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Based on an effective field theory of hadrons in which quantum chromodynamics is assumed to provide the
necessary bare cutoff functions, a gauge-invariant theory of pion photoproduction with fully dressed nucleons
is developed. The formalism provides consistent dynamical descriptiomdlef 7N scattering andyN— 7N
production mechanisms in terms of nonlinear integral equations for fully dressed hadrons. Defining electro-
magnetic currents via the gauging of hadronipoint Green’s functions, dynamically detailed currents for
dressed nucleons are introduced. The dressed hadron currents and the pion photoproduction current are explic-
itly shown to satisfy gauge invariance in a self-consistent manner. Approximations are discussed that make the
nonlinear formalism manageable in practice and yet preserve gauge invariance. This is achieved by recasting
the gauge conditions for all contributing interaction currents as continuity equations with “surface” terms for
the individual particle legs coming into or going out of the hadronic interaction region. General procedures are
given that approximate any type @iflobal) interaction current in a gauge-invariance-preserving manner as a
sum of single-particle “surface” currents. It is argued that these prescriptions carry over to other reactions,
irrespective of the number or type of contributing hadrons or hadronic sysf&80856-281®7)01610-5

PACS numbgs): 25.20.Lj, 24.10.Jv, 13.75.GX, 24.10.Eq

[. INTRODUCTION parametrized by the bare quantities of the effective Lagrang-
ian. Since many of the most basic relations governing the

While it is generally accepted that quantum chromody-interactions of hadrons and photons relate electromagnetic to
namics(QCD) provides a basic framework for all reactions purely hadronic entitiesthe most important example being
involving strongly interacting particles, we still seem to bethe Ward-Takahashi identitigd]), it seems obvious that a
very far away from implementing QCD in practical calcula- comprehensive formulation can only be achieved if the
tions aimed at describing the findings of experiments fronpurely hadronic sector of the problem is treated completely
low to intermediate energies of up to a few GeV. Insteadconsistently with the subsequent electromagnetic interaction.
effective-field-theoretical descriptions in terms of purely Therefore, in order to be able to develop the present descrip-
hadronic degrees of freedom are usually employed, whergon from the ground up, we will, in Sec. Il, provide a reca-
QCD is assumed to provide the justification for the param-itulation of the interactions of nucleons and pions that will
eters or cutoff functions assumed in the various approacheform the basis for the ensuing investigations regarding the
Central to our ability to describe experiments in these effecphotoproduction of pions. The formulation given here for
tive terms—and, most importantly, central to our ability to #N— #N is a nonlinear one where the full solution of the
tell when this effective approach would no longer behadronic scattering problem couples back into the driving
applicable—is a detailed understanding of the most basiterm of the reaction. Despite the practical complications en-
hadronic interactions, namely, the reaction dynamics ofailed by nonlinearmN scattering equations, we feel very
nucleons, pions, and photons. strongly that, from both formal and practical points of view,

It is the purpose of the present paper to provide a comthe nonlinear approach is better suited to exhibit the true
prehensive theoretical description of the production of pionglynamics of the interaction, and as a consequence, if a prob-
due to the interactions of incident photons with nucleonslem needs to be treated as a linear one because of practical
The history of such descriptions goes back to the 1950s, anebnsiderations, starting from the full nonlinear set of equa-
indeed many of théglobal basic relations have been well tions usually will suggest an approximation strategy closer to
known for about 40 yearsee[1] and, in particular[2], and  the true underlying physical mechanisms than starting from
references therejnin recent years, the attention has focusedinearized assumptions from the very beginning.
on approaches attempting to take into account the fact that The physical currents for all processes contributing to the
all hadrons involved in the reaction have an internal structurgpion production amplitude are derived here via their corre-
[3-9] sponding hadronio-point Green'’s functions. However, in-

The present investigation would like to add to the latterstead of the usual procedu¢see, e.g.[5,8]) of employing
approaches by providing a detailed theoretical framework fominimal substitution and a subsequent functional derivative
the gauge-invariant interactions of physical—i.e., fully with respect to the electromagnetic figd¢t, we introduce an
dressed—hadrons with photons. The description is given irquivalent, but practically simpler, mathematical operation
terms of an effective field theory where tljat present, in called a “gauge derivative” which allows one to obtain cur-
detail unknown quark and gluon degrees of freedom arerents directly from the momentum-space versions of the re-
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spective Green'’s functiorisThe technical details of this are Other meson contribution will not be treated here. We thus
explained in the Appendix. Using the hadronic results of Seckeep the reaction dynamics simple enough to be amenable to
Il as a starting point for the definitions of all relevanpoint  a concise presentation, yet sufficiently detailed to avoid be-
Green’s functions, we arrive in Sec. lll at a consistent for-ing trivial. However, we emphasize that none of these re-
mulation of the pion photoproduction process where all resstrictions are essential; a more elaborate dynamical picture
action mechanisms are given in terms of fully dressed hadean easily be obtained following the lines presented here.
ronic propagators and vertex functions. The electromagnetic Many, if not most, aspects of the following treatment of
current for the physicali.e., dressednucleon, in particular, hadronicmN dynamics are well knowrisee Refs[11-14
contains all contributions from the nucleon’s self-energy.and references therginNevertheless, we feel that it is nec-
Again, the results are found to be highly nonlinear andessary to recapitulate them here in order to provide a com-
hence, the proof of gauge invariance of the formalism campletely consistent background against which the investiga-
only be one of self-consistency, where we show, in Sec. IVtions of Secs. Ill and IV regarding the gauge invariance of
that assuming the validity of the Ward-Takahashi identitiesghe pion photoproduction amplitude needs to be seen.

[1] will provide a gauge-invariant pion photoproduction am-

plitude which in turn will allow us to get back the Ward- A. Dressed nucleon propagator

Takahashi identities for the dressed hadron currents in a self-
consistent manner. In performing this proof, we observe that
the gauge-invariance conditions for all current mechanism y [15]

inside of a hadronic interaction region—as opposed to pieces — -

arising from the photon’s interactign with extgrprml legs cl?f the £=e(i0=Mg) e~ Ve(Ys, ¥8), @

reaction—take the form of continuity equations with “sur- where the inde)8 stands for “bare” andvg includes all the
face” terms. Using the example of the electromagnetic curinteractions relevant for the nucleon; in genexgl,will also

rent associated with the bare vertex as a starting point, igontain other fields. We assume here that the bare quantities
Sec. V, it is shown in the concluding Sec. VI how one canpave been obtained from QCD, subsuming the quark and
turn this into a consistent approximation scheme that allowsg)|,on degrees of freedom that cannot be described by purely
one to preserve the gauge invariance of the formalism even Radronic dynamics. At the hadronic level, for the nucleon the

one chooses to linearize the problem by altering appropriomy remnants of this procedure are the bare nmgand a
ately the driving terms for the underlyingN— N scatter-  pare vertex function foN— N,

ing problem. This approximation scheme is one of the most

important practical results of the present investigation. Fe(p',p)=9sGsf(p’.p), 2
While, at first glance, some of the resulting expressions

might look similar to Ohta’s[5] way of dealing with ex- Wheregg is the bare coupling constant a@j the coupling
tended nucleons, it will be seen that there are considerabperator. The functiori(p’,p)—which in practical terms is
differences in detail, which even leads to a simpler imple-free input, since the QCD problem has n@tet) been
mentation in practicéwith, for example, none of the prob- solved—provides the necessary cutoff to make all integrals
lems pointed out in Ref[9]). Moreover, we also argue in convergent. FoGs we are only going to consider pseudo-
Sec. VI that the approximation scheme suggested here f@calar,Gs= ys, or pseudovectorGs= ys(p—p’)/2m, cou-

the 7N system can also be used for other reactions irrespedlings. (Again, a more general coupling structure can easily

tive of the type or number of contributing hadrons. be accommodated following the outline given hgre.
Note that themrNN vertex conserves four-momentum and

the independent variables chosen in E2). are the four-
Il. =N DYNAMICS momenta of the incoming and outgoing nucleomsindp’,
espectively. As we shall see in Sec. V, this will have some
Eearing on the investigation of gauge invariance of the pion
otoamplitude.
Renormalizing the Lagrangian in the usual wag] by

Generically, the bare Lagrangian for the nucleon is given

As explained in the Introduction, the basis of a consisten
treatment of the reaction dynamics of pions, nucleons, an
photons is a complete formulation of the purely hadronicPh
sector of the problem, i.ezN— wN. To simplify the pre-
sentation, we will in the following only consider pion-
nucleon interactions proceeding through thg and thePs;
channels. Moreover, the only bound or resonance states

mg+ dm=m, 3

taken into account in these channels will be the nucléan, Yg—==1, (4
and the deltaA, respectively. Also, we will allow forrmr \/Z
interactions that give rise to- and p degrees of freedom. _ _
Ve(NZig NZe)=V(4.9), (5)
. . yields
After completion of the present work, the author became awaré
of recent e-prints by Kvinikhidze and Blankleidgt0O] which sug- ﬁ:zﬁi H—m)y+ Z(SmEII—V(II,/I). (6)

gest that they employ a similar method when gauging hadronic

spectator equations. However, at present, no technical details dfhe inverse of the corresponding momentum-space propaga-
their formalism are available. Therefore, the exact nature of theor is then given by

relation to the gauge-derivative method introduced here remains to

be investigated. S Yp)=(p—m)Z+Zsm—-3(p), (7)
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where the self-energ¥, (p) is the sum of all hadronic one- A7) =(9?— p?)Z,+ (M) —TI(g?), (15)
particle-irreducible loops that can be constructed with

V(,9); i.e.,3(p) contains all graphs that cannot be factor- wherem_, is the (physica) pion massJI(g?) the pion self-
ized by simply cutting one internal nucleon line. Choosingenergy, andZ ; the renormalization of the pion field. How-

the renormalization parameters as ever, for the present report, the details of this dressing are not
important; we merely require thd(g?) be such that the
Zém=23,(m), 8  dressed pion propagator allows for a Ward-Takahashi iden-

tity [1,15] in analogy to what will be derived for the nucleon.
d=(p) 9) We emphasize that this can indeed be achieved quite
dp b=m straightforwardly by applying to the pion the corres.ponding
steps outlined below for the nucleon. For all practical pur-
assures that the fully dressed propag&fomhas a pole at the poses, we may even repladeby the bare pion propagator
nucleon massn with a unit residue. Ao,
Introducing a bare propagator by

S, H(p)=(p—mg)Z=(p—m)Z+3(m), (10)

Z=1+

AN q)—Aga)=g*-mZ, (16)

e without changing any of the findings reported here.

S Hp =St p)-2(p), (11 C. mN scattering

: (_‘jJ: a graphical picture, for each of the two channels con-
Lhe bare and dressed propagators are easily seen to be relagﬁa red here forrN scattering, there will be infinitely many
y graphs contributing to eaciH matrix arising from the
S(p)=Ss(P) + So(P)=(B)S(P). (12) nucleon Lagrangiaifl) and its delta counterpart. Summing
up subclasses of graphs at thél-reducible level produces

The bare propagator is the one to be associated with the baggaphs that can be classified as to how many separate graph
vertex of Eq.(2); in the renormalized scheme the barefragments one obtains by cutting across a pair fuify
s-channel pole term contributing to thd matrix for dressedsw and N propagators. Denoting the pair ofN
mN— 7N arising from the Lagrangiafi) is given a8 propagators formally by,

Go(P)=S(p)°A(q), 17

where o denotes the convolutidnof the propagators with

where the(renormalizedibare vertex is given bjcf. Eq.(2)]  fixed total four-momentunP=p-+q, generically each of
these summed-up graphs can thus be written as
F(p'.p)=g0Gsf(p".p), (14

with go=VZgg, in accordance with the renormalized inter-

action (5). (Note that in keeping with our simplifying as- where none of therN-irreducible pieceA, B, C, D, etc.,

sumptions we do not consider more than srghannel term  can be written in a similar way. Denoting the sum of all of

per =N channel). these pieces byJ, adding to it the one-particle-reducible
The formalism given so far assumes that there exists dares-channel termV, of Eq. (13), and denoting the result

pole in the baryon channel at hand, which applies only to théy V, i.e.,

dressed nucleon in thPy; channel. For thePs3; channel,

with the A resonance, the bare vert€¥ and the renormal- V=Vy+U=|F)Sy(F|+U, (19

ization conditions(8) and (9) need to be modified accord-

ingly. The conditions for a resonance, rather than a boungenerically both reactions then are formally given by

state, are obtained by replacing the self-energy by its real

part and the bound-state mass by the real part of the reso- T=V+VGV+VGVGyV+ - =V+VGT. (20

nance position. Also, the spin-1/2 propagator needs to be _ ) )

replaced by one for spin 3/2. Since it has no direct bearing ol he Bethe-Salpetelrl6] integral equations thus derived for

the treatment given here, we will not go into further details.the nucleon and delta channels are coupled via their respec-
tive driving termsV. Denoting thel matrices byTy andT,,

with driving termsVy andV,, one has

1
VO:|FB>m<FB| =Z|Fg)So(Fsl=|F)Su(F|, (13

graph=AG,BG,C---GyD, (18

B. Pion

In complete analogy to the preceding nucleon treatment, Tn=VNTal+ VN TAIGoT TN
one may derive a dressed pion propagaidg) given by
[15]

3By convolution, we mean that dynamically the pion and nucleon
propagatora\ (gq) andS(p) are independent, except for the fact that
>Throughout this paper, the bra-ket notation is used as a quickhey share a conserved total four-moment@w p+q. In loops
way to see whether one deals withr— N transitions oiN— Nr. every convolution is associated with an integratiga“q.
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Ta=Val[Tn]+VA[TNIGT S, (21)

whereV[T] denotes the functional dependence.

The effect of the bare, one-particle-reducible pole t&fm
on theT matrix is easily seen by defining an auxiliary entity
by a Bethe-Salpeter equation withy removed,

X=U+UGgX, (22

and applying the well-known two-potential formula7] to
Eq. (20) using Egs.(19) and(22). This produces

1
Sy 1= (Fl(Go+GoXGy)|F)

X{F|(GoX+1)+X

T=(1+XGy)|F)

(23
or
T=|D)T|+X, (24)

in other words, theT matrix has been split into its pole
contribution and a nonpolar piece describedXyThe self-
energy of the dressed propagafrformally given by Eg.
(11), has been obtained here as

2 =(F|(Go+ GoXGy)|F)=(F|Go|T")=(T'|G ¢ F), (25

where

IT)=(1+XG)|F)=[F)+UG|I') (26)
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FIG. 2. Some of the lowest-order contributions for the driving
term U of the nonpolar amplitud& of Fig. 1(c). First graph on
right-hand side is theu-channel crossed counterpart of the
s-channel graph of Fig. (fl). The other three box graphs depict
intermediate scattering processes of the nong®jarrN amplitude
X dressed by a pion, of thew amplitude dressed by a baryon
(which subsumes both nucleon and dgl&nd of the fullP53 wN
amplitude with pion dressing, respectively. All vertices and propa-
gators here are fully dressed.

a formidable task in practical terms. Perhaps it is for this
reason that nonlinear formulations of the pion-nucleon prob-
lem are often avoided. However, theN scattering problem

is nonlinear. We therefore would like to advocate that sub-
stantial insight can be gained from first formulating the prob-
lem in its full complexity and then implementing approxima-
tions that make the problem manageable, instead of
linearizing the problem from the very beginning. The relative
simplicity of the gauge-invariance investigation of Sec. IV
might be taken as a case in point for this view.

D. Nonpolar driving term

By construction, the nonpolar driving tertd is two-

defi he d d f : : fth _ . particle irreducible; in other words, every internal cut across
efines the dressed vertex function. In view of the unit resiy, antire diagram must necessarily cut across at least three
dqe ofS, we may assume he're Wlthout loss of genergllty thabarticle lines. Moreover, as seen from E€2) and(26), the

I'is aIready proper_ly normalized, i.e., tha.t the coupl[ng CONcomplete dressings of propagators and vertices happen at the
stant associated with the dressed vertex is the physid 6" ang two-particleeducible levels, respectively. There-
vertex constant; in practical terms this is achieved by cho0syre sinceu is at most three-particle reducible, without loss
ing the bare coupling, accordingly. of generality all contributions t&J can be taken as being

Obviously only the present procedure lends substance gty cted in terms of fully dressed propagators and verti-
the formal dressing discussed in Sec. Il A. The summary of g

the relevant equations in Fig. 1 also shows that the formula- gyme of the lowest-order contributions thus are readily
tion in terms of dressed hadrons leads teoalinearsystem  ¢oan to pe given by

of equations where—ignoring pion dressing for simplicity—
Egs.(12), (22), and(26) feed into each other in a very com-

, . . . Un=(Tn|SnITn)+ Byt
plex manner. Solving this set of nonlinear equations presents

Us=(Ty[Ss|Ts)+By+ o+, (27)
_/._ = _D_ * M (@ with both channels having similar box-type contributi@)g
andB,, i.e.,
i ' U ® B=(I'n|(S\XnSn)°A|T ) +(T | (AT1,A)° Sy Ty
HOEENINENNITNO © +<FA|(AT77WA)°SA|FA>+<FN|(SNTASN)°A|FN>(128)

with the differences betweey and B, being due to their
total spin and isospin valueEy andT", here are the dressed
vertices formNN and wNA, respectively. Figure 2 depicts

7N—7N: (a) Dressed vertex, EG26): (b) dressed propagator, Eq. thiS structure. The respective first terdidS|T") here are the
(12); (c) nonpolar amplitude, Eq.(22); (d) full T matrix, Eq.(24).  U-channel counterparts Of_ Fhe pole te_nﬁé}S(ﬂ of Eq.

Open circles(without descriptive lettelsdenote bare quantities, (24). The bar overS signifies thatS in the context of
whereas solid circles depict the respective fully dressed ones.  (I'|S|T") describes a baryon exchange across vertices and not

(d)

FIG. 1. Summary of coupled, nonlinear equations for
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a loop-type matrix elementf. first graph on the right-hand
side of Fig. 2. FurthermoreU contains several box graphs J—

where intermediate two-particle scattering is dressed by a :

third particle: The two termgI'|(AT,,A)°S|T") describe +_®_+ AQ'L;, @

7r7r scattering dressed by a nucleon and a delta; again, pion

exchangegsee Fig. 2 is indicated by the bar over the pion . .

propagatorA. IntermediaterN scattering proceeds through S ‘él_.)’ + w ®)

both Py, (T'n|(SyXnSn)°A[Ty), andPsz, (T'|(SyTaSw)

oA|Ty). For thePy; nucleon channel, however, the scatter- é R ‘éi:)’ . 4@,

ing involves only the nonpolar contributiofy, since the pole “

term provides amN-reducible intermediate state; i.e., this g 5 . ,*‘%

contribution is generated through an iteration of the * *

u-channel crossed diagram. In keeping with the simplifying i gy

assumptions made here, we have omitted intermediate scat- +_0—+4(f)—+{_[i|_;‘—

tering processes likeeN— A, wA— wA, etc., and dress-

ings by other mesons. However, there should be no problem g\ 3. various equivalent representations of the fully dressed

in writing down the corresponding contributions following electromagnetic current for the nucleda) Eq. (31); (b)—(d) cor-

the procedure outlined here. respond to the last three equalities of E8p). Open circles depict
The driving termU of the nonpolar amplitudX is seen  pare and solid ones fully dressed quantities. See also Figs. 4 and

here to depend not just on the matrix of the respective 6(a).

other channel, the way it was written in EJ1), but also on

the complete solution of its own channel; i.e., genericallywhere{---}* is the gauge derivative defined in the Appen-

one can write Eq(22) as dix, andk=p’ —p is the momentum of the incoming photon.

Using the rules of the Appendix, we then figomitting all
X=U[X]+U[X]GoX. (29  momentum dependence for notational clarity

Without going into any details here, we would like to submit JH={S, 1= (F|Go|T)}#

that this nonlinear structure is of immediate practical conse-

quence in that some of the resonances usually considered as =QnZy*+(F#[Go|T') +(F|Gog“Go|T')

being independent actually originate from dressed pole con- u

tributions of the intermediate . and/orT, amplitudes. (FIGolT), (31)

where F#=—{F}*, Gyg*Gg=—{Gg}*, and I'*=—{I"}#
ll. PION PHOTOPRODUCTION AMPLITUDE result from attaching a photon to the bare vertex, the two

In this section, we will introduce a current for the dressedCOnStItuentS of therN pair propagator, and the dressed ver-

nucleon and the corresponding pion-production current. Ir%ex’ respectively; see the Appendix for the corresponding

doing so, we will define an exchange current, describin definitions and other technical details. Using &26), one

electromagnetic interactions during hadronic exchange prg—'nds’ for the dressed vertex,

cesses. The latter will be contributing to an all-encompassing IT#y=|F*)+ U*G|T) + UGog*Go|T') + UG T#)
interaction current for the photon’s action within the had-
ronic interaction region. =(1+XGo)[|F#) +g#Go|T") + U#Gy|T')]

—gGy|I')

In a simplified picture, ignoring angular momentum ef- =(1+XGp)[b*) —g*GolI)
fects, the primary dynamical change brought about by a pho- =|m*)—g~Go|l), (32
ton entering a hadronic system is that it deposits its four-
momentumk into a charged constituent of the system thuswhere the exchange currebt“=—{U}* arises from the
changing the latter's momentum from—p+Kk. Atits most  photon’s interactions within the driving terid (see Sec.

A. Current of the dressed nucleon

elementary level this is thdynamicalbasis for the usual |l B for details) and

minimal substitution rule which in practical terms is often

paraphrased as “attach a photon to every momentum- [b#)=|F#)+ g Go|T") + U#G,|T), (33
dependent piece of a hadronic graph.” In the Appendix, we

define an operation, called the “gauge derivative,” that is |m#) = (14 XGp)|b*) =|b*) + UGg|m*) (34)

similar in its effect to a functional derivativé/ SA*, which o )
allows one to formalize this procedure in a very simple manWere used as abbreviations. Note that the quamatyap-
ner and derive current operators from hadromigoint ~ P€aring here has the same integral-equation kernel as the

Green's functions. nonpolar hadronic amplitudé of Eq. (22). Its relation to the
According to Eq.(A15) of the Appendix, the current of a full photoproduction amplitudev* [see Eq.(A19) of the
nucleon is given by Appendix and Eq(42) below] will be seen to be on par with

the relation(24) of X to the full T, and it will be referred to
J4p’,p)={S Yp)}*~ (300  as the nonpolar photoproduction amplitude.
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(a)

° .- -\f -L J‘,, - i
= ) _)_ T ) (b)
M FIG. 5. Interaction current*: (a) Definition, Eq.(32), and(b)

relation to full pion-photoproduction amplitudd*, Eq. (43).

357
3&7

W%e-

FIG. 4. (a) Born term of pion-photoproduction amplitude, Eq. _ _ _
(33). (b) Auxiliary nonpolar amplitude, E¢(34). UL =(TH(SXS)eA|T)+(T'|(SXSA|T*)+(T'|(SFSXS

We can write now several alternative expressions for the  °A[T) +(T'[(SXS)°(AJZA)[T) +(T'[(SX“S)°A[T')

dressed curren31): +(F|(§(S_J“S)0A|F> (39
J4=j§+(FH Go|I") +(F|(Go+ GoXGp)|b*) N
_ from the second; the overbar again signifies exchanged had-
=i+ (F¥|Go|I")+(T'|Go|b*) rons.X* is given by
—ik
J§+(F#|GolI") +(F|Golm) Xt= —{X}#= (14 XGg) UH(GoX + 1) + X Gog#GoX,
=j5+(FHIGol 1) +(I'|Go| F#) + (| Gog*Go|T') 40

+(T'|GuUAGy|T), (35  as can be found from the gauge derivative of &9). [The
same result was obtained in E.8) of [8].] These equa-
with j4=QnZy* being the bare currefitA structurally  tions are summarized graphically in Fig. 6. In general, every
similar result can be obtained from the work of van Antwer-vertex, every internal propagator, and every transition ampli-
pen and Afnan8] upon combining their equation®.11)  tude generates a separate contribution to the exchange cur-

and(5.15 (see also discussion in Sec.)Vl rent. Therefore, there are three contributiongJtp and six
Figure 3 summarizes the various mechanisms of B3.  for U%. As we shall discuss below in the context of gauge
and(35); Fig. 4 shows Eq(34) and its driving term Eq(33),  jnvariance, when making approximations mandated by prac-

and Fig. 5 depicts the interaction currdnt of the dressed tjcal considerations, one may omit entire pieces from the
vertex, Eq(32). As can be read off these graphs, the descripgxchange currerit* without violating gauge invariance, as
tion of the dressed nucleon current given here is nonlmeat]Ong as one keeps together all pieces originating from the
similar to what was found already for the hadronic sector inggme hadron graph. For example, omittis§ in its entirety

Sec. II. would not violate gauge invariance, but neglecting just one
or two pieces in general would.
B. Exchange currentU"
In order to exhibit the structure of the exchange current, C. Pion production current

for simplicity we concentrate only on the first two terms of

Egs.(27) and (28) for the nucleon, The currentM#(k;p’,p) for a photon of momentunk

o L hitting a nucleon of initial momenturp to produce a pion
Uk=—{Un}*= _{<FN|S|FN>+<FN|(SXS)°A|FN>+"'(}M')
36

In the following we suppress the indék We find ﬁ 4’-}‘-.: ---- j-/-t
Ut=UF+UF+--- (37 /®\

.
~
.

with
Uk=(I#|ST)+(I|SFSI)+(I[ST*)  (39)

originating from the first graph in Fig. 2 and -

e - .i. S
47 appears here because we choose to work with properly normal- + *
ized verticedcf. remarks after Eq(26)]. Z could be absorbed into
the vertices at the expense of having to multiply the final result by
JZ for every external nucleon leg. For vanishing interactidror FIG. 6. (a) Exchange current#, Eq. (36), and(b) currentX*,
for vanishing photon momentumJ* just becomesQuy*, of Eq. (40), associated with the photon attaching itself inside the had-
course. ronic interaction region described by the nonpolar amplit§de
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As an addendum to the last remark, we mention that the

-~ - --C E -= - “é fully dressed pole termil’)SJ* may be viewed as coming
® * * about through the final-state interaction mediated by the full
T, of Eq. (20), rather than by the nonpolat, as in Eq.(34).
. . e @ To this end, we mention without derivation that, instead of
ﬁ— = B— + ° (8) via m#, as in Eq.(42), M* can be obtained directly as

b e [M#)=[B#)+ TGolBH), (44)
= + (b)

where the modified Born terB* is now

FIG. 7. (a) Alternative Born termB*, Eq. (45), for the full _ “ .
pion-photoproduction amplitud®!# if the wl\cll final-state interac- |B#>_|F>SOJ0+|F>SO<F#|GO|F>+|b#>’ (45)
tion is described by the full instead of by the nonpolaX; (b)  in other words, as compared b of Eqg. (33), it contains
shows the resulting two, completely equivalent describtion®!6f  explicit bare hadronic vertices and propagators. It is the
Egs.(44) and (42) [see also Fig. ®)]. final-state interaction i which produces the direct dressed
pole term|T')SJ* and reduces the remaining final-state in-
with momentumg=p+k—p’, leaving behind the nucleon teraction to one viaX. These relations are also depicted in
with momentump’, according to Eq(A19) of the Appen-  Fig. 7.
dix, is given by
IV. GAUGE INVARIANCE

Ml n' —_c 1y -1/~ "+ k A !
M#(kip".p) S (pHA PP HS(PHA(P=P") The gauge invariance of the electromagnetic interaction

XT(p’,p)S(P)}*S (p) requires[15] that the divergencies of all physical currents
, p— vanish if all external hadrons are on their respective mass
=—T(p".p+k){S(p)}*S"*(p) shells. In technical terms, this applies to all currents that are
“A Y p—p’ +KIA(p—p )T (p’, based on the reduction of anpoint Green’s functior(see
(p=p HA(P=PT(p"p) Appendiy), i.e., to the pion curreni”, the nucleon current
—S H(p"){S(p' = k)}*T'(p’—k,p) J* and the production currem #:
—{T'(p’ K, 41
{T'(p".p)} (41) k,J%(q+k,q)=0, (463
In a more concise notation which suppresses the momenta,
the preceding equation can be written as k,J*(p+k,p)=0, (46b)
M~y = —Gal{G0|F>S}”“S_1 k,M#*(k;p’,p)=0. (460
_ It does not apply, for example, to the exchange curtétt
=M "
g“Gol 1) +[I")+[I)S ¥ and the interaction currefi* since they do not involve elec-
=|T)SF+(1+XGp)|b*) tromagnetic interactions with external legs and therefore are
not directly observable. For these currents different gauge
=|[)SF+|m), (42 conditions apply, as discussed below.

o The key here are the Ward-Takahashi identitigdsor the
where use was made of Eq82)—(34) to simplify the result.  ff.shell propagators,

The only difference, therefore, of the full currévit* and the
nonpolar currentm* of Eq. (34) is the pole termT")SJ, “m? oy A =L _ -1 47
where the reaction proceeds through an intermediary nucleon Kuwda(@, ) =40 Q- QA (a), 473
propagator(see Fig. 7. , L B

The vertex current proper, i.e., that piece of the produc- k,J*(p’,p)=S""p )Qn—QnS7'(p),  (47bH
tion amplitude where the photon attaches itself within thevvhere
hadronic interaction region, and not to any one of the three
legs of thewNN vertex, which is described bl/* of Eq.

(32), is then given by Qnij=iesigj, (48)

T4 =IM#) - g#GID) - [1)SF. (43) Qu=3 (14 7) 49

This well-known resulf2,6,8 is sometimes referred to as a are the respective charge operators. Note that the placement
“contact term.” In view of its rich internal dynamical struc- of the charge operators in Ed4.7) is mindful of the fact that

ture exhibited in Fig. 5, we prefer to call it an interaction for dressed particles, the self-energies within the propagators
current. Indeed, at the level of fully dressed, physical parcarry isospin dependence and therefore do not commute
ticles, it is the only term that contains any final-state interacpriori with the charge operators. One may argue, of course,
tion between pions and nucleons. that this subtlety is largely academic since the Ward-
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Takahashi identity is a statement about charge conservatidions, we will strictly apply the Ward-Takahashi identities in
and therefore immediately impligs.,Q]=0. Nevertheless, the form given here.

since in the present formulation the placements of the charge Taking the divergence of the production curréht given
operators will carry the additional information where, and toby Eq.(42) and assuming the validity of the Ward-Takahashi
which particle, the photon momentum is fed into the equaidentities readily give$2,8]

kUMb o) =A"Hp=p’ +K)QA(p—p")|Tp7) + S )QuS(P' —K)[Tp7) = [T 1) S(p+K)QuS™4(p)
+ k,u|rg+k,p7'>+ |Fp+kT>6N_ Qw|FpT>_éN|FpT>! (50

where the momentum indices exhibit the total availdidd-  measures the sum of all changes in the internal reaction dy-
ronic momentum andp’ is the momentum of the final namics brought about when a photon momentum trans-
nucleon. Entities carrying a photon indgxhave two indices mitted through the hadronic system from an incoming
since the hadron momentum available after the electromagsharged particle to an outgoing charged particle; of course,
netic interaction is increased by the photon’s momenkum within the interaction regiotk can be shared with any par-
We have also now explicitly included the symboln the ticle, charged or uncharged. This quantity is illustrated in
kets as a mnemonic that there is an isospin index associatédg. 8 for a somewhat more general case. For brevity, we
with each vertex and to remind us that one cannot simplywill refer to A Ry as the(purely hadronig photonic reaction
commute charge operators with vertices. From the context ithange or simply reaction change. As will be shown pres-
will be clear how to choose this index. ently, continuity equations similar to E¢52), with A\R’s

In the notation adopted in Ed50) the meaning of the exactly analogous to Ed53), govern all aspects of the in-
charge operato®, of particlex has now been expanded: In teraction of photons with hadrons.
addition to performing the usual charge operat@p, Q, In the following, we will prove gauge invariance of the
adds a photon momentut to the charged particle x at ~ formalism developed here by showing that the Ward-
the corresponding place in the equations: e.g.Takahashi identity(47b and the continuity equatio51)
Q.A(p—p")|T',7) means that for all subsequent interac- hold true. In view of the nonlinearities of the present equa-
tions the pion coming out of the vertex with momentumtions, & direct proof does not seem possible and the proof
p—p’ will have momentump—p’+k. With all external Wil be one of self-consistency. In other words, we first show
momenta fixed, the placement and particle indexQgfal- that assuming thg V§|Idlty of Fhe Ward-Tgkahashl identities
lows one to unambiguously determine all internal momentdéads to the continuity equation for the interaction current

(except for loop integrations, of coujsat every stage of the and then, second, proceed that we can verify the self-
reaction. For example, ifil,,7)Qy. we could drop the consistency of the assumption by deriving E47b) using

) -
total-momentum indexp+k since the rule tells us th&@y the details ol* given by Eq.(31).

will add a photon momenturk to the incoming momentum no charge

p to provide an initial nucleon momentupit k for the ver- — __________ \ __________

tex |[I'7). This shorthand notation will turn out to be ex- L g g | s g )

tremely useful in keeping the following expressions as con- ¢ E ' CFD L L sharee i <R> L

cise as possible without becoming sketchy. ek kY Pk 31 I
Since the first three terms on the right-hand side of Eq Lo Ik il !

(50) vanish on shell, the current conservation is tantamoun 0~ AT
to the well-known[2,8] condition
RQ. - QfR

Kl T4, 1 7+ [T k) QN QT o) — QuITp7) =0
i P TP P 51) FIG. 8. Generic representation of the photonic reaction change

[cf. Eq.(97)]. R is an arbitrary hadronic reaction mechanism where
for the interaction currenf'#. Note that the form of this @l incoming and outgoingnchargedparticles have been subsumed

condition is similar to a continuity equation with a surface in the upper lines and all incoming and outgoictiargedparticles
in the lower, thicker lines. The first graph on the left sums up all

term, contributions where the photon is attached to an incoming particle
whereas the one on the right depicts the sum of all contributions
K, I'“+ARr=0, (52 from the photon being attached to an outgoing particle. The photo-
nic reaction change is the difference between the purely hadronic
where the “surface term” contributions enclosed in the dashed boxes; it measures the change

brought about in the hadronic reaction when a photon momentum is
R R R transmitted through the hadronic interaction region entering and
ARpr=ITp (7)Qn— QT 7) — Q[T 7) (53)  leaving via charged particles.
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A. Gauge condition for the interaction current ARy=U QU Qu— Q.U — QuU, (57)
With Eq. (32) the divergence of the interaction currdiit
is written as being the corresponding photonic reaction change. We con-

jecture, therefore, that E@56) is indeed a continuity equa-
KuT#) =K, (|[F#)+U*Go|T) +XGolb*)). (549 tion and that

In a more detailed notation, where isospin and the depen- ~
dence on the corresponding total hadron momenta are u=0, (58
shown, we have

hence,
kM|Fg+k,pT>:ky,(|FlpL+k,pT>+Ug+k,pG0,p|Fp7'>
u =
+Xp+1Gop+ K D24 pT)). (55) KuUpicpT ARy =0. (59)
Now, as a first step, let us define In Sec. IV B, we will show that this conjecture is indeed
~ - - - “ valid.
U:kyug+k,p+up+ka+Up+kQN_QwUp_QNUp- Using
(56)
The right-hand side here is seen to be constructed in exact QUG ') =Qy|T' 1)~ Q\|F 7), (60)
analogy to the left-hand side of the continuity equatibh)
with we then have, for Eq55),

ku|rg+k,p7'> = k/L| Fg+k,p7> - Qﬂ'l FpT> - QN| Fp7'>+ Qw|FpT> + QN|FpT> - (Up+kQ1-r+ Up+kQN)G0,p|FpT>
+ Xp+kGop+ kKl DS sk p7)- (61)

To simplify this further, let us look &k, b*, using Eqs(33) and (59) and the Ward-Takahashi identitiés7),
Kulbt ko™ =Kl Fis i o) = Qul Fp7) = QuIFp7) + QT p7) + QuIT 7y +[A X (p—p’ +K)Q,— Q,A " *(p—p)]
X A(p—p)|Tpm)+[S7HP’ +K)Qu—QnS™H(p")I1S(P")IT p7) = (UpskQt U pkQn) Gopl Tp7)
=Ku|FEy o)~ QulFpm) = QulFpm) + A1 (p—p’ +K)Q,A(p—p")|Tp7) + S 1(p’ +K)QuS(p')|Tp7)
~(UpkQa+ Up4kQu)GoplTp7), (62

wherep’ is the momentum of the outgoing nucleon.
Introducing now a continuity-equation term in analogy to Exf),

[F) =Kyl Pk pm) + Fp i) Q= QulFp7) = QulFp7), (63
and collecting all partial results, E¢1) becomes
kM|F’5+k,pT>:|E>+Xp+kGo,p+k|E>+Qw|rp7'>+éN|FpT>_|Fp+kT>QN_Xp+kGo,p+k|Fp+k7'>éN
—(Up+kéw+Up+kQN)Go,p|FpT>+(Xp+kéw+ xp+kQN)GO,p|FpT>_(Xp+kGO,p+kUp+kéTr
+Xp41G0p+1Up+ Q) GoplTp7), (64)

where the last three terms cancel, and one finally obtains At this stage, in view of its ambiguity in an effective field
theory based on hadronic degrees of freedom only, i.e., with-
- - - out any reaction-dynamical basis for discerning mechanisms
Kul Tk p™) 1T ok Qn— Q4T p7) — QI T p7) that contribute to the bare contact curréft we may simple
~ demand thaE* be such that
= (1+Xp1Gop+)|F). (65

IF)=0. (66)

We thus find that a sufficient condition for the validity of the |t then follows that the interaction current satisfies the con-

continuity equation{51) is thatF =0, in other words, that Eqg. tinuity equation(51) and hence the divergence of the produc-
(63) become a proper continuity equation itself. tion current,
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KuME, o =A"Y(p—p'+K)Q,A(p—p)|T,7) k,AJA=Q,A-AQ,, (680)
+S7H(p")QnS(p’ —K)|T'p7) without any need for momentum arguments. Similarly, we
S e have for the continuity equatiofbl),
0D S(p+QS Hp),  (67) Y equatiofsl)
vanishes on shell, thus making* gauge invariant. K[ T#7)=(Qq+Qn)IT'7) =T 7)Qu,, (69)
In Sec. V, a physical justification for the requiremésib)
will be given. where the indices and f refer to initial and final, respec-
tively. With external momenta fixed, these shorthand ver-
B. Gauge condition for the exchange current sions allow one to determine every momentum unambigu-

ously. With this notation, what needs to be proved now is

We need to verify now that the gauge conditi(g8) is [cf. Eq. (59)]

indeed satisfied folJ*. In order to do so, we will make
liberal use of the facility offered by th®, notation to keep

I ~ ~ — ~ ~ =
track of where a photon momentum needs to be injected into ku U+ U(Qn+ Qr) = (Qu, + Q7 )U=0. (70
the equation. Note that the Ward-Takahashi identit&a
can be written as simple commutators, To this end, we first consider the three termsUgf of Eq.
R R (38), making use of the commutator notation just presented
K, SFS=QnS—SQ, (688  and consulting Fig. &:

kU8 =k, ((T#{SIT) +(T[SFSIT) +(T|S[T#))
=[Qn L= (T [(Qn+ Q) 1SIT) +(I'|(QuS—SQu)II) +(I'[S[(Qn+ Q) IT) = T)Qy ]
= Qu(T[SIT)—(I|QuSIT) = (T|Q, SIT) = (T[SQu|T) +(I'|QuSI Iy +(T'[SQuIT) +(I'|SQ, [Ty (' [S|T)Qy,
= (Qu,+Qu (I[SIT)~(T[SIT)(Qu,+ Q)
= (Qn,+ Qs )Uo—Uo(Qu,+Q.), (7D)

which is the desired resuﬂéN here is the charge operator of the exchanged nutlégnby itself, therefore, satisfies already
the continuity equation.

The key for calculating the divergence 0f' is the divergence ok of Eq. (40) since this is the only new piedeee also
Fig. 6(b)] required in the calculation d{,U%". One has

K, X*=k,(1+XGo)UH(XGy+ 1) +k,XGog GoX
=(1+XGo)[(Qly, + Q\r )U—U(Q} + Q) I(XGo+ 1)+ X[(Q}, + Q' )Go— Gol(Qly, + QL )1X
= (1+XGo)(Qiy, + Q)X = X(Ql + Q} /(X Gyt 1) = X Gol Qi + Q' )X+ X(Qfy, +Qlr, ) GoX

= (Q, + Q) X—X(Q}+Qh), (72)

where the superscriptstands for “intermediary.” The result &,G,g“G, was obtained from EqA22) of the Appendix. In

the first term, we have assumed here that what we want to prove holds true, and so again we only show self-consistency. Note
that the structure of this result is exactly the same agHy); i.e., X* also satisfies a continuity equation of the desired form.

The final steps of the calculation &f,U7" proceed now exactly analogous to E@l) and we do not present the details here.

The result is indeed

k,U%=(Qn,+Qn)U1~Uy(Qy+Q,), (73

as stipulated.

We refrain from continuing this any further and simply mention that any individual term of the nonpolar driving/tefm
Eq. (28) will give rise to a current contribution satisfying a continuity equation of the required structure. We conclude,
therefore, that Eq(70) is true—i.e., is self-consistent with the general formalism developed here—and that the conjecture of
the preceding subsection was justified.
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C. Self-consistency of the Ward-Takahashi identities

The final step to come full circle now in our presentation is to show that the divergence of the dressed nucleod“current
of Eq. (31) will give us back the Ward-Takahashi identi#7b). Using the same commutator notation as in the previous step,
we find, for Eq.(31),

k,J# =S5 "Qn— QnSy '+ (Qu(F| —(FIQ") Gl ) +(I'|Go(Q'|F) — [F)Qu) +(T[(Q'Go— GoQ')[T')
+(T|Go(QU-UQ)Gq|T)
= (S " (TG0l F))Qu—Qn(Sp '~ (FIGo|T)) — (F|GoQ'| ) +(I'|GoQ'(|F) + UG(|T))
+(I'|Q'Gy|F)— ({T|GoU +(F|)Q'G,|T')

=S'Qn—QnS ™ (74
|
which is exactly Eq(68a. The charge operat®' within the F=F[q,,ps,pil, (79
loop is the sum of the corresponding pion and nucleon
charge operators. with p;, ps, andq, the initial and final nucleon and pion
We thus have completed the proof of self-consistency ofnomenta, respectively, at the vert@hich arenot necessar-
the present formalism. ily the corresponding momenta of the reacjiohlowever,
the choice of brackets--] rather than parenthesés-) sig-
V. CONTINUITY EQUATIONS FOR THE CONTACT nifies that only the two independent momenta are active. The
TERM third is silent in the sense that the physically relevant vertex

. _ _ . is given by a ray on which the dependent momentum can
Within the purely hadronic approach, i.e., without a de-take any value. For example, if we choose—as we have done

tailed picture of the underlying QCD reactions, all currentthroughout this paper—the nucleon momenta as independent
mechanisms contributing #* must come from interactions variables, then

related to the three legs of the vertex since there is no “in-
side” for a bare vertex. If this intuitive picture is to be cor- F onysica= F (Pt .Pi) =F[d..ps.pi1=F[d..ps.pil,
rect, one should be able to read this off the expressions for (79
the current=#. To this end let us write Eq66) as
irrespective of the value af,. specified inF[q,,ps,p;]; the

|E>:|FpT>QN_QN|FpT>_QW|FpT> physically relevant pion momentum for the vertex is
g=p;— Ps - In other words, in writing down Eq$77), we do
=(TQn—QnT— QR 7)[Fp), (79 not want to imply thatF[q,p’,p] is an unphysical vertex

_ . . here, which would violate momentum conservation,
which indeed is zero because of charge conservation at the

bare vertexthe Q’s here have no halksi.e., p+k=p’+q, (80)

e

(7Qn—Qn7—Q.7)i= 7= (1+ 75) E(1+73)Ti_ei8i3j 7 in the pion production reactichWe merely want to leave
i 2 2

the choice of independent variables open. As a consequence,
of course, once a choice has been made, one of the reaction
changeq77) becomes identically zero. For example, if the
nucleon momenta are independent, then

=0, (76)

in other words, we relate the validity of E(G6) to the most
basic conservation law available within the present context. Fla.p’.p]-F[q—k,p’,p]=F(p’.p)—F(p’,p)=0

Subtracting then Eq75) from both sides of Eq63), we are (81)
led to define reaction changes for each leg of the bare vertex
by and hence

ARy, = (|F[a,p’,p+k])—|F[a,p",p])) 7Qn, (778 AR, =0. (82

ARy =(|F[q,p".p])—|F[a,p’ —k,p]))Qn7, (77D However, as we shall see, the contributions from hadron legs
! for which A \R=0 will enter through another mechanism as

AR, =(IF[a.p".p —IF[q—k,p’.p)Q,7, (770 a matter of course.

where the indicedN; and N; denote the initial and final
nucleons, respectively, and the (final) pion. The notation  SThis is rather different from the treatment of Otf, who re-

chosen here for the vertex functions exhibits all hadroniqquires unphysical values for vertex functions to assure gauge invari-
momenta, i.e., ance.
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With these preliminaries and without loss of generality,the vertex. At this stageany choice of current§# which
we can now write the contact term as a sum of three currentsatisfy these continuity equations will lead to a gauge-

one for each leg of the vertex, i.e., invariant pion-photoproduction amplitude.
u e To see how this might work out in practice for pseudo-
IFh+p =F*(kia,p",p) scalar and pseudovector couplings, let us consider the vertex

of Eq. (14) described in terms of nucleonic momemtand

=M & "p'— j~ -
J°~Ni(p+k’p)+JC~Nf(p Pkt R(a,9-k), p’. Writing the coupling operator as

(83
with each current satisfying a continuity equation, q
ming e 00Gs=Gspst Gspror @5
kuj{:"Ni+AkRNi=O, (849
Kb +AkRNf:O, (84h  whereq is the appropriate pion momentum, we can treat
! both pseudoscaldGs,s=go s, Gspy="0) and pseudovector
K,j* +AR,=0. (849  (Gsp=007s, Gsps=0) couplings at the same time. In view

of our choice of independent momenta, the pion contact cur-
In other words, the validity of Eq(66) is being assured in rent and its photonic reaction change vanish identically, i.e.,
terms of separate continuity equations for the three legs of; ,=0 andA,R,=0. For the initial nucleon we have

|
ARy =[F(p",p+K)—F(p",p)]Qn
p+k—p’

2m

)f(p’,p+ k)—(GspdGsw%)f(p’,p)

QN

= [ ( GSps+ G5pv

QN

- K
=(G5[f(p’,p+ k)—f(p’,p)]+65pvﬁf(p’,p+ k)

— n# yM
=Ku| Gs - [F(P",p+K) = F(p',p) 1+ G~ F(P.p+K) | 7Qu, (86)
|

where

~ p—p'
GSZG5ps+ G5pv om ' (87)
and, in the last step, we have introduced an arbitrary four-ve¢tan order to be able to pull out an overall factorkgf. This
procedure is well defined sindép’,p+k)—f(p’,p) compensates the singularity which would otherwise occur for vanishing

photon momentum. The most straightforward choicerforis
n“=(2p+k)*, (88)

sincep andk are the only available four-vectors amd it is the well-known current operator of a scalar particle with
momentump. The appropriateness of this choice is reinforced by noting that

nft 1 o0t K 1 Y .
mk~ 2p k2 PR = gz 2 (2P TR (89)

which is the dynamical picture of a scalar-particle electromagnetic vertex and a subsequent scalar propagation with momentum
p+k and dynamical “squared masg¥” that indeed becomes? when the external nucleon is on shell.
The minimal choice forj{f’Ni suggested by these considerations, therefore, is simply

. ~ nf v
lé‘,Ni(p+k,p)=—(Gsn_—fk[f(p’,p+k)—f(p’,p)]+65pvﬁf(p’,p+k) 7Qn- (90
[
Similarly, for j’c"Nf one finds
1 ! ! ~ n'# ! ! y’“ !
Jen (PP =k == Gs ey [(p",p) = F(p" —K,P) I~ Cspup (" =K, p) | Qnr, (91)
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with
n{=(2p’—k)* (92

being the appropriate scalar operator.
When adding up the various contributions to obtain the contact current, one has

~ n# yH ~ n¥
FA(kip' ) =| Gop i [F(P".p+K) = F(p".p) 1+ Gopume (P ,P+K) | Q| G LT(R".P) = F(p ~k,p)]
n;-k 2m ns- K
')/M
~Gspuy (P —k,p) | Qn 7 (933
" ~ N -
=~ Gopro [7NF(P" P+ K) = Qu7f(p' —k,p)] =Gl f(p",p+K)nf*—nf(p’ —k,p) — m#f(p’,p)].

(93b

The first part of these expressions fof, Eq.(93a), is actu-  derivation of the bare hadron vertex from QCD, there is ac-
ally to be used in practical calculations—since it is explicitly tually no dynamical basis for going beyond the form pro-
free of any singularities d=0. The second part, E¢Q3b), posed here.

was written merely to exhibit the general structure of the The present expressions are reminiscent of OHt&'se-
result. It shows that, apart from the spin-142 nucleon sults for extended nucleons obtained by minimal substitution
pieces arising only in the pseudovector case, one has thread analytic continuatiofisee alsd9]). They are different,
scalar contributions—one for each leg, where the correhowever, in two important aspects. Since we formulate a
sponding bare cutoff functiofi is multiplied by one of the vertex with arbitrary momenta not constrained by momen-

following operators: tum conservation in terms of rays rather than analytic con-
tinuation, we do not require the cutoff function at unphysical

A n# Qn values in the expressions for the current, which considerably
n{‘=ni_kTQN=(p+k)2_p2(2p+ k)*, (948  simplifies practical applications. Furthermore, with our

choice of independent momenta, an explicit pion term is ab-
sent; rather, the pion’s isospin is described entirely in terms

N ng , QnT of nucleonic degrees of freedom. Overall, as shown by the
ng-ﬂQNT_(Zp —k* (p'—k)Z—p'% (94b) form (93b) of the contact current, with the operators defined
as in Eq.(94), this has the advantage that one has a rather
X n# e _clear interpretation of the underlying dynamical picture, yvith
P=——7Qy— ——QuT. (949 just one form factor per leg, with the appropriate
n;-k ne-k momentum-conserving variable dependence.

Whereas the isospin description of the nucleons is static
here, the last operatotr”, corresponds to a dynamic treat- VI. DISCUSSION

ment in the sense that the pi0n7s iSOSpin is obtained directly We have presented here a Comp|ete and consistent de-

only upon taking the divergence, i.e., scription of the interactions of pions, nucleons, and photons.
R It should be pointed out here that the basic structure of the
k,m=1QNn—QnT=Q4T. (95 internal dynamical mechanisms for the pion photoproduction

amplitude obtained in Sec. Ill is the same as the one pre-

The reason for this is our present choice of taking bothsented in the work of van Antwerpen and Afngs] (who
nucleon variables as independent. If we had chosen wased a different method of derivatiprAs far as the final
nucleon and a pion momentum as independent, then the istesults are concerned, the main difference is that these au-
spin descriptions of the pion would be analogous to theghors employ an expansion in terms of the irreducibility of
nucleons’ now and the isospin of the corresponding othethe contributing mechanisms which seeks to avoid nonlin-
nucleon would change in analogy to E§4¢). earities in the final equatiorjsee remarks before E(3.30

The result we have obtained here for the bare contacdf [8]], whereas we consider these nonlinearities an essential
currentF# certainly is not the most general form one canand unavoidable consequence of the nature ofrtheand
write down. One can add arbitrary transverse pieces to thgwN systems. At the same time, however, the high degree of
current (93) without affecting any of the gauge-invariance nonlinearity of our equations presents the greatest practical
results. However, we would like to submit that it is the sim- obstacle to a numerical solution. The nonlinearities occur at
plest, nontrivial form that satisfies the requirement of conti-two stages. First, at the purely hadronic level, in the way the
nuity equations that seems to govern every aspecgefl  full solution X couples back into the driving termd, as
physics. Moreover, since there does not yet exist a detailedescribed in Sec. Il. Given the degree of sophistication one
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wishes to achieve, there exist a number of obvious and

straightforward ways to approximate the hadronic driving

k,R“+(RQ—RpQ))+(QiRp—Q;R)=0. (101

term U to render the equations manageable from a practicator the purpose of gauge invariance, it suffices now to ap-
point of view. Since this is not our main concern, we will not proximate the full currenR* by

enter a discussion here how this can be done in detail. The
second stage at which nonlinearities come to bear is at the

level of the electromagnetic interaction where the various
pieces of the current exhibit a high degree of nonlinear in-

R¥— Rgpprox: XE J'f:‘,xf + ; ié‘,xi ) (102
f i

terdependence, as described in Sec. lll. Again, in practicabvhere each “surface” currenf?, satisfies an individual
calculations, one presumably needs to resort to some agontinuity equation,

proximations which—at least partially—linearize the prob-
lem. The guiding principle for such approximations must be

gauge invariance. In other words, acceptable approximations
of the currents should at the very least maintain gauge in-

variance.

Kj%y, +QxRp— Q) R=0, (1033

k,uj Icl,xi+ Réxi_ RPQxiZO, (103b

which pertains only to a single charged leg of the reaction.

A. Approximating currents

Let us illustrate this procedure for the exchange current

The considerations of the preceding two sections, Sec$)* of Sec. IV B. One readily finds that the continuity equa-
IV and V, show that the gauge invariance of all physicaltions for the individual currentgf for each of the four legs
currents hinges on only one aspect of the formalism. Allof the driving termU for #N— 7N are given by

current contributions resulting from the photon entering the
interior of the hadronic interaction region—be it propagators,

vertices, or other transition elements—must satisfy continu-

ity equations analogous to those for the vertex curiéht
the exchange currett#, or the bare currerft#. In general,

for every hadronic reaction mechanism described by an op-

eratorR, with an associated interaction current
R#=—{R}*, (96)

the quantity

Kuien,+Qn[Up(P",P)~Up(p'~k,p)]=0,
(1043

kﬂjéwf—’_wa[UP(p,!p)_UP(pl!p)]zoa (1040

Kujen, tIUp+k(p',p+k)—Up(p’,p) QN =0,
(1049

Kt x t[Up+k(P',p) = Up(p",p)]1Q, =0. (104d

R=k,R*+RQ—Q;R=0 (97)

The independent momentum variables appearing here as ar-

guments ofU are those of the nucleons and the subsdpipt
or P+k, denotes the total momentum available for the had-
ronic transitionU; one has

must vanish(cf. Fig. 8. Here,

Q=2 Qs (98)
X P+k=p+q,+tk=p +0,, (105
and
. . where theq,,’'s are the(suppresseddependent pion momenta
Qi= 2 Q, (99 of the exchange curretdy,  o(k;p’,p). Again, as with the

%i bare current in Sec. V, we find that choosing the nucleon

are the respective total charge operators for the final angllot:]n:mignef?: tzﬁriztﬂsn:/gmgﬂtunrg::zl'ndéggzgeggm%:’(_es one
initial channels of the reaction, obtained by summing over. P 9 ' Y, '
o 4 . . ~ing the exact same procedure of Sec. V, we can therefore
the individual charge operators of all outgoing or incoming :
- approximateJ* by the sum of four contact currents, one for
legs. We recall that the operat@, adds a photon momen-

. . . each incoming and outgoing leg,
tum k to particle x; with all external momenta given, all ¢ going ‘eg

momentum variables dR are therefore unambiguously de- Uk Ul Jn, T il N T (106)
fined in Eq.(97). Note that Eq(97) subsumes all continuity : :
equations considered so far, including the Ward-Takahashy;:,

identities[cf. Eq. (47)]. )

Following the procedure of the last section, Sec. V, con- .=~ (2p"—K)“Qn, , 'k
cerning the bare current, we may cast the condition Biat 1N~ (2p'—K)-k [Ue(p",p)=Ue(p'—kp)],
vanish in the form (1079

R=RpQ;—QtRp=0, (100 it =0, (107h
which is simply charge conservation. Note that @s here On (2p+K)*
have no caret, ang is the total momentum available for this ., _ [Upai(p'p+K)—Up(p'.p)] N (2P
reaction mechanism. Without loss of generality, therefore, Jen, P+k(PP p(PP 2p+k)-k ’
we may rewrite Eq(97) as (1070



56 GAUGE-INVARIANT THEORY OF PION . .. 2055

Q, (2P—2p+k)* mechanisms but at the same time suggests a consistent ap-
j“ =—[Upsi(p',p)—Up(p".p)] —5 _ proximation scheme that allows one to ensure the gauge in-
o (2P—2p+k)-k variance of the final result. At whatever level of the reaction

(1079 dynamics one chooses to employ this scheme, the required

pieces involve only purely hadronic contributions, with the

This result assumes a pseudoscalaN coupling; for , . . .
pseudovector coupling, one might have additional terms inphoton s effect on the system being described simply by the

; . g change brought about in the hadronic reaction by feeding an
y7a
?’nomggsgrﬁ(igg)"a\:vteoggﬁ frlggrlrne?ns gf tﬁzct-e\r/rﬁls\lztjcﬁlik?;th?r:eema photon momentum through the interaction region but
S I~ g, . .~ otherwise leaving the hadronic mechanisms undisturbed.
three contributions containing(p’,p) provide a dynamic

o . . ; . This provides an intuitively appealing and practically easily
descnp_tlon of the isospin C_)f the final pion whose S_urfacemanageable way of maintaining gauge invariance for all in-
current]gﬂf, Eqg.(107b, vanishes here due to our choice of

. _ . . teractions of photons with hadrons.
independent variables. The considerations for the bare cur-

rent of the preceding section, Sec. V, regarding a dynamic ACKNOWLEDGMENTS
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and thus allow one to preserve gauge invariance without hav- APPENDIX: GAUGE DERIVATIVE

ing to take into accounany of the complex mechanisms AND CURRENTS DEFINED

contributing toU#. One could, of course, go to a more so-

phisticated(and more complicatedevel of approximation The connected part of the-point Green’s function of a
if, instead of forU# directly, one employed similar surface hadronic transition described by an amplitufig, with m
current approximations for the current ingredients that conincoming andh—m outgoing hadrons is given schematically
tribute toU* [cf. Eqs.(38)—(40)]. In other words, depending as
on the hierarchical level of the reaction mechanism at which
one employs the approximation scheme presented here, one

has complete. (_:o_ntrol over j[he d'egree of sophistication W'th\'/vhere[ti t -t Jp and[t; t---t; ] are the products
out ever sacrificing gauge invariance. vl Mim 1fa n-m

of propagators of all initial and final hadron legs, respec-
tively, of the process; the indeR signifies the total momen-
tum. Gauging the momenta appearingdn according to the
Despite the fact that the nonlinear formalism presentedninimal-substitution rule,
here is extremely complex in its full implementation, it is
. . . . M M M
quite simple as far as its general structure is concerned. As pr—p" = QA% (A2)

we hope to have made clear, it lends |t_self |mmed|at_ely tqthe resulting Green’s function, denoted symbolically by
approximations which can be as cursorily or as detailed ags to first order in the electromaanetic field”
desired. Following the general procedure outlined abovebeTé’B’me% 9 '

gauge invariance is never at issue, since the exact gauge

condition can always be turned into a set of Sin9|e'parti0|eGT,A—>GT+[tfltfz"'tfn,m]P+kM¢P+kP[ti1ti2“' ti 1A,

“surface” continuity equations for all charged particles en- ’ (A3)
tering or leaving the interaction region. It is obvious that this

will remain true even if applied to other mechanisms, forwherek is the momentum of the photon, andy the

b . . P+k,P
example, eta photoproduction, since they can be treated igigctromagnetic current associated with the hadronic transi-
complete analogy to the present formalism.

> X tion Tp. This result amounts to defining the current as
Furthermore, it is equally obvious that the present photo-

Gr=[tete, - tr _IpTeltiti, -t lp, (A1)

B. Summary

production formalism also carries over to larger hadronic S

systems since formally every many-bo¢lyr even infinite- M#P+kp=[tfltf2--~ tfnfm];ik KGT'A

body) problem can be turned into an effective scattering ’ ® A,=0

problem similar in structure to Fig(@ with all complicated 1

subsystem reaction mechanisms subsumed into a driving X[ttt Tp (A4)

term not unlike the structure found f&t here(see Fig. 2 i
[18]. The gauge conditions for this larger hadronic system!n other words, currents are described by a Lehmann-
therefore, look similar to what we have found here &, ~ Symanzik-Zimmermann-type reduction proced(it8,19.
and the same type of approximations will allow one to pre-
serve gauge invariance.

In summary, the formalism developed here provides not ®This is merely a sketch of the procedure and of course not to be
only a detailed dynamical picture of all contributing reactiontaken as a rigorous derivation.
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We would like to introduce an operation which achieves {B(p)A(p)}*=B(p+k){A(p)}*+{B(p)}*A(p).
the same result yet is very simple to use. Replacing the func- (A12
tional derivative in Eq(A4) by
The physical background for this rule is that if the photon

S u attaches itself to a process described by two successive had-
SA Gr.a ——{Gt*, (AS) ronic subprocesseA and B depending on the samgon-
. Au=0 served total four-momentunp, one can break up the de-

scription by attaching it first to subprocessand then taB.
In the first case, however, the total four-momentum available

for processB has changed by the momentlkrof the pho-
ton. Note that this is an example where there is an implicit

(A6) delta function relat?ng the momentum argu_mentB@fndA.
Rule 4:If there is a branch in a hadronic reaction where

. . . . . schematically
we introduce an operation which we call a “gauge deriva-

tive,” denoted by the symbo{---}*. It acts on the total- A(p)—B(p')+C(q),

momentum operator of the particular subsystem to which the

photon attaches itself and is defined by the following rules.ith p=p’+q andI'(q,p’,p) describing the transition, this
Rule 0:{---}* is a linear operation, i.e., wit, 8 being  [yle states that

numbers,

ie.,

mlP

XTplti b, ti Tp} [ttt Tp",

M7, o= it tr Jerdlte,te, ty

{B(p")C(a)T(q,p’,p) SoA(p)}*
=64B(p")C(a)I'(q,p’,p)A(p)}*
=6B(p")C(a)T(q,p’,p+K{A(p)}*

{aA+ BB} =a{A}*+ B{B}*, (A7)

and its action on a constant produces a zero,

{cons}#=0 (A8) +8B(p")C(@{I(a,p’,p)}*A(P)
(because such an entity cannot absorb the photon’s momen- +8B(p"){C(q—k)}*T'(q—k,p’,p)A(p)
tum). ,
Rule 1: The action on a momentum componagit pro- +8dB(p' —K)C()T'(q,p" —k,p)A(p),
duces the charge operatQr for the particle or system car- (A13)

rying momentump multiplied by the metric tensor,
wherey,=356(p—p’' —q) and 6,=S(p+k—p’—q) abbrevi-
{p"}*=Qg"". (A9)  ate the delta functions. The branching occurs in the last two
terms where in the first th€-branch is gauged and in the
The origin of this rule is the functional derivative of the second thé&-branch. This rule follows from momentum con-

minimal substitution(A2), i.e., servation at the verteK(q,p’,p) and from the fact that the
5 external momenta are fixed already; it takes care also of loop
na— _ _ % (ov_ AAY — O aiP processe®\—B+C—D. Note thatB(p') andC(q) are in-
{p% oA (P~ QAY)=Qg", (A10) dependent reaction mechanisms after the branching, tied to-

gether only by momentum conservation; in other words, they

which is the reason for calling---}* a gauge derivative. correspond to a convolutioBeC similar to Go=S°A of Eq.
(Note that this is the only place where the particular nature of17).
the electromagnetic field enters the rules. Other types of Having established the rules, the currétitfor a nucleon
gauge fields would produce a different result here. is given via gauging the nucleon propaga®fwhich is the

Rule 2: Any momentum-conserving delta function valid appropriate two-point Green’s function for this caaad am-
for all parts within the gauge-derivative braces-}* must  putating the propagators of external legs according to Eq.
be taken outside the braces and replaced by one where tli&6), i.e.,
total initial momentuny is shifted by the photon momentum
k, ie. J4(p+k,p)==S"Hp+k{S(P)}*S '(p). (Al4)

{8(p"—p)B(p")A(P)}*=8(p"—p—K){B(p")A(p)}*. Because of SS }#={1}#=0 and rule 3, we have
(A11)

IMp+k,p)={S  (p)}* (A15)
In many instances, there will only be an implicit delta func-
tion because all terms are already written taking into accourds the general definition of the nucleon current operator.
momentum conservation. For such cases, the result must I&milarly for the pion,
taken to have an overall implicit delta function with shifted

momenta(Formally, however, one is on safer grounds if one J4g+k,q)={A"Xq)}~ (A16)
writes out all delta functions explicitly and then removes
them after having taken the gauge derivatiyes. For the example of bare propagators, one then reproduces the

Rule 3: expected results for both the nucleon and the pion, i.e.,
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J4(p+ k,p)z{Sgl(p)}”z{p— my#={p}* This completes the definitions of the gauge derivative and
the currents. Let us add a note of caution here. The gauge
=(p+ Ky +{p "y, = Qnv", derivative is based on the assumption that the quantities it

(A17) acts on are physically meaningful in the sense that they can
be broken down into their reaction-dynamical content. Its

and application, therefore, does not seem to be warranted when
this is no longer possible. An example of this is the applica-
Jlgo(qjuk,q):{Aal(q)}u:{qZ_mi}u:{qz}u tion to the bare verte¥ of Eq. (14),
= v Iz v
(a+k{a,}*+{a"*a, Fe(k;p’,p)=—{F(p',p)}*. (A20)
=Q(29+k)*, (A18)

SinceF(p’,p) is an(at this stage largely ambigugysaram-
Qn andQ ., are the respective charge operators. etrization of the unsolved underlying QCD dynamics, it is in
For the pion-production curreritl# for a nucleon with  our opinion not very meaningful to apply the procedure to
momentump going into a nucleon and a pion with total the functional form of=(p’,p). This is quite different from
momentump+k upon absorbing a photon with momentum the corresponding quantity of the dressed veftéxEq. (32)
k, the definition(A6) then yields and Fig. g,

MH“(p+k,p)=—Ggo (p+k){Go(p)T *S (p),

where the quantity in the gauge-derivative braces is the

three-point Green’s function fod— N+ 7, with I being the  which is based on the detailed dynamical picture developed
dressed vertex of Eq26). We have exhibited here only the here.

total momentum of the system; the details are to be found in Finally, since it is required in Secs. Il and IV, let us look
Sec. lIl. at letting{---}* act on thewN propagatoiGy= A°S,

—{Go(p+a)}=—{A(@)}*S(p) —A(q)={S(p)}*
=[A(q+K){ATH(@)}*A(q)]°S(p) +[S(p+K){S™ (p)}*S(p)]°A(q)
=[A(q+k)IZ(a+k,q)A(q)]S(p) +[S(p+k)I*(p+k,p)S(p)]°A(q)
=Go(p+a+k)g#(k;p,d)Go(p+a), (A22)
wherep+q andp+q+k are the total initial and final hadronic four-momen&;g“G, in the last step is only a convenient
shorthand notation defined by the preceding expression. If one removes the left-ha@g $idem Gog“G,, one has
g#(kip,a)Go(p+a)=[I7(a+k,a)A(a) ]Iy +[I*(p+k,p)S(p)]°1,, (A23)

with 1y and 1, denoting momentum conservation for the respective particles, and hence

g“(k;p,0)=J4(q+k,q)°S 1(p) +I(p+k,p)eA~Y(q). (A24)
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