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Nucleon self-energy in the relativistic Brueckner approach
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The formalism of the relativistior Dirac-) Brueckner approach in infinite nuclear matter is described. For
the nucleon-nucleon interaction the one-boson exchange potentialsABBn@ and for comparison the Wa-
lecka model, are used. THe matrix is determined from the Thompson equation and is projected onto five
covariant amplitudes. By the restriction to positive energy states an ambiguity arises in the relativistic Brueck-
ner approach which is discussed here in terms of the pseudoscalar and the pseudovector projection. The
influence of the coupling of the nucleon via thenatrix as an effective two-nucleon interaction to the nuclear
medium is expressed by the self-energy. In particular we investigate the scalar and vector components of the
self-energy for the different one-boson exchange potentials and discuss their density and momentum depen-
dence. We estimate the uncertainty of the self-energy due to the pseudoscalar and the pseudovector choice.
Usually the momentum dependence of the self-energy is thought to be weak, however, we find that this
depends on the one-boson exchange potentials. For the Bonn potentials, in contrastdopgbtential, the
momentum dependence is strikingly strong above as well as below the Fermi surface. We compare with the
results of other groups and study the effects on the equation of state and the nucleon optical potential.
[S0556-28187)06007-X

PACS numbds): 21.65+f, 21.30—x, 24.10.Cn

I. INTRODUCTION function can be found in Refl12]. In the present work we
refer to the formalism described in Refd,10].
In the relativistic (or Dirac-) Brueckner model the dy- The main difference between the relativistic Brueckner

namical two-nucleon correlations in infinite nuclear matterapproach of Refd.6—11] and previous works is the use of
are studied. The formalism is based on an effective quanturmedium-dependent spinors and the requirement of self-
field theory for mesons and nucledig and thus ignores the consistency for both the spinor wave functions and the
underlying quark nature of the nucleon. In the Bruecknersingle-particle spectrum. The Dirac spinors of the nucleon in
model theT matrix (or BruecknerG matrix) serves as an the medium differ considerably from the free spinors due to
effective in-medium two-body interaction. It is determined the large scalar and vector self-energies. These introduce an
by a self-consistent summation of the ladder diagrams in additional density dependence into the spinor matrix ele-
guasipotential approximatiofiThompson equationto the  ments of the one-boson exchange potentials and thus into the
Bethe-Salpeter equation, see, e.g., REf]. The bare T matrix. This dynamical effect is absent in nonrelativistics.
nucleon-nucleon(ladde) interaction is described by one- Another aspect of the modern Brueckner approach is that the
boson exchange potentials. In the present work we apply thimertial frames where th€ matrix is determined and where it
Bonn potentialsA,B,C of Refs.[3,9] and for comparison is used have to be distinguished carefully. Due to the neglec-
also a simplesw potential which is well known from the tion of the retardation in the meson propagators the one-
Walecka mode[1]. The nucleon inside the nuclear medium boson exchange potentials and the correspondingatrix
is treated as a dressed Dirac particle where the influence serve as quasipotentials in the two-particle center-of-mass
the coupling to the surrounding nucleons via thematrix ~ (c.m,) frame. Therefore the relativistic Thompson equation is
serving as an effective interaction is expressed by theolved in this system which can be done by numerical stan-
nucleon self-energy. The self-energy has a Lorentz structurdard techniques, as, e.g., in the nonrelativistic case of Ref.
with large scalar and four-vector components and modifieg1l3]. On the other hand single-particle quantities like the
the single-particle spectrum and the spinor wave functions.self-energy of the nucleon are calculated in the nuclear mat-
The relativistic Brueckner model was developed in theter rest frame, where the single-particle distribution, the
last decades by various authors. At the beginning of thé-ermi sea, is naturally defined. Thus a covariant representa-
1980's the relativistic problem was considered by the Brooktion of theT matrix is required to connect both frames. Even
lyn group[4,5] in first-order perturbation theory. In the fol- though, e.g., the single-particle potential can be calculated
lowing the covariant formalism to a self-consistent treatmentvith some additional approximations avoiding this represen-
of the Thompson equation was developed by Horowitz andation, as done in Ref9], the covariant technique is un-
Serot[6] and is in detail outlined in Ref.7]. However, in  avoidable in order to calculate the self-energy components
these works the nucleon-nucleon interactions were describetiemselves.
within the framework of theosw model. Calculations with In the relativistic Brueckner approach the self-consistent
realistic nucleon-nucleon interactions have been performedpinors are restricted to positive energy states. A different
by Brockmann and MachleidB,9] and later on by ter Haar approach in the full Dirac space which is also based on one-
and Malfliet [10,11. A more rigorous derivation of the boson exchange potentials is used in Rg4s14]. But in a
Brueckner approach in the framework of relativistic Green’sfull treatment one should further include renormalization ef-
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fects like the vacuum fluctuation contributions to the self-the Brueckner theory beyond infinite nuclear matter. When
energy, as discussed in the context of the relativistic Hartreapplying relativistic Brueckner results to the description of
approximation in Refs[1,7], and solve the full Bethe- finite nuclei, e.g., in the framework of an effectivgensity-
Salpeter equation self-consistently. However, then the onedependent relativistic mean-field theory[18] the self-
boson exchange potentials would be inappropriate. But thesnergies start to play a decisive role. This fact is, however,
are still outstanding problems. In the standard BruecknefMOst pronounced in the investigation of heavy ion collisions.
model which we discuss in the present work, one gets aroungifferent from resting nuclear matter here the scalar and vec-
the problem of renormalization. The masses and couplinigr components are out of balance which is due to their dif-
constants in the model are physical renormalized quantitielrént Lorentz transformation character and diverse observ-
and as a consequence one neglects the effective negati hles are in particular sensitive to the magnitude of the fields
energy states. However, the effective positive-energy spinorsdl- Furthermore the momentum space configuration can be
still contain admixtures of free negative-energy states belighly anisotropic and rather corresponds to two counter-
cause they are a superposition of free positive- and negativ&lréaming currents of nuclear matter which can be described
energy spinors. To Lorentz transform tiematrix as we y two L_orentz-elonga_tec_j Fermi ellipsoids. Ap_prommate de-
have mentioned above, the positive energy on-shefiatrix terminations of relativistic Brueckner mean fields for such
is projected onto five invariant amplitudes. By the restrictionconfigurations have been performed in R@bj] and encour-

to positive energy states an ambiguity ari§es] which is  29iNd appllcanons to heavy ion collisions in RE21]. Thus
discussed in terms of the pseudoscalar and the pseudovecfBf density and momentum dependence of the nuclear self-

representation of th& matrix in the Dirac space. From anal- energy components as the quantity which most prominently

ogy to the one-pion exchange coupling in the r]uCleon_characterizes the medium effects is a question of particular
{nterest.

nucleon potential the pseudovector choice is more natural’ . . . . .
This paper is organized in the following way. In the next

and further it is known from meson theory analyisi§] that . ) L
this choice suppresses the coupling to the negative-ener ction we review the relativistic Brueckner approach. There
states. However. the difference between both choices al e still some technical differences in tstandardBrueckner

' i nodel between Ref7] and Refs[10-12. Here we follow

states a measure for the uncertainty concerning the deter h of H ‘ d Serfat which all h
nation of the self-energy components due to the restrictior} /€ @PProach of Horowitz an el ]W. ich aflows the use
f standard techniques for the solution of the Thompson

on positive energy spinors. One issue of the present work i€ ’ :
to epstimate this %ceprtainty P equation known from earlier workgl3,22. However, we

Thus, the aim of this work is to determine the self-energyuse the modern one-boson exchange potentials, treat the iso-

components, to estimate their uncertainty due to differenfPIn channels and also the real and imaginary part offthe
covariant representations of tHe operator and different Malrix separately and project on both, the pseudoscalar and

nucleon-nucleon potentials and to examine the sensitivity o?he pseudovector representation. In the following section we

some commonly used observables, i.e., the equation of sta scuss our numerical results. The calculations withdie

and the optical potential on the self-energies. We are invegOtential are compared with results from Riefl. We further

tigating in detail the density and the momentum dependencg'sCuss the density and momentum dependence of the scalar
d vector self-energy, the influence of pseudoscalar and

of the scalar and the vector components and compare od" .S
results to those of other grouf®,7,10,17. Thereby the mo- pseudovector choice is analyzed and we compare to the re-

mentum dependence can just be determined in a first aﬁ-UItS of Brockmann and Machleid®] and the Groningen

proximation because it is neglected in the self—consistencgrOUp[10’1ﬂ' Further the equation of state and the optical

treatment of the Brueckner model. Commonly this approxi- otential are _shown and their sensitivity to the self—energ_y
mation is justified by the assumption of a weak momentunfOMPONeNts is analyzed. In the final section a summary is
dependence, at least inside the Fermi sea, but there have bé84€":

also indications that this assumption depends on the chosen

one-boson exchange potentfdb]. We show here the mo- Il. RELATIVISTIC BRUECKNER APPROACH

mentum dependence over its full range, i.e., below and above In the relativistic Brueckner approach the nucleon inside

X‘% Iz:ermlt Sl:.rf?ce' ?Ed Wg f'n? Itin twiocgsl\/? S; _the Eognthe nuclear medium may be viewed as a dressed particle in
B, % potentials onthe order of severa ev,1.e.,lo econsequence of its two-body interaction with the surrounding

?tr;smglyf strong. Ir(;.dlffert_ance tothmostlfpubllcatmns in thetnucleons. This problem is stated as a coupled set of three
ield we focus our discussion on the self-energy componentg .- integral equations

themselves.
It is meanwhile well known that the nuclear matter satu-
ration properties are much better reproduced in the relativis- T=V+if VQGGT, (h)

tic than in the nonrelativistic Brueckner approach, i.e., the
predictions for the saturation point of a variety of nucleon-
nucleon potentials are located along tbeester bandvhich
meets—in the relativistic case—the empirical af@h The
same also holds, e.g., for the nucleon optical potential. How- S = _iJ (TMGT]-GT). 3)
ever, as we also find in the present analysis these commonly F

studied observables are not really sensitive to the self-energy

components since they mainly depend on a cancellation ofheT matrix is calculated in the ladder approximation of the
the components. The situation changes in the application ddethe-Salpeter equatiofl) and the bare nucleon-nucleon

G=G°+G°3G, )
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interaction is described by one-boson exchange potentialyur velocity u“=(y,uy) [20]. In Eq. (7) the momenta of

V. The intermediate nucleons are given by the two-bodythe quasiparticles are put on mass shell, which is expressed
propagatoiiGG which is, however, usually replaced by an py the § distribution and thus*°=E* (k) = Jk*Z+M*2.
effective propagatdi2], i.e., the Blankenbecler-Sugar propa- Hence the self-energy (k) =3 (|k|,ke) depends only on the
gator or the Thompson propagator. In this work the Thompthree-momenturtk| and, of course, on the respective density
son choice is applied. The Pauli opera@mccounts for the  or k..

influence of the medium by the Pauli principle and projects  Fyrthermore, in the relativistic Brueckner model one ap-
the intermediate scattering states outside the Fermi sea. Thifies a mean-field approximation ¥, Eq. (4), which allows
dressed one-body Green propagdtois calculated via the 3 simple formulation of the self-consistency problem. The
Dyson equatior(2) from the free propagatd®®. The influ-  explicit momentum dependence of the self-energy which en-
ence of the coupling to the surrounding nucleons is exters via the termk3, can be dealt with by introducing the

pressed by the self-ener@y of the nucleon. In the Brueck- reduced kinetic momenturk*#=k**/(1+3,) and the re-
ner formalism this self-energy is determined by summing up v

the direct and exchange interactions with all the nucleonguced effective mas&1*=M*/(1+X,). Further one ne-
inside the Fermi sek, see Eq(3). Here theT matrix plays glects thf momentum dependence of the effective mass
the role of an effective-medium dependent two-body interac{M* or M*). Thus, the nucleons fulfill a quasifree Dirac
tion. In the relativistic Brueckner approach one introducesguation

additional approximations for solving the equatiqi$—(3) ~ _

which are sketched in the followindor further reading see, [y k*#*=M*Juy(k)=0 ®

e.g., Refs[7,10)).
and using the normalization of R4R3] the self-consistent

A. Self-consistent spinor basis positive-energy spinors of helicity are defined as

The most general form of the Lorentz structure of the — _ 1
self-energy compatible with translational invariance, hermi- E*(k)+M*
g - : L . - ) u, (k)= - 2)\ K| X (9)
ticity, parity conservation, time-reversal invariance, and ro A e A
tational invariancein the nuclear matter rest frames E*(k)+M*

2 (K)=Z5(K) = 2#(k) 7, =2 (K) = 70X o(K) + 7- k2, (K) with x, being a Pauli spinor. The Dirac spinors depend on
(4)  the effective mass and thus on the nuclear density. The ma-
trix elements of thel matrix and the one-boson exchange
potentialsV, Eq. (1), are calculated with these spinors. In
contrast to the nonrelativistic Brueckner theory this fact in-
troduces an additional density dependence into the interac-
“1_(o-1_ _ X MF () i tion which is one major reason for the great success of the
G G =7,k M* () =iIm(Z ()], () relativistic treatment. This density dependence is mediated
where we have introduced the effective mass and the kinetiby the additional paramet&i* which is fixed at a reference
momentum point, usually ajk|=kr. M* is obtained as the solution of
the nonlinear equatiofreference spectrum approximatjon

with a scalar park; and a vector parlt#=(3,k¥,). Due
to the Dyson equationi2) the full Green function has the
formal solution

M*(k)=M+Rex k), k**=k*+Rex*(k). (6)

N* — + NA*) _ NA* IVE3
Re and Im denote real and imaginary part sifalove the M* =M+ 2o(ke ,M*) = M* 2, (ke , M), (10

Fermi surfacg the self-energy in general will be complex. \yhich follows from the definition given above. Self-
Here we adopt thquasiparticle approximatiofil?], i.e., the  cqngjstency is achieved by determining for a start value of

Im[X] will be neglected in Eq(5). This means that the ﬂ* the medium-dependent spinors of E§), next theT

decay width of the dressed nucleon is set equal to zero, r . :
sulting in an infinite lifetime of this “quasiparticle.” In the Tatrlx from Eq.(1) and finally the self-energy and the new

relativistic Brueckner approach the full Green functi@nis M*.1 This procedure is repeated until convergence is
replaced by its positive energy part. Thus the self-energy iféached.

Eq. (3) is determined by the part proportional to the Fermi

seaF, the so-called Dirac Green functidsp [1,7] B. Covariant T-matrix amplitudes

_ « % w2 %2 The T matrix, in Eq.(1), is most easily determined in the
Go(K) =Ly, k*#+M* (k) J2ai (k* = M**(k)) two-particle center-of-masgc.m) system, while the self-

X O (k*%) 0O (ke—|k|), 7 energy, Eq(3), is calculated in the nuclear matter rest frame.

Therefore we will determine in a second step covariant am-

which eliminates the divergent contributions from the nega®plitudes of theT matrix. The Thompson propagat¢and
tive energy sea. However, in the form of E@) Gp is re-  similar the Blankenbecler sugar propagatprojects the in-
stricted to the description of nuclear matter at rest. In order to
achieve general convenience the Fermi sph@(&:— |k|)
has to be replaced by a Fermi ellips@d Eg—k*#u,) with IFrom now on we omit the tilde because in the following we
the Fermi energyEr=(1+3,)°ke>+M*? and the boost normally deal withM* k* .
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termediate nucleons onto positive energy states and restrictesentation(for 1=0,1 and real and imaginary part sepa-
the exchanged energy transfer &(k°) to zero. Thus Eq(1)  rately) are obtained by inversion of E¢3.32 and then of

is reduced to a three-dimensional integral equation of théq.(3.28 of Ref.[22]. The summation over the total angular
Lippmann-Schwinger type, the so-called Thompson equatiomomentumJ (we have takenJ<6 and for comparison

[2,10] J=<12) yields the full helicity matrix element
d3k 2J+1
T(p,q,x)lc.m.=V(p,q)+fWv(p,k) ; T d), (0PI T 0| 1N )
2
M* Q(k,x) Tkoa.x). =(PA AR T(OGA 1Nl ). (13

“E*2(k) 2E%(q)—2E* (k) T i€
Here 6 is the scattering angle betweeq and p and
A=N1—No,AM =N;—\;. The reduced rotation matrices

Here the Thompson equation is given in the two-nucleorfly, () are those defined by Ro§5]. The matrix element
c.m. frame wher@=(p,— p,)/2=(pF — p5)/2 is the relative (13) is actually independent of the third component of the
momentum of the final states and simitgk are the relative  isospinlz. The next step is the projection of the five inde-
momenta of the initial and intermediate states, respectivelypendent helicity amplitudes onto five covariant amplitudes.
The Thompson propagator and similarly the BlankenbeclerTherefore thel operator is expanded into the basis matrices
Sugar propagator imply that the timelike component of thdn the Dirac spinor space

momentum transfer ivV andT is set equal to zero which is

a natural constraint in the c.m. frame, however, not a cova-

(11)

I_ 7S, V| T,
T=T"10)1+ T Y Y@ut T 002

riant one. Hence we solve the Thompson equation in the c.m. Kys Kys

frame in contrast to, e.g., the approach of R8f. The start- + TP e (ZM* FTM(vs7") (1)( Y570 (2) -
ing energy in Eq(11) is already fixed:/s* =2E*(q). The (1) (2

Pauli operatoR explicitly depends on the chosen frame, i.e., (14)

on the boost three velocity into the c.m. frame. Witlx we

denote the set of parametets-{kg ,M*,|u|} on which the The subscript¢1),(2) denote the particle on which the ma-

T matrix actually depends. trix acts. This expansion, however, is not unique since we
We solve the Thompson equati¢hl) for the on-shellT have specified the Dirac matrix structure of theperator by

matrix (|p|=|q|) in the c.m. system and thereby apply stan-its action only on positive energy states. The expansion of

dard techniques which are described in detail by Erkelen£d. (14) is given withT™' a pseudovector interactidhys. It

[22]. We construct the positive-energy helicifymatrix el-  is defined ask=y#K,, with the transferred momentum at

ements from théJMLS) scheme. In the on-shell case only the vertexK*= p{—pf=pf*—pf* wheref,i indicates fi-

five of the 16 helicity matrix elements are independent whichnal and initial momentum. We will, however, also adopt a

follows from general symmetries, see REf2]. After a par-  pseudoscalar interaction where the fourth term in @¢) is

tial wave projection onto theIMLS) states the integral re- replaced byr”'y{" () as it was also done by Horowitz and

duces to a one-dimensional integral over the relative momerserot [7]. The pseudovector choice is, e.g., made by the

tum |k| and Eq.(11) decouples into three subsystems of Groningen group. This choice is supported by the argument

integral equations for the uncoupled spin singlet, the unthat it agrees with the one-pion exchange coupling in the

coupled spin triplet, and the coupled triplet states. The Paulucleon-nucleon potential and furthermore suppresses the

operatorQ is replaced by an angle-averaged Pauli operatocoupling to the negative energy states which are neglected in

Q [7]. Since the Fermi sphere is deformed to a Fermi ellip-the Brueckner approadh0,1§. In the present work we ap-

soid in the two-nucleon ¢.m. fran@ is evaluated for such a ply both variants since we want to examine the influence of
Fermi ellipsoid: o the different choices on the self-energy.

Next we take the helicity matrix elements of Ef4). On
0 |k|<k- the right-hand sidérhs) the helicity states are acting directly
Q(lklx)={ [vE*(K)—Egluylk| for k_<|K|<k, on the matrix operators which are now abbreviateduy
' for i=1,2 andme{S,V,T,P,A}

1 |k|>k, -
(120 (PA NSNS T(X) AN 1Nl 5)
with k= ke—U"EE, ki =y(UEctke) andu=|ul. We — — 5% (pn k@ lanno) T™(pl 6.0, (19
are solving the integral equations by the matrix inversion m

techniques of Haftel and Tabakjd3]. Real and imaginary

parts of the T matrix are calculated separately by the The helicity matrix elements on the rhs are given explicitly,
principal-value treatment given in RdR4]. Due to the an-  €.9., in Eqs(2.1)—(2.17) of Ref.[22]. For on-shell scatter-
tisymmetry of the two-fermion states we can restore the totalnd between positive energy states the matrix elements of the
isospinl of the two-nucleon system € 0,1) with the help of ~ Pseudoscalar(PS and the pseudovectoPV) matrix

the selection rule: )" *S*'=—1. From the five indepen- Operators are identica[16]. This vertex equivalance
dent on-shell amplitudes in thdMLS) representation the follows —immediately ~from the Dirac Eq. (8):

five independent partial wave amplitudes in the helicity rep-u(p)(p* —¢*/2M*) ysu(q) = u(p) ysu(q). Thus the cova-
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riant amplitudesT”S=TPV=TP are identical as well. The dif- the matrix becomes singular because two of the five helicity
ference between both representations of Thematrix in ~ amplitudes vanish. Therefore it is useful to extract the lead-
Dirac space enters only at the one-body level when calculaing angular dependence of the mat@,, as well as of the
ing the self-energy [26]. For fixed parameters helicity amplitudes T{ from the rotation matrices
(x,|p|=1ql|,6) equation(15) is a matrix relation between the dik,(ezo,w) in Eq. (13). Thus, the limité—0,7 can be
five independent helicity amplitudel (five of the 16 am-  performed analytically. This method has been developed in
plitudes numbered with={N]\J;\1\o}=1,...,5) on the appendix C of Ref[7] and formula(16) can be found there

lhs and the five unknown covariant amplitudg®' for the limiting angles Gr [Eqgs.(C.10,11]. Proceeding this
1 way we determine the real and the imaginary part of the five
T::TE CinT™". (16)  covariant amplitudes for the direct and exchange contribu-
M™* tion in both, the isospin singlet and triplet channels of the

_ _ T matrix T™'=%Y 9=0,7).
This corresponds to E43.23 of Ref.[7] with respect to our

different normalization of the spinor basis, E§). The co-
variant amplitudes are determined by a matrix inversion of
equation(16). This, however, only has to be done for two  Now we are able to calculate the self-energy. Inserting the
angles since for on-shell scattering in the two-particle c.mGreen function, Eq(7), and the Dirac representation of the
frame only two scattering angles appear, i#0 for the T matrix, Eq.(14), into the definition of the self-energy, Eq.
direct andd= = for the exchange interaction. However, now (3), yields

C. Self-energy components

d3 O (ke— k*,u_ * )2
3 5= (2733 ;EF*((L?D{M*laB AT5—TR—ATy— 1273 +4TY— —2—( 4Mf ) T |+ % AT — TR+ 2T +2Th
(k"= g #)2 2q5 (K*#—g**)
— T x|~ K Tk (17)
|
where thea, 8 denote both Dira¢spin) and isospin indices. where we have used the abbreviations
The direct and exchange parts of thematrix denoted by
D and X are calculated from isospin sums of the isospin 1
projection operators which yieldsl=T%' =%+ 3T1'=! and To(k,0:x) =7 ATS—T3—4Ty— 12Ty +4TY
TR=—TY=%+3T'=!. The self-energy as a one-body op- . s
erator in spinor space posseses components proportional to K,a**—M TP 21)
the unity matrix 1 and toy* as postulated in Eq4). From 2M*2 X
this relation the self-energy componedts,, follow by tak-
ing traces
1 V S Vv A
1 T(o)(k,q;x)=Z —4Tp+Tx—2Tx— 2Ty
So(|kl;M* ke) =gTH ]
E*(k) M*2=KSg*#
f d3q K M* Tk o +E*(q) 2M*2 TX ’ (22)
= | @m? ( F_|Q|)E*—(q) s(k,a;%),
(18) 1
1 T,(k.a:x)=7 — AT+ TS—2Ty— 2Ty
NVE: __ 0
2O(|k|1|\/| 1kF)_ 8Tr[72] |k| M*Z—k*q*ﬂ“
+————5—TF|. (23
d3q d: 2M* X

ZJW®(kF_|q|)T(O)(kvq;X)1

19 In the pseudoscalar ca$é] all the cofactors ofT >P< are re-
(19 placed just by—1 which yieldsT =T, . The self-energy of

'y-k} a nucleon is calculated in the nuclear matter rest frame by

1
3 (k| M* kg)=— gTr[ integrating the effective two-body interaction over the Fermi

2s
k sea. The three momenkaq of a nucleon pair are given in
d3q q* -k this frame and we definB* =k+q=k* +q*. On the other
= f (27)3®(kp_|q|)|k|2E—*(q) hand, the covariant amplitudes are determined in the two-

nucleon c.m. system and thus depend on the respective quan-
XT,(k,q;x), (20 tities in that frame
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TB(kg,kg;x) =T™=(|pc ], 6=0x) 104
+3T" "X pe ], 6 0o
=0xX), (24
m . mi=0 0.8
TR(ka,qk;x)=—=T™=°(|p ], 6= 7,%)
+3TM= 1( | pc.m.| 0 0.7
=1,X). (25) p=
> 06
From the invariant mass* =[E* (k) +E* (q)]?>— P*2, the =
relative momentum in the c.m. frame follows by 0.5
|peml= Vs*14—M*2. As already mentioned above abbre-
viates the set of parametess={kg,M*,|u|}, where the 0.4
boost three velocityfrom the nuclear matter into the c.m.
frame is now given by u=P*/\s*+P*2. In the two- 0.3
particle c.m. frame there exist only two possible scattering
angles, i.e.#=0 for the direct andd= 7 for the exchange 0.2 L4 L ! !
amplitude. Numerically we solve the Thompson equation 0.5 1.0 L 15 2.0
(11) and determine the covariant amplitude®' for a suit- ke (fm )
able two-dimensional range of the quantitigs, ,|u|. Using FIG. 1. Self-consistent effective mad4* in units of the bare

the azimuthal symmetry we calculate the self-energy, Eqsnass =939 MeV) as a function of the Fermi momentukg .
(18)—(20), by a two-dimensional integral over the Fermi The relativistic Brueckner results obtained with the-exchange
sphere. Therefore for each nucleon pair we have to interpgrotential (full line) are compared to those of R¢] (diamonds.

late the covariant amplitudes at the respective values ofhe effective mass for the Bon@ potential (dashed ling differs
Pem. and |u|. The resulting self-energy, taken at the Fermisignificantly from that of therw model.

surface|k|=kg, yields the new value of the effective mass

M*, Eqg. (10). This value serves as the input for the nextsity (herekr=1.42 fm™') is partly due to the different ef-
iteration. This procedure is repeated until a convergence dgctive two-nucleon propagators. As mentioned above, we

the effective mass is achieved. are using the Thompson propagator, Etl), while in Ref.
[7] the Blankenbecler-Sugar propagator is applied. Further-
IIl. NUCLEAR MATTER RESULTS more, in Ref.[7] an additional approximation has been

made. As discussed above, we are solving the Thompson
For the solution of the Thompson equatidri) we apply  equation for a two-dimensional grid of the relative momen-
the BonnA,B,C potentials of Refs[3,9] as the nucleon- tym|p| and the c.m. momentuf®|, respectively, the boost
nucleon interactiorv. Thg potentials are calculated_ with the velocity |u] and use thisT-matrix for the determination of
OBNNS code of Machleidt[27]. The Bonn potentials are 3. In Ref.[7] the |P| dependence is replaced by an “average
based on the exchange of the six nonstrange bosons W|T§,| approximation” for each|p| which causes deviations

masses below 1 Gevil, 7,p,w,8,0). For the pion a deriva- ‘mainly at high density systems. For the BaBrpotential the
tive pseudovector coupling is applied. The three IOarameméffective mass is significantly different from that of the
zationsA, B, andC differ essentially in therNN form fac-

; model. Here we applied the pseudovector choice.
tor and as a consequence in the strength of the nuclear tensor . .
In Fig. 2 we show the density dependence of the self-

force. Actually we find only minor differences of a few MeV . h | I he timelik
in the resulting self-energies, see below, and thus we preseff€rgy: i-e., the scalar pat; as well as the timelike-X,

mainly the BonnC results. For comparison with the results @d the_spacelike componentke2., of the vector self-
of Horowitz and Serot we also employ the simple energy. The self-energies are determined for the three Bonn

co-meson exchange of Ref[7] with g2=91.64 potentialsA,B,C and again the pseudovector choice is ap-

92=136.2 and use the form factor given therein. plied. For the sa_ke _of_a better comparison thg sign of the
@ vector self-energies is inversed and the dimensionless space-

like component, is multiplied bykg. The scalar and also

A. Self-energy components the vector self-energy compone®,—3, differ only
slightly for the three Bonn potentials. The difference
amounts to about 5 MeV at saturation densityere

First we want to demonstrate the reliability of our ap-ke=1.35 fm™1) and is still less than 10 MeV &:=1.90
proach by comparison with the results of REf]. In Fig. 1 fm ~ . In absolute magnitude Bor@ yields the weakest and
we show the self-consistent effective m&ds, Eq.(10), as  BonnA the strongest self-energies. The spacelike vector self-
a function of the Fermi momentukg which is a measure for energy —kg2, is equal within the linewidth for the three
the densityo = 2/(37?)k2 . Our results with thero-meson  Bonn potentials and is small in comparison3g,3,, e.g.,
exchange potential and the pseudoscalar decomposition about 7% of3, at saturation density. For further analysis we
the T matrix reproduce quite well the values taken from Ref.therefore concentrate on the large compon&nts,, calcu-
[7]. The slight deviation for densities above saturation denlated with the BonrC potential.

1. Density dependence
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FIG. 2. Self-energy components for the pseudovector choice, FIG. 3. Self-energy componen,,—3, calculated with the
calculated with various Bonn potentials. The dotted, dashed and fulpseudoscalar choice and the BaBipotential. The curves represent
lines represent the BonA, B, and C potential. The scalar self- the total self-energy componen(sill lines), their direct(dir.) and
energy > (lower half-plang and the time- and spacelike vector their exchangéexc,) parts which are practically equéadashed dot-
self-energies— 2, — kg2, (upper half-plangare shown as func- ted lines.
tions ofkg . For the three Bonn potentials the small spacelike vector

self-energies—kg2, are equal within line width. The remaining 2504 Of course also the direct part is different from that of
curves (dashed dottedinvolve a different definition of the self- e pseudoscalar case since we consider the self-consistently
consistent effective mass which is given in the text later on. determined fields. We conclude that the pseudovector choice
in general reduces the total self-energy which is due to a

considerable reduction of the exchange contributions while
The two different representations of tlematrix, i.e., the  the direct contributions are even enhanced.

pseudoscalar and the pseudovector case, represent an inherin Fig. 5 we compare our results far,,—3, obtained
ent ambiguity. This is, however, a common feature of allwith the pseudovector choice and the BdBrpotential with
relativistic Brueckner calculations which specify the Diracthe results of two other groups, i.e., the Groningen group

matrix structure of thel' matrix by using only positive en- [10] and the approach of Brockmann and Machl¢@lt In
ergy T-matrix elements. In order to clarify the influence of

this ambiguity, in Figs. 3 and 4 we show the self-energy T . T T
componentss. s, calculated with the Bonr€C potential for
both choices. In the pseudoscalar case, see Fig. 3, the self
energies are larger by about 40—-80 Mé¥ecreasing with
increasing densijythan in the pseudovector cageig. 4).

This difference may be interpreted as a measure of the gen-
eral uncertainty of the self-energy components arising from
any particular projection of th& operator on positive energy
matrix elements only. This uncertainty is larger at low den-
sities. To get more insight into the origin of this difference

we decompose the self-energy in the two contributions stem- | —
ming from the direct and the exchangeamplitude, respec-
tively. E.g., in the pseudoscalar case the direct part of the
self-energy. is determined by the integral ovéﬁg while,

the exchange part is given by the integral over the sum of all
exchange amplitudes- 1/4T5— Ty — 3Ty + To— 1/4T%, see

Eqg. (21) and the subsequent comment. We find that in the
pseudoscalar case direct and exchange patis ghre iden- L L L L
tical within less than 0.5 MeV, see Fig. 3. However, in the 022 0'2?( (Gch;-SO 034
pseudovector case the factor accompanyingT&amplitude F

in Egs.(21),(22) reduces the exchange part by roughly 50%. F|G. 4. Self-energy components,,—3, calculated with the
For comparison in there model, which lacks pion ex- pseudovector choice and the Bo@npotential. The curves repre-
change, thé’;> amplitude is generally smaller and the effect, sent the total self-energy componefiis! lines), their direct(dir.)
i.e., the reduction of the exchange part, amounts to roughlparts(dashed lingsand their exchangéexc) parts(dotted line$.

2. Pseudoscalar versus pseudovector choice
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saturation density they are reduced by about 75 MeV. In
spite of this discrepancy both calculations have several fea-
tures in common. E.g., the single-particle potential, defined
in Eqg. (26), is almost identical and as we will see later on the
same holds for the equation of state. Concerning these two
gquantities the main difference between both treatments lies
in the reference frame where tiematrix is actually calcu-
lated, while the projection method on covariant amplitudes is
not essential. At moderate densities fhematrix depends
only weakly on the c.m. momentuf and, respectively, on
the chosen frame. Thus the numerical results show only mi-
nor differences. Another feature in common is that also the
potential-fit method yields self-energies for the three types of
Bonn potentials which are equal within a few M¢¥/.

In Fig. 5 we further compare to the results of the Gronin-
gen groud 10]. They also perform a full relativistic Brueck-
ner calculation solving the Thompson equation in the two-
0_'22 o.lze o.lso o.'34 particle c.m. system and using a projectior_1 of Thenatrix

k- (GeV) onto a pseudovector representation. The difference from our

method is, on the one hand, the application of a different

one-boson exchange potential including different form fac-
tors, the so-called Groningen potential. On the other hand
as—a more technical point—in Ref10] the Thompson
equation is solved in full momentum-spin space by the use of
Padeapproximants, for further details see, e.g., H42].
For densities above saturation density the self-energies cal-
culated with the Groningen potential are roughly the same as
the ones obtained by us, however, in the low-density range
they are much smaller in magnitude.

2(k;) (GeV)

FIG. 5. Self-energy componeni,, —3,, calculated with the
pseudovector choice and the Bo@rpotential(full lines). They are
compared with the results of R¢f] (dashed linesand of Ref[10]
(dotted lines.

Ref.[9] the relativistic Thompson equation is solved by stan-
dard methodg$13] directly in the nuclear matter rest frame
instead of the two-particle c.m. frame. Therefore the Thomp
son Eq.(11) is Galilei transformed to the rest frame with the
c.m. momentun®/2. The relativistic single-particle potential

U in the nuclear matter rest frame can be evaluated from this

) 3. Momentum dependence
T matrix by

Up to now we have discussed the self-energy of a nucleon

* in nuclear matter obtained at the Fermi surfafd €kg),

M
U(lk]) = = Re(k[Z[k)

E* (k) i.e., the density dependence of the self-energy. In the relativ-

M2 istic Brueckner theory the self-energy at the Fermi surface

_ _ and theT matrix are determined self-consistently, as de-
_qu E*(k)E*(q)Re(kq'Tqu ak) (29 scribed above. The dressed nucleon propagators, respec-

tively, the self-consistent spinor basis, Ef), entering into
with the definition of2 (|k|) as in Eq.(3). The advantage of the calculation of thel matrix are constructed with the ef-
this method is that one is not forced to Lorentz transform thdective mass, Eq(10). M* itself depends on the density-
matrix elements between the nuclear matter rest frame andependent self-energiess, (kg). Thus only the effective
the two-particle c.m. frame and thus a projection onto covamass acts as a self-consistency or iteration parameter. In a
riant amplitudes is obsolete which simplifies the task considnext step the self-energies above and below the Fermi sur-
erably. However, now the self-energy components—2,, face can be evaluated from Eq48)—(20). This has to be
cannot be calculated directly as in the projection method ofonsidered just as the first iteration step in the determination
Egs. (18)—(20). Instead, one has to extract them from theof self-consistent momentum-dependent  functions
single-particle potentidl. With the form of2 as in Eq.(4), 2s0,(lk|) and stands in contrast to the nonrelativistic

however, thereby neglecting, one finds Brueckner treatment where self-consistency is required for
. the full positive single-particle energy spectrum. However,

U(|K])= M S—% 27) these approximations are not based on the same footing. In

E*(k)©s <O the relativistic treatment we have an intrinsic momentum de-

pendence due to the Dirac structure of the nucleon which
i.e., the single-particle potential results from a cancellation ofntroduces a momentum dependence in the single-particle
the huge scalar and vector components. Using a mean-fiejgbtentialU even for constant values &fs,,, see Eq(27).
ansatz fo g o, i.e., neglecting their momentum dependence A further argument often given in connection with the refer-
one is able to determine them by a fit procedur®{tk|). In  ence spectrum approximatidi@,10] is that the momentum
Ref. [9] the self-energy components are constructed by thiglependence of the self-energies in the relativistic Brueckner
potential-fit method. In Fig. 5 we compare these results wittapproach is found to be rather soft. However, in the present
our calculations both for the Bord potential. In the density work we demonstrate that this is in general not the case but
range considered the fitted self-energies are generally smalletrongly depends on the special form of the one-boson ex-
in absolute values by 50 up to more than 150 MeV, e.g., athange potential. In Fig. 6 we show the momentum depen-
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. . FIG. 8. Equation of state, i.e., energy per parti&lbA as a
FJG' 6. Self-energy componenis;, — 2 at saturation density ¢ nction of the nuclear matter densiey, for the three Bonn poten-
(ke=0.28 GeV as a function of the nucleon momentukj<ke. {515 A B, andC (from below to top: dashed line, dotted line and

The self-energies are calculated with the-exchange potential  g4jiqg jing). The symbols represent the respective results of [R&f.
(pseudoscalar choiteand are compared with valugsymbols
taken from Ref[7].

In Fig. 7 we show the momentum dependence of the self-

dence of the nucleon self-energiBs at saturation density ©€nergies for calculations with the Bon€ potential
calculated with thecw-exchange potential. Our results (PSeudovector choigeand thesw potential (pseudoscalar
nice|y agree with the results of Reﬂ?] within 10 MeV ChOiCé, both ath:0265 GeV. More StriCtIy this is the real
which might be due to different technical details alreadypart of the self-energy, since for momenta greater than the
mentioned in the discussion of Fig. 1. We find tiatde-  Fermi momentum the self-energy is complex. The results
creases in the range frofk| =0 tokg by 14 MeV and®, by  obtained with the Boni€ potential show a strong momen-
24 MeV, i.e., below the Fermi surface the self-energies aréum dependence: over the entire momentum range up to 0.8
constant within a few percent. GeV corresponding to a single-particle energy of around 300
MeV the self-energies decrease by nearly 60% with respect
. y T - T y to the central value. The most pronounced change occurs in
the region around the Fermi surface, while deep inside the
Fermi sea and far above the Fermi momentum the momen-
tum dependence nearly saturates. For dfae potential the
self-energies are rather weakly momentum dependent: over
the full interval they decrease by about 20%. For comparison
we also show two results obtained by the Groningen group.
In Ref. [10] the self-energies above the Fermi surface are
0.0 calculated in a similar way as in the present work, see dis-
cussion of Fig. 5. The results obtained by the Groningen
group[10] are in general more softly dependent than those
of the present work obtained with the Bonn potentials. The
results of Ref[17] show a momentum dependence as strong
as ours. However, in this case a comparison is not fully ap-
propriate since these calculations include an additional self-
consistent treatment of the pion polarization.

06 4

(k) (GeV)

0.0 0.2

0.4 )
k (GeV) B. Equation of state and optical potential

FIG. 7. Self-energy component,,—3, as function of the In Flg. 8 we show the gquaﬂon of state, i.e., the energy
momentumk| of the nucleon fokg=0.265 GeV. The self-energies Per particleE/A as a function of the nuclear matter density
are calculated with the Bon@ (pseudovector choice, solid line @, calculated with Bon#\,B,C. In the relativistic Brueckner
and thesw-exchange potentialpseudoscalar choice, dotted line theory the energy per particle is defined in analogy to the
and compared with results of RdfL0] (dashed lingand of Ref.  nonrelativistic Hartree-Fock method as the kinetic plus half
[17] (k==0.27 GeV, dashed dotted line of the potential energy
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the full self-energy operator, Eql7), is identical for both
choiceg 26]. However, as can be seen from Fig. 9 the equa-
tion of state turns out to be rather sensitive to the different
choices. This significant dependence is only due to the self-
consistently iterated effective mass which differs in both ap-
proaches. This effect deepens the equation of state in the
pseudoscalar choice by around 1 to 2 MeV and shifts the
minimum towards higher densities. Thus the saturation point
is shifted away from the empirical point towards the results
of nonrelativistic Brueckner calculations as, e.g., published
in Ref. [9]. This observation additionally supports the
pseudovector choice.

In view of the strong momentum dependence of the self-
energy components for the Bonn potentials one might expect
that the results depend sensitively on the actual momentum
reference value where the self-consistent effective mass is
determined. As a consequence a self-consistent treatment of
the full momentum dependence might appear to be indis-
pensable. Therefore we have also examined the influence of

FIG. 9. Equation of state for the Borth potential calculated in  a different choice of the self-consistent effective mass. In the
the pseudovectofsolid line) and the pseudoscalddashed ling reference spectrum approximation, see Bd), M* is de-
choice. The remaining curv@otted involves a different definition termined at the Fermi surface which is the conventional

of the self-consistent effective mass given in the text. treatment in the relativistic Brueckner approach. However,
this choice is by no means unique. Thus we also determine
1 — 1 M* M* by its mean value in analogy to E(LO)
E/A ==, <u)\(k)y-k+M+§2(k) u)\(k)>E—*—M, - o
Qi 28 M* =M +3(M*)—M*3, (M*). (30)

The self-energieX 5, are not simply taken ak| =k but are
{[1+32,([KDIE* ==°(k])} replaced by their values averaged over the Fermi sea

_1J' d3k
“eole2n®

1
— S [SllkDM* =3 ([K|k*#]

-M (29 _ fzs,u(|k|)(kF_|k|)M*/E*d3k
2s,u: (31)

A _ * * A3
with the self-consistent spinots, (k)) given in Eq.(9). By f O (ke — [k )M*/E* d°k
this way we have determinel/A by integrating the self-
energy components of Eqe.8)—(20) over the Fermi sphere, These averages are Lorentz scalars. The extension of the
see Eq(29). In Fig. 8 we compare to the results of REJ] reference spectrum approximation, E®Q), is especially
whereE/A is calculated directly from the single-particle po- meaningful with respect to the treatment of anisotropic
tential, Eq.(26), using expressiof28). For moderate densi- nuclear matter, as done in R¢20]. Here it serves as a test
ties the results agree with an accuracy better than 0.5 Medf the influence of the momentum dependence. Due to the
and even fokg=1.9 fm~! the deviation is less than 3 MeV. strong momentum dependence observed, e.g., in Fig. 7 the
First, this result is an additional test for the accuracy of ourmean valueS differs considerably fronS(kg), i.e., by
numerical treatment, i.e., the projection of fhenatrix onto  about 57 MeV at saturation densifyith Bonn C). Respec-
covariant amplitudes which are subsequently used to detetively for the different effective masses we obtain a mean
mine the self-energy components and the equation of statgalue M* =528 MeV which is smaller than the self-
Second, these results again demonstrate that the equation gdnsistent mass* (k) =566 MeV. But if we use the alter-
state is quite insensitive to the self-energy components thenhatively defined effective mass, EQO), as iteration param-
selves. Actually, as can be seen clearly from the definitiorster we find for the final iterated mean valMie =547 MeV.
Eq. (28), the equation of state depends directly on the singleThus the mean value is increased, i.e., it is shifted towards
particle potential, i.e., the difference Bf andX,, Eq.(27),  the previous self-consistent result or, in other words, the self-
and relatively weakly on the effective mass via the kineticconsistent value is rather stable. The comparison of the self-
energy part. Nevertheless, and in contrast to nonrelativistienergy component&¢o(kg) in both iterations, see Fig. 2,
calculations, the relativistic effects are responsible that thghows just slight deviations, e.g., about 10 MeV at saturation
minima of the equations of state for the three different Bonngensity. And even more, the equation of state, shown in Fig.
potentials reveal a Coester band which meets the empirically, remains nearly unchanged. These results demonstrate that
found saturation area of nuclear matter. the strong momentum dependence has only minor influence
In order to demonstrate the influence of the two differenton the density dependence of the self-energy components
choices, i.e., pseudovector and pseudoscalar on the equatigid that the equation of state remains unaffected.
of state in Fig. 9 we show the respective equation of state, Another quantity which is more sensitive on the momen-
again for BonnC. Actually the expectation valugu|X|u) of  tum dependence &5, is the Schrdinger equivalent opti-
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T " T " T " T IV. SUMMARY

In this work in particular the self-energy of a nucleon
inside the nuclear medium has been studied in the framework
of the relativistic Brueckner approach. Therefore the depen-
dence of the Lorentz scalar and vector self-energy compo-
nents on the nuclear density and the nucleon momentum
have been examined. In the bare nucleon-nucleon interaction
various one-boson exchange potentials have been employed,
i.e., the BonnA, B, C potentials and for comparison the
ow-exchange potential. For the latter we are able to nicely
reproduce the density dependence of the self-energies of Ref.
[7]. The self-energy components themselves deviate for the
three different Bonn potentials over a wide density range
only by a few MeV and thus we restricted our discussion
mainly to the BonnC potential. From the comparison with
150 . ) . ) . ) . our results we find that the potential-fit method of ReéX|
0 200, 400 600 underpredicts the magnitude of the self-energies by about 50

k'=M (MeV) up to more than 150 MeV.

FIG. 10. Real and imaginary part of the Schroedinger equivalent  Further we analyzed the influence of different possible
optical potential Uoy as function of the single-paricle energy covariant representations of tffematrix. The positive en-
k°—M. The results for the Bon potential(real part: solid line, ergy on-shellT matrix is projected on five invariant ampli-
imaginary part: dotted lineare compared to the results of REf0]  y,des and by the restriction to positive energy states an am-
(real part: dashed line, imaginary part: dashed dotted kmel to 1, ity arises which is discussed in terms of the pseudoscalar
the emp]rlcal_optlcal pote'ntlal taken from RER8] (real part: dia- and the pseudovector representation. AlthoughTtrempli-
monds, imaginary part: circlgs tudes of both choices are equal on the one-body level, i.e.,

concerning the respective self-energy components a signifi-
cal potential which a nucleon feels inside the nuclear mecant influence of these representations is observed. This is

U, (MeV)

-100 s

dium. The optical potential is given by due to the fact that in the pseudoscalar case direct and ex-

change contributions to the self-energies are equal, while in
1 S2(1kh—Z2(k)) the pseudovector choice the exchange part is suppressed. For

Uopd |K], k%) =2 (|K]) = Mk"zﬂ(lkDﬁL oM E . the Bonn potentials this suppression lies between 40 and 80

(32 MeV and is most p_rominent at low _densities. This diffgrence
between both choices has to be interpreted as an inherent
measure for an uncertainty of the approach due to the restric-

It contains counteracting linear and quadratic terms in theion on positive energy spinors.

self-energy components. For nucleons with>kg the mo- Commonly the momentum dependence of the self-energy
mentum space is not completely blocked for scattering procomponents is supposed to be weak. This assumption is also
cesses and thus above the Fermi surface the self-energies amflected in the self-consistency treatment in the relativistic
the optical potential become complex. The single-particle enBrueckner model which is managed by just one density-
ergy K°(Jk|)=—=°+E*(|k|) is a monotonic function of dependent parameter, i.e., the self-consistent effective mass.
|k| which allows us by inversion to determirtdaopt(ko) as Therefore we have carefully examined this momentum de-
function of the single-particle enerdy’. We want to stress pendence which, however, can be done within the Bruckner
that neglecting the momentum dependence of the fieldscheme just in a first approximation. As in RET] we find

25 (0) and neglecting completel¥, the optical potential that when taking therw-exchange potential the self-energies
Uopt Would simply be a linear function d°. However, this are found to be constant below the Fermi surface within a
is not the case here. Real and imaginary part of the opticdew percent. However, this result does not hold for the more
potential calculated for Bon® (pseudovector choigeare  realistic Bonn potentials. Here we observe a strong momen-
shown in Fig. 10. The real part agrees well with the Gronin-tum dependence which may be due to the strong pion ex-
gen results of Ref[11], while the imaginary part of the change. The self-energies decrease from their central value,
present calculations is about twice as large. Further we comi-e., atk=0 to the Fermi surface by about one-fourth and
pare to the empirical optical potential Hama I, Table 2 offurther tok=0.8 GeV by more than one-half. This striking
Ref.[28]. For the full range of single-particle energies up tomomentum dependence makes the treatment of the self-
700 MeV, shown in Fig. 10, our results deviate from theconsistency in the model somewhat questionable. But a test
empirical ReU,, by less than 10 MeV. Up to the pion with a different defined self-consistent effective mass which
production threshold at around 300 MeV we observe a reis determined by a mean value over the Fermi sea and not
markable agreement of the imaginary partlbf,; with the  taken atke as usually done shows that the self-energy com-
empirical data. For single-particle energies above this regioponents are rather stable at not too high densities. Thus the
the results appear to be no more fully reliable since therself-consistency treatment in the model still appears to be
meson-nucleon resonances, e.g., thél232 resonance, justified up to two or three times saturation density.

should be taken into account. In this context the question raises which observables are
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sensitive to the self-energy components and their momentumnergy components themselves but to their difference. A bit
dependence. It is remarkable that the full self-energy andnore sensitive is another quantity, i.e., the optical potential.
respectively, the single-particle potential sh@absolutely a It depends not only on the cancellation of the scalar and
much weaker momentum dependence. As it is well knowrvector self-energy but also contains quadratic terms. We find
from mean-field theory the large scalar and vector selfq good agreement of our results with the experimental data
energy components contribute to these quantities with oppayf Ref. [28] for both the real and the imaginary part up to a
site signs and thus cancel each other to a high extent. Thgngle-particle energy of several hundred MeV.

resulting observables, e.g., the single-particle potential, are As a resumethe self-energy components in the relativis-
smaller by nearly one order of magnitude. Here we foundic Brueckner model are still affected with some uncertainty.
that this holds not only gt but also over the full momen-  For realistic one-boson exchange potentials we find them to
tum range considered. Thus the momentum dependence ca§e strongly momentum dependent. However, for this at-
cels to a large extent. Also the equation of state dependgihute we have to be aware of the limits of the model. One
mainly on the difference of the scalar and the vector selfmajor success of the relativistic approach was that the equa-
energy and thus the absolute values of the single componefipn of state comes close to the empirical saturation point.
are of minor importance. This can be seen most clearly byrhe equation of state is rather insensitive to the self-energy
the use of just density-dependent self-energy components dgomponents themselves. Similarly, the nucleon optical po-
termined with the potential-fit method of Brockmann andtential is only little more sensitive. However, a precise
Machleidt [9] which deviate from our resultéat k) by  knowledge of the size of each self-energy component is nec-

about 75 MeV. The resulting binding energy, however, onlyessary, e.g., in the much more complicated situation of heavy
deviates by about 1 MeV. Similarly the self-energy compo-jon collisions.

nents obtained in the pseudoscalar and the pseudovector
choice differ considerably but the equations of state differ by
less than 1-2 MeV. On the other hand, small variations of
the self-energy due to the three different Bonn potentials
produce a significant change in the equations of state. Sum- The authors acknowledge stimulating discussions with F.
marizing, the equation of state is not sensitive to the selfde Jong and H. Mier.
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