.62 fm, r=0.8 fm). This
effects are required. intersection point is a solution far, andr in the VDW

TABLE I. Meson number density,,, baryon number density,, , total particle number densitgy,
energy density, and total pion number density®', which includes thermal pions and contributions from
decays, at the freeze-out for AGS Alu collision at 11A GeV/c.

(r,,r) [fm] Ny [fM %] np [fm™3] Niot [FM ] e [GeV/fm?] n' [fm~3]
(0.00, 0.00 0.200 0.402 0.603 0.722 0.400
(0.00, 0.50 0.097 0.130 0.227 0.248 0.161
(0.20, 0.52 0.089 0.120 0.209 0.228 0.149
(0.40, 0.61 0.061 0.084 0.145 0.159 0.103

(0.62, 0.80 0.032 0.043 0.075 0.083 0.054
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TABLE II. Meson number density,,, baryon number density, , total particle number density,,,
energy density, and total pion number density®", which includes thermal pions and contributions from
decays, at the freeze-out for SPSHHb collision at 168 GeV/c.

(r..r) [fm] Nm [fM™3] ng [fm™3] Niot [FM ] e [GeV/fim®] n' [fm=3]
(0.00, 0.00 0.771 0.404 1.251 1.585 1.213
(0.00, 0.46 0.278 0.095 0.391 0.429 0.382
(0.20, 0.48 0.244 0.084 0.344 0.378 0.336
(0.40, 0.59 0.139 0.049 0.197 0.219 0.193
(0.62, 0.80 0.064 0.022 0.090 0.100 0.088

hadron gas model to fit simultaneously the AGS and SPShese two curves shown in Fig. 4 intersect at the pgint
data for all particle number ratios. =0.62 fm,r=0.8 fm). It is the solution in the VDW hadron

In Tables | and II, we show the values of the total mesongas model to fit simultaneously the AGS and SPS data for all
number density,,, baryon number density,, total particle  particle number ratios. The absolute values of the particle
number density, (antibaryons includedtotal energy den-  number and energy densities in the VDW hadron gas for this
sity £ and total pion number density'®', which includes solution are listed in the last rows of Tables | and Il. We
both thermal pions and contributions from resonance decaystress that these values are much smaller than those in the
at chemical freeze-out. The ideal hadron gas<r=0) re- ideal hadron gas at the sarieand u, shown in the first
sults are given in the first row, and those from our calcularows of Tables I and Il. There is an experimental estimate for
tions with different € ,,r) values along the curves in Fig. 4 the freeze-out pion number density in+$b central colli-
are shown in the remaining four rows. We emphasize that theions at the AGS energy®*=0.063 fm 2 [17]. Our result
last rows in the tables give our results for the intersectiorhtgtgo_o54 fmi 3 for Au+Au AGS collisions shown in the
point(r ,=0.62 fm,r=0.8 fm), and that these values are our |ast row of the Table | is quite close to this experimental
predictions within the VDW hadron gas model for the estimate.
chemical freeze-out at AbAu AGS and PhB-Pb SPS colli- The next step is naturally to fit hadron momentum spectra.

sions, respectively. We believe that theser values, along |t requires the inclusion of the longitudinal and transverse
with the corresponding densities, give a reasonable physicgbllective flow effects. The temperatufe=185 MeV looks
solut?on for the chemical freeze-out stateArt A collisions 3 Jittle too high for use in the fitting of the transverse mo-
considered. mentum spectra in PbPb (SPS collisions. For example, the
pion inverse slope parameter is near 190 M@$g] and the
VI. SUMMARY freeze-out temperaturé= 185 MeV seems to leave almost
) ) no room for the transverse collective motion effects. How-
A self-consistent hadron gas model with the VDW ex-eyer, two facts should be taken into account. First, the tem-
cluded volume is considered and critically compared withperature determined from particle number ratios is for the
other “thermal models” used in the literature. This approachchemical freeze-out which could be higher than the thermal
is then adopted to analyze the preliminary data oftAWw  freeze-out temperature used in particle spectra calculations.
(AGS) and Pb+-Pb (SPS. Within the VDW model, the ob-  second, we remind the reader again that there are large reso-
tained values of particle number and energy densities, anflance decay contributions to pion production. Even after the
other thermodynamical functions at chemical freeze-out argnnancement of thermal pions with* =180 MeV, reso-
very different from those obtained in the ideal hadron gas, agsnce decays contribute more than %O% to the final pions.

seen in the first and last rows in Tables | and Il. Because 0fphease resonance decays are known to lead to a lower pion
their strong effects on hadron thermodynamical functionsggfective temperature”(the inverse slope paramexat the
the VDW gas formulation should be properly treated. transverse pion mass less than 1 GeV.

The preliminary data of A#tAu (AGS) and Pb-Pb(SPS
for the particle number ratios can be fitted in the VDW had-
ron gas as shown in Figs. 1-3. The model parameters, given
in Egs. (37) and (38), lead to the enhancement of pions in  This work was supported in part by the National Science
pion to hadron ratios as compared to the ideal hadron gaSouncil of Taiwan under Grant Nos. NSC 86-2112-M-001-
model predictions. This enhancement in pions is regulated bg10, 86-2112-M-002-016. M.I.G. gratefully acknowledges
ur (>0) and is explained in the VDW model by a smaller the financial support by NSC, and the kind hospitality of the
pion “hard-core radius” than those of all other hadrons.  Physics Department, National Taiwan University. He is also

The obtained parameters for Au (AGS) and Pb+-Pb  thankful to St. Mravczyrski for reading the manuscript and
(SPS define two curves in ther(,,r) plane, respectively. useful comments.
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