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Full-folding optical potentials for elastic nucleon-nucleus scattering based on realistic densities
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Optical model potentials for elastic nucleon-nucleus scattering are calculated for a number of target nuclides
from a full-folding integral of two different realistic target density matrices together with full off-shell nucleon-
nucleon t matrices derived from two different Bonn meson exchange models. Elastic proton and neutron
scattering observables calculated from these full-folding optical potentials are compared to those obtained from
‘‘optimum factorized’’ approximations in the energy regime between 80 and 400 MeV projectile energy. The
optimum factorized form is found to provide a good approximation to elastic scattering observables obtained
from the full-folding optical potentials, although the potentials differ somewhat in the structure of their non-
locality. @S0556-2813~97!04210-6#

PACS number~s!: 25.40.Cm, 25.40.Dn, 24.10.Ht
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I. INTRODUCTION

Progress in the rigorous treatment of the multiple scat
ing of nucleons from nuclei has led to the need to study
influence of the full target nuclear density matrix in the sc
tering observables. In first order the spectator expansio
multiple-scattering theory requires a convolution of the fu
off-shell nucleon-nucleon~NN! scattering amplitude with the
nuclear wave functions of the target. This opens the po
bility to assess the influence of the target wave functions
elastic proton and neutron scattering observables.

In its most general form, the first-order single-scatter
optical potential within the framework of the spectator e
pansion is given by the triangle graph shown in Fig. 1. Sin
there is one loop, the evaluation of the graph requires a th
dimensional integration involving the fully-off-shell two
nucleon scattering amplitude and a realistic nuclear den
matrix. Usually, one makes the assumption that theNN am-
plitude varies slowly as a function of its arguments compa
to the nuclear density matrix. This corresponds to the ar
ment that the range of theNN force is small compared to th
size of the nucleus and leads to the approximate nonrela
istic form t(q)r(q) for the first-order nucleon-nucleus opt
cal potential. Full-folding calculations, avoiding this a
proximation, have already been performed by several gro
based on either the KMT approach@2,3# or a g-matrix ap-
proach@4,5# using various models for the off-shell densi
matrix as well as different models for theNN amplitudes. In
general, this work indicates that an improved treatmen
the off-shell structure of the optical potential improves t
description of the observables.

Our approach to elastic scattering from nuclei is based
the spectator expansion of multiple scattering theory@6–8#.
Here the first-order term involves two-body interactions b
tween the projectile and one of the target nucleons. A
result of the many-body nature of the free propagator for
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projectile1target nucleon system, a theoretical treatment
this many-body propagator as affected by the residual ta
nucleus is included. The calculation of the optical poten
presented in this paper relies on two basic inputs. One is
fully off-shell NN t matrix, which represents the current u
derstanding of the nuclear force, and the other is the nuc
wave function of the target, representing the best understa
ing of the ground state of the target nucleus. A specific sc
of this work is the study of the influence of density matric
obtained from realistic nuclear structure models on the e
tic scattering observables. To account for the modificatio
of the free propagator inside the nucleus, the same mean
potentials are used from which the ground state wave fu
tions are derived. There areno adjustable parameters prese
in this calculation.

The motivation for ongoing work on this topic is twofold
First, elastic and inelastic nucleon-nucleus scattering prov
an important and sensitive test for theoretical corrections
the first-order level of the optical potential~e.g., as given by
possibly genuine modifications of theNN interaction in the
nuclear environment and off-shell effects!. Rigorous micro-
scopic calculations are required for discerning these effe
Second, a better understanding of the theoretical detail
the optical potential is needed to construct realistic a
physically sound wave functions representing continu
nucleons in the interior of the nucleus. These wave functi
will become vital for future theoretical needs in high-ener
coincidence experiments~at TJNAF, e.g.!, inelastic scatter-

FIG. 1. Diagram for the optical potential matrix element for t
single-scattering term.
2080 © 1997 The American Physical Society
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56 2081FULL-FOLDING OPTICAL POTENTIALS FOR ELASTIC . . .
ing studies, and for understanding the reactions in heavy
experiments involving nuclei far from the drip lines. He
experiments involving the scattering of exotic nuclei fro
single nucleon targets should benefit from full-folding-ty
calculations in order to test the predicted density distri
tions of halolike nuclei.

The structure of the paper is as follows. In Sec. II w
review the relevant formalism for the single-scattering op
cal potential and introduce the full-folding procedure as u
in our calculations. In Sec. III we discuss the model densi
employed and describe the calculations of the full-foldi
optical potentials. Elastic scattering results for neutron a
proton scattering form a variety of nuclei in the energy
gime between 80 and 400 MeV are discussed in Sec. IV.
conclusions are presented in Sec. V.

II. FULL-FOLDING OPTICAL POTENTIAL

The standard approach to elastic scattering of a stron
interacting projectile from a target ofA particles is the sepa
ration of the Lippmann-Schwinger equation for the transit
amplitude,

T5V1VG0~E!T, ~2.1!

into two parts, namely, an integral equation forT,

T5U1UG0~E!PT, ~2.2!

whereU is the optical potential operator and defined by
second integral equation

U5V1VG0~E!QU. ~2.3!

In the above equations the operatorV represents the externa
interactions between the projectile and the target nucle
Therefore the Hamiltonian for the (A11)-particle system is
given by

H5H01V. ~2.4!

The free propagatorG0(E) for the projectile-target system i
given by

G0~E!5~E2H01 i e!21. ~2.5!

The potential operatorV5( i 51
A v0i consists of the two-body

potentialv0i acting between the projectile and thei th target
nucleon. The operatorsP and Q are projection operators
P1Q51, andP is defined such that Eq.~2.2! is solvable. In
this case,P is conventionally taken to project onto the elas
channel, such that@G0 ,P#50. The free Hamiltonian is
given by

H05h01HA , ~2.6!

whereh0 is the kinetic energy operator for the projectile a
HA stands for the target Hamiltonian. Thus the projectorP
can be defined as

P5
uFA&^FAu
^FAuFA&

, ~2.7!
n

-

-
d
s

d
-
ur

ly

s.

whereuFA& corresponds to the ground state of the target a
fulfills

HAuFA&5EAuFA&. ~2.8!

With these definitions the transition operator for elastic sc
tering can be defined asTel5PTP, in which case Eq.~2.2!
becomes

Tel5PUP1PUPG0~E!Tel . ~2.9!

The fundamental idea of the spectator expansion for
optical potential is an ordering of the scattering process
cording to the number of active target nucleons interact
directly with the projectile. The first-order term involve
two-body interactions between the projectile and one of
target nucleons, i.e.,

U5(
i 51

A

t i , ~2.10!

where the operatort i is derived to be

t i5v0i1v0iG0~E!Qt i

5v0i1v0iG0~E!t i2v0iG0~E!Pt i ~2.11!

5t î2t îG0~E!Pt i .

For elastic scattering only Pt i P or, equivalently,
^FAut i uFA& need to be considered,

^FAut i uFA&5^FAut î uFA&

2^FAut î uFA&
1

~E2EA!2h01 i«
^FAut i uFA&,

~2.12!

wheret î is defined as the solution of

t î5v0i1v0iG0~E!t î . ~2.13!

It should be noted that Eqs.~2.3!–~2.13! all follow in a
straightforward derivation and correspond to the first-or
Watson scattering expansion@9#.

Since Eq.~2.12! is a simple one-body integral equatio
the principal problem is to find a solution of Eq.~2.13!,
which has a many-body character due toG0(E)5(E2h0
2HA1 i«)21. If the propagatorG0(E) is expanded in the
spirit of the spectator expansion within a single-particle d
scription, one obtains in first order@1,10#

Gi~E!5@~E2Ei !2h02hi2Wi1 i«#21, ~2.14!

wherehi is the kinetic energy of thei th target particle and
Wi5( j Þ iv i j . The quantityWi represents the force actin
between the struck target nucleon and the residual (A21)
nucleus. Then the operatort î of Eq. ~2.13! can be written as

t î5v0i1v0iGi~E!t î

5t0i1t0igiWiGi~E!t î . ~2.15!
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Here the operatorst0i andgi are defined as

t0i5v0i1v0igi t0i ~2.16!

and

gi5@~E2Ei !2h02hi1 i«#21. ~2.17!

The operatort0i can be identified with the freeNN t matrix,
and in lowest order the operatort î of Eq. ~2.15! is given by
t î't0i . From now on we consider for clarity in presentatio
only this case.

The matrix element̂FAut i uFA& given in Eq.~2.12! rep-
resents the full-folding optical potential and is given expl
itly as

^k8uUuk&5^k8FAu (
a5p,n

taukFA&, ~2.18!

wherea represents the sum over the target protons and n
trons. Sincê k8uUuk& is the solution of the sum of the one
body integral equations represented by Eq.~2.12!, it is suf-
ficient to consider the driving term

^k8uÛuk&5^k8FAu (
a5p,n

t̂aukFA&, ~2.19!

wheret̂a is given by Eq.~2.13!.
Inserting a complete set of momenta for the struck tar

nucleon before and after the collision Eq.~2.19! reads

Û~k,k8!5 (
a5p,n

E d3p8d3p^k8p8u t̂a~e!ukp&

3raS p81
k8

A
,p1

k

AD d3~k81p82k2p!.

~2.20!

The momentak8 andk are the final and initial momenta o
the projectile in the frame of zero total nucleon-nucleus m
mentum. The structure of Eq.~2.20! is represented graphi
f
of
nt
u-

t

-

cally by Fig. 1, which also illustrates the momentap8 andp.
The proton and neutron density matrices are given byra . By
evaluating thed function and introducing the variablesq
5k82k, K5 1

2 (k1k8), andp̂5 1
2 (p81p) we obtain

Û~q,K !5 (
a5p,n

E d3p̂K k8,p̂2
1

2
qu t̂a~e!uk,p̂1

1

2
qL

raS p̂2
A21

A

q

2
1

K

A
,p̂1

A21

A

q

2
1

K

A D . ~2.21!

A change of the integration variable fromp̂ to P5p̂1 K /A,
accounting for the recoil of the nucleus, gives@11#

Û~q,K !5 (
a5p,n

E d3PK k8,P2
q

2
2

K

A
u t̂a~e!u

3k,P1
q

2
2

K

A L
raS P2

A21

A

q

2
,P1

A21

A

q

2D . ~2.22!

The NN amplitudet̂a in Eq. ~2.22! is evaluated in the zero
momentum frame of the nucleon-nucleus system. The r
tionship to the corresponding matrix element evaluated in
zero-momentum frame of the two nucleons is given by

K k8,P2
q

2
2

K

A
u t̂a~e!uk,P1

q

2
2

K

A L
NA

5h~P,q,K !^K8,2K8u t̂a~e!uK,2K&NN ,

~2.23!

where K85 1
2 $k82@P2 (q/2)2(K /A)#% and K5 1

2 $k2@P
1 (q/2)2 (K /A)#% are the nonrelativistic final and initia
nuclear momenta in the zero-momentum frame of theNN
system. The factorh(P,q,K ) is the Mo” ller factor for the
frame transformation@12# and is given by
h~P,q,K !5F EN~K8!EN~2K8!EN~K!EN~2K!

EN~k8!EN@P2 ~q/2! 2~K /A!#EN~k!EN@P1 ~q/2! 2~K /A!#G
1/2

, ~2.24!
m
the
le.
-

whereEN(k) is the relativistic kinetic energy of a nucleon o
momentumk. This factor imposes the Lorentz invariance
the flux. With this frame transformation taken into accou
the full-folding optical potential of Eq.~2.22! can be written
as

Û~q,K !5 (
a5p,n

E d3Ph~P,q,K !t̂aFq,
1

2 S A11

A
K2PD ;eG

raS P2
A21

A

q

2
,P1

A21

A

q

2D . ~2.25!
,

Here the arguments oft̂a areq5k82k5K82K and

1

2
~K81K!5

1

2S A11

A
K2PD .

The two-nucleon amplitudet̂a is calculated from the free
NN t matrix according to Eqs.~2.15! and~2.16! at an appro-
priate energye. In principle, this energy should be the bea
energy minus the kinetic energy of the center of mass of
interacting pair less the binding energy of the struck partic
Following this argument,e should be coupled to the integra
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tion variableP. The full-folding calculations of Refs.@4,5#
are carried out along this vain. For our calculations we tak
different approach, namely we fixe at the two-body center
of-mass~c.m.! energy corresponding to freeNN scattering at
the beam energy so that the same laboratory energy ap
to the two-body and nuclear scattering. This approach
been applied in earlier work@3# and is also used in the wor
of the Surrey Group@2#. As indicated in Ref.@4#, at energies
around 200 MeV and higher, fixinge at this given value is
quite a good prescription.

III. MODELS FOR THE OFF-SHELL DENSITY

The evaluation of the full-folding optical potential a
given in Eq.~2.25! requires a nuclear density matrix, whic
in a single-particle picture is given as

ra~ p̃8,p̃!5(
i

Ca,i
† ~ p̃8!Ca,i~ p̃!. ~3.1!

Here Ca,i( p̃) are the wave functions describing the sing
particle nuclear ground state. The indexa stands for protons
and neutrons, respectively, and the total nuclear ground s
is given by the sum of the two. In order to achieve cons
tency with our formulation of incorporating effects of th
‘‘nuclear medium’’ on the scattering process we choose
model density matrices the ones from which the nucl
mean fieldsWi are derived@see, e.g., Eq.~2.15!#. The models
used are a nonrelativistic reduction of a Dirac-Hartree ca
lation @14# and a nonrelativistic Hartree-Fock-Bogolyubo
~HFB! structure calculation@15,16#. The Dirac-Hartree cal-
culation is a spherical solution of the one-body Dirac eq
tion assuming a scalar potential and the time component
vector potential field. The nonrelativistic HFB microscop
nuclear structure calculation uses the parametrized effec
finite-range, density-dependent Gogny D1S effectiveNN in-
teraction. The parameters of the Gogny D1S interaction
fitted to a certain set of stable nuclei. For this case an a
harmonic oscillator basis is used.

The details of the Dirac-Hartree~DH! calculation leading
to the density matrices employed in our calculations
given below. The wave functionC i(r ) is a solution of the
one-body Dirac-Hartree equation and given by@17#

Cb~r ![Cn,n,m,tz
~r !5S i FGtz ,n,n~r !

r
Gfnm

2FFtz ,n,n~r !

r
Gf2nm

D z tz
.

~3.2!

Here tz stands for thez component of the isospin andn for
the principal quantum number. The phase convention
taken from Ref.@17#. During this derivation we prefer to
omit the indexa. The spherical harmonics are determined
fnm which is defined as

fnm5 (
ml ,ms

^ lml
1
2 msu l

1
2 jm&Yl

ml~V!xms
, ~3.3!
a
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where Yl
ml(V) is a spherical harmonic andxms

a Pauli

spinor. The quantum numbern uniquely definesj and l as

j 5unu2
1

2
, l 5H n, n.0,

2~n11!, n,0.
~3.4!

We used the codeTIMORA @17# and the parameter sets give
therein to generate the functionsG andF given in Eq.~3.2!
for the nuclei studied in this paper.

Under the assumption of orthogonal single particle sta
the density matrix is given in coordinate space by

r~r 8,r !5(
nnm

Cnnmtz
† ~r 8!Cnnmtz

~r !

5(
nn

FGtz ,n,n~r 8!

r 8

Gtz ,n,n~r !

r (
m

fnm~r 8!fnm~r !

1
Ftz ,n,n~r 8!

r 8

Ftz ,n,n~r !

r (
m

f2nm~r 8!f2nm~r !G .

~3.5!

Here we should point out that in order to obtain a dens
matrix which we can apply in our formulation of the optic
potential, we have a1 operator between the Dirac wave fun
tions Cnnmtz

, and then treat the vector densityr(r 8,r ) as a
nonrelativistic single-particle density matrix. The orthog
nality of the spin states leads todms ,m

s8
and thus toml

5ml 8. Taking advantage of the symmetry properties of t
Clebsch-Gordon coefficients leads to

r~r 8,r !5(
nn

FGtz ,n,n~r 8!

r 8

Gtz ,n,n~r !

r

1
Ftz ,n,n~r 8!

r 8

Ftz ,n,n~r !

r G
3

2 j 11

2l 11(
ml

Yl
* ml~r 8!Yl

ml~r !. ~3.6!

The calculation of the full-folding optical potentia
Û(q,K ) requires the nuclear density matrix in momentu
space. Thus we need to double Fourier transformr(r 8,r ) to
obtain the densityr( p̃8,p̃) in the rest frame of the nucleus
This frame is characterized by the momentap̃ andp̃8 and the
density matrix is obtained by

ra~ p̃8,p̃!5
1

8p3E d3r 8e2 i r8• p̃8E d3rei r• p̃ra~r 8,r !,

~3.7!

where we again indicate with the indexa that we have to
obtain the density matrix for protons as well as neutro
Using the standard expansion of a plane wave, the ang
integration in Eq.~3.7! can be easily carried out, and w
obtain, for the density matrix,
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ra~ p̃8,p̃!5
1

2p 2(J
~2J11!(

l
Pl~cosu p̃, p̃8!

3F E dr8r 8 j l~ p̃8r 8!Fa,tz ,n,n~r 8!

3E drr j l~ p̃r !Fa,tz ,n,n~r !

1E dr8r 8 j l~ p̃8r 8!Ga,tz ,n,n~r 8!

3E drr j l~ p̃r !Ga,tz ,n,n~r !G . ~3.8!

The density matrixra( p̃8,p̃) given in Eqs.~3.7! or ~3.8! is
defined in the rest frame of the nucleus. In order to ap
ra( p̃8,p̃) in our calculation of the full-folding optical poten
tial for nucleon-nucleus scattering, we have to evaluate
function at the corresponding momenta in the nucle
nucleus frame. This is facilitated by variable transformatio
p5 p̃2 k/A andp85 p̃82 k8/A, which takes into account re
coil. As an aside, not including recoil would mean the tra
formationp85 p̃82 k/A.

For the calculation of the density matrices derived from
nonrelativistic Hartree-Fock-Bogolyubov~HFB! calculation
based on the Gogny D1SNN interaction we employ essen
tially the same procedure as described above. The w
functions are created inr space by a code provided b
Bergeret al. @15# and are represented in an axially symm
ric harmonic oscillator basis. A double Fourier transform
then performed using the oscillator basis and summing o
all harmonic oscillator quantum numbers. This choice of
sis takes advantage of the fact that the Fourier transform
harmonic oscillator is again a harmonic oscillator. The d
sity matrix is given by

ra~ p̃8,p̃!5(
i ,i 8

r i ,i 8w i 8
†

~ p̃8!w i~ p̃!, ~3.9!

where the indicesi ,i 8 count the harmonic oscillator bas
states andr i ,i 8 is the density matrix in the oscillator basi
Again, the indexa distinguishes between protons and ne
trons. The basis states are explicitly given by

w i~ p̃!5(
m

Ai ,ml
~b,g!e2bpz

2
Hi~b, p̃z!

3e2gpr
2
Li

umu~g, p̃r !e
imu. ~3.10!

Here p̃z is the projection of the momentum along thez axis,
pr the radial momentum, andb,g are harmonic oscillator
constants. Hi(b, p̃z) are the Hermite polynomials an
Li

umu(g, p̃r) the Laguerre polynomials. The size of the ha
monic oscillator basis used depends on the size of
nucleus; e.g., the size of the basis for16O is 12 shells
whereas for90Zr it is 16 shells. It should be noted that th
indices i and i 8 are not independent. The size of the ba
sets needed makes the calculation ofra( p̃8,p̃) quite lengthy,
especially for heavier nuclei.
y
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In order to calculate the optical potentialÛ(q,K ) as given
in Eq. ~2.25!, we need the density matrix as function of th
momentum transferq and P5p̂1 K /A as indicated in Eq.
~2.22!. In these variables the density matrix is related to
density profilera(q) of the nucleus by

ra~q!5E d3PraS P2
A21

A

q

2
,P1

A21

A

q

2D . ~3.11!

The normalization is chosen such thatra(q50)5Z or N,
the number of protons or neutrons, respectively.

In practice we used the relation given in Eq.~3.11! for
testing our numerical integration schemes with the sim
harmonic oscillator density given in Ref.@3#. In order to
determine how well the two model density matrices p
sented here describe the experimentally determined pr
distribution, we calculate the proton density profilesrp(q)
for both the DH and the HFB models for each nucleus
consider. In the following we want to discuss two cas
namely, 16O and 90Zr. In Fig. 2 we compare the densit
profiles calculated from the DH and HFB models to the e
perimental proton distribution@18#. Overall the DH profile
follows the experimental distribution closer than the HF
profile. The HFB profile is shifted to larger momenta, ind
cating that the HFB model slightly underpredicts the rad
of the proton distribution of16O. This feature will be visible
in the proton-scattering observables for16O calculated with
the HFB model. In the close-up of the minimum of the de
sity profile it can be seen that both model densities sligh
deviate from the experimental profile. In Fig. 3 we carry o
the same comparison for a heavier nucleus,90Zr. Here both
model densities follow the experimental proton distributi
@18# very closely. The close-up of the minimum reveals th
the HFB profile deviates only slightly from the experimen
profile. This is a general trend; the heavier nuclei are be
described by the model profiles. In fact, the proton distrib
tion of 16O represents the worst case of disagreement of
model profiles with the experimental profiles. This is und
standable since the HFB model is known to provide a be
representation of the larger nuclei.

FIG. 2. Comparison of the experimental proton density pro
rp(q) for 16O @18# ~solid line! with the calculated proton densit
profiles from the DH model~dash-dotted line! and the HFB model
~dashed line!.
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IV. RESULTS AND DISCUSSION

A. Details of the calculation

In this paper the study of the elastic scattering of neutr
and protons from spin-zero target nuclei at energies
range from 80 to 400 MeV~incident projectile energy! is
strictly first order in the spectator expansion. Here the c
nection to the propagatorG0(E) due to the coupling of the
initially struck target nucleon to the residual target is cons
ered to be first order. The full-folding optical potential
calculated as outlined in Sec. II, specifically as given in E
~2.25!, using the model densities described in Sec. III. T
calculations for scattering at energies smaller than 200 M
take into account the coupling of the struck target nucleon
the residual nucleus via the mean field potentialWi , which is
chosen to be consistent with the model density employ
Details of this procedure are given in Refs.@1,10#. Calcula-
tions using the Dirac-Hartree densities~and the correspond
ing potential Wi) are labeled DH, while those using th
Hartree-Fock-Bogolyubov densities~and corresponding po
tentialsWi) are labeled HFB.

The convolution of the fully off-shell density matrixra
with the fully off-shell NN t matrix, and the Mo” ller frame
transformation factorh(P,q,K ) as given in Eq.~2.24! is
carried out in three dimensions without partial wave deco
position and the integration is performed using Monte Ca
integration techniques. Our algorithm uses quasirand
numbers@19#, together with importance sampling, which a
cording to our tests has the advantage of needing sig
cantly fewer integration points than algorithms based on c
ventional ‘‘random number’’ generators or Gauss-Legen
integration to obtain the same accuracy. Quasirandom n
bers provide a ‘‘uniform’’ random distribution over the inte
gration space.

Aside from the density matrices, the fully off-shellNN t
matrix is another crucial ingredient in the calculation
Û(q,K ). The calculations presented use the freeNN interac-
tion based upon the full Bonn potential@21#. This interaction
includes the effects of relativistic kinematics, retarded me
propagators as given by time-ordered perturbation the
and iterative and crossed meson exchanges withNN, ND,
and DD intermediate states. For the calculations involvi
projectile energies greater then 300 MeV we employ an

FIG. 3. Comparison of the experimental proton density pro
rp(q) for 90Zr @18# ~solid line! with the calculated proton densit
profiles from the DH model~dash-dotted line! and the HFB model
~dashed line!.
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tension of the Bonn model above pion-production thresh
@13#. In this model pion production is described through t
decay of the delta isobar with a width obtained consisten
from the imaginary part of the one-pion loop diagram for t
delta self-energy. It is also to be understood that we perfo
all spin summations in obtainingÛ(q,K ). This reduces the
requiredNN t matrix elements to a spin-independent co
ponent~corresponding to the Wolfenstein amplitudeA) and
a spin-orbit component~corresponding to the Wolfenstei
amplitudeC). Since we are assuming that we have spin sa
rated nuclei, the components of theNN t matrix depending
on the spin of the struck nucleon vanish. For the pro
nucleus scattering calculations the Coulomb interaction
tween the projectile and the target is included using the ex
formulation described in Ref.@21#.

A common approximation to the full-folding expressio
of Eq. ~2.25!, which still preserves the nonlocal character
theNN t matrix, is obtained as follows. If one observes th
the nuclear size is significantly larger than the range of
NN interaction, the amplitudet̂a is expected to be the slowe
varying quantity in the integral of Eq.~2.25!. This argues for
the method of optimum factorization@11,22# which proceeds
via an expansion oft̂a @including the factorh(q,K ,P)] in P
about a fixed valueP0. The reference momentumP0 is de-
termined by requiring that the contribution of the first deriv
tive term be minimized. In the elastic scattering case t
contribution can be made to vanish ifP0 is chosen to be zero
For further details we refer to Ref.@11#. After the integration
over the density matrix to produce the diagonal density p
file ra(q) @Eq. ~3.11!# the ‘‘optimum factorized’’ or ‘‘off-
shell tr ’’ form of the optical potential is given by

Û fac~q,K !5 (
a5p,n

h~q,K !t̂aS q,
A11

2A
K ,e D ra~q!.

~4.1!

Here the nonlocal character of the optical potential is sol
determined by the off-shellNN t matrix. For harmonic os-
cillator model densities it has been shown for light nuc
that the optimum factorized form represents the nonlo
character ofÛ(q,K ) qualitatively@2,3# when applied within
the KMT formalism to first order at intermediate energie
When comparing elastic scattering observables obtai
from full-folding optical potentials to those obtained fro
‘‘off-shell tr ’’ optical potentials, the scope is twofold. Firs
we employ here realistic models of the nuclear density
light as well as heavy nuclei. Second, we extend this co
parison toward energies around 100 MeV where it could
expected that the nucleon-nucleus scattering calcula
samples the optical potential further off shell and thus
optimum factorized form may not be as good an approxim
tion.

B. Elastic scattering results

Elastic scattering calculations from several spherical
clei are carried out at a variety of energies between 80
400 MeV to allow for comparisons between results obtain
from the full-folding optical potentials with those arisin
from the factorized off-shell ‘‘tr ’’ approximation.
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The scattering observables for elastic proton scatte
from 16O are displayed in Fig. 4. The solid line represe
the calculation with the full-folding optical potential base
on the DH density and the Bonnt matrix defined above the
pion-production threshold, while the dashed line represe
the optimum factorized form as defined in Eq.~4.1!. Both
calculations are based on the freeNN t matrix. Since the two
calculations give very similar results, it can be conclud
that the bulk of the nonlocality of the optical potential, whic
affects the elastic scattering observables, must come from
off-shell structure of theNN t matrix. The off-shell structure
of the nuclear density matrix plays an insignificant role
elastic scattering observables at these high energies. A s
lar conclusion was already drawn in Ref.@3# and is here
confirmed using realistic densities. In order to illustrate
effect of the different density profiles for the DH and th
HFB models~as shown in Fig. 2! on the elastic observables
we display two calculations based on the factorized opt
potential for the DH~solid line! and the HFB~dashed line!
models in Fig. 5. As already discussed in Sec. III, especi
in the case of16O, the HFB density profile is shifted to large
momenta compared to the DH profile. This translates dire
into a slight shift of the first minimum of the differentia
cross section to larger angles and a slightly smaller ang
spacing of the diffraction minima. We carried out simil
comparisons of full-folding and optimum factorized optic
potentials for heavier nuclei, but there the disagreement
tween the density profiles of the two models is much sma
than for 16O and consequently the predictions of the obse
ables are very similar.

Another effect worthwhile to study in this context is th
influence of the Mo” ller factor @12#, which takes into accoun

FIG. 4. The angular distribution of the differential cross sect
(ds/dV), analyzing power (Ay), and spin rotation function (Q)
are shown for elastic proton scattering from16O at 400 MeV labo-
ratory energy. The solid line represents the calculation perform
with a first-order full-folding optical potential based on the D
density@14# and the Bonn model D52@13#. The dashed line repre
sents the calculation using the factorized, off-shell ‘‘tr ’’ approxi-
mation to this optical potential. The data are taken from Ref.@25#.
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the transformation of theNN t matrix evaluated in theNN
c.m. frame to the zero-momentum frame of the nucle
nucleus system. This frame transformation can be viewe
a relativistic effect and its importance should increase w
higher scattering energies. For these reasons we want to

d

FIG. 5. Same as Fig. 4, except that all calculations are base
the factorized, off-shell ‘‘tr ’’ approximation. The solid line repre-
sents the calculation using the DH@14# density profile, whereas the
dashed line uses the HFB@15# density profile.

FIG. 6. The angular distribution of the differential cross secti
(ds/dV), analyzing power (Ay), and spin rotation function (Q)
are shown for elastic proton scattering from16O at 500 MeV labo-
ratory energy. The solid line represents the calculation perform
with a first-order full-folding optical potential as described in Se
II. The dashed line represents a calculation where the Mo” ller factor
is evaluated for the fixed angleQ590°, whereas for the dotted line
the Mo” ller factor was omitted altogether. All calculations are bas
on the DH density and the Bonn model D52t matrix.
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56 2087FULL-FOLDING OPTICAL POTENTIALS FOR ELASTIC . . .
sider its effect on the elastic scattering observables for pro
scattering from16O at 500 MeV~Fig. 6!. The Mo” ller factor
h(P,q,K ) as given in Eq.~2.24! is a function of three vecto
momenta and is part of the full-folding integral of Eq.~2.25!.
The solid line in Fig. 6 represents the calculation ofÛ(q,K )
as given in Eq.~2.25!. In the spirit of the optimum factorized
approximationh(P,q,K ) can be expanded around a fixe
value P0 ~here P050!, thus becoming independent of th

FIG. 7. The angular distribution of the differential cross sect
(ds/dV), analyzing power (Ay), and spin rotation function (Q)
are shown for elastic proton scattering from40Ca at 100 MeV labo-
ratory energy. The solid line represents the calculation perform
with a first-order full-folding optical potential based on the D
density @14# and the full Bonn model@20#; the dashed curve is
based on the factorized, off-shell ‘‘tr ’’ approximations. The data
are taken from Ref.@26#.

FIG. 8. Same as Fig. 7, except that the HFB model@15# is
employed for the density as well as the mean field force.
n
integration variableP. This expansion corresponds to consi
ering h(q,K ) at a fixed angle betweenq andK , specifically
here Q590°. The dashed line therefore in Fig. 6 corr
sponds to evaluating the optical potential according to

Û~q,K !5 (
a5p,n

h~q,K !Q590°E d3Pt̂a

3Xq,
1

2 S A11

A
K2PD ;eC

raS P2
A21

A

q

2
,P1

A21

A

q

2D . ~4.2!

The dashed and solid lines in Fig. 6 are almost indistingui
able. This infers the conclusion thath(q,K )Q590° is a very
good representation of the exact expression given in
~2.24!. In order to illustrate the total effect due to the incl
sion of the Mo” ller factor, the dotted line in Fig. 6 represen
a calculation withh(q,K ) set to one in Eq.~4.2!.

At energies below 200 MeV, calculations of elastic o
servables not only incorporate the effects of the nucl
structure models within the full-folding procedure but al
via the mean field force~given by the structure model! which
couples the struck target nucleon to the residual nucle
Thus it is hoped that the influence of different structure mo
els on the elastic observables is observable. In Fig. 7
display the elastic observables for proton scattering fr
40Ca at 100 MeV laboratory energy employing the D
model for the density as well as the mean field forceWi . In
Fig. 8 the corresponding calculation is done using the H

d

FIG. 9. The angular distribution of the differential cross secti
(ds/dV), analyzing power (Ay), and spin rotation function (Q)
are shown for elastic proton scattering from90Zr at 80 MeV labo-
ratory energy. The solid line represents the calculation perform
with a first-order full-folding optical potential based on the D
density @14# and the full Bonn model@20#; the dashed curve is
based on the factorized, off-shell ‘‘tr ’’ approximations. The dotted
line represents a full-folding calculations based on the HFB mo
@15#. The data are taken from Ref.@27#.
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FIG. 10. Real and imaginary parts of the on-shell value of the optical potential as a function of the orbital angular momentuL for
scattering from40Ca at 200 MeV laboratory energy.~1! denotes the potential forJ5L1

1
2, whereas~2! stands forJ5L2

1
2. The full-folding

~solid line! and factorized, off-shell~dashed line! calculations are based on the full Bonn model and the DH density.
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model. In both figures the solid line represents the fu
folding calculation and the dashed line the factorized o
shell ‘‘tr ’’ approximation. All calculations contain the mod
fication due to the mean fieldWi . The off-shell structure of
the nuclear density matrix in the full-folding procedure has
this lower energy a slightly larger effect on the spin obse
ables than at higher energies. In addition, the angular di
bution of the differential cross section diffracts at sligh
larger angles in the full-folding calculations compared
those based on the factorized form. This trend is also
served for the heavier nucleus90Zr ~Fig. 9!. Here the observ-
ables for elastic proton scattering from90Zr at 80 MeV are
displayed. The difference between the two model densi
employed is almost negligible fords/dV andAy . Only for
the spin rotation function is the difference given by usi
two different structure models at higher angles as large as
effect of using the factorized approximation. This resu
namely, that the observables predicted by the two differ
-
-

t
-
ri-

b-

s

he
,
nt

models under consideration are so similar, is not surpris
in that both models predict an almost identical density pro
~Fig. 3!. The effect of the off-shell structure of the nucle
density matrix is relatively small as the comparison betwe
the full-folding ~solid! line and corresponding factorize
~dashed! calculation shows.

It is difficult to extract properties of nonlocal potentia
from elastic scattering observables. Nonlocal effects are
sumably more important in inelastic processes which dep
on the nucleon-nucleus interaction such as quasielastic e
tron scattering reactions. In order to gain more insight in
the difference between a full-folding optical potential and t
factorized off-shell ‘‘tr ’’ approximation to this potential, we
plot in Figs. 10 (40Ca! and 13 (208Pb! the real and imaginary

parts of the on-shell value ofÛ(q,K ) as a function of the
orbital angular momentumL for a projectile energy of 200

MeV. We separate the casesJ5L1 1
2 andJ5L2 1

2 to iso-
the
FIG. 11. Real and imaginary parts of the on-shell value of the proton-nucleust matrix ~Coulomb contributions omitted! as a function of
the orbital angular momentumL for scattering from40Ca at 200 MeV laboratory energy.~1! denotes the potential forJ5L1

1
2, whereas~2!

stand forJ5L2
1
2. The full-folding ~solid line! and factorized, off-shell~dashed line! calculations are based on the full Bonn model and

DH density.
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56 2089FULL-FOLDING OPTICAL POTENTIALS FOR ELASTIC . . .
late the effect of the spin-orbit force. As is seen in bo
figures, the full-folding ~solid lines! and the factorized
~dashed lines! on-shell values of the imaginary parts of th
optical potential are quite similar. In both cases the real p
of the on-shell values of the optical potentials exhibits
increasing suppression for smallerL as the nonlocal effects
of the density matrix as well as theNN t matrix are treated
more adequately in the full-folding procedure. It should
emphasized again that Figs. 10 and 13 only show the v
of Û(q,K ) fulfilling the on-shell conditionq•K50 andq2

14K254k0
2 with k0 being the on-shell relative momentu

for proton-nucleus~NA! scattering and do not display an

FIG. 12. The angular distribution of the differential cross se
tion (ds/dV), analyzing power (Ay), and spin rotation function
(Q) are shown for elastic proton scattering from40Ca at 200 MeV
laboratory energy. The solid line represents the calculation
formed with a first-order full-folding optical potential based on t
DH density@14# and the full Bonn model@20#; the dashed curve is
based on the factorized, off-shell ‘‘tr ’’ approximation. The data are
taken from Ref.@28#.
rt
n

ue

off-shell behavior inherent in the potentials. After iteration
obtain the Watson optical potential@Eq. ~2.11!# and then in
the integral equation@Eq. ~2.9!#, the on-shell elements of th
NA t matrix display much smaller differences between t
full-folding and its factorized, on-shell ‘ ‘tr ’’ approximation.
For 208Pb the differences in the real parts are nearly ins
nificant ~Fig. 14!, whereas for40Ca a slight suppression o
the real part for smallL remains for the full-folding calcula-
tion compared to the factorized approximation~Fig. 11!.
However, the differences occur mainly for smallerL where
the imaginary part of the potentials as well as thet matrices
are relatively large. Because the absorption is significant
these low partial waves, the elastic observables are not
ticularly sensitive to the differences in the real parts as d
played in Figs. 12 and 15.

In Fig. 16 total neutron cross section data for12C, 16O,
28Si, 40Ca, 90Zr, and 208Pb are shown along with variou
calculations ofs tot(E) at a number of energies. Because t
data are so extensive, the ‘‘usual’’ procedure has been
versed in the plotting of these cross sections so that the
are represented by dotted curves, and the discrete points
respond to calculated results. The solid diamonds repre
the full-folding calculations as described in Sec. II. All ca
culations are based on a DH model for the nuclear dens
For energies<200 MeV the modification of the free propa
gator through the DH mean field is included as described
Ref. @10#. It has been shown in Ref.@1# that for higher ener-
gies this modification of the free propagator becomes ne
gible. The open circles represent calculations based on
factorized, off-shell ‘ ‘tr ’’ form using the sameNN t matrix.
A general trend to be observed in Fig. 16 is the slightly low
value of s tot(E) obtained from a full-folding calculation
compared to the factorized approximation. This trend is
most independent of the energy and the nucleus under
sideration and is consistent with the observation that f
folding calculations of the differential cross sections f
slightly below the values given by a factorized calculation

At this point it is worthwhile to investigate whether th
interactions of the projectile with the target nucleus are u
formly distributed over the entire nucleus or if specific r
gions of the nucleus play a more dominant role in the sc

-

r-
FIG. 13. Same as Fig. 10, except for208Pb.
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FIG. 14. Same as Fig. 11, except for208Pb.
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tering process at intermediate energies. For our study
chose neutron scattering at 200 MeV projectile energy
consider contributions from specific shells to the total cr
sections. We employ the DH model for the density and
move outer shells of protons as well as neutrons. Then
recalculate the scattering from the remaining ‘‘inner core
which is chosen to be doubly magic, so that it is bound. T
results of this procedure for16O, 40Ca, and208Pb are given
in Table I. As a technical detail, when calculating the sc
tering in these tests we treated the targets as being infin
heavy to exclude recoil effects, which would be larger
smaller cores. In order to give an estimate of the size of
recoil effect on the total cross section we give the values
s tot calculated with and without recoil in Table I. The valu
for the total cross section for neutron scattering for ‘‘inn
cores’’ of 100, 40, 16, and 4 nucleons are given as entrie
the corresponding nuclei. The entries in Table I mark
‘‘n.b.’’ indicate that, e.g., in the case of208Pb the DH calcu-
lation with only 8 neutrons and 8 protons did not result in
bound system using the parameters of208Pb given for those
16 nuclei. The calculated rms radii for the ‘‘inner cores
under consideration for16O, 40Ca, and 208Pb are listed in
Table II. This table also contains the rms radii for the prot
and neutron distributions for the above mentioned nucle
given by the DH model. Columns 3 and 4 of Table II com
pare the percentage of the volume filled by the ‘‘inner cor
if either the corresponding rms radius is used~column 3! or
the radius is taken to be proportional toA1/3 ~column 4!. The
percentage of the calculated total cross section contribu
from the inner core nucleus is given in column 5. The nu
bers suggest that the nucleons in the interior of the nuc
contribute to the total cross sections with a percent
slightly larger than the volume they occupy when the volu
is based on the crude estimater;A1/3. This leads to the
conclusion that all nucleons in the nucleus almost equ
contribute to the scattering process. We performed a sim
study at 100 MeV and 500 MeV projectile energy and d
not find any significant deviations from the ratio
s tot~core!/s tot as given in Table II at 200 MeV.

V. CONCLUSION

We have calculated the full-folding integral for the firs
order optical potential within the framework of the specta
e
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expansion of multiple-scattering theory. These optical pot
tials are based on realistic models for the nuclear den
matrix, namely, a Dirac-Hartree and a Hartree-Foc
Bogolyubov model along with the full Bonn meson e
change model for theNN t matrix. Recoil and frame trans
formation factors are implemented in the calculation in th
complete form. We calculated elastic scattering observa
for a variety of light and heavy nuclei at projectile energi
from 80 to;400 MeV laboratory energy. At energies belo
200 MeV we included the modification of the free propag
tor due to the coupling of the struck target nucleon to
residual nucleus via the same mean field used to model
effect of the nuclear medium. The predictions from the
rigorous calculations of elastic nucleon nucleus observa
provide excellent agreement with the experimental data
this energy regime.

We tested the validity of the factorized off-shell ‘‘tr ’’
approximation in the energy regime between 80 and 4

FIG. 15. Same as Fig. 12, except for208Pb. The data are taken
from Ref. @29#.
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FIG. 16. The neutron-nucleus total cross sections for scattering from12C, 16O, 28Si, 40Ca, 90Zr, and 208Pb are shown as a function of th
incident neutron kinetic energy. The dotted line represents the data taken from Refs.@23,24#. The solid diamonds correspond to th
full-folding calculations using the full BonnNN t matrix @20# and the DH model@14# for the density. The open circles correspond to t
factorized, off-shell ‘‘tr ’’ approximation. The calculations for energies smaller than and equal to 200 MeV include the propagator m
cation due to the DH mean field.
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MeV and found that this approximation, which only retai
the nonlocality given through theNN t matrix, is even at
lower energies a very good representation of the full-fold
calculation as far as the elastic nucleon-nucleus observa
are concerned. This indicates that elastic scattering obs
ables seem quite insensitive to the off-shell structure of
density matrix. We need to point out that the off-shell stru
ture of the two density matrices employed is remarka
similar, though they are derived from very models for t
nuclear structure. We also point out that this conclusion
plies the assumption that the energy of theNN t matrix is
fixed at the two-body c.m. energy corresponding toNN scat-
tering at the beam energy.

Differences between the factorized approximation and
full calculation of the optical potential are present predom
nantly in lower partial waves. However, as a result of t
cumulative effect of many partial waves, the elastic obse
ables do not reflect these differences. It should be noted
in, e.g., inelastic scattering of nucleons from nuclei or qua
elastic electron scattering those differences between
folding calculations and the corresponding factorized
proximation may become more significant. We also stud
the contribution of the interior structure of the nucleus to
total cross section and find that all nucleons in the nucl
contribute almost uniformally to the scattering process.
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s tot @b# s tot @b# s tot @b# s tot @b# s tot @b# s tot @b#

no
recoil

core
of 4

core
of 16

core
of 40

core
of 100

16O 0.423 0.419 0.120 0.419
40Ca 0.925 0.921 n.b. 0.419 0.921
208Pb 3.38 3.37 n.b. n.b. 0.960 2.01
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TABLE II. rms radii for the proton and neutron distributions of16O, 40Ca, and208Pb as well as from inner
shells~cores!. The last three columns give the ratios of the volumes of the cores to the total nucleus a
as the ratios of the calculated total neutron cross sections. The numbers used to determine the latte
ones printed in bold in Table I.

rms radius~full ! @fm# rms radius~core! @fm#

~proton,neutron! @core#:~proton,neutron! ^rmscore
3&

^rms3&

Acore

A

s tot~core!

stot

16O ~2.63, 2.60! @4#:~1.96, 1.95! 42% 25% 29%
40Ca ~3.39, 3.33! @16#:~2.63, 2.60! 48% 40% 45%
208Pb ~5.40, 5.67! @40#:~3.72, 4.91! 47% 19% 29%
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