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Excluded volume hadron gas model for particle number ratios inA1A collisions
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We recapitulate a thermodynamically consistent excluded volume hadron gas model and examine its differ-
ences with other ‘‘thermal models’’ used in the literature. Preliminary experimental data for particle number
ratios in the collisions of Au1Au at the BNL AGS (11A GeV/c) and Pb1Pb at the CERN SPS
(160A GeV/c) are analyzed. For equal values of the hadron hard-core parameters the excluded volume model
gives essentially the ideal gas predictions for the particle number ratios, which is similar to other thermal
models. We observe, however, the systematic excess of experimental pion abundances compared to the ideal
gas results. This effect can be explained in our model by a smaller pion hard-core volume compared to those
of other hadrons. The absolute values for particle number and energy densities at the chemical freezeout are
predicted with a simultaneous fit to all these AGS and SPS particle number ratios.@S0556-2813~97!05510-6#

PACS number~s!: 25.75.2q, 24.10.Pa
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I. INTRODUCTION

Preliminary data for nucleus-nucleus (A1A) collisions
with truly heavy beams have recently become availab
Au1Au at 11A GeV/c at the BNL AGS and Pb1Pb at
160A GeV/c at the CERN SPS@1#. A systematic analysis o
these data could yield clues to whether a short-lived ph
with quark and gluon constituents, the quark-gluon plas
exists during the hot and dense stage of these reactions

For the studies of matter properties inA1A collisions, it
is of vital importance to determine whether local thermod
namical equilibrium in the system is reached. Assuming s
a local thermodynamical equilibrium at the final~freeze-out!
stage of the process, one can calculate the particle num
ratios without detailed knowledge of the very complicat
dynamical evolution history of the system. We remind th
thechemicalfreeze-out which determines the hadron num
ratios does not necessarily coincide with thethermal freeze-
out which defines hadron momentum spectra.

The aim of the present paper is to analyze the prelimin
data for particle number ratios of Au1Au ~AGS! and Pb1Pb
~SPS! collisions within the framework of the thermodynam
cal equilibrium hadron gas model. The name ‘‘therm
model’’ has often been used in the literature for this type
calculations. We stress, however, that those ‘‘thermal m
els’’ used in the literature to calculate particle number rat
are, in fact, very different. Therefore, our first step is to e
plain our model and clarify its difference from other versio
of ‘‘thermal model.’’

It seems natural to start with the ideal hadron gas at
freeze-out stage. All known particles and resonances sh
be included in this gas and the resonance decay modes t
observed particles must be taken into account as well. H
ever, such an ideal gas model becomes inadequate in h
energyA1A collisions. The chemical freeze-out paramete
temperatureT and baryonic chemical potentialmb , obtained
from fitting the particle number ratios at AGS and SPS
ergies lead to artificially large values of total particle numb
560556-2813/97/56~4!/2210~9!/$10.00
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densities which are much higher than any reasonable~or ‘‘in-
tuitively expected’’! ones at the freeze-out. The total partic
number density at the chemical freeze-out within the id
gas approach isntot'4n0 for the AGS andntot'8n0 for the
SPS, whereno>0.16 fm23 is the normal nuclear density
These numbers also exceed any experimental estimate
tained from the particle multiplicities and from the measu
ment of the volume of the system at the freeze-out w
pion-interferometry method. To suppress undesirable la
values of particle number densities, the van der Wa
~VDW! excluded volume procedure is used. We will follo
in the present paper the thermodynamically consistent
cluded volume model of Refs.@2, 3# which will be recapitu-
lated in the next section. Some other ‘‘thermal model
Refs. @4–8# also include VDW ‘‘corrections,’’ but in some
ad hocand inconsistent ways. It is often believed that t
specific details of these VDW corrections are of minor im
portance. This is, however, not the case. The VDW repuls
does not essentially alter the particle number ratios, bu
does always give a very strong suppression effect on
values of particle number densities themselves. As we s
see below the total values of particle number densities
suppressed by a factor of 8 and 14 for AGS and SPS che
cal freeze-out states, respectively. Therefore, the influenc
the VDW excluded volume procedure on particle densiti
as well as on all other thermodynamical functions of t
hadron gas, is very strong, and hence the correct form of
excluded volume model formulation should be employed

II. van der WAALS REPULSION
IN THE GRAND CANONICAL FORMULATION

For nonrelativistic statistical mechanics, the use of
grand canonical ensemble is usually just a matter of con
nience. However, in the hadron gas considered below i
unavoidable. In a relativistic theory one can not fix the nu
ber of particles, the number of pions in a hadron gas syst
for example. The average number of particles only ma
sense in an equilibrium system, like in the case of a pho
gas. This average number is not conserved, but incre
2210 © 1997 The American Physical Society
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56 2211EXCLUDED VOLUME HADRON GAS MODEL FOR . . .
with increasing temperature of the system. This takes p
at all temperatures, even at very low ones when the ther
motion of each individual pion can be treated nonrelativis
cally. The canonical ensemble with a fixed number of pio
has no physical meaning. This statement is also valid
course, for other hadrons. Particle chemical potentials
general, regulate not particle numbers but the values of c
served charges. Strongly interacting matter has three
served charges, viz., baryonic numberB, strangenessS, and
electric chargeQ ~strangeness is conserved as we neg
‘‘slow’’ weak interactions!. Therefore, the canonical en
semble can only be defined with fixed values ofB, S, andQ,
not the fixed numbers of pions, nucleons and other hadr

Let us start with the ideal gas of one particle species w
temperatureT, chemical potentialm and volumeV. The
pressurepid is related to the grand canonical partition fun
tion Zid and in thermodynamical limitV→`, it has the fol-
lowing expression:

pid~T,m![T lim
V→`

ln Zid~T,m,V!

V

5
d

6p2 E
0

`

dk
k4

~k21m2!1/2 f ~k!, ~1!

with

f ~k!5FexpS ~k21m2!1/22m

T D1h G21

~2!

being the momentum distribution function.d is the number
of particle internal degrees of freedom~degeneracy! andm is
the mass. The value ofh is 21 for bosons,11 for fermions,
and h50 gives the classical~Boltzmann! approximation.
The ideal gas particle number density is given by

nid~T,m![S ]pid~T,m!

]m D
T

5
d

2p2 E
0

`

dkk2f ~k!. ~3!

Furthermore, the entropy density is defined assid

5(]pid/]T)m . The energy density can be found from a
other thermodynamical relation« id5Tsid2pid1mnid and is
written as

« id~T,m!5
d

2p2 E
0

`

dkk2~k21m2!1/2f ~k!. ~4!

For a fixed particle numberN, the VDW excluded vol-
ume procedure means the substitution of the volume of
systemV by V2vN, wherev is the parameter correspond
ing to the proper volume of the particle. Note that this VD
procedure, interpreted in statistical mechanics as the ga
hard-sphere particles with radiusr , requires that the volume
parameterv equal to the ‘‘hard-core particle volume,
4
3 pr 3, multiplied by a factor of 4@9#. To introduce the ex-
cluded volume~á la van der Waals! in our grand canonica
ensemble formulation, we start with the volume substitut
of V by V2vN in the canonical partition functionZ for each
fixedN separately. The grand canonical partition function
the ideal gas system
ce
al
-
s
f

in
n-
n-

ct

s.
h

e

of

n

r

Zid~T,m,V!5 (
N50

`

expS mN

T DZid~T,N,V! ~5!

then becomes

Z~T,m,V!5 (
N50

`

expS mN

T DZid~T,N,V2vN!u~V2vN!.

~6!

There is a difficulty in the evaluation of the sum overN in
Eq. ~6! because of theN dependence of the ‘‘available vol
ume,’’ V2vN. To overcome it, we perform a Laplace tran
form on Eq.~6! @2# and obtain

Ẑ~T,m,x![E
0

`

dV exp~2xV!Z~T,m,V!

5E
0

`

dV̂exp~2xV̂!Zid~T,m̂,V̂!, ~7!

wherem̂[m2vTx and V̂[V2vN. The second equality in
Eq. ~7! can be easily understood as follows. We substit
Z(T,m,V) by the infinite sum of Eq.~6!, change the integra
tion variableV to V̂ in each term of the series and then u
Eq. ~5! to sum up the series again.

From the definition of the pressure function

p~T,m![T lim
V→`

ln Z~T,m,V!

V
~8!

one concludes that the grand canonical partition function
the system, in the thermodynamical limit, approaches

Z~T,m,V!uV→`;expFp~T,m!V

T G . ~9!

From the first equality in Eq.~7! one sees that this exponen
tially increasing part ofZ(T,m,V) generates an extrem
right singularity in the functionẐ(T,m,x) at some pointx* .
For x,p/T the integration overV for Ẑ(T,m,x) diverges at
its upper limit. Therefore, the extreme right singularity
Ẑ(T,m,x) at x* (T,m) gives us the system pressure,

p~T,m!5Tx* ~T,m!. ~10!

Note that this direct connection of the extreme rightx
singularity of Ẑ to the asymptotic behaviorV→` of Z is a
general mathematical property of the Laplace transform.
ing the above equations we find

x* ~T,m!5 lim
V̂→`

ln Zid~T,m̂,V̂!

V̂
, m̂ i[m2vTx* ~T,m!.

~11!

With Eqs. ~1! and ~10! we find from Eq.~11! the transcen-
dental equation for the pressurep(T,m) of the gas with
VDW repulsion in the grand canonical ensemble:

p~T,m!5pid~T,m̃ !, m̃[m2vp~T,m!. ~12!
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At this point some comments are appropriate. First,
remind the reader that the singularityx* of the Ẑ(T,m,x)
function has nothing to do with phase transition singularit
of the system. A singularity atx* (T,m) exists for the ideal
gas as well — one can easily recover the ideal gas form
by puttingv50 in the above equations. Another result whi
can puzzle a reader is the difference between the fam
form of the VDW repulsion,

p~V2vN!5NT, ~13!

and our Eq.~12!. According to Eq.~13! the ideal gas pres
sure,pid5NT/V, increases due to the excluded volume
pulsion as expected intuitively while Eqs.~1! and ~12!
clearly shows that the ideal gas pressure decreases with
inclusion of the excluded volume repulsion. To resolve t
‘‘paradox,’’ one should keep in mind the important diffe
ence between standard VDW gas treatment with Eq.~13! for
fixed particle numberN and our system with fixed chemica
potentialm in the grand canonical ensemble. To clarify th
point, let us calculate the particle number density:

n~T,m![S ]p~T,m!

]m D
T

5
nid~T,m̂ !

11vnid~T,m̃ !
. ~14!

To have a direct comparison with Eq.~13! we now make the
Boltzmann approximation, i.e., withh50 in Eq. ~2!. We
shall see later that at the AGS and SPS chemical freeze
the Boltzmann approximation leads to a very good agr
ment ~only a few percent deviations! for all thermodynami-
cal functions with those calculated with exact Bose a
Fermi distributions. In Boltzmann approximation, the dist
bution function f (k), as well as all thermodynamical func
tions of the ideal gas, possesses a momentum-indepen
factor exp(m/T). One can easily find that

p~T,m!5expS 2
vp~T,m!

T D pid~T,m!,

pid~T,m!5Tnid~T,m!. ~15!

After some simple algebra, Eqs.~14! and ~15! give

p~T,m!@12vn~T,m!#5n~T,m!T. ~16!

The form of Eq.~16! amazingly coincides with that of Eq
~13!, and therefore, we have no contradiction with the st
dard VDW gas physics. The crucial difference is that
have in Eq.~16! a n(T,m) function instead of a fixed numbe
N ~or a fixed particle densityN/V! as is the case in Eq.~13!.
In the grand canonical ensemble with fixed temperature
chemical potential, the VDW repulsion leads to a strong s
pression of the particle number density. It is just this su
pression on the number of particles which leads to the
crease of the ideal gas pressure after the VDW repuls
begins to come into effect. Equations~16! and ~13! have
similar form, but their physical meaning are very differe
Equation~13! calculates the pressure as the function ofN, V,
T while Eq. ~16! gives particle number densityn(T,m), but
only after Eq.~15! for p(T,m) function is solved.
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With p(T,m) as the solution of Eq.~12! the particle num-
ber density is given by Eq.~14!. The entropy and energy
densities are

s~T,m![S ]p~T,m!

]T D
m

5
sid~T,m̃ !

11vnid~T,m̃ !
, ~17!

«~T,m![Ts2p1mn5
« id~T,m̃ !

11vnid~T,m̃ !
. ~18!

Equations~14!, ~17!, and~18! reveal two suppression effect
on the particle number, entropy and energy densities bec
of the VDW repulsion, namely

~1! The modification of the chemical potentialm→m̃ as
given in Eq.~12!. In Boltzmann approximation it just lead
to an additional factor exp(2vp/T).

~2! A suppression factor@11vnid(T,m̃)#21,1.
For a ideal gas system of several particle speciei

51, . . . ,h, the thermodynamical functions are additive a
equal to the sums of their partial values for different parti
species:

pid~T,m1 , . . . ,mh!5(
i 51

h

pi
id~T,m i !, ~19!

and similar expressions forsid, nid, and« id. Note that the
index i includes all the information about thei th particle,
mi , di , h i , m i , etc.

The extension of the excluded volume procedure for s
eral particle species is straightforward. The grand canon
partition function of the ideal gas equals to the product
Zi

id(T,m i ,V) for each particle species ‘‘i . ’’ The excluded
volume grand canonical partition function for several parti
species,i 51, . . . ,h, with proper volumesv1 , . . . ,vh can
then be written as

Z~T,m1 , . . . ,mh ,V!5 (
N150

`

••• (
Nh50

`

)
i 51

h

expS m iNi

T D
3Zi

id~T,Ni ,V̂!u~V̂! ~20!

with available volumeV̂[V2( i 51
h v iNi . The Laplace trans-

form of Eq. ~20! gives

p~T,m1 , . . . ,mh![T lim
V→`

ln Z~T,m1 , . . . ,mh ,V!

V

5pid~T,m̃1 , . . . ,m̃h!5(
i 51

h

pi
id~T,m̃ i !,

~21!

m̃ i[m i2v i p~T,m1 , . . . ,mh!, i 51, . . . ,h. ~22!

Particle number density for thei th species can be calculate
from Eqs.~21! and ~22! and is found to be
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ni~T,m1 , . . . ,mh![S ]p

]m i
D

T,m1 , . . . ,m i 21 ,m i 11 , . . . ,mh

5
ni

id~T,m̃ i !

11( j 51
h v jnj

id~T,m̃ i !
. ~23!

The total particle number density is the sum of the par
valuesni from i 51 to i 5h. Note that particle number den
sity ni depends on all proper volume parametersv1 , . . . ,vh .
The partial pressurespi5pi

id(T,m̃ i) are reduced to the idea
gas onespi

id(T,m i) in the limit v i→0. This, however,
does not take place forni because the particle numbe
density ni with v i50 still feels the presence of othe
particles with v jÞ0 due to the suppression facto
@11( j 51

h v jni
id(T,m i)#21 in Eq. ~23!.

Moreover, the total entropy and energy densities of
VDW hadron gas are given as

s~T,m1 , . . . ,mh![S ]p

]TD
m1 , . . . ,mh

5
( i 51

h si
id~T,m̃ i !

11( j 51
h v jnj

id~T,m̃ j !
,

~24!

«~T,m1 , . . . ,mh![Ts2p1(
i 51

h

m ini

5
( i 51

h « i
id~T,m̃ i !

11( j 51
h v jnj

id~T,m̃ j !
. ~25!

III. COMPARISON WITH OTHER ‘‘THERMAL MODELS’’

We recapitulate in the last section a thermodynamica
consistent formulation of the VDW repulsion in the gra
canonical ensemble. The problem appeared to be not tr
and many thermal model formulations of the VDW ‘‘corre
tions’’ used in the literature do not meet the requirement
self-consistency. The essential difference between the m
that we use and those of Refs.@4–7# is the modification of
the hadron chemical potentials according to Eq.~22!. The
VDW ‘‘correction’’ of the ideal gas formulas by the suppre
sion factor@11( j 51

h v jnj
id(T,m j )#21 was postulated in Refs

@4–7# for all thermodynamical functions including the pre
sure. These ‘‘corrected’’ functions, however,do not satisfy
fundamental thermodynamical relations. Besides, the con
tent formulation allows the dependence on the excluded
umesv i ’s for particle number ratios, while in the formulatio
of Refs.@4–7#, particle ratios are always the same as in
ideal gas for any choices ofv i values because the suppre
sion factor in the denominator is identical for eachi th par-
ticle and therefore cancel each other out.

In Ref. @8#, the VDW ‘‘correction’’ was postulated in the
form of

pi~T,m i !5
pi

id~T,m i !

11( j 51
h v jnj

id~T,m j !
. ~26!

The total pressurep is just the sum of above partial pressur
over all particle speciesi . As we have shown in the previou
section, the VDW formulation leads to the transcenden
equations~21! and ~22! for the pressure function. To com
l
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f
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pare it with ansatz of Eq.~26!, let us make again the Boltz
mann approximation in Eq.~21!. Using Eqs.~5! and~1! one
finds from Eq.~21! that

p~T,m1 , . . . ,mh!>(
i 51

h

expS 2
v i p

T D pi
id~T,m i ! . ~27!

Assumingv i p/T!1 so that exp(2vi p/T)'(11vi p/T)21, we
use then the expansion

p~T,m1 , . . . ,mh!>pid~T,m1 , . . . ,mh!1O~v i !

and the relation

pid~T,m1 , . . . ,mh!5(
i 51

h

pi
id~T,m i !>T(

i 51

h

ni
id~T,m i !

~28!

@the second equality in Eq.~28! follows because of the Bolt-
zmann approximation# to find finally

pi~T,m i !'
pi

id~T,m i !

11v i( j 51
h nj

id~T,m j !
. ~29!

Equation~29! is still rather different from the prescription o
Eq. ~26! used in Ref.@8#. In Eq. ~29! pi5pi

id when v i50.
This is generally true as can be clearly seen in the last eq
ity of Eq. ~21!. However, this does not take place in Eq.~26!
if some otherv jÞ0. We conclude therefore that the ‘‘ex
cluded volume correction’’ in Eq.~26! @8# has nothing to do
with VDW excluded volume procedure even in the lim
when allv i ’s are small, i.e., in the first order expansion ov
v i .

IV. PARTICLE NUMBER RATIOS
AT AGS AND SPS ENERGIES

As mentioned before, particle chemical potentialsm i
regulate the values of conserved charges. For simplicity
neglect the effects of nonzero electrical chemical poten
which were considered in Ref.@10#. Electrical chemical po-
tential is responsible, for example, forp1p2 asymmetry
when colliding ions are heavy and therefore have isoto
asymmetry, i.e., their number of neutrons is larger than nu
ber of protons. These interesting effects are, however,
large numerically at AGS and especially at SPS energies

The chemical potential of thei th particle can be written as

m i5bimb1sims , ~30!

in terms of baryonic chemical potentialmb and strange
chemical potentialms , wherebi andsi are the corresponding
baryonic number and strangeness of thei th particle. The
hadronic gas state is defined by two independent thermo
namical parameters,T andmb . The strange chemical poten
tial ms(T,mb) is determined from the requirement of ze
strangeness

nS~T,mb ,ms![(
i 51

h

sini~T,m i !50. ~31!
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In addition toT andmb , the thermodynamical functions als
depend on the excluded volume parametersv i because of Eq.
~22!.

Baryon and meson resonances and their subsequen
cays to observed hadrons are of great importance for
measured particle number ratios at AGS and SPS ener
All known resonance states with mass up to 2 GeV are
cluded in our calculations. Preliminary experimental data
particle number ratios in the collisions of Au1Au at the
BNL AGS (11A GeV/c) and Pb1Pb at the CERN SPS
(160A GeV/c) are analyzed. We use the compilation of t
experimental data which were presented by Stache
QM’96 ~see Ref.@11# and references therein!.

The enhancement of strange particle production inA1A
collisions has attracted special attention as a possible si
of the quark-gluon plasma formation@12#. However, the
‘‘thermal models’’ of Refs.@4–7# which, in fact, gives the
same results as the ideal hadron gas model have been
cessful in reproducing many of the ratios with strange h
rons measured at the AGS and SPS without any additio
parameter to control strangeness abundance. Instead,
have a problem with pion abundances—for the SPS da
has been observed@4–6# that a simple ideal gas model
unable, within a single set of freeze-out parameters, to re
duce simultaneously the strange particles yields and a
baryon to baryon ratios together with ratios where pions
involved. Specifically, experimental pion to nucleon ra
and ratios of pions to other hadrons are larger than the i
gas predictions. As pion multiplicity can be related to t
entropy of the system, the ideal hadron gas model app
unable to account for the large entropy per baryon of
freeze-out system. The deficiency of pions in the ideal h
ron gas calculations has become the main problem in
theoretical ‘‘thermal model’’ in the interpretation of the SP
particle production data. Several mechanisms@5,6,13# have
been proposed to remedy this problem, but no satisfac
answer has yet been found.

Our model procedure is as follows. For given values oT
and mb , we solve the system of equations, Eqs.~21!, ~22!,
and ~31!, to find p(T,mb) and ms(T,mb). The values ofT
and mb are then determined from the ‘‘best fit’’ to particl
number ratios not involving pions. These best fits to
Au1Au ~AGS! and Pb1Pb ~SPS! preliminary data are
shown in Fig. 1. The chemical freeze-out parameters
found to beT>140 MeV, mb>590 MeV for Au1Au AGS,
andT>185 MeV, mb>270 MeV for Pb1Pb SPS collisions.

All particle number densities are calculated from Eq.~23!
for all known stable particles and resonances with mass u
2.0 GeV. The total production yield of hadroni is then pro-
portional to the sum of its thermal density and all possi
resonance decay contributions to that hadroni :

ni
tot5ni1ni

dec5ni1(
j Þ i

nja~ j ,i !, ~32!

where a( j ,i ) is the probability~branching ratio! for reso-
nancej to strongly decay into hadroni .

In our calculations we will examine the dependence
hadron ratios on particle volume parametersv i ’s. Results
shown in Fig. 1 correspond to the same proper volume
rameterv i5v for all hadrons. In this case particle numb
de-
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ratios are almost independent on the value ofv and are the
same as in the ideal gas and as in Refs.@4–7#. It occurs
because of the relation

ni
id~T,m̃ i !>expS 2

vp~T,mb!

T Dni
id~T,m i !. ~33!

Note that the above equality becomes exact in the Boltzm
approximation. In this case a common VDW ‘‘denomin
tor,’’ 1 1( j 51

h v jnj
id(T,m̃ j ), and a common ‘‘numerator,’’

exp(2vp/T), are canceled and Eq.~23! leads to

ni~T,mb!

nj~T,mb!
>

ni
id~T,m i !

nj
id~T,m j !

. ~34!

The value of the parameterv is, however, still crucial for the
absolute values of particle number densities as well as fo
other thermodynamical functions of the hadron gas. At
same fixedT andmb , all thermodynamical functions of the
hadron gas are smaller than in the ideal hadron gas
strongly decrease with increasingv.

We use quantum statistics in our calculations, but some
our qualitative arguments depend on the validity of the Bo
zmann approximation. We have checked for all particle nu
ber ratios that the Boltzmann approximation in the ideal h
ron gas ~i.e., v i50! gives an accurate estimate to th
corresponding quantum statistics values:;1 – 3% for both
AGS and SPS chemical freeze-out parameters. In our c
sideration withv i.0, each chemical potential is shifted b
2v i p and the Boltzmann approximation always becom
even much better.

FIG. 1. Points are the preliminary experimental data for
particle number ratios~see Ref.@11# and references therein! for
Au1Au AGS and Pb1Pb SPS collisions~in the lower and upper
part of the figure, respectively!. The short horizontal lines are th
model fit with T>140 MeV, mb>590 MeV ~AGS!, and T
>185 MeV, mb>270 MeV ~SPS!.
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In the case when not all of thev i ’s are equal, the hadron
volume parametersv i do influence the particle number ratio
through the modification of Eq.~22! in the particle chemica
potentials, required by thermodynamical self-consisten
The effect is quite evident that hadrons which take up l
space~i.e., smaller values ofv i!, and hence smaller influenc
on the excluded volume, have the advantage. The par
number ratios of those small hadrons to larger ones incre
in comparison with the ideal gas results.
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To solve the problem with pion multiplicities in the VDW
model we now introduce different hard-core radii:r p for
pions andr for all other hadrons (r .r p). Such a possibility
with r p50 was considered in Ref.@14#. We remind the
reader that the excluded volume parameters arev i

54(4p/3)r i
3 . Using Eqs.~32! and ~34!, we then find
np
tot

ni
tot>

exp~2vpp/T!np
id~T,mp50!1( j Þp exp~2vp/T!nj

id~T,m j !a~ j ,p!

exp~2vp/T!ni
id~T,m i !1( j Þ i exp~2vp/T!nj

id~T,m j !a~ j ,i !

[
exp~mp* /T!np

id~T,mp50!1( j Þpnj
id~T,m j !a~ j ,p!

ni
id~T,m i !1( j Þ inj

id~T,m j !a~ j ,p!
, ~35!
c
-

s

ions

tio

ron
where

mp* [~v2vp!p5
16p

3
~r 32r p

3 !p~T,mb ;r ,r p!. ~36!

In Eq. ~36! we addr andr p in the arguments of the pressu
function to remind the pressure dependence on particle h
core volumes through Eqs.~21! and ~22!. Equation ~35!
shows that the ratio of pions to any hadroni is changed in
comparison to the ideal gas calculations. From the sec
equality of Eq.~35! the increase of the thermal pion dens
appears to be due to an effective pion chemical poten
mp* . In the Boltzmann approximation, it leads just to t
additional factor of exp(mp* /T) in the pion number density o
the ideal gas. Note that all chemical potentialsm i are trans-
formed to m̃ i5m i2v i p and thereforem̃p52vpp becomes
negative becausemp50. If vp is smaller thanv i5v, in the
ratiosnp /ni , mp* looks like a positive pion chemical poten
tial in the ideal gas formalism. From this explanation of t
origin of mp* , it is clear that there is no restriction on i
possible values by the pion mass, in contrast to the id
Bose gas where alwaysm<m.

In Figs. 2 and 3 different pion to hadron ratios are sho
for Au1Au AGS and Pb1Pb SPS collisions, respectively
Preliminary experimental values are designated by do
lines, while our model results are represented by so
curves, as functions ofmp* . The valuemp* 50 corresponds to
the ideal gas results. We have already demonstrated that
ticle number ratios forv i50 ~the ideal hadron gas! remain
the same as those forv i5v5constant. For all ratios in Figs
2 and 3 we find that the experimental values systematic
exceed the ideal gas results (mp* 50). To fit data, one need
mp* .0 and from Eq.~36! it meansr .r p . Our T and mb

values are already fixed both for AGS and SPS from ra
given in Fig. 1. Assumingr p different from r i5r for other
hadrons we obtain no changes in the VDW model values
the ratios shown in Fig. 1. As pions have no influence
those ratios, they remain the same as the ideal hadron
results.
d-

nd

al

al

n

d
d

ar-

ly

s

r
n
as

At fixed T andmb the value ofmp* is a complicated func-
tion of r p andr . The ratios in Figs. 2 and 3 feel not specifi
values of (r p ,r ) but mp* value. From the preliminary experi
mental data we findmp* >100 MeV for Au1Au AGS colli-
sions andmp* >180 MeV for Pb1Pb SPS ones. We stres
that the problem with pion deficiency observed in Refs.@5,
6# for SPS energies looks similar to what we find inboth
AGS and SPS data analyzed above. This deficiency of p
for the preliminary data in Pb1Pb SPS collisions is not so
drastic as in S1Pb SPS data, where the pion to nucleon ra

FIG. 2. Pion to hadron ratios for Au1Au AGS collisions. The
experimental data~see Ref.@11# and references therein! are shown
by the dotted horizontal lines. The solid lines are the VDW had
gas model results as the functions ofmp* ~see the text for details!.
An agreement with data corresponds tomp* >100 MeV.
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is close to 8@15# and is approximately 2 times larger than t
ideal gas result. To have an agreement with data in Fig
and 3 we need only about 30% larger pion to other hadr
ratios than those in the ideal hadron gas. Withr p,r ~and
thereforemp* .0! the thermal pion number density wou
increase by a factor of exp(mp* /T). It is about 2 for Au1Au
AGS and about 2.6 for Pb1Pb SPS collisions to have a
agreement with data. The effect for the pion thermal den
is therefore quite strong. However, it does not strongly a
the pion to hadron ratios, Eq.~35!, because at both AGS an
SPS energies the pion production is essentially dominate
the resonance decay contributions. Let us also remind
possibility of the chemical nonequilibrium effects for pion
discussed in Ref.@16#. It would lead to the chemical poten
tial mp.0 with its values being always smaller than the pi
massmp . For r p,r , we have obtained in the VDW mode
the effective pion chemical potentialmp* whose value is not
restricted by the pion mass, and no chemical nonequilibr
effects are required.

FIG. 3. Pion to hadron ratios for Pb1Pb SPS collisions. The
experimental data~see Ref.@11# and references therein! are shown
by the dotted horizontal lines. The solid lines are the VDW had
gas model results as the functions ofmp* ~see the text for details!.
An agreement with data corresponds tomp* >180 MeV.
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V. PARTICLE HARD-CORE RADII

Our fits to the preliminary data of Au1Au ~AGS! and
Pb1Pb ~SPS! on the particle number ratios with VDW had
ron gas model are shown in Figs. 1–3. From fitting the d
we have found the following model parameters:

AGS: T>140 MeV, mb>590 MeV, mp* >100 MeV,
~37!

SPS: T>185 MeV, mb>270 MeV, mp* >180 MeV.
~38!

The set of all possible values ofr p and r which give the
same value ofmp* in Eq. ~36! for the AGS or SPS defines
curve in (r p ,r )-plane. The two curves corresponding to t
AGS and SPS, respectively, are shown in Fig. 4, toget
with their intersection point (r p>0.62 fm, r >0.8 fm!. This
intersection point is a solution forr p and r in the VDW

n

FIG. 4. The solutions of the equationsmp* 5constant for AGS
parameters, Eq.~37!, ~the dashed curve! and SPS ones, Eq.~38!,
~the dotted curve! shown in (r p ,r ) plane. The intersection point is
approximately at~r p>0.62 fm, r >0.8 fm!.
m

TABLE I. Meson number densitynm , baryon number densitynb , total particle number densityntot ,

energy density«, and total pion number densitynp
tot , which includes thermal pions and contributions fro

decays, at the freeze-out for AGS Au1Au collision at 11A GeV/c.

(r p ,r ) @fm# nm @ fm23# nb @ fm23# ntot @ fm23# « @GeV/fm3# np
tot @ fm23#

~0.00, 0.00! 0.200 0.402 0.603 0.722 0.400
~0.00, 0.50! 0.097 0.130 0.227 0.248 0.161
~0.20, 0.52! 0.089 0.120 0.209 0.228 0.149
~0.40, 0.61! 0.061 0.084 0.145 0.159 0.103
~0.62, 0.80! 0.032 0.043 0.075 0.083 0.054
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TABLE II. Meson number densitynm , baryon number densitynb , total particle number densityntot ,
energy density«, and total pion number densitynp

tot , which includes thermal pions and contributions fro
decays, at the freeze-out for SPS Pb1Pb collision at 160A GeV/c.

(r p ,r ) @fm# nm @ fm23# nb @ fm23# ntot @ fm23# « @GeV/fm3# np
tot @ fm23#

~0.00, 0.00! 0.771 0.404 1.251 1.585 1.213
~0.00, 0.46! 0.278 0.095 0.391 0.429 0.382
~0.20, 0.48! 0.244 0.084 0.344 0.378 0.336
~0.40, 0.59! 0.139 0.049 0.197 0.219 0.193
~0.62, 0.80! 0.064 0.022 0.090 0.100 0.088
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hadron gas model to fit simultaneously the AGS and S
data for all particle number ratios.

In Tables I and II, we show the values of the total mes
number densitynm , baryon number densitynb , total particle
number densityntot ~antibaryons included!, total energy den-
sity « and total pion number densitynp

tot , which includes
both thermal pions and contributions from resonance dec
at chemical freeze-out. The ideal hadron gas (r p5r 50) re-
sults are given in the first row, and those from our calcu
tions with different (r p ,r ) values along the curves in Fig.
are shown in the remaining four rows. We emphasize that
last rows in the tables give our results for the intersect
point ~r p>0.62 fm, r >0.8 fm!, and that these values are o
predictions within the VDW hadron gas model for th
chemical freeze-out at Au1Au AGS and Pb1Pb SPS colli-
sions, respectively. We believe that theser p ,r values, along
with the corresponding densities, give a reasonable phys
solution for the chemical freeze-out state inA1A collisions
considered.

VI. SUMMARY

A self-consistent hadron gas model with the VDW e
cluded volume is considered and critically compared w
other ‘‘thermal models’’ used in the literature. This approa
is then adopted to analyze the preliminary data of Au1Au
~AGS! and Pb1Pb ~SPS!. Within the VDW model, the ob-
tained values of particle number and energy densities,
other thermodynamical functions at chemical freeze-out
very different from those obtained in the ideal hadron gas
seen in the first and last rows in Tables I and II. Because
their strong effects on hadron thermodynamical functio
the VDW gas formulation should be properly treated.

The preliminary data of Au1Au ~AGS! and Pb1Pb~SPS!
for the particle number ratios can be fitted in the VDW ha
ron gas as shown in Figs. 1–3. The model parameters, g
in Eqs. ~37! and ~38!, lead to the enhancement of pions
pion to hadron ratios as compared to the ideal hadron
model predictions. This enhancement in pions is regulated
mp* (.0) and is explained in the VDW model by a small
pion ‘‘hard-core radius’’ than those of all other hadrons.

The obtained parameters for Au1Au ~AGS! and Pb1Pb
~SPS! define two curves in the (r p ,r ) plane, respectively
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These two curves shown in Fig. 4 intersect at the point~r p

>0.62 fm, r >0.8 fm!. It is the solution in the VDW hadron
gas model to fit simultaneously the AGS and SPS data fo
particle number ratios. The absolute values of the part
number and energy densities in the VDW hadron gas for
solution are listed in the last rows of Tables I and II. W
stress that these values are much smaller than those in
ideal hadron gas at the sameT and mb shown in the first
rows of Tables I and II. There is an experimental estimate
the freeze-out pion number density in Si1Pb central colli-
sions at the AGS energy:np

expt>0.063 fm23 @17#. Our result
np

tot>0.054 fm23 for Au1Au AGS collisions shown in the
last row of the Table I is quite close to this experimen
estimate.

The next step is naturally to fit hadron momentum spec
It requires the inclusion of the longitudinal and transve
collective flow effects. The temperatureT>185 MeV looks
a little too high for use in the fitting of the transverse m
mentum spectra in Pb1Pb~SPS! collisions. For example, the
pion inverse slope parameter is near 190 MeV@18# and the
freeze-out temperatureT>185 MeV seems to leave almos
no room for the transverse collective motion effects. Ho
ever, two facts should be taken into account. First, the te
perature determined from particle number ratios is for
chemical freeze-out which could be higher than the therm
freeze-out temperature used in particle spectra calculati
Second, we remind the reader again that there are large r
nance decay contributions to pion production. Even after
enhancement of thermal pions withmp* >180 MeV, reso-
nance decays contribute more than 60% to the final pio
These resonance decays are known to lead to a lower
‘‘effective temperature’’~the inverse slope parameter! at the
transverse pion mass less than 1 GeV.
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