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Full-folding optical potentials for elastic nucleon-nucleus scattering based on realistic densities
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Optical model potentials for elastic nucleon-nucleus scattering are calculated for a number of target nuclides
from a full-folding integral of two different realistic target density matrices together with full off-shell nucleon-
nucleont matrices derived from two different Bonn meson exchange models. Elastic proton and neutron
scattering observables calculated from these full-folding optical potentials are compared to those obtained from
“optimum factorized” approximations in the energy regime between 80 and 400 MeV projectile energy. The
optimum factorized form is found to provide a good approximation to elastic scattering observables obtained
from the full-folding optical potentials, although the potentials differ somewhat in the structure of their non-
locality. [S0556-28187)04210-6

PACS numbes): 25.40.Cm, 25.40.Dn, 24.10.Ht

I. INTRODUCTION projectilettarget nucleon system, a theoretical treatment of
this many-body propagator as affected by the residual target
Progress in the rigorous treatment of the multiple scatteraucleus is included. The calculation of the optical potential
ing of nucleons from nuclei has led to the need to study th@resented in this paper relies on two basic inputs. One is the
influence of the full target nuclear density matrix in the scat-fully off-shell NN t matrix, which represents the current un-
tering observables. In first order the spectator expansion dferstanding of the nuclear force, and the other is the nuclear
multiple-scattering theory requires a convolution of the fully wave function of the target, representing the best understand-
off-shell nucleon-nucleofN N) scattering amplitude with the  ing of the ground state of the target nucleus. A specific scope
nuclear wave functions of the target. This opens the posspf this work is the StUdy of the influence of density matrices
b|||ty to assess the influence of the target wave functions oﬁ)btained from realistic nuclear structure models on the elas-
elastic proton and neutron scattering observables. tic scattering observables. To account for the modifications
In its most general form, the first-order single-scatteringof the free propagator inside the nucleus, the same mean field
optical potential within the framework of the spectator ex-potentials are used from which the ground state wave func-
pansion is given by the triangle graph shown in Fig. 1. Sincdions are derived. There an adjustable parameters present
there is one loop, the evaluation of the graph requires a thredn this calculation.
dimensional integration involving the fully-off-shell two- ~ The motivation for ongoing work on this topic is twofold.
nucleon scattering amp"tude and a realistic nuclear densitﬁirst, elastic and inelastic nucleon-nucleus scattering provide
matrix. Usually, one makes the assumption thatNieam- ~ @n important and sensitive test for theoretical corrections at
plitude varies slowly as a function of its arguments comparedhe first-order level of the optical potenti@.g., as given by
to the nuclear density matrix. This corresponds to the arguPossibly genuine modifications of ti¢N interaction in the
ment that the range of tH¢N force is small compared to the nuclear environment and off-shell effect&igorous micro-
size of the nucleus and leads to the approximate nonrelati\scopic calculations are required for discerning these effects.
istic form t(q)p(q) for the first-order nucleon-nucleus Opti- Second, a better Understanding of the theoretical details of
cal potential. Full-folding calculations, avoiding this ap- the optical potential is needed to construct realistic and
proximation, have already been performed by several groupghysically sound wave functions representing continuum
based on either the KMT approa¢®,3] or a g-matrix ap- ngcleons in th.e interior of the nuclc_aus. These.wa\_/e functions
proach[4,5] using various models for the off-shell density W|” b(.écome vital for future theoretical ne.edS |n.h|gh'energy
matrix as well as different models for theN amplitudes. In ~ coincidence experiment@t TINAF, e.g, inelastic scatter-
general, this work indicates that an improved treatment of
the off-shell structure of the optical potential improves the K ﬂt\
description of the observables. NN,
Our approach to elastic scattering from nuclei is based on
the spectator expansion of multiple scattering thd@ry8]. P
Here the first-order term involves two-body interactions be-
tween the projectile and one of the target nucleons. As a

result of the many-body nature of the free propagator for the i @ @ K

k

*Present address: Arefsssociates, P.O. Box 16269, Arlington, FIG. 1. Diagram for the optical potential matrix element for the
VA 22215. single-scattering term.
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ing studies, and for understanding the reactions in heavy iowhere|®,) corresponds to the ground state of the target and
experiments involving nuclei far from the drip lines. Here fulfills

experiments involving the scattering of exotic nuclei from

single nucleon targets should benefit from full-folding-type Hal®a)=Ea|Pa). 2.8

calculations in order to test the predicted density distribu- - . :
tions of halolike nuclei. With these definitions the transition operator for elastic scat-

The structure of the paper is as follows. In Sec. Il we'€ring can be defined a&,=PTP, in which case Eq(2.2)
review the relevant formalism for the single-scattering opti-°€cOmMes
cal potential and introduce the full-folding procedure as used
in our calculations. In Sec. lll we discuss the model densities
employed and describe the calculations of the full-folding  The fundamental idea of the spectator expansion for the
optical potentials. Elastic scattering results for neutron angptical potential is an ordering of the scattering process ac-

proton scattering form a variety of nuclei in the energy re-cording to the number of active target nucleons interacting
gime between 80 and 400 MeV are discussed in Sec. IV. OWirectly with the projectile. The first-order term involves

conclusions are presented in Sec. V. two-body interactions between the projectile and one of the
target nucleons, i.e.,

Tag=PUP+PUPGH(E)Ty. (2.9

Il. FULL-FOLDING OPTICAL POTENTIAL

A
The standard approach to elastic scattering of a strongly U= E Ti, (2.10
interacting projectile from a target éf particles is the sepa- =1

ration of the Lippmann-Schwinger ion for the transition _ _
ation of the Lippmann-Sc ger equation for the transitio where the operatort; is derived to be

amplitude,
T=V+VGy(E)T 2.1 7i=voi tv0iGo(E)Q7

into two parts, namely, an integral equation Tar =v0i T00iGo(E) 7 ~v0iGo(E) Py (211

T=U+UG(E)PT, (2.2 =7,—1Go(E)P.
whereU is the optical potential operator and defined by aFor elastic scattering only PP or, equivalently,
second integral equation (®a|7|Pa) need to be considered,

U=V+VGy(E)QU. 2.3 (DalT|Pp)=(Dp|Ti|DA)
In the above equations the operatorepresents the external (D7D 1 O, |7|P
interactions between the projectile and the target nucleons. (Pal7i| P ) (E—EA)—h0+is< AlTi[®a),
Therefore the Hamiltonian for theA(+ 1)-particle system is (2.12
given by '

H=Ho+V. 2.4 where7; is defined as the solution of

The free propagatd,(E) for the projectile-target system is 7i=00i T 00 Go(E) 7. (213

given by It should be noted that Eq$2.3—(2.13 all follow in a

straightforward derivation and correspond to the first-order
Watson scattering expansid8l.

Since Eq.(2.12 is a simple one-body integral equation,
the principal problem is to find a solution of ER.13),
which has a many-body character dueGg(E)=(E—hq
—Hu+ie) L If the propagatoiGy(E) is expanded in the
spirit of the spectator expansion within a single-particle de-
scription, one obtains in first ordét,10]

Go(E)=(E—Hp+ie) L. (2.5

The potential operatoy =EiA:1v0i consists of the two-body
potentialvy; acting between the projectile and thb target
nucleon. The operatorB and Q are projection operators,
P+Q=1, andP is defined such that Eq2.2) is solvable. In
this caseP is conventionally taken to project onto the elastic
channel, such thafGy,P]=0. The free Hamiltonian is

given by Gi(E)=[(E-E")—hy—h—W,+ie]" !, (2.19

Ho=ho+Ha, (2.6)  whereh; is the kinetic energy of théth target particle and
) o o W;=Z,.v;; . The quantityW,; represents the force acting
whereh, is the kinetic energy operator for the projectile andpetween the struck target nucleon and the residdat 1)

H, stands _for the target Hamiltonian. Thus the projedor nucleus. Then the operatey of Eq. (2.13 can be written as
can be defined as

ERTN =00+ v Gi(E) 7
AR @7 =to; +toigiWiGi (E) 7. (215
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Here the operatort,; andg; are defined as cally by Fig. 1, which also illustrates the momemtaandp.
B 21 The proton and neutron density matrices are givep byBy
toi =voi T voiGiloi (2.19 evaluating thes function and introducing the variables
and =k'—k, K= 3 (k+k’), andp= % (p’+p) we obtain
gi=[(E—E)—ho—h;+ie] ™. (2.17

k ”+1
P Eq

N - ~ 1 .
Oa.K)= X J d3p<k', =~ 507a(e)
The operatot,; can be identified with the freN t matrix, a=pn
and in lowest order the operatey of Eq. (2.15 is given by . A-1q K. A-1q K
?i%tOi . From now on we consider for clarity in presentation Pa( P=—A 3 + K'p”L A 2 + NE (2.21
only this case.

The matrix elemen{® 5| 7;|® ) given in Eq.(2.12 rep-
resents the full-folding optical potential and is given explic-

A change of the integration variable fromto P=p+ K/A,
accounting for the recoil of the nucleus, gidd]

itly as
O(a.K)= 2 f d3P<k' P32l
(k' |U[K)=(K' D] ;p AN (2.18 N S T2 Al
g K
wherea represents the sum over the target protons and neu- xXk,P+ > A
trons. Since(k’|U|k) is the solution of the sum of the one-
body integral equations represented by Ej12), it is suf- A—1 A—1
ficient to consider the driving term pul P— a P+ —— a (2.22
“« A 2’ A 2) ’
<k,|U|k>:<k,®A|a:2p,n To|KDp), 219 thenn amplituder, in Eq. (2.22 is evaluated in the zero-
momentum frame of the nucleon-nucleus system. The rela-
wherer, is given by Eq.(2.13. tionship to the corresponding matrix element evaluated in the

Inserting a complete set of momenta for the struck targeZ€ro-momentum frame of the two nucleons is given by
nucleon before and after the collision EG.19 reads

qg K. g K
k’,P—E—K|TQ(6)|k,P+E—K
O(k,k)= E fd3p'dap<k’p'|;a(€)|kp> NA
a=p,n )
=7(P,q,K)(K", = K'| 7,(€)| KK, = K)nn,
S3(k'+p' —k—p). (2.23

(2.20 Where K'=3{k'—[P— (q/2)— (K/A)]} and K=3{k—[P
+ (g/2)— (K/A)]} are the nonrelativistic final and initial
The momentk’ andk are the final and initial momenta of nuclear momenta in the zero-momentum frame of e
the projectile in the frame of zero total nucleon-nucleus mosystem. The factom(P,q,K) is the Mdler factor for the
mentum. The structure of E@2.20 is represented graphi- frame transformatiofil2] and is given by

!

kK
PEAPTA

XPa

P.aK) = En(KDEN(=K"ENK)En(=K) r’z
7PaK)= En(K)EN[P= (a/2) — (K/A)JEN(K)EN[P+ (a/2) = (K/A)]]

(2.29

whereEy(K) is the relativistic kinetic energy of a nucleon of Here the arguments af, areq=k’ —k=X’'— K and
momentumk. This factor imposes the Lorentz invariance of

the flux. With this frame transformation taken into account, 1 1/A+1

the full-folding optical potential of Eq(2.22 can be written E(/C' +K)= §<TK - P) )

as

The two-nucleon amplitude, is calculated from the free
NN t matrix according to Eqg2.15 and(2.16) at an appro-
priate energye. In principle, this energy should be the beam
energy minus the kinetic energy of the center of mass of the
interacting pair less the binding energy of the struck particle.
Following this argumente should be coupled to the integra-

. [ 1/A+1
O(q,K)= > | d®Py(P,q,K)T, q,E(TK—P>;e
a=p,n

A-1q A—1 q)' 2.29

pa(P_TE'P+T§
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tion variableP. The full-folding calculations of Refd4,5]  where Ym'(Q) is a spherical harmonic an;sjm a Pauli
are carried out along this vain. For our calculations we take @pinor. The quantum numberuniquely defineg andl as

different approach, namely we fix at the two-body center-

of-mass(c.m. energy corresponding to frééN scattering at v, v>0,

the beam energy so that the same laboratory energy applies j=[vl- 2 I = —(v+1) <0 (3.4
to the two-body and nuclear scattering. This approach has v S

been applied in earlier wor_ﬂe]_and is.also used in the vx_/ork We used the codeIMORA [17] and the parameter sets given
of the Surrey Group2]. As indicated in Refl4], at energies  yharein to generate the functio@sandF given in Eq.(3.2)
around 200 MeV and higher, fixing at this given value is for the nuclei studied in this paper.

quite a good prescription. Under the assumption of orthogonal single particle states
the density matrix is given in coordinate space by
lll. MODELS FOR THE OFF-SHELL DENSITY

The evaluation of the full-folding optical potential as p(r',n)=2> \Pgumtz(r/)\lfnvmtz(r)
given in Eq.(2.25 requires a nuclear density matrix, which nvm
in a single-particle picture is given as
Gt r‘IV(r ) Gt nv(r)

—E Z Gonl(r") Bum(T)

o(P'P) =2 Wi (P W i(P). 3.1
Ft, (1) Ft, ny(r)2
-~ +
Here ¥, (p) are the wave functions describing the single- r’ ¢ (1) b (1) |-
particle nuclear ground state. The inde»stands for protons
and neutrons, respectively, and the total nuclear ground state (3.5

is given by the sum of the two. In order to achieve consis-

i ith f lati £ i Hects of th Here we should point out that in order to obtain a density
“ency with our ormu ation of incorporaling ettects ot € 4y \which we can apply in our formulation of the optical
nuclear medium” on the scattering process we choose a

. . ; otential, we have & operator between the Dirac wave func-
model density matrices the ones from which the nucleal b

mean fielddV; are derivedsee, e.g., Eq2.15]. The models 10nS Wy, and then treat the vector denspyr’,r) as a
used are a nonrelativistic reduction of a Dirac-Hartree calcunonreIatIVIStIC single-particle density matrix. The orthogo-
lation [14] and a nonrelativistic Hartree-Fock-Bogolyubov nality of the spin states leads tﬁmsrmé and thus tom,
(HFB) structure calculatio15,16. The Dirac-Hartree cal- =m,,. Taking advantage of the symmetry properties of the
culation is a spherical solution of the one-body Dirac equaClebsch-Gordon coefficients leads to

tion assuming a scalar potential and the time component of a
vector potential field. The nonrelativistic HFB microscopic

Gi,n,ulr") Gy, n,u(T)
nuclear structure calculation uses the parametrized effective(r’,r)= E

finite-range, density-dependent Gogny D1S effechi¢ in- r' r
teraction. The parameters of the Gogny D1S interaction are ,

fitted to a certain set of stable nuclei. For this case an axial . Fi (1) th,n,y(f)]
harmonic oscillator basis is used. r! r

The details of the Dirac-Hartreg@®H) calculation leading
to the density matrices employed in our calculations are *m m
given below. The wave functio®;(r) is a solution of the 2|+12 YY), (3.6
one-body Dirac-Hartree equation and given[ky]

The calculation of the full-folding optical potential

. GtZ,n,,,(r) U(q,K) requires the nuclear density matrix in momentum
! r vm space. Thus we need to double Fourier transfpfmi,r) to

Wa(N=Wn,m,(r)= rt (r)} i, obtain the density(p’,p) in the rest frame of the nucleus.
n,v
- —vm

This frame is characterized by the momeptandp’ and the

r density matrix is obtained by

(3.2

Heret, stands for thez component of the isospin amdfor Pa(p p __f d3r’e i’ P Jd3re" Pp(r',r),
the principal quantum number. The phase convention is
taken from Ref.[17]. During this derivation we prefer to 3.7

omit the indexa. The spherical harmonics are determined by
&, which is defined as where we again indicate with the index that we have to

obtain the density matrix for protons as well as neutrons.
Using the standard expansion of a plane wave, the angular

b= E (Im 3 myl 3 Jm>yml Q)Xm, (3.3 integration in EqQ.(3.7) can be easily carried out, and we
my Mg obtain, for the density matrix,
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_~ ~ 1
pa(P' D)= 252 (23113 Py(coss ) 0.125 N\
6 \\\
0.000 ‘\\\
>< Jdr’r,Jl(p/r,)Fa,tz,n,v(r,) 94 | \_0.125 L \\\\\\ //,f
\a: \\ \\\{’_;‘/
L= \ 1.5 2.0 25
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FIG. 2. Comparison of the experimental proton density profile

The density matrima(ﬁ’,ﬁ) given in Eqs(3.7) or (3.9) is pp(q) for %0 [18] (solid line) with the ca_llculated proton density

p.(p’.p) in our calculation of the full-folding optical poten- (dashed ling

tial for nucleon-nucleus scattering, we have to evaluate the A

function at the corresponding momenta in the nucleon- In order to calculate the optical potentld(q,K) as given
nucleus frame. This is facilitated by variable transformationsn Eq. (2.25, we need the density matrix as function of the

p=p— k/A andp’=p’— k'/A, which takes into account re- momentum transfeq and P=p+ K/A as indicated in Eq.
coil. As an aside, not including recoil would mean the trans<(2.22. In these variables the density matrix is related to the
formationp’=p’ — k/A. density profilep,(q) of the nucleus by

For the calculation of the density matrices derived from a
nonrelativistic Hartree-Fock-Bogolyuba¥HFB) calculation
based on the Gogny D1SN interaction we employ essen- :f 3 ( _ E a Eg
. : Pa(Q) d°Pp,| P P+ . (3.1)
tially the same procedure as described above. The wave A 2 A 2
functions are created im space by a code provided by
Bergeret al.[15] and are represented in an axially symmet- .
ric harmonic oscillator basis. A double Fourier transform is € normalization is chosen such thaf(q=0)=Z or N,
then performed using the oscillator basis and summing ovef1€ number of protons or neutrons, respectively.
all harmonic oscillator quantum numbers. This choice of ba- !N Practice we used the relation given in E§.11) for
sis takes advantage of the fact that the Fourier transform of §Sting our numerical integration schemes with the simple

harmonic oscillator is again a harmonic oscillator. The denharmonic oscillator density given in Reff3]. In order to
sity matrix is given by determine how well the two model density matrices pre-

sented here describe the experimentally determined proton
~, ~ N e ~ distribution, we calculate the proton density profilgs(q)
Pa(P ’p)ZZ P e (P ei(p), (3.9  for both the DH and the HFB models for each nucleus we
b consider. In the following we want to discuss two cases,

where the indices,i’ count the harmonic oscillator basis namely, **O and *Zr. In Fig. 2 we compare the density
states ang"'’ is the density matrix in the oscillator basis. profiles calculated from the DH and HFB models to the ex-
Again, the indexa distinguishes between protons and neu_]E)e”rlmentﬁl proton dlstrlblugpﬁl_g]. _Over:lg\ll the hDH przoflle
trons. The basis states are explicitly given b oflows the experimental distribution closer than the .HF.B
picity g y profile. The HFB profile is shifted to larger momenta, indi-
cating that the HFB model slightly underpredicts the radius

~ _ 2 ~
(Pi(p):% Aim(B,y)e"PPTH(B,p,) of the proton distribution of®0. This feature will be visible
in the proton-scattering observables f§0 calculated with
xe~ yprzLIml(y “p'r)eime (3.10 the HFB model. In the close-up of the minimum of the den-
I ) . .

sity profile it can be seen that both model densities slightly
deviate from the experimental profile. In Fig. 3 we carry out
p, the radial momentum, an@,y are harmonic oscillator the same comparison for a heaV|_er nucletigr. He(e both.

~ . . model densities follow the experimental proton distribution
constarlts.Hi(ﬁ,pZ) are the He_rmlte poly_nom|aIS and [18] very closely. The close-up of the minimum reveals that
L™ (y,p,) the Laguerre polynomials. The size of the har-the HFB profile deviates only slightly from the experimental
monic oscillator basis used depends on the size of thgrofile. This is a general trend; the heavier nuclei are better
nucleus; e.g., the size of the basis f8i0 is 12 shells described by the model profiles. In fact, the proton distribu-
whereas for®Zr it is 16 shells. It should be noted that the tion of %0 represents the worst case of disagreement of the
indicesi andi’ are not independent. The size of the basismodel profiles with the experimental profiles. This is under-
sets needed makes the calculatiopofp’,p) quite lengthy, — standable since the HFB model is known to provide a better
especially for heavier nuclei. representation of the larger nuclei.

Herep, is the projection of the momentum along thexis,
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tension of the Bonn model above pion-production threshold
[13]. In this model pion production is described through the
decay of the delta isobar with a width obtained consistently
from the imaginary part of the one-pion loop diagram for the
delta self-energy. It is also to be understood that we perform

all spin summations in obtaining (q,K). This reduces the
requiredNN t matrix elements to a spin-independent com-
ponent(corresponding to the Wolfenstein amplitudg and
a spin-orbit componenfcorresponding to the Wolfenstein
amplitudeC). Since we are assuming that we have spin satu-
0.0 10 20 3.0 rated nuclei, the components of theN t matrix depending
q(fm") on the spin of the struck nucleon vanish. For the proton
nucleus scattering calculations the Coulomb interaction be-
FIG. 3. Comparison of the experimental proton density profiletween the projectile and the target is included using the exact
pp(q) for *°Zr [18] (solid line) with the calculated proton density formulation described in Ref21].

profiles from the DH mode{dash-dotted lineand the HFB model A common approximation to the full-folding expression
(dashed ling of Eq. (2.29, which still preserves the nonlocal character of
the NN t matrix, is obtained as follows. If one observes that
IV. RESULTS AND DISCUSSION the nuclear size is significantly larger than the range of the

A. Details of the calculation NN interaction, the amplitudéa is expected to be the slower

varying quantity in the integral of Eq2.25. This argues for

In this paper the stgdy of the elastic scattering of n_eutronihe method of optimum factorizatidi1,22 which proceeds
and protons from spin-zero target nuclei at energies tha

range from 80 to 400 Me\(incident projectile energyis  Vi& @n expansion of, [including the factory(q,K,P)] in P

strictly first order in the spectator expansion. Here the con@P0ut a fixed valué,. The reference momentuf, is de-

nection to the propagatdB(E) due to the coupling of the tgrmmed by requiring that the contrlbqtlon of thg first derlva.-

initially struck target nucleon to the residual target is consig1iVe t€rm be minimized. In the elastic scattering case this

ered to be first order. The full-folding optical potential is contribution can be made to vanistHj s chosen to be zero.

calculated as outlined in Sec. I, specifically as given in Eq.FOr further details we refer to RefL1]. After the integration

(2.25, using the model densities described in Sec. IIl. ThePVer the density matrix to produce the diagonal density pro-

calculations for scattering at energies smaller than 200 Me\#€ P(@) [EQ. (3.11)] the “optimum factorized” or “off-

take into account the coupling of the struck target nucleon tSN€lltp” form of the optical potential is given by

the residual nucleus via the mean field potenfial which is A i A+ 1

chosen to be consistent with the model density employed.  Uy,((q,K)= > ﬂ(q,K)Ta(q,jK,f)pa(q)_

Details of this procedure are given in Ref§,10]. Calcula- a=p,n

tions using the Dirac-Hartree densitiend the correspond- (4.9)

ing potential W;) are labeled DH, while those using the

Hartree-Fock-Bogolyubov densitigand corresponding po- Here the nonlocal character of the optical potential is solely

tentialsW,) are labeled HFB. determined by the off-sheN N t matrix. For harmonic os-
The convolution of the fully off-shell density matrix,, cillator model densities it has been shown for light nuclei

with the fully off-shell NN t matrix, and the Mtler frame  that the optimum factorized form represents the nonlocal

transformation factorp(P,q,K) as given in Eq.(2.24 is  character ofJ(q,K) qualitatively[2,3] when applied within
carried out in three dimensions without partial wave decomyne KMT formalism to first order at intermediate energies.
position and the integration is performed using Monte Carloyhen comparing elastic scattering observables obtained
integration techniques. Our algorithm uses quasirandonfyom full-folding optical potentials to those obtained from
numberg 19], together with importance sampling, which ac- «ff_shell tp” optical potentials, the scope is twofold. First,
cording to our tests has the advantage of needing signifiye employ here realistic models of the nuclear density for
cantly fewer integration points than algorithms based on CONfight as well as heavy nuclei. Second, we extend this com-
ventional “random number” generators or Gauss-Legendryarison toward energies around 100 MeV where it could be
integration to obtain the same accuracy. Quasirandom NuMisypected that the nucleon-nucleus scattering calculation
bers provide a “uniform” random distribution over the inte- samples the optical potential further off shell and thus the

gratio_n space. _ ) optimum factorized form may not be as good an approxima-
Aside from the density matrices, the fully off-sh&lN t  {jgn.

matrix is another crucial ingredient in the calculation of

U(qg,K). The calculations presented use the ¢ interac-
tion based upon the full Bonn potent[@1]. This interaction
includes the effects of relativistic kinematics, retarded meson Elastic scattering calculations from several spherical nu-
propagators as given by time-ordered perturbation theorylei are carried out at a variety of energies between 80 and
and iterative and crossed meson exchanges With NA, 400 MeV to allow for comparisons between results obtained
and AA intermediate states. For the calculations involvingfrom the full-folding optical potentials with those arising
projectile energies greater then 300 MeV we employ an exfrom the factorized off-shell tp” approximation.

B. Elastic scattering results
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The scattering observables for elastic proton scattering
from %0 are displayed in Fig. 4. The solid line represents
the calculation with the full-folding optical potential based
on the DH density and the Bortnmatrix defined above the
pion-production threshold, while the dashed line represents
the optimum factorized form as defined in Bd.1). Both
calculations are based on the fig®l t matrix. Since the two
calculations give very similar results, it can be concluded
that the bulk of the nonlocality of the optical potential, which
affects the elastic scattering observables, must come from the <
off-shell structure of th&IN t matrix. The off-shell structure
of the nuclear density matrix plays an insignificant role for
elastic scattering observables at these high energies. A simi-
lar conclusion was already drawn in Ré8] and is here
confirmed using realistic densities. In order to illustrate the <
effect of the different density profiles for the DH and the
HFB models(as shown in Fig. Ron the elastic observables,
we display two calculations based on the factorized optical
potential for the DH(solid line) and the HFB(dashed ling
models in Fig. 5. As already discussed in Sec. llI, especially Ocm(deg)
in the case of°0, the HFB density profile is shifted to larger . .
momenta compared to the DH profile. This translates directly FIC- 5. Same as Fig. 4, except that all calculations are based on
into a slight shift of the first minimum of the differential the factorized, off-shell tp” approximation. The solid line repre-
cross section to larger angles and a slightly smaller angulajJents the calculation using the O] density profile, whereas the

- . . - . o ashed line uses the HHR5] density profile.
spacing of the diffraction minima. We carried out similar
comparisons of full-folding and optimum factorized optical ) ) i
potentials for heavier nuclei, but there the disagreement béhe transformation of th&IN t matrix evaluated in th&N

tween the density profiles of the two models is much smallef-M- frame to the zero-momentum frame of the nucleon-
than for 10 and consequently the predictions of the 0bser\,_nucleus system. This frame transformation can be viewed as
ables are very similar. a relativistic effect and its importance should increase with

Another effect worthwhile to study in this context is the higher scattering energies. For these reasons we want to con-
influence of the Mber factor[12], which takes into account

=0 (p.p)

400 MeV N\
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FIG. 6. The angular distribution of the differential cross section
FIG. 4. The angular distribution of the differential cross section(do/d(}), analyzing power A,), and spin rotation function(Q)

(do/dQ)), analyzing power A,), and spin rotation functionQ) are shown for elastic proton scattering frdfi©® at 500 MeV labo-
are shown for elastic proton scattering frdfi® at 400 MeV labo-  ratory energy. The solid line represents the calculation performed
ratory energy. The solid line represents the calculation performeavith a first-order full-folding optical potential as described in Sec.
with a first-order full-folding optical potential based on the DH Il. The dashed line represents a calculation where théeMtactor
density[14] and the Bonn model D5pL3]. The dashed line repre- is evaluated for the fixed ang@=90°, whereas for the dotted line
sents the calculation using the factorized, off-shelb™ approxi- the Mdler factor was omitted altogether. All calculations are based
mation to this optical potential. The data are taken from R&5]. on the DH density and the Bonn model D&Matrix.
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do/dw(mb /sr)
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FIG. 7. The angular distribution of the differential cross section  FIG. 9. The angular distribution of the differential cross section

(do/dQ)), analyzing power A,), and spin rotation functionQ) (do/dQ)), analyzing power A,), and spin rotation functionQ)

are shown for elastic proton scattering frdACa at 100 MeV labo-  are shown for elastic proton scattering froffzr at 80 MeV labo-
ratory energy. The solid line represents the calculation performedatory energy. The solid line represents the calculation performed
with a first-order full-folding optical potential based on the DH with a first-order full-folding optical potential based on the DH
density[14] and the full Bonn mode[20]; the dashed curve is density[14] and the full Bonn mode[20]; the dashed curve is
based on the factorized, off-shelky™ approximations. The data based on the factorized, off-sheltp” approximations. The dotted
are taken from Ref.26)]. line represents a full-folding calculations based on the HFB model
[15]. The data are taken from RgR7].

sider its effect on the elastic scattering observables for proton ) . . . )
scattering from*0 at 500 MeV/(Fig. 6). The Mdler factor  integration variablé®. This expansion corresponds to consid-
7(P,q,K) as given in Eq(2.24 is a function of three vector €ring 7(q,K) at a fixed angle betweenandK, specifically
momenta and is part of the full-folding integral of £§.25.  here ®=90°. The dashed line therefore in Fig. 6 corre-
The solid line in Fig. 6 represents the calculatior(ti,K) sponds to evaluating the optical potential according to

as given in Eq(2.25. In the spirit of the optimum factorized
approximationn(P,q,K) can be expanded around a fixed
value Py (here Py=0), thus becoming independent of the

OaK)= 3 n(q,K)@):goof P>,
1[A+1
x(q,i —K—P);e)

A
A-1q
A 2

A-1q

pa( P—

The dashed and solid lines in Fig. 6 are almost indistinguish-

do/dw(mb /sr)

&
Y

20 40 60 80 100

6cm(deg)

able. This infers the conclusion thg(q,K)g-go is a very
good representation of the exact expression given in Eq.
(2.29. In order to illustrate the total effect due to the inclu-
sion of the Mdler factor, the dotted line in Fig. 6 represents
a calculation withn(q,K) set to one in Eq(4.2).

At energies below 200 MeV, calculations of elastic ob-
servables not only incorporate the effects of the nuclear
structure models within the full-folding procedure but also
via the mean field forcégiven by the structure modelvhich
couples the struck target nucleon to the residual nucleus.
Thus it is hoped that the influence of different structure mod-
els on the elastic observables is observable. In Fig. 7 we
display the elastic observables for proton scattering from
4Ca at 100 MeV laboratory energy employing the DH

FIG. 8. Same as Fig. 7, except that the HFB moded] is
employed for the density as well as the mean field force.

model for the density as well as the mean field fovée In
Fig. 8 the corresponding calculation is done using the HFB
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FIG. 10. Real and imaginary parts of the on-shell value of the optical potential as a function of the orbital angular momémtum
scattering from*Ca at 200 MeV laboratory energlt) denotes the potential fdr=L + % whereag—) stands fod=L — % The full-folding
(solid line) and factorized, off-shelldashed ling calculations are based on the full Bonn model and the DH density.

model. In both figures the solid line represents the full-models under consideration are so similar, is not surprising
folding calculation and the dashed line the factorized off-in that both models predict an almost identical density profile
shell “tp” approximation. All calculations contain the modi- (Fig. 3). The effect of the off-shell structure of the nuclear
fication due to the mean fieM/;. The off-shell structure of density matrix is relatively small as the comparison between
the nuclear density matrix in the full-folding procedure has athe full-folding (solid) line and corresponding factorized
this lower energy a slightly larger effect on the spin observ-(dashed calculation shows.
ables than at higher energies. In addition, the angular distri- |t js difficult to extract properties of nonlocal potentials
bution of the differential cross section diffracts at slightly from elastic scattering observables. Nonlocal effects are pre-
larger angles in the full-folding calculations compared t0g,mably more important in inelastic processes which depend
those based on the factorized form. This trend is also obgp the nycleon-nucleus interaction such as quasielastic elec-
served for the heawer nucIeL?%Z.r (Fig. 9. Here the observ- tron scattering reactions. In order to gain more insight into
3.ble|s fordelars]uc dpf;oton scatt)tterlng frori:ﬁZr at 80 (,;A(T\fj ar€  the difference between a full-folding optical potential and the
isplayed. The difference between the two mode enSItIe?actorized off-shell ‘tp” approximation to this potential, we

employed is almost negligible fato/d() andA, . Only for - 0 0 : .
the spin rotation function is the difference given by usingpIOt in Figs. 10 (°Ca) and 13 § Pb) the real andl|mag|nary
two different structure models at higher angles as large as tHearts of the on-shell value d§(q,K) as a function of the
effect of using the factorized approximation. This result,orbital angular momenturh for a projectile energy of 200

namely, that the observables predicted by the two differenMeV. We separate the casds-L+ 3 andJ=L— 3 to iso-
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FIG. 11. Real and imaginary parts of the on-shell value of the proton-nutieasrix (Coulomb contributions omittedas a function of
the orbital angular momentuinfor scattering fronf°Ca at 200 MeV laboratory energf) denotes the potential fdr=L + % whereag—)
stand forJ=L— % The full-folding (solid line) and factorized, off-shelldashed ling calculations are based on the full Bonn model and the

DH density.
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off-shell behavior inherent in the potentials. After iteration to
obtain the Watson optical potentigEg. (2.11)] and then in
the integral equatiofEqg. (2.9)], the on-shell elements of the
NA t matrix display much smaller differences between the
full-folding and its factorized, on-shell tp” approximation.
For 2%%Pp the differences in the real parts are nearly insig-
nificant (Fig. 14), whereas for*°Ca a slight suppression of
the real part for small remains for the full-folding calcula-
tion compared to the factorized approximatidfig. 11).
However, the differences occur mainly for smallemwhere
the imaginary part of the potentials as well as theatrices
are relatively large. Because the absorption is significant for
these low partial waves, the elastic observables are not par-
ticularly sensitive to the differences in the real parts as dis-
played in Figs. 12 and 15.
In Fig. 16 total neutron cross section data fé€, €0,
285j, 40Ca, °9Zr, and 2°%b are shown along with various
calculations ofo,(E) at a number of energies. Because the
data are so extensive, the “usual” procedure has been re-
Ocm(deg) versed in the plotting of these cross sections so that the data
FIG. 12. The angular distribution of the differential cross sec-are represented by dotted curves, and the discrete points cor-
tion (do/d(2), analyzing power 4&,), and spin rotation function respond to calculated results. The solid diamonds represent
(Q) are shown for elastic proton scattering frdfiCa at 200 MeV  the full-folding calculations as described in Sec. II. All cal-
laboratory energy. The solid line represents the calculation perpj|ations are based on a DH model for the nuclear density.
formed with a first-order full-folding optical potential based on the energies<200 MeV the modification of the free propa-
DH density[14] and the full Bonn mode20]; the dashed curve is g0 through the DH mean field is included as described in
based on the factorized, off-sheltp™ approximation. The data are Ref.[10]. It has been shown in ReffL] that for higher ener-
taken from Ref[28]. gies this modification of the free propagator becomes negli-
) ) ) ) gible. The open circles represent calculations based on the
late the effect of the spin-orbit force. As is seen in bothactorized, off-shell ‘tp” form using the saméIN t matrix.
figures, the full-folding (solid lines and the factorized A general trend to be observed in Fig. 16 is the slightly lower
(dashed lingson-shell values of the imaginary parts of the \ 51,6 of o(E) obtained from a full-folding calculation
optical potential are quite similar. In both cases the real par&ompared to the factorized approximation. This trend is al-

_of the (_)n-shell valu_es of the optical potentials exhibits an,gst independent of the energy and the nucleus under con-
increasing suppression for smalleras the nonlocal effects  gjgeration and is consistent with the observation that full-

of the density matrix as well as theN t matrix are treated  {o|ding calculations of the differential cross sections fell
more adequately in the full-folding procedure. It should begightly below the values given by a factorized calculation.
emphasized again that Figs. 10 and 13 only show the value ‘at this point it is worthwhile to investigate whether the
of U(q,K) fulfilling the on-shell conditiong-K=0 andg® interactions of the projectile with the target nucleus are uni-
+4K?=4k3 with ko being the on-shell relative momentum formly distributed over the entire nucleus or if specific re-
for proton-nucleugNA) scattering and do not display any gions of the nucleus play a more dominant role in the scat-
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2 -5.0x107' -
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N .
-I.OXIO-G | | 1 1 ]
0.0x107
L -5.0x107
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]
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FIG. 13. Same as Fig. 10, except ft#*Pb.
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FIG. 14. Same as Fig. 11, except ftf*Pb.

tering process at intermediate energies. For our study wexpansion of multiple-scattering theory. These optical poten-
chose neutron scattering at 200 MeV projectile energy andals are based on realistic models for the nuclear density
consider contributions from Specific shells to the total Crossmatrix, name|y, a Dirac-Hartree and a Hartree-Fock-
sections. We employ the DH model for the density and regogolyubov model along with the full Bonn meson ex-
move outer shells of protons as well as neutrons. Then W‘Ehange model for th&lN t matrix. Recoil and frame trans-

recalculate the scattering from the remaining “inner core,” . . . L .
which is chosen to be doubly magic, so that it is bound. Theformanon factors are implemented in the calculation in their

results of this procedure fo?0, %°Ca, and?%Pb are given complete_ form. We calculated elastic' scatte.ring. observa.bles
in Table I. As a technical detail, when calculating the scat{°f @ variety of light and heavy nuclei at projectile energies
tering in these tests we treated the targets as being infinite§om 80 to~400 MeV laboratory energy. At energies below
heavy to exclude recoil effects, which would be larger for200 MeV we included the modification of the free propaga-
smaller cores. In order to give an estimate of the size of théor due to the coupling of the struck target nucleon to the
recoil effect on the total cross section we give the values ofesidual nucleus via the same mean field used to model the
oot Calculated with and without recoil in Table I. The values effect of the nuclear medium. The predictions from these
for the total cross section for neutron scattering for “innerrigorous calculations of elastic nucleon nucleus observables
cores” of 100, 40, 16, and 4 nucleons are given as entries grovide excellent agreement with the experimental data in
the corresponding nuclei. The entries in Table | markegpis energy regime.

“n.b.” indicate that, e.g., in the case 6f*Pb the DH calcu- We tested the validity of the factorized off-sheltp”

lation with only 8 neutrons and 8 protons did not result in a5 roximation in the eneray regime between 80 and 400
bound system using the parameters’®Pb given for those PP g9y reg

16 nuclei. The calculated rms radii for the “inner cores”
under consideration fot%0, “°Ca, and?%%Pb are listed in
Table Il. This table also contains the rms radii for the proton
and neutron distributions for the above mentioned nuclei as
given by the DH model. Columns 3 and 4 of Table Il com-
pare the percentage of the volume filled by the “inner core”
if either the corresponding rms radius is ugedlumn 3 or

the radius is taken to be proportionalAd’ (column 4. The
percentage of the calculated total cross section contribution
from the inner core nucleus is given in column 5. The num-
bers suggest that the nucleons in the interior of the nucleus B
contribute to the total cross sections with a percentage
slightly larger than the volume they occupy when the volume
is based on the crude estimate- A3 This leads to the
conclusion that all nucleons in the nucleus almost equally
contribute to the scattering process. We performed a similar
study at 100 MeV and 500 MeV projectile energy and did
not find any significant deviations from the ratios
ocorel o, as given in Table Il at 200 MeV.

(p,p) 200 MeV

= p

do/dw(mb/sr)

V. CONCLUSION

We have calculated the full-folding integral for the first-  FIG. 15. Same as Fig. 12, except f8fPb. The data are taken
order optical potential within the framework of the spectatorfrom Ref.[29].
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FIG. 16. The neutron-nucleus total cross sections for scattering ¥feém'0, 28si, °Ca, °°Zr, and ?°®Pb are shown as a function of the
incident neutron kinetic energy. The dotted line represents the data taken from[Z&®4. The solid diamonds correspond to the
full-folding calculations using the full BonNN t matrix [20] and the DH model14] for the density. The open circles correspond to the
factorized, off-shell ‘tp” approximation. The calculations for energies smaller than and equal to 200 MeV include the propagator modifi-
cation due to the DH mean field.

MeV and found that this approximation, which only retains ACKNOWLEDGMENTS
the nonloca'llty given through thiN t r’_natrlx, IS even at_ The authors want to express their gratitude and apprecia-
lower energies a very good representation of the fuII—foIdmgt. . .
: ; ion towards R. M. Thaler for the many stimulating, helpful
calculation as far as the elastic nucleon-nucleus observables

are concerned. This indicates that elastic scattering obser\?-nd critical discussions during the major stages of this

ables seem quite insensitive to the off-shell structure of th(.g ;()tjﬁe(:tUTSr] 'SDVgO;krtvn\giitpgfrfELrgfd I:np daer'; Lg(‘)?ﬁ:;?,[eNa(;JSSng_s
density matrix. We need to point out that the off-shell struc- > Dep 9y y

ture of the two density matrices employed is remarkablyFGoz'93ER40756 with  Ohio _University, DE-ACO5-

similar, though they are derived from very models for the840RZl400 with Martin Marietta Energy Systems, Inc., and

nuclear structure. We also point out that this conclusion im-DE'FGOS'87ER40376 with Vanderbilt University. We thank

. . o the Arctic Region Supercomputing Cent&RSC) and the
plies the assumption that the energy of th&l t matrix is . ) g
fixed at the two-body c.m. energy correspondindty scat- Ohio Supercomputer Cent@®SO for the use of their facili

tering at the beam energy. ) .
Differences between the factorized approximation and thg, TABLE | Total cross sections for neutron scattering frofo,

full calculation of the optical potential are present predomi- <& and *Pb as well as from inner shells of those nuclei. The

nantly in lower partial waves. However, as a result of theent_rles printed in bold_face are the ones for which the rms radii and

cumulative effect of many partial waves, the elastic obsery!atios are calculated in Table Il.

ables do not reflect these differences. It should be noted that

in, e.g., inelastic scattering of nucleons from nuclei or quasi-

elastic electron scattering those differences between full-

folding calculations and the corresponding factorized ap-

proximation may become more significant. We also studiedo 0.423 0.419 0.120 0.419

the contribution of the interior structure of the nucleus to the4ca  0.925 0.921 nb. 0419 0.921

total cross section and find that all nucleons in the nucleugosp, 338 3.37 n.b. nb. 0960 2.01

contribute almost uniformally to the scattering process.

Ot [0] ot [B] oot [B] ot [B] oot [B] i [B]
no core core core core
recoil of 4 of 16 of 40 of 100
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TABLE Il. rms radii for the proton and neutron distributions 80, “°Ca, and**®b as well as from inner
shells(cores. The last three columns give the ratios of the volumes of the cores to the total nucleus as well
as the ratios of the calculated total neutron cross sections. The numbers used to determine the latter are the
ones printed in bold in Table I.

rms radius(full) [fm] rms radius(core [fm]

(proton,neutron [corel:(proton,neutron (rmgcorg) Acore oCore

(rms’) A Otot
160 (2.63, 2.60 [4]:(1.96, 1.95 42% 25% 29%
“ca (3.39, 3.33 [16]:(2.63, 2.60 48% 40% 45%
208pp (5.40, 5.67 [40]:(3.72, 4.9] 47% 19% 29%
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center regional alliance project funded by the Advanced SciNo. PHY950010P as well as the National Energy Research
entific Computing Program of the National Science Supercomputer CentéNERSQ for the use of their facilities
Foundation, Grant No. ASC-9418357, and Grant No.underthe FY1996 Massively Parallel Processing Access Pro-
PHS206 from OSC. We also thank the Pittsburgh Supercomgram.
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