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Nucleon self-energy in the relativistic Brueckner approach

L. Sehn, C. Fuchs, and Amand Faessler
Institut für Theoretische Physik, Auf der Morgenstelle 14, 72076 Tu¨bingen, Germany

~Received 5 February 1997!

The formalism of the relativistic~or Dirac-! Brueckner approach in infinite nuclear matter is described. For
the nucleon-nucleon interaction the one-boson exchange potentials BonnA,B,C and for comparison the Wa-
lecka model, are used. TheT matrix is determined from the Thompson equation and is projected onto five
covariant amplitudes. By the restriction to positive energy states an ambiguity arises in the relativistic Brueck-
ner approach which is discussed here in terms of the pseudoscalar and the pseudovector projection. The
influence of the coupling of the nucleon via theT matrix as an effective two-nucleon interaction to the nuclear
medium is expressed by the self-energy. In particular we investigate the scalar and vector components of the
self-energy for the different one-boson exchange potentials and discuss their density and momentum depen-
dence. We estimate the uncertainty of the self-energy due to the pseudoscalar and the pseudovector choice.
Usually the momentum dependence of the self-energy is thought to be weak, however, we find that this
depends on the one-boson exchange potentials. For the Bonn potentials, in contrast to thesv potential, the
momentum dependence is strikingly strong above as well as below the Fermi surface. We compare with the
results of other groups and study the effects on the equation of state and the nucleon optical potential.
@S0556-2813~97!06007-X#

PACS number~s!: 21.65.1f, 21.30.2x, 24.10.Cn
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I. INTRODUCTION

In the relativistic ~or Dirac-! Brueckner model the dy
namical two-nucleon correlations in infinite nuclear mat
are studied. The formalism is based on an effective quan
field theory for mesons and nucleons@1# and thus ignores the
underlying quark nature of the nucleon. In the Brueckn
model theT matrix ~or BruecknerG matrix! serves as an
effective in-medium two-body interaction. It is determine
by a self-consistent summation of the ladder diagrams
quasipotential approximation~Thompson equation! to the
Bethe-Salpeter equation, see, e.g., Ref.@2#. The bare
nucleon-nucleon~ladder! interaction is described by one
boson exchange potentials. In the present work we apply
Bonn potentialsA,B,C of Refs. @3,9# and for comparison
also a simplesv potential which is well known from the
Walecka model@1#. The nucleon inside the nuclear mediu
is treated as a dressed Dirac particle where the influenc
the coupling to the surrounding nucleons via theT matrix
serving as an effective interaction is expressed by
nucleon self-energy. The self-energy has a Lorentz struc
with large scalar and four-vector components and modi
the single-particle spectrum and the spinor wave function

The relativistic Brueckner model was developed in t
last decades by various authors. At the beginning of
1980’s the relativistic problem was considered by the Bro
lyn group @4,5# in first-order perturbation theory. In the fo
lowing the covariant formalism to a self-consistent treatm
of the Thompson equation was developed by Horowitz a
Serot @6# and is in detail outlined in Ref.@7#. However, in
these works the nucleon-nucleon interactions were descr
within the framework of thesv model. Calculations with
realistic nucleon-nucleon interactions have been perform
by Brockmann and Machleidt@8,9# and later on by ter Haa
and Malfliet @10,11#. A more rigorous derivation of the
Brueckner approach in the framework of relativistic Gree
560556-2813/97/56~1!/216~12!/$10.00
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function can be found in Ref.@12#. In the present work we
refer to the formalism described in Refs.@7,10#.

The main difference between the relativistic Brueckn
approach of Refs.@6–11# and previous works is the use o
medium-dependent spinors and the requirement of s
consistency for both the spinor wave functions and
single-particle spectrum. The Dirac spinors of the nucleon
the medium differ considerably from the free spinors due
the large scalar and vector self-energies. These introduc
additional density dependence into the spinor matrix e
ments of the one-boson exchange potentials and thus into
T matrix. This dynamical effect is absent in nonrelativistic
Another aspect of the modern Brueckner approach is that
inertial frames where theT matrix is determined and where
is used have to be distinguished carefully. Due to the neg
tion of the retardation in the meson propagators the o
boson exchange potentials and the correspondingT matrix
serve as quasipotentials in the two-particle center-of-m
~c.m.! frame. Therefore the relativistic Thompson equation
solved in this system which can be done by numerical st
dard techniques, as, e.g., in the nonrelativistic case of R
@13#. On the other hand single-particle quantities like t
self-energy of the nucleon are calculated in the nuclear m
ter rest frame, where the single-particle distribution, t
Fermi sea, is naturally defined. Thus a covariant represe
tion of theT matrix is required to connect both frames. Ev
though, e.g., the single-particle potential can be calcula
with some additional approximations avoiding this repres
tation, as done in Ref.@9#, the covariant technique is un
avoidable in order to calculate the self-energy compone
themselves.

In the relativistic Brueckner approach the self-consist
spinors are restricted to positive energy states. A differ
approach in the full Dirac space which is also based on o
boson exchange potentials is used in Refs.@4,14#. But in a
full treatment one should further include renormalization
216 © 1997 The American Physical Society



lf
tre

n
e
ne
u
lin
itie
ti
o
be
tiv

on

ec
l-
on
ra

er
al
rm
tio
k

g
en
t
o

sta
e
n
o

a
nc
x
um
b
os
-
o
n
be
e
n

tu
vi
th
n

ow
on
er
n
n

en
of

er,
ns.
ec-
dif-
erv-
lds
be

ter-
ibed
e-
ch

self-
ntly
ular

xt
ere

on

iso-
e
and
we

calar
and
re-

al
rgy
y is

ide
e in
ing
ree

he
n

56 217NUCLEON SELF-ENERGY IN THE RELATIVISTIC . . .
fects like the vacuum fluctuation contributions to the se
energy, as discussed in the context of the relativistic Har
approximation in Refs.@1,7#, and solve the full Bethe-
Salpeter equation self-consistently. However, then the o
boson exchange potentials would be inappropriate. But th
are still outstanding problems. In the standard Brueck
model which we discuss in the present work, one gets aro
the problem of renormalization. The masses and coup
constants in the model are physical renormalized quant
and as a consequence one neglects the effective nega
energy states. However, the effective positive-energy spin
still contain admixtures of free negative-energy states
cause they are a superposition of free positive- and nega
energy spinors. To Lorentz transform theT matrix as we
have mentioned above, the positive energy on-shellT matrix
is projected onto five invariant amplitudes. By the restricti
to positive energy states an ambiguity arises@15# which is
discussed in terms of the pseudoscalar and the pseudov
representation of theT matrix in the Dirac space. From ana
ogy to the one-pion exchange coupling in the nucle
nucleon potential the pseudovector choice is more natu
and further it is known from meson theory analysis@16# that
this choice suppresses the coupling to the negative-en
states. However, the difference between both choices
states a measure for the uncertainty concerning the dete
nation of the self-energy components due to the restric
on positive energy spinors. One issue of the present wor
to estimate this uncertainty.

Thus, the aim of this work is to determine the self-ener
components, to estimate their uncertainty due to differ
covariant representations of theT operator and differen
nucleon-nucleon potentials and to examine the sensitivity
some commonly used observables, i.e., the equation of
and the optical potential on the self-energies. We are inv
tigating in detail the density and the momentum depende
of the scalar and the vector components and compare
results to those of other groups@9,7,10,17#. Thereby the mo-
mentum dependence can just be determined in a first
proximation because it is neglected in the self-consiste
treatment of the Brueckner model. Commonly this appro
mation is justified by the assumption of a weak moment
dependence, at least inside the Fermi sea, but there have
also indications that this assumption depends on the ch
one-boson exchange potential@15#. We show here the mo
mentum dependence over its full range, i.e., below and ab
the Fermi surface, and we find it in the case of the Bo
A,B,C potentials on the order of several 100 MeV, i.e., to
strikingly strong. In difference to most publications in th
field we focus our discussion on the self-energy compone
themselves.

It is meanwhile well known that the nuclear matter sa
ration properties are much better reproduced in the relati
tic than in the nonrelativistic Brueckner approach, i.e.,
predictions for the saturation point of a variety of nucleo
nucleon potentials are located along theCoester bandwhich
meets—in the relativistic case—the empirical area@9#. The
same also holds, e.g., for the nucleon optical potential. H
ever, as we also find in the present analysis these comm
studied observables are not really sensitive to the self-en
components since they mainly depend on a cancellatio
the components. The situation changes in the applicatio
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the Brueckner theory beyond infinite nuclear matter. Wh
applying relativistic Brueckner results to the description
finite nuclei, e.g., in the framework of an effective~density-
dependent! relativistic mean-field theory@18# the self-
energies start to play a decisive role. This fact is, howev
most pronounced in the investigation of heavy ion collisio
Different from resting nuclear matter here the scalar and v
tor components are out of balance which is due to their
ferent Lorentz transformation character and diverse obs
ables are in particular sensitive to the magnitude of the fie
@19#. Furthermore the momentum space configuration can
highly anisotropic and rather corresponds to two coun
streaming currents of nuclear matter which can be descr
by two Lorentz-elongated Fermi ellipsoids. Approximate d
terminations of relativistic Brueckner mean fields for su
configurations have been performed in Ref.@20# and encour-
aging applications to heavy ion collisions in Ref.@21#. Thus
the density and momentum dependence of the nuclear
energy components as the quantity which most promine
characterizes the medium effects is a question of partic
interest.

This paper is organized in the following way. In the ne
section we review the relativistic Brueckner approach. Th
are still some technical differences in thestandardBrueckner
model between Ref.@7# and Refs.@10–12#. Here we follow
the approach of Horowitz and Serot@7# which allows the use
of standard techniques for the solution of the Thomps
equation known from earlier works@13,22#. However, we
use the modern one-boson exchange potentials, treat the
spin channels and also the real and imaginary part of thT
matrix separately and project on both, the pseudoscalar
the pseudovector representation. In the following section
discuss our numerical results. The calculations with thesv
potential are compared with results from Ref.@7#. We further
discuss the density and momentum dependence of the s
and vector self-energy, the influence of pseudoscalar
pseudovector choice is analyzed and we compare to the
sults of Brockmann and Machleidt@9# and the Groningen
group @10,17#. Further the equation of state and the optic
potential are shown and their sensitivity to the self-ene
components is analyzed. In the final section a summar
given.

II. RELATIVISTIC BRUECKNER APPROACH

In the relativistic Brueckner approach the nucleon ins
the nuclear medium may be viewed as a dressed particl
consequence of its two-body interaction with the surround
nucleons. This problem is stated as a coupled set of th
nonlinear integral equations

T5V1 i E VQGGT, ~1!

G5Go1GoSG, ~2!

S52 i E
F
~Tr@GT#2GT!. ~3!

TheT matrix is calculated in the ladder approximation of t
Bethe-Salpeter equation~1! and the bare nucleon-nucleo
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218 56L. SEHN, C. FUCHS, AND AMAND FAESSLER
interaction is described by one-boson exchange poten
V. The intermediate nucleons are given by the two-bo
propagatoriGG which is, however, usually replaced by a
effective propagator@2#, i.e., the Blankenbecler-Sugar prop
gator or the Thompson propagator. In this work the Thom
son choice is applied. The Pauli operatorQ accounts for the
influence of the medium by the Pauli principle and proje
the intermediate scattering states outside the Fermi sea.
dressed one-body Green propagatorG is calculated via the
Dyson equation~2! from the free propagatorG°. The influ-
ence of the coupling to the surrounding nucleons is
pressed by the self-energyS of the nucleon. In the Brueck
ner formalism this self-energy is determined by summing
the direct and exchange interactions with all the nucle
inside the Fermi seaF, see Eq.~3!. Here theT matrix plays
the role of an effective-medium dependent two-body inter
tion. In the relativistic Brueckner approach one introduc
additional approximations for solving the equations~1!–~3!
which are sketched in the following~for further reading see
e.g., Refs.@7,10#!.

A. Self-consistent spinor basis

The most general form of the Lorentz structure of t
self-energy compatible with translational invariance, herm
ticity, parity conservation, time-reversal invariance, and
tational invariance~in the nuclear matter rest frame! is

S~k!5Ss~k!2Sm~k!gm5Ss~k!2g0S0~k!1g•kSv~k!
~4!

with a scalar partSs and a vector partSm5(S0 ,kSv). Due
to the Dyson equation~2! the full Green function has the
formal solution

G215G°212S~k!5gmk*
m2M* ~k!2 i Im@S~k!#, ~5!

where we have introduced the effective mass and the kin
momentum

M* ~k!5M1ReSs~k!, k* m5km1ReSm~k!. ~6!

Re and Im denote real and imaginary part since~above the
Fermi surface! the self-energy in general will be comple
Here we adopt thequasiparticle approximation@12#, i.e., the
Im@S# will be neglected in Eq.~5!. This means that the
decay width of the dressed nucleon is set equal to zero
sulting in an infinite lifetime of this ‘‘quasiparticle.’’ In the
relativistic Brueckner approach the full Green functionG is
replaced by its positive energy part. Thus the self-energ
Eq. ~3! is determined by the part proportional to the Fer
seaF, the so-called Dirac Green functionGD @1,7#

GD~k!5@gmk*
m1M* ~k!#2p id„k* 22M* 2~k!…

3Q~k* 0!Q~kF2uku!, ~7!

which eliminates the divergent contributions from the ne
tive energy sea. However, in the form of Eq.~7! GD is re-
stricted to the description of nuclear matter at rest. In orde
achieve general convenience the Fermi sphereQ(kF2uku)
has to be replaced by a Fermi ellipsoidQ(EF2k* mum) with
the Fermi energyEF5A(11Sv)

2kF
21M* 2 and the boost
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four velocity um5(g,ug) @20#. In Eq. ~7! the momenta of
the quasiparticles are put on mass shell, which is expres
by the d distribution and thusk* 05E* (k)5Ak* 21M* 2.
Hence the self-energyS(k)5S(uku,kF) depends only on the
three-momentumuku and, of course, on the respective dens
or kF .

Furthermore, in the relativistic Brueckner model one a
plies a mean-field approximation toS, Eq. ~4!, which allows
a simple formulation of the self-consistency problem. T
explicit momentum dependence of the self-energy which
ters via the termkSv can be dealt with by introducing th
reduced kinetic momentumk̃* m5k* m/(11Sv) and the re-
duced effective massM̃*5M* /(11Sv). Further one ne-
glects the momentum dependence of the effective m
(M* or M̃* ). Thus, the nucleons fulfill a quasifree Dira
equation

@gm k̃*
m2M̃* #ul~k!50 ~8!

and using the normalization of Ref.@23# the self-consistent
positive-energy spinors of helicityl are defined as

ul~k!5AẼ* ~k!1M̃*

2M̃* S 1

2luku

Ẽ* ~k!1M̃*
D xl ~9!

with xl being a Pauli spinor. The Dirac spinors depend
the effective mass and thus on the nuclear density. The
trix elements of theT matrix and the one-boson exchang
potentialsV, Eq. ~1!, are calculated with these spinors.
contrast to the nonrelativistic Brueckner theory this fact
troduces an additional density dependence into the inte
tion which is one major reason for the great success of
relativistic treatment. This density dependence is media
by the additional parameterM̃* which is fixed at a reference
point, usually atuku5kF . M̃* is obtained as the solution o
the nonlinear equation~reference spectrum approximation!

M̃*5M1Ss~kF ,M̃* !2M̃*Sv~kF ,M̃* !, ~10!

which follows from the definition given above. Sel
consistency is achieved by determining for a start value
M̃* the medium-dependent spinors of Eq.~9!, next theT
matrix from Eq.~1! and finally the self-energy and the ne
M̃* .1 This procedure is repeated until convergence
reached.

B. Covariant T-matrix amplitudes

TheT matrix, in Eq.~1!, is most easily determined in th
two-particle center-of-mass~c.m.! system, while the self-
energy, Eq.~3!, is calculated in the nuclear matter rest fram
Therefore we will determine in a second step covariant a
plitudes of theT matrix. The Thompson propagator~and
similar the Blankenbecler sugar propagator! projects the in-

1From now on we omit the tilde because in the following w

normally deal withM̃* , k̃* m.
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56 219NUCLEON SELF-ENERGY IN THE RELATIVISTIC . . .
termediate nucleons onto positive energy states and res
the exchanged energy transfer byd(k0) to zero. Thus Eq.~1!
is reduced to a three-dimensional integral equation of
Lippmann-Schwinger type, the so-called Thompson equa
@2,10#

T~p,q,x!uc.m.5V~p,q!1E d3k

~2p!3
V~p,k!

3
M* 2

E* 2~k!

Q~k,x!

2E* ~q!22E* ~k!1 i e
T~k,q,x!.

~11!

Here the Thompson equation is given in the two-nucle
c.m. frame wherep5(p12p2)/25(p1*2p2* )/2 is the relative
momentum of the final states and similarq,k are the relative
momenta of the initial and intermediate states, respectiv
The Thompson propagator and similarly the Blankenbec
Sugar propagator imply that the timelike component of
momentum transfer inV andT is set equal to zero which i
a natural constraint in the c.m. frame, however, not a co
riant one. Hence we solve the Thompson equation in the c
frame in contrast to, e.g., the approach of Ref.@9#. The start-
ing energy in Eq.~11! is already fixed:As*52E* (q). The
Pauli operatorQ explicitly depends on the chosen frame, i.
on the boost three velocityu into the c.m. frame. Withx we
denote the set of parametersx5$kF ,M* ,uuu% on which the
T matrix actually depends.

We solve the Thompson equation~11! for the on-shellT
matrix (upu5uqu) in the c.m. system and thereby apply sta
dard techniques which are described in detail by Erkel
@22#. We construct the positive-energy helicityT-matrix el-
ements from theuJMLS& scheme. In the on-shell case on
five of the 16 helicity matrix elements are independent wh
follows from general symmetries, see Ref.@22#. After a par-
tial wave projection onto theuJMLS& states the integral re
duces to a one-dimensional integral over the relative mom
tum uku and Eq. ~11! decouples into three subsystems
integral equations for the uncoupled spin singlet, the
coupled spin triplet, and the coupled triplet states. The P
operatorQ is replaced by an angle-averaged Pauli opera
Q̄ @7#. Since the Fermi sphere is deformed to a Fermi el
soid in the two-nucleon c.m. frameQ̄ is evaluated for such a
Fermi ellipsoid:

Q̄~ uku,x!5H 0 uku,k2

@gE* ~k!2EF#/uguku for k2<uku<k1

1 uku.k1

~12!

with k25AkF22u2EF
2, k15g(uEF1kF) and u5uuu. We

are solving the integral equations by the matrix invers
techniques of Haftel and Tabakin@13#. Real and imaginary
parts of the T matrix are calculated separately by th
principal-value treatment given in Ref.@24#. Due to the an-
tisymmetry of the two-fermion states we can restore the t
isospinI of the two-nucleon system (I50,1) with the help of
the selection rule: (2)L1S1I521. From the five indepen
dent on-shell amplitudes in theuJMLS& representation the
five independent partial wave amplitudes in the helicity re
cts

e
n

n

y.
r-
e

-
.

,

-
z

h

n-
f
-
li
r
-

n

al

-

resentation~for I50,1 and real and imaginary part sep
rately! are obtained by inversion of Eq.~3.32! and then of
Eq. ~3.28! of Ref. @22#. The summation over the total angula
momentumJ ~we have takenJ<6 and for comparison
J<12) yields the full helicity matrix element

(
J

F2J11

4p Gdll8
J

~u!^upul18l28uT
J,I~x!uuqul1l2&

5^pl18l28II 3uT~x!uql1l2II 3&. ~13!

Here u is the scattering angle betweenq and p and
l5l12l2 ,l85l182l28 . The reduced rotation matrice
dll8
J (u) are those defined by Rose@25#. The matrix element

~13! is actually independent of the third component of t
isospin I 3. The next step is the projection of the five ind
pendent helicity amplitudes onto five covariant amplitud
Therefore theT operator is expanded into the basis matric
in the Dirac spinor space

TI5TS,I1~1!1~2!1TV,Ig~1!
m g~2!m1TT,Is~1!

mns~2!mn

1TP,IS K” g5

2M* D
~1!

S K” g5

2M* D
~2!

1TA,I~g5g
m!~1!~g5gm!~2! .

~14!

The subscripts(1),(2) denote the particle on which the ma
trix acts. This expansion, however, is not unique since
have specified the Dirac matrix structure of theT operator by
its action only on positive energy states. The expansion
Eq. ~14! is given withTP,I a pseudovector interactionK” g5. It
is defined asK” 5gmKm with the transferred momentum a
the vertexKm5pf

m2pi
m5pf*

m2pi*
m where f ,i indicates fi-

nal and initial momentum. We will, however, also adopt
pseudoscalar interaction where the fourth term in Eq.~14! is
replaced byTP,Ig5

(1)g5
(2) as it was also done by Horowitz an

Serot @7#. The pseudovector choice is, e.g., made by
Groningen group. This choice is supported by the argum
that it agrees with the one-pion exchange coupling in
nucleon-nucleon potential and furthermore suppresses
coupling to the negative energy states which are neglecte
the Brueckner approach@10,16#. In the present work we ap
ply both variants since we want to examine the influence
the different choices on the self-energy.

Next we take the helicity matrix elements of Eq.~14!. On
the right-hand side~rhs! the helicity states are acting directl
on the matrix operators which are now abbreviated bykm

( i )

for i51,2 andm«$S,V,T,P,A%

^pl18l28II 3uT~x!uql1l2II 3&

5(
m

^pl18l28ukm
~1!km

~2!uql1l2&T
m,I~ upu,u,x!. ~15!

The helicity matrix elements on the rhs are given explicit
e.g., in Eqs.~2.11!–~2.17! of Ref. @22#. For on-shell scatter-
ing between positive energy states the matrix elements of
pseudoscalar~PS! and the pseudovector~PV! matrix
operators are identical@16#. This vertex equivalance
follows immediately from the Dirac Eq. ~8!:
ū (p)(p” *2q” * /2M* )g5u(q)5 ū (p)g5u(q). Thus the cova-
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220 56L. SEHN, C. FUCHS, AND AMAND FAESSLER
riant amplitudesTPS5TPV[TP are identical as well. The dif-
ference between both representations of theT matrix in
Dirac space enters only at the one-body level when calcu
ing the self-energy @26#. For fixed parameters
(x,upu5uqu,u) equation~15! is a matrix relation between th
five independent helicity amplitudesTi

I ~five of the 16 am-
plitudes numbered withi5$l18l28 ;l1l2%51, . . . ,5) on the
lhs and the five unknown covariant amplitudesTm,I

Ti
I5

1

M* 2(m CimT
m,I. ~16!

This corresponds to Eq.~3.23! of Ref. @7# with respect to our
different normalization of the spinor basis, Eq.~9!. The co-
variant amplitudes are determined by a matrix inversion
equation~16!. This, however, only has to be done for tw
angles since for on-shell scattering in the two-particle c
frame only two scattering angles appear, i.e.,u50 for the
direct andu5p for the exchange interaction. However, no
.

in

p-
al
t-

f

.

the matrix becomes singular because two of the five heli
amplitudes vanish. Therefore it is useful to extract the le
ing angular dependence of the matrixCim as well as of the
helicity amplitudes Ti

I from the rotation matrices
dll8
J (u50,p) in Eq. ~13!. Thus, the limitu→0,p can be
performed analytically. This method has been developed
appendix C of Ref.@7# and formula~16! can be found there
for the limiting angles 0,p @Eqs.~C.10,11!#. Proceeding this
way we determine the real and the imaginary part of the fi
covariant amplitudes for the direct and exchange contri
tion in both, the isospin singlet and triplet channels of t
T matrix Tm,I50,1(u50,p).

C. Self-energy components

Now we are able to calculate the self-energy. Inserting
Green function, Eq.~7!, and the Dirac representation of th
T matrix, Eq.~14!, into the definition of the self-energy, Eq
~3!, yields
Sab5E d3q

~2p!3
Q~kF2uqu!
4E* ~q! HM* 1abF4TDS2TX

S24TX
V212TX

T14TX
A2

~k* m2q* m!2

4M* 2
TX
PG1q” ab* F4TDV2TX

S12TX
V12TX

A

2
~k* m2q* m!2

4M* 2
TX
PG2~q” *2k”* !ab

2qm* ~k* m2q* m!

4M* 2
TX
PJ ~17!
by
mi

wo-
uan-
where thea,b denote both Dirac~spin! and isospin indices
The direct and exchange parts of theT matrix denoted by
D and X are calculated from isospin sums of the isosp
projection operators which yieldsTD

m5TD
mI5013TD

mI51 and
TX
m52TX

mI5013TX
mI51 . The self-energy as a one-body o

erator in spinor space posseses components proportion
the unity matrix 1 and togm as postulated in Eq.~4!. From
this relation the self-energy componentsSs,0,v follow by tak-
ing traces

Ss~ uku;M* ,kF!5
1

8
Tr@S#

5E d3q

~2p!3
Q~kF2uqu!

M*

E* ~q!
Ts~k,q;x!,

~18!

S0~ uku;M* ,kF!52
1

8
Tr@g0S#

5E d3q

~2p!3
Q~kF2uqu!T~0!~k,q;x!,

~19!

Sv~ uku;M* ,kF!52
1

8
TrF g•k

k2SG
5E d3q

~2p!3
Q~kF2uqu!

q* •k
uku2E* ~q!

3Tv~k,q;x!, ~20!
to

where we have used the abbreviations

Ts~k,q;x!5
1

4F4TDS2TX
S24TX

V212TX
T14TX

A

1
km* q*

m2M* 2

2M* 2
TX
PG , ~21!

T~0!~k,q;x!5
1

4F24TD
V1TX

S22TX
V22TX

A

1
E* ~k!

E* ~q!

M* 22km* q*
m

2M* 2
TX
PG , ~22!

Tv~k,q;x!5
1

4F24TD
V1TX

S22TX
V22TX

A

1
uku
qz

M* 22km* q*
m

2M* 2
TX
PG . ~23!

In the pseudoscalar case@7# all the cofactors ofTX
P are re-

placed just by21 which yieldsT(0)5Tv . The self-energy of
a nucleon is calculated in the nuclear matter rest frame
integrating the effective two-body interaction over the Fer
sea. The three momentak,q of a nucleon pair are given in
this frame and we defineP*5k1q5k*1q* . On the other
hand, the covariant amplitudes are determined in the t
nucleon c.m. system and thus depend on the respective q
tities in that frame
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TD
m~kq,kq;x!5TmI50~ upc.m.u,u50,x!

13TmI51~ upc.m.u,u
50,x!, ~24!

TX
m~kq,qk;x!52TmI50~ upc.m.u,u5p,x!

13TmI51~ upc.m.u,u
5p,x!. ~25!

From the invariant masss*5@E* (k)1E* (q)#22P* 2, the
relative momentum in the c.m. frame follows b
upc.m.u5As* /42M* 2. As already mentioned above,x abbre-
viates the set of parametersx5$kF ,M* ,uuu%, where the
boost three velocity~from the nuclear matter into the c.m
frame! is now given by u5P* /As*1P* 2. In the two-
particle c.m. frame there exist only two possible scatter
angles, i.e.,u50 for the direct andu5p for the exchange
amplitude. Numerically we solve the Thompson equat
~11! and determine the covariant amplitudesTm,I for a suit-
able two-dimensional range of the quantitiespc.m.,uuu. Using
the azimuthal symmetry we calculate the self-energy, E
~18!–~20!, by a two-dimensional integral over the Ferm
sphere. Therefore for each nucleon pair we have to inte
late the covariant amplitudes at the respective values
pc.m. and uuu. The resulting self-energy, taken at the Fer
surfaceuku5kF , yields the new value of the effective ma
M* , Eq. ~10!. This value serves as the input for the ne
iteration. This procedure is repeated until a convergenc
the effective mass is achieved.

III. NUCLEAR MATTER RESULTS

For the solution of the Thompson equation~11! we apply
the BonnA,B,C potentials of Refs.@3,9# as the nucleon-
nucleon interactionV. The potentials are calculated with th
OBNNS code of Machleidt@27#. The Bonn potentials are
based on the exchange of the six nonstrange bosons
masses below 1 GeV (p,h,r,v,d,s). For the pion a deriva-
tive pseudovector coupling is applied. The three parame
zationsA, B, andC differ essentially in thepNN form fac-
tor and as a consequence in the strength of the nuclear te
force. Actually we find only minor differences of a few Me
in the resulting self-energies, see below, and thus we pre
mainly the BonnC results. For comparison with the resul
of Horowitz and Serot we also employ the simp
sv-meson exchange of Ref.@7# with gs

2591.64,
gv
25136.2 and use the form factor given therein.

A. Self-energy components

1. Density dependence

First we want to demonstrate the reliability of our a
proach by comparison with the results of Ref.@7#. In Fig. 1
we show the self-consistent effective massM* , Eq. ~10!, as
a function of the Fermi momentumkF which is a measure fo
the density%52/(3p2)kF

3 . Our results with thesv-meson
exchange potential and the pseudoscalar decompositio
theT matrix reproduce quite well the values taken from R
@7#. The slight deviation for densities above saturation d
g
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.
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sity ~herekF51.42 fm21) is partly due to the different ef-
fective two-nucleon propagators. As mentioned above,
are using the Thompson propagator, Eq.~11!, while in Ref.
@7# the Blankenbecler-Sugar propagator is applied. Furth
more, in Ref. @7# an additional approximation has bee
made. As discussed above, we are solving the Thomp
equation for a two-dimensional grid of the relative mome
tum upu and the c.m. momentumuPu, respectively, the boos
velocity uuu and use thisT-matrix for the determination of
S. In Ref. @7# the uPu dependence is replaced by an ‘‘avera
uPu approximation’’ for eachupu which causes deviation
mainly at high density systems. For the BonnC potential the
effective mass is significantly different from that of thesv
model. Here we applied the pseudovector choice.

In Fig. 2 we show the density dependence of the s
energy, i.e., the scalar partSs as well as the timelike2S0

and the spacelike component2kFSv of the vector self-
energy. The self-energies are determined for the three B
potentialsA,B,C and again the pseudovector choice is a
plied. For the sake of a better comparison the sign of
vector self-energies is inversed and the dimensionless sp
like componentSv is multiplied bykF . The scalar and also
the vector self-energy componentSs ,2S0 differ only
slightly for the three Bonn potentials. The differenc
amounts to about 5 MeV at saturation density~here
kF51.35 fm21) and is still less than 10 MeV atkF51.90
fm21. In absolute magnitude BonnC yields the weakest and
BonnA the strongest self-energies. The spacelike vector s
energy2kFSv is equal within the linewidth for the three
Bonn potentials and is small in comparison toSs ,S0, e.g.,
about 7% ofS0 at saturation density. For further analysis w
therefore concentrate on the large componentsSs ,S0 calcu-
lated with the BonnC potential.

FIG. 1. Self-consistent effective massM* in units of the bare
mass (M5939 MeV! as a function of the Fermi momentumkF .
The relativistic Brueckner results obtained with thesv-exchange
potential~full line! are compared to those of Ref.@7# ~diamonds!.
The effective mass for the BonnC potential ~dashed line! differs
significantly from that of thesv model.
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222 56L. SEHN, C. FUCHS, AND AMAND FAESSLER
2. Pseudoscalar versus pseudovector choice

The two different representations of theT matrix, i.e., the
pseudoscalar and the pseudovector case, represent an
ent ambiguity. This is, however, a common feature of
relativistic Brueckner calculations which specify the Dir
matrix structure of theT matrix by using only positive en
ergy T-matrix elements. In order to clarify the influence
this ambiguity, in Figs. 3 and 4 we show the self-ener
componentsSs,0 calculated with the BonnC potential for
both choices. In the pseudoscalar case, see Fig. 3, the
energies are larger by about 40–80 MeV~decreasing with
increasing density! than in the pseudovector case~Fig. 4!.
This difference may be interpreted as a measure of the
eral uncertainty of the self-energy components arising fr
any particular projection of theT operator on positive energ
matrix elements only. This uncertainty is larger at low de
sities. To get more insight into the origin of this differen
we decompose the self-energy in the two contributions st
ming from the direct and the exchangeT amplitude, respec-
tively. E.g., in the pseudoscalar case the direct part of
self-energySs is determined by the integral overTD

S while,
the exchange part is given by the integral over the sum o
exchange amplitudes21/4TX

S2TX
V23TX

T1TX
A21/4TX

P , see
Eq. ~21! and the subsequent comment. We find that in
pseudoscalar case direct and exchange parts ofSs,0 are iden-
tical within less than 0.5 MeV, see Fig. 3. However, in t
pseudovector case the factor accompanying theTX

P amplitude
in Eqs.~21!,~22! reduces the exchange part by roughly 50
For comparison in thesv model, which lacks pion ex-
change, theTX

P amplitude is generally smaller and the effe
i.e., the reduction of the exchange part, amounts to roug

FIG. 2. Self-energy components for the pseudovector cho
calculated with various Bonn potentials. The dotted, dashed and
lines represent the BonnA, B, andC potential. The scalar self
energySs ~lower half-plane! and the time- and spacelike vecto
self-energies2S0 ,2kFSv ~upper half-plane! are shown as func-
tions ofkF . For the three Bonn potentials the small spacelike vec
self-energies2kFSv are equal within line width. The remainin
curves ~dashed dotted! involve a different definition of the self-
consistent effective mass which is given in the text later on.
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25%. Of course also the direct part is different from that
the pseudoscalar case since we consider the self-consist
determined fields. We conclude that the pseudovector ch
in general reduces the total self-energy which is due t
considerable reduction of the exchange contributions w
the direct contributions are even enhanced.

In Fig. 5 we compare our results forSs ,2S0 obtained
with the pseudovector choice and the BonnC potential with
the results of two other groups, i.e., the Groningen gro
@10# and the approach of Brockmann and Machleidt@9#. In

e,
ll

r

FIG. 3. Self-energy componentsSs ,2S0 calculated with the
pseudoscalar choice and the BonnC potential. The curves represen
the total self-energy components~full lines!, their direct~dir.! and
their exchange~exc.! parts which are practically equal~dashed dot-
ted lines!.

FIG. 4. Self-energy componentsSs ,2S0 calculated with the
pseudovector choice and the BonnC potential. The curves repre
sent the total self-energy components~full lines!, their direct~dir.!
parts~dashed lines! and their exchange~exc.! parts~dotted lines!.
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Ref. @9# the relativistic Thompson equation is solved by sta
dard methods@13# directly in the nuclear matter rest fram
instead of the two-particle c.m. frame. Therefore the Thom
son Eq.~11! is Galilei transformed to the rest frame with th
c.m. momentumP/2. The relativistic single-particle potentia
U in the nuclear matter rest frame can be evaluated from
T matrix by

U~ uku!5
M*

E* ~k!
Rê kuSuk&

5(
q«F

M* 2

E* ~k!E* ~q!
Rê kquTukq2qk& ~26!

with the definition ofS(uku) as in Eq.~3!. The advantage o
this method is that one is not forced to Lorentz transform
matrix elements between the nuclear matter rest frame
the two-particle c.m. frame and thus a projection onto co
riant amplitudes is obsolete which simplifies the task cons
erably. However, now the self-energy componentsSs ,2S0
cannot be calculated directly as in the projection method
Eqs. ~18!–~20!. Instead, one has to extract them from t
single-particle potentialU. With the form ofS as in Eq.~4!,
however, thereby neglectingSv one finds

U~ uku!5
M*

E* ~k!
Ss2S0 , ~27!

i.e., the single-particle potential results from a cancellation
the huge scalar and vector components. Using a mean-
ansatz forSs,0 , i.e., neglecting their momentum dependen
one is able to determine them by a fit procedure toU(uku). In
Ref. @9# the self-energy components are constructed by
potential-fit method. In Fig. 5 we compare these results w
our calculations both for the BonnC potential. In the density
range considered the fitted self-energies are generally sm
in absolute values by 50 up to more than 150 MeV, e.g.

FIG. 5. Self-energy componentsSs ,2S0 calculated with the
pseudovector choice and the BonnC potential~full lines!. They are
compared with the results of Ref.@9# ~dashed lines! and of Ref.@10#
~dotted lines!.
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saturation density they are reduced by about 75 MeV.
spite of this discrepancy both calculations have several
tures in common. E.g., the single-particle potential, defin
in Eq. ~26!, is almost identical and as we will see later on t
same holds for the equation of state. Concerning these
quantities the main difference between both treatments
in the reference frame where theT matrix is actually calcu-
lated, while the projection method on covariant amplitudes
not essential. At moderate densities theT matrix depends
only weakly on the c.m. momentumP and, respectively, on
the chosen frame. Thus the numerical results show only
nor differences. Another feature in common is that also
potential-fit method yields self-energies for the three types
Bonn potentials which are equal within a few MeV@9#.

In Fig. 5 we further compare to the results of the Gron
gen group@10#. They also perform a full relativistic Brueck
ner calculation solving the Thompson equation in the tw
particle c.m. system and using a projection of theT matrix
onto a pseudovector representation. The difference from
method is, on the one hand, the application of a differ
one-boson exchange potential including different form fa
tors, the so-called Groningen potential. On the other h
as—a more technical point—in Ref.@10# the Thompson
equation is solved in full momentum-spin space by the use
Padéapproximants, for further details see, e.g., Ref.@12#.
For densities above saturation density the self-energies
culated with the Groningen potential are roughly the same
the ones obtained by us, however, in the low-density ra
they are much smaller in magnitude.

3. Momentum dependence

Up to now we have discussed the self-energy of a nucl
in nuclear matter obtained at the Fermi surface (uku5kF),
i.e., the density dependence of the self-energy. In the rela
istic Brueckner theory the self-energy at the Fermi surfa
and theT matrix are determined self-consistently, as d
scribed above. The dressed nucleon propagators, res
tively, the self-consistent spinor basis, Eq.~9!, entering into
the calculation of theT matrix are constructed with the ef
fective mass, Eq.~10!. M* itself depends on the density
dependent self-energiesSs,0,v(kF). Thus only the effective
mass acts as a self-consistency or iteration parameter.
next step the self-energies above and below the Fermi
face can be evaluated from Eqs.~18!–~20!. This has to be
considered just as the first iteration step in the determina
of self-consistent momentum-dependent functio
Ss,0,v(uku) and stands in contrast to the nonrelativis
Brueckner treatment where self-consistency is required
the full positive single-particle energy spectrum. Howev
these approximations are not based on the same footing
the relativistic treatment we have an intrinsic momentum
pendence due to the Dirac structure of the nucleon wh
introduces a momentum dependence in the single-par
potentialU even for constant values ofSs,0,v , see Eq.~27!.
A further argument often given in connection with the refe
ence spectrum approximation@7,10# is that the momentum
dependence of the self-energies in the relativistic Brueck
approach is found to be rather soft. However, in the pres
work we demonstrate that this is in general not the case
strongly depends on the special form of the one-boson
change potential. In Fig. 6 we show the momentum dep
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224 56L. SEHN, C. FUCHS, AND AMAND FAESSLER
dence of the nucleon self-energiesSs,0 at saturation density
calculated with thesv-exchange potential. Our resul
nicely agree with the results of Ref.@7# within 10 MeV
which might be due to different technical details alrea
mentioned in the discussion of Fig. 1. We find thatSs de-
creases in the range fromuku50 to kF by 14 MeV andS0 by
24 MeV, i.e., below the Fermi surface the self-energies
constant within a few percent.

FIG. 6. Self-energy componentsSs ,2S0 at saturation density
(kF50.28 GeV! as a function of the nucleon momentumuku,kF .
The self-energies are calculated with thesv-exchange potentia
~pseudoscalar choice! and are compared with values~symbols!
taken from Ref.@7#.

FIG. 7. Self-energy componentsSs ,2S0 as function of the
momentumuku of the nucleon forkF50.265 GeV. The self-energie
are calculated with the BonnC ~pseudovector choice, solid line!
and thesv-exchange potential~pseudoscalar choice, dotted line!
and compared with results of Ref.@10# ~dashed line! and of Ref.
@17# (kF50.27 GeV, dashed dotted line!.
e

In Fig. 7 we show the momentum dependence of the s
energies for calculations with the BonnC potential
~pseudovector choice! and thesv potential ~pseudoscalar
choice!, both atkF50.265 GeV. More strictly this is the rea
part of the self-energy, since for momenta greater than
Fermi momentum the self-energy is complex. The resu
obtained with the BonnC potential show a strong momen
tum dependence: over the entire momentum range up to
GeV corresponding to a single-particle energy of around 3
MeV the self-energies decrease by nearly 60% with resp
to the central value. The most pronounced change occur
the region around the Fermi surface, while deep inside
Fermi sea and far above the Fermi momentum the mom
tum dependence nearly saturates. For thesv potential the
self-energies are rather weakly momentum dependent:
the full interval they decrease by about 20%. For compari
we also show two results obtained by the Groningen gro
In Ref. @10# the self-energies above the Fermi surface
calculated in a similar way as in the present work, see d
cussion of Fig. 5. The results obtained by the Groning
group@10# are in general more softlyk dependent than thos
of the present work obtained with the Bonn potentials. T
results of Ref.@17# show a momentum dependence as stro
as ours. However, in this case a comparison is not fully
propriate since these calculations include an additional s
consistent treatment of the pion polarization.

B. Equation of state and optical potential

In Fig. 8 we show the equation of state, i.e., the ene
per particleE/A as a function of the nuclear matter dens
%, calculated with BonnA,B,C. In the relativistic Brueckner
theory the energy per particle is defined in analogy to
nonrelativistic Hartree-Fock method as the kinetic plus h
of the potential energy

FIG. 8. Equation of state, i.e., energy per particleE/A as a
function of the nuclear matter density%, for the three Bonn poten-
tials A, B, andC ~from below to top: dashed line, dotted line an
solid line!. The symbols represent the respective results of Ref.@9#.
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E/A 5
1

%(
k,l

K ūl~k!Ug•k1M1
1

2
S~k!Uul~k!LM*

E*
2M ,

~28!

5
1

%
E
F

d3k

2p3F $@11Sv~ uku!#E*2S0~ uku!%

2
1

2E*
@Ss~ uku!M*2Sm~ uku!k* m#G2M ~29!

with the self-consistent spinorsuul(k)& given in Eq.~9!. By
this way we have determinedE/A by integrating the self-
energy components of Eqs.~18!–~20! over the Fermi sphere
see Eq.~29!. In Fig. 8 we compare to the results of Ref.@9#
whereE/A is calculated directly from the single-particle p
tential, Eq.~26!, using expression~28!. For moderate densi
ties the results agree with an accuracy better than 0.5 M
and even forkF51.9 fm21 the deviation is less than 3 MeV
First, this result is an additional test for the accuracy of o
numerical treatment, i.e., the projection of theT matrix onto
covariant amplitudes which are subsequently used to de
mine the self-energy components and the equation of s
Second, these results again demonstrate that the equati
state is quite insensitive to the self-energy components th
selves. Actually, as can be seen clearly from the definit
Eq. ~28!, the equation of state depends directly on the sing
particle potential, i.e., the difference ofSs andS0, Eq. ~27!,
and relatively weakly on the effective mass via the kine
energy part. Nevertheless, and in contrast to nonrelativ
calculations, the relativistic effects are responsible that
minima of the equations of state for the three different Bo
potentials reveal a Coester band which meets the empiric
found saturation area of nuclear matter.

In order to demonstrate the influence of the two differe
choices, i.e., pseudovector and pseudoscalar on the equ
of state in Fig. 9 we show the respective equation of st
again for BonnC. Actually the expectation valuêū uSuu& of

FIG. 9. Equation of state for the BonnC potential calculated in
the pseudovector~solid line! and the pseudoscalar~dashed line!
choice. The remaining curve~dotted! involves a different definition
of the self-consistent effective mass given in the text.
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the full self-energy operator, Eq.~17!, is identical for both
choices@26#. However, as can be seen from Fig. 9 the eq
tion of state turns out to be rather sensitive to the differ
choices. This significant dependence is only due to the s
consistently iterated effective mass which differs in both a
proaches. This effect deepens the equation of state in
pseudoscalar choice by around 1 to 2 MeV and shifts
minimum towards higher densities. Thus the saturation po
is shifted away from the empirical point towards the resu
of nonrelativistic Brueckner calculations as, e.g., publish
in Ref. @9#. This observation additionally supports th
pseudovector choice.

In view of the strong momentum dependence of the s
energy components for the Bonn potentials one might exp
that the results depend sensitively on the actual momen
reference value where the self-consistent effective mas
determined. As a consequence a self-consistent treatme
the full momentum dependence might appear to be in
pensable. Therefore we have also examined the influenc
a different choice of the self-consistent effective mass. In
reference spectrum approximation, see Eq.~10!, M* is de-
termined at the Fermi surface which is the conventio
treatment in the relativistic Brueckner approach. Howev
this choice is by no means unique. Thus we also determ
M* by its mean value in analogy to Eq.~10!

M*5M1S̄s~M* !2M* S̄v~M* !. ~30!

The self-energiesSs,v are not simply taken atuku5kF but are
replaced by their values averaged over the Fermi sea

S̄s,v5

E Ss,v~ uku!Q~kF2uku!M* /E* d3k

E Q~kF2uku!M* /E* d3k
. ~31!

These averages are Lorentz scalars. The extension of
reference spectrum approximation, Eq.~30!, is especially
meaningful with respect to the treatment of anisotro
nuclear matter, as done in Ref.@20#. Here it serves as a tes
of the influence of the momentum dependence. Due to
strong momentum dependence observed, e.g., in Fig. 7
mean valueS̄s differs considerably fromSs(kF), i.e., by
about 57 MeV at saturation density~with BonnC). Respec-
tively for the different effective masses we obtain a me
value M*5528 MeV which is smaller than the self
consistent massM* (kF)5566 MeV. But if we use the alter-
natively defined effective mass, Eq.~30!, as iteration param-
eter we find for the final iterated mean valueM*5547 MeV.
Thus the mean value is increased, i.e., it is shifted towa
the previous self-consistent result or, in other words, the s
consistent value is rather stable. The comparison of the s
energy componentsSs,0(kF) in both iterations, see Fig. 2
shows just slight deviations, e.g., about 10 MeV at satura
density. And even more, the equation of state, shown in F
9, remains nearly unchanged. These results demonstrate
the strong momentum dependence has only minor influe
on the density dependence of the self-energy compon
and that the equation of state remains unaffected.

Another quantity which is more sensitive on the mome
tum dependence ofSs,0,v is the Schro¨dinger equivalent opti-
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226 56L. SEHN, C. FUCHS, AND AMAND FAESSLER
cal potential which a nucleon feels inside the nuclear m
dium. The optical potential is given by

Uopt~ uku,k0!5Ss~ uku!2
1

M
kmSm~ uku!1

Ss
2~ uku!2Sm

2 ~ uku!
2M

.

~32!

It contains counteracting linear and quadratic terms in
self-energy components. For nucleons withuku.kF the mo-
mentum space is not completely blocked for scattering p
cesses and thus above the Fermi surface the self-energie
the optical potential become complex. The single-particle
ergy k0(uku)52S01E* (uku) is a monotonic function of
uku which allows us by inversion to determineUopt(k

0) as
function of the single-particle energyk0. We want to stress
that neglecting the momentum dependence of the fie
Ss,(0) and neglecting completelySv the optical potential
Uopt would simply be a linear function ofk0. However, this
is not the case here. Real and imaginary part of the opt
potential calculated for BonnC ~pseudovector choice! are
shown in Fig. 10. The real part agrees well with the Gron
gen results of Ref.@11#, while the imaginary part of the
present calculations is about twice as large. Further we c
pare to the empirical optical potential Hama I, Table 2
Ref. @28#. For the full range of single-particle energies up
700 MeV, shown in Fig. 10, our results deviate from t
empirical ReUopt by less than 10 MeV. Up to the pio
production threshold at around 300 MeV we observe a
markable agreement of the imaginary part ofUopt with the
empirical data. For single-particle energies above this reg
the results appear to be no more fully reliable since th
meson-nucleon resonances, e.g., theD~1232! resonance,
should be taken into account.

FIG. 10. Real and imaginary part of the Schroedinger equiva
optical potentialUopt as function of the single-paricle energ
k02M . The results for the BonnC potential~real part: solid line,
imaginary part: dotted line! are compared to the results of Ref.@10#
~real part: dashed line, imaginary part: dashed dotted line! and to
the empirical optical potential taken from Ref.@28# ~real part: dia-
monds, imaginary part: circles!.
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IV. SUMMARY

In this work in particular the self-energy of a nucleo
inside the nuclear medium has been studied in the framew
of the relativistic Brueckner approach. Therefore the dep
dence of the Lorentz scalar and vector self-energy com
nents on the nuclear density and the nucleon momen
have been examined. In the bare nucleon-nucleon interac
various one-boson exchange potentials have been emplo
i.e., the BonnA, B, C potentials and for comparison th
sv-exchange potential. For the latter we are able to nic
reproduce the density dependence of the self-energies of
@7#. The self-energy components themselves deviate for
three different Bonn potentials over a wide density ran
only by a few MeV and thus we restricted our discussi
mainly to the BonnC potential. From the comparison wit
our results we find that the potential-fit method of Ref.@9#
underpredicts the magnitude of the self-energies by abou
up to more than 150 MeV.

Further we analyzed the influence of different possi
covariant representations of theT matrix. The positive en-
ergy on-shellT matrix is projected on five invariant ampli
tudes and by the restriction to positive energy states an
biguity arises which is discussed in terms of the pseudosc
and the pseudovector representation. Although theT ampli-
tudes of both choices are equal on the one-body level,
concerning the respective self-energy components a sig
cant influence of these representations is observed. Th
due to the fact that in the pseudoscalar case direct and
change contributions to the self-energies are equal, whil
the pseudovector choice the exchange part is suppressed
the Bonn potentials this suppression lies between 40 and
MeV and is most prominent at low densities. This differen
between both choices has to be interpreted as an inhe
measure for an uncertainty of the approach due to the res
tion on positive energy spinors.

Commonly the momentum dependence of the self-ene
components is supposed to be weak. This assumption is
reflected in the self-consistency treatment in the relativis
Brueckner model which is managed by just one dens
dependent parameter, i.e., the self-consistent effective m
Therefore we have carefully examined this momentum
pendence which, however, can be done within the Bruck
scheme just in a first approximation. As in Ref.@7# we find
that when taking thesv-exchange potential the self-energi
are found to be constant below the Fermi surface within
few percent. However, this result does not hold for the m
realistic Bonn potentials. Here we observe a strong mom
tum dependence which may be due to the strong pion
change. The self-energies decrease from their central va
i.e., at k50 to the Fermi surface by about one-fourth a
further tok50.8 GeV by more than one-half. This strikin
momentum dependence makes the treatment of the
consistency in the model somewhat questionable. But a
with a different defined self-consistent effective mass wh
is determined by a mean value over the Fermi sea and
taken atkF as usually done shows that the self-energy co
ponents are rather stable at not too high densities. Thus
self-consistency treatment in the model still appears to
justified up to two or three times saturation density.

In this context the question raises which observables
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sensitive to the self-energy components and their momen
dependence. It is remarkable that the full self-energy a
respectively, the single-particle potential show~absolutely! a
much weaker momentum dependence. As it is well kno
from mean-field theory the large scalar and vector s
energy components contribute to these quantities with op
site signs and thus cancel each other to a high extent.
resulting observables, e.g., the single-particle potential,
smaller by nearly one order of magnitude. Here we fou
that this holds not only atkF but also over the full momen
tum range considered. Thus the momentum dependence
cels to a large extent. Also the equation of state depe
mainly on the difference of the scalar and the vector s
energy and thus the absolute values of the single compo
are of minor importance. This can be seen most clearly
the use of just density-dependent self-energy components
termined with the potential-fit method of Brockmann a
Machleidt @9# which deviate from our results~at kF) by
about 75 MeV. The resulting binding energy, however, o
deviates by about 1 MeV. Similarly the self-energy comp
nents obtained in the pseudoscalar and the pseudov
choice differ considerably but the equations of state differ
less than 1–2 MeV. On the other hand, small variations
the self-energy due to the three different Bonn potent
produce a significant change in the equations of state. S
marizing, the equation of state is not sensitive to the s
-

ev
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ds
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nt
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energy components themselves but to their difference. A
more sensitive is another quantity, i.e., the optical potent
It depends not only on the cancellation of the scalar a
vector self-energy but also contains quadratic terms. We
a good agreement of our results with the experimental d
of Ref. @28# for both the real and the imaginary part up to
single-particle energy of several hundred MeV.

As a resume´, the self-energy components in the relativi
tic Brueckner model are still affected with some uncertain
For realistic one-boson exchange potentials we find them
be strongly momentum dependent. However, for this
tribute we have to be aware of the limits of the model. O
major success of the relativistic approach was that the eq
tion of state comes close to the empirical saturation po
The equation of state is rather insensitive to the self-ene
components themselves. Similarly, the nucleon optical
tential is only little more sensitive. However, a preci
knowledge of the size of each self-energy component is n
essary, e.g., in the much more complicated situation of he
ion collisions.
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