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Gauge-invariant theory of pion photoproduction with dressed hadrons

Helmut Haberzettl
Center for Nuclear Studies, Department of Physics, The George Washington University, Washington, D.C. 20052

and Institut für Kernphysik (Theorie), Forschungszentrum Ju¨lich GmbH, D-52425 Ju¨lich, Germany
~Received 22 April 1997!

Based on an effective field theory of hadrons in which quantum chromodynamics is assumed to provide the
necessary bare cutoff functions, a gauge-invariant theory of pion photoproduction with fully dressed nucleons
is developed. The formalism provides consistent dynamical descriptions ofpN→pN scattering andgN→pN
production mechanisms in terms of nonlinear integral equations for fully dressed hadrons. Defining electro-
magnetic currents via the gauging of hadronicn-point Green’s functions, dynamically detailed currents for
dressed nucleons are introduced. The dressed hadron currents and the pion photoproduction current are explic-
itly shown to satisfy gauge invariance in a self-consistent manner. Approximations are discussed that make the
nonlinear formalism manageable in practice and yet preserve gauge invariance. This is achieved by recasting
the gauge conditions for all contributing interaction currents as continuity equations with ‘‘surface’’ terms for
the individual particle legs coming into or going out of the hadronic interaction region. General procedures are
given that approximate any type of~global! interaction current in a gauge-invariance-preserving manner as a
sum of single-particle ‘‘surface’’ currents. It is argued that these prescriptions carry over to other reactions,
irrespective of the number or type of contributing hadrons or hadronic systems.@S0556-2813~97!01610-5#

PACS number~s!: 25.20.Lj, 24.10.Jv, 13.75.Gx, 24.10.Eq
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I. INTRODUCTION

While it is generally accepted that quantum chromod
namics~QCD! provides a basic framework for all reaction
involving strongly interacting particles, we still seem to
very far away from implementing QCD in practical calcul
tions aimed at describing the findings of experiments fr
low to intermediate energies of up to a few GeV. Inste
effective-field-theoretical descriptions in terms of pure
hadronic degrees of freedom are usually employed, wh
QCD is assumed to provide the justification for the para
eters or cutoff functions assumed in the various approac
Central to our ability to describe experiments in these eff
tive terms—and, most importantly, central to our ability
tell when this effective approach would no longer
applicable—is a detailed understanding of the most ba
hadronic interactions, namely, the reaction dynamics
nucleons, pions, and photons.

It is the purpose of the present paper to provide a co
prehensive theoretical description of the production of pio
due to the interactions of incident photons with nucleo
The history of such descriptions goes back to the 1950s,
indeed many of the~global! basic relations have been we
known for about 40 years~see@1# and, in particular,@2#, and
references therein!. In recent years, the attention has focus
on approaches attempting to take into account the fact
all hadrons involved in the reaction have an internal struct
@3–9#.

The present investigation would like to add to the lat
approaches by providing a detailed theoretical framework
the gauge-invariant interactions of physical—i.e., fu
dressed—hadrons with photons. The description is give
terms of an effective field theory where the~at present, in
detail unknown! quark and gluon degrees of freedom a
560556-2813/97/56~4!/2041~18!/$10.00
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parametrized by the bare quantities of the effective Lagra
ian. Since many of the most basic relations governing
interactions of hadrons and photons relate electromagnet
purely hadronic entities~the most important example bein
the Ward-Takahashi identities@1#!, it seems obvious that a
comprehensive formulation can only be achieved if t
purely hadronic sector of the problem is treated complet
consistently with the subsequent electromagnetic interact
Therefore, in order to be able to develop the present desc
tion from the ground up, we will, in Sec. II, provide a rec
pitulation of the interactions of nucleons and pions that w
form the basis for the ensuing investigations regarding
photoproduction of pions. The formulation given here f
pN→pN is a nonlinear one where the full solution of th
hadronic scattering problem couples back into the driv
term of the reaction. Despite the practical complications
tailed by nonlinearpN scattering equations, we feel ver
strongly that, from both formal and practical points of vie
the nonlinear approach is better suited to exhibit the t
dynamics of the interaction, and as a consequence, if a p
lem needs to be treated as a linear one because of prac
considerations, starting from the full nonlinear set of equ
tions usually will suggest an approximation strategy close
the true underlying physical mechanisms than starting fr
linearized assumptions from the very beginning.

The physical currents for all processes contributing to
pion production amplitude are derived here via their cor
sponding hadronicn-point Green’s functions. However, in
stead of the usual procedure~see, e.g.,@5,8#! of employing
minimal substitution and a subsequent functional derivat
with respect to the electromagnetic fieldAm, we introduce an
equivalent, but practically simpler, mathematical operat
called a ‘‘gauge derivative’’ which allows one to obtain cu
rents directly from the momentum-space versions of the
2041 © 1997 The American Physical Society



e
e

or
re
a
e

y
nd
a
IV
ie

-
-

se
th
m
c
he
r-
u
t,
an
w
n

pr

o
on
n

ab
le
-

f
e

en
an
ni

-

at

.

us
le to
be-
re-
ture
.
of

-
om-
ga-
of

en

tities
and
rely
the

rals
o-

ily

d

me
ion

aga-

a

n
ls
th
s

2042 56HELMUT HABERZETTL
spective Green’s functions.1 The technical details of this ar
explained in the Appendix. Using the hadronic results of S
II as a starting point for the definitions of all relevantn-point
Green’s functions, we arrive in Sec. III at a consistent f
mulation of the pion photoproduction process where all
action mechanisms are given in terms of fully dressed h
ronic propagators and vertex functions. The electromagn
current for the physical~i.e., dressed! nucleon, in particular,
contains all contributions from the nucleon’s self-energ
Again, the results are found to be highly nonlinear a
hence, the proof of gauge invariance of the formalism c
only be one of self-consistency, where we show, in Sec.
that assuming the validity of the Ward-Takahashi identit
@1# will provide a gauge-invariant pion photoproduction am
plitude which in turn will allow us to get back the Ward
Takahashi identities for the dressed hadron currents in a
consistent manner. In performing this proof, we observe
the gauge-invariance conditions for all current mechanis
inside of a hadronic interaction region—as opposed to pie
arising from the photon’s interaction with external legs of t
reaction—take the form of continuity equations with ‘‘su
face’’ terms. Using the example of the electromagnetic c
rent associated with the bare vertex as a starting poin
Sec. V, it is shown in the concluding Sec. VI how one c
turn this into a consistent approximation scheme that allo
one to preserve the gauge invariance of the formalism eve
one chooses to linearize the problem by altering appro
ately the driving terms for the underlyingpN→pN scatter-
ing problem. This approximation scheme is one of the m
important practical results of the present investigati
While, at first glance, some of the resulting expressio
might look similar to Ohta’s@5# way of dealing with ex-
tended nucleons, it will be seen that there are consider
differences in detail, which even leads to a simpler imp
mentation in practice~with, for example, none of the prob
lems pointed out in Ref.@9#!. Moreover, we also argue in
Sec. VI that the approximation scheme suggested here
thepN system can also be used for other reactions irresp
tive of the type or number of contributing hadrons.

II. pN DYNAMICS

As explained in the Introduction, the basis of a consist
treatment of the reaction dynamics of pions, nucleons,
photons is a complete formulation of the purely hadro
sector of the problem, i.e.,pN→pN. To simplify the pre-
sentation, we will in the following only consider pion
nucleon interactions proceeding through theP11 and theP33
channels. Moreover, the only bound or resonance st
taken into account in these channels will be the nucleon,N,
and the delta,D, respectively. Also, we will allow forpp
interactions that give rise tos and r degrees of freedom

1After completion of the present work, the author became aw
of recent e-prints by Kvinikhidze and Blankleider@10# which sug-
gest that they employ a similar method when gauging hadro
spectator equations. However, at present, no technical detai
their formalism are available. Therefore, the exact nature of
relation to the gauge-derivative method introduced here remain
be investigated.
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Other meson contribution will not be treated here. We th
keep the reaction dynamics simple enough to be amenab
a concise presentation, yet sufficiently detailed to avoid
ing trivial. However, we emphasize that none of these
strictions are essential; a more elaborate dynamical pic
can easily be obtained following the lines presented here

Many, if not most, aspects of the following treatment
hadronicpN dynamics are well known~see Refs.@11–14#
and references therein!. Nevertheless, we feel that it is nec
essary to recapitulate them here in order to provide a c
pletely consistent background against which the investi
tions of Secs. III and IV regarding the gauge invariance
the pion photoproduction amplitude needs to be seen.

A. Dressed nucleon propagator

Generically, the bare Lagrangian for the nucleon is giv
by @15#

L5c̄B~ i ]”2mB!cB2VB~ c̄B ,cB!, ~1!

where the indexB stands for ‘‘bare’’ andVB includes all the
interactions relevant for the nucleon; in general,VB will also
contain other fields. We assume here that the bare quan
have been obtained from QCD, subsuming the quark
gluon degrees of freedom that cannot be described by pu
hadronic dynamics. At the hadronic level, for the nucleon
only remnants of this procedure are the bare massmB and a
bare vertex function forN→Np,

FB~p8,p!5gBG5f ~p8,p!, ~2!

wheregB is the bare coupling constant andG5 the coupling
operator. The functionf (p8,p)—which in practical terms is
free input, since the QCD problem has not~yet! been
solved—provides the necessary cutoff to make all integ
convergent. ForG5 we are only going to consider pseud
scalar,G55g5 , or pseudovector,G55g5(p” 2p” 8)/2m, cou-
plings. ~Again, a more general coupling structure can eas
be accommodated following the outline given here.!

Note that thepNN vertex conserves four-momentum an
the independent variables chosen in Eq.~2! are the four-
momenta of the incoming and outgoing nucleons,p andp8,
respectively. As we shall see in Sec. V, this will have so
bearing on the investigation of gauge invariance of the p
photoamplitude.

Renormalizing the Lagrangian in the usual way@15# by

mB1dm5m, ~3!

cB

1

AZ
5c, ~4!

VB~AZc̄B ,AZcB!5V~ c̄,c!, ~5!

yields

L5Zc̄~ i ]”2m!c1Zdmc̄c2V~ c̄,c!. ~6!

The inverse of the corresponding momentum-space prop
tor is then given by

S21~p!5~p” 2m!Z1Zdm2S~p” !, ~7!
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56 2043GAUGE-INVARIANT THEORY OF PION . . .
where the self-energyS(p” ) is the sum of all hadronic one
particle-irreducible loops that can be constructed w
V(c̄,c); i.e., S(p” ) contains all graphs that cannot be facto
ized by simply cutting one internal nucleon line. Choosi
the renormalization parameters as

Zdm5S~m!, ~8!

Z511
dS~p” !

dp” U
p” 5m

~9!

assures that the fully dressed propagator~7! has a pole at the
nucleon massm with a unit residue.

Introducing a bare propagator by

S0
21~p!5~p” 2mB!Z5~p” 2m!Z1S~m!, ~10!

i.e.,

S21~p!5S0
21~p!2S~p” !, ~11!

the bare and dressed propagators are easily seen to be r
by

S~p!5S0~p!1S0~p!S~p” !S~p!. ~12!

The bare propagator is the one to be associated with the
vertex of Eq. ~2!; in the renormalized scheme the ba
s-channel pole term contributing to theT matrix for
pN→pN arising from the Lagrangian~1! is given as2

V05uFB&
1

p” 2mB
^FBu5ZuFB&S0^FBu5uF&S0^Fu, ~13!

where the~renormalized! bare vertex is given by@cf. Eq.~2!#

F~p8,p!5g0G5f ~p8,p!, ~14!

with g05AZgB , in accordance with the renormalized inte
action ~5!. ~Note that in keeping with our simplifying as
sumptions we do not consider more than ones-channel term
per pN channel.!

The formalism given so far assumes that there exis
pole in the baryon channel at hand, which applies only to
dressed nucleon in theP11 channel. For theP33 channel,
with the D resonance, the bare vertex~2! and the renormal-
ization conditions~8! and ~9! need to be modified accord
ingly. The conditions for a resonance, rather than a bo
state, are obtained by replacing the self-energy by its
part and the bound-state mass by the real part of the r
nance position. Also, the spin-1/2 propagator needs to
replaced by one for spin 3/2. Since it has no direct bearing
the treatment given here, we will not go into further deta

B. Pion

In complete analogy to the preceding nucleon treatm
one may derive a dressed pion propagatorD(q) given by
@15#

2Throughout this paper, the bra-ket notation is used as a q
way to see whether one deals withNp→N transitions orN→Np.
ated
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D21~q!5~q22m2!Zp1P~mp
2 !2P~q2!, ~15!

wheremp is the ~physical! pion mass,P(q2) the pion self-
energy, andZp the renormalization of the pion field. How
ever, for the present report, the details of this dressing are
important; we merely require thatP(q2) be such that the
dressed pion propagator allows for a Ward-Takahashi id
tity @1,15# in analogy to what will be derived for the nucleon
We emphasize that this can indeed be achieved q
straightforwardly by applying to the pion the correspondi
steps outlined below for the nucleon. For all practical p
poses, we may even replaceD by the bare pion propagato
D0 ,

D21~q!→D0
21~q!5q22mp

2 , ~16!

without changing any of the findings reported here.

C. pN scattering

In a graphical picture, for each of the two channels co
sidered here forpN scattering, there will be infinitely many
graphs contributing to eachT matrix arising from the
nucleon Lagrangian~1! and its delta counterpart. Summin
up subclasses of graphs at thepN-reducible level produces
graphs that can be classified as to how many separate g
fragments one obtains by cutting across a pair offully
dressedp and N propagators. Denoting the pair ofpN
propagators formally byG0 ,

G0~P!5S~p!+D~q!, ~17!

where + denotes the convolution3 of the propagators with
fixed total four-momentumP5p1q, generically each of
these summed-up graphs can thus be written as

graph5AG0BG0C•••G0D, ~18!

where none of thepN-irreducible piecesA, B, C, D, etc.,
can be written in a similar way. Denoting the sum of all
these pieces byU, adding to it the one-particle-reducibl
bares-channel termV0 of Eq. ~13!, and denoting the resul
by V, i.e.,

V5V01U5uF&S0^Fu1U, ~19!

generically both reactions then are formally given by

T5V1VG0V1VG0VG0V1•••5V1VG0T. ~20!

The Bethe-Salpeter@16# integral equations thus derived fo
the nucleon and delta channels are coupled via their res
tive driving termsV. Denoting theT matrices byTN andTD ,
with driving termsVN andVD , one has

TN5VN@TD#1VN@TD#G0TN ,

k

3By convolution, we mean that dynamically the pion and nucle
propagatorsD(q) andS(p) are independent, except for the fact th
they share a conserved total four-momentumP5p1q. In loops
every convolution is associated with an integrationi*d4q.
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2044 56HELMUT HABERZETTL
TD5VD@TN#1VD@TN#G0TD , ~21!

whereV@T# denotes the functional dependence.
The effect of the bare, one-particle-reducible pole termV0

on theT matrix is easily seen by defining an auxiliary enti
by a Bethe-Salpeter equation withV0 removed,

X5U1UG0X, ~22!

and applying the well-known two-potential formula@17# to
Eq. ~20! using Eqs.~19! and ~22!. This produces

T5~11XG0!uF&
1

S0
212^Fu~G01G0XG0!uF&

3^Fu~G0X11!1X ~23!

or

T5uG&S^Gu1X, ~24!

in other words, theT matrix has been split into its pol
contribution and a nonpolar piece described byX. The self-
energy of the dressed propagatorS, formally given by Eq.
~11!, has been obtained here as

S5^Fu~G01G0XG0!uF&5^FuG0uG&5^GuG 0uF&,
~25!

where

uG&5~11XG0!uF&5uF&1UG0uG& ~26!

defines the dressed vertex function. In view of the unit re
due ofS, we may assume here without loss of generality t
G is already properly normalized, i.e., that the coupling co
stant associated with the dressed vertex is the physicalpNN
vertex constant; in practical terms this is achieved by cho
ing the bare couplingg0 accordingly.

Obviously only the present procedure lends substanc
the formal dressing discussed in Sec. II A. The summary
the relevant equations in Fig. 1 also shows that the form
tion in terms of dressed hadrons leads to anonlinearsystem
of equations where—ignoring pion dressing for simplicity
Eqs.~12!, ~22!, and~26! feed into each other in a very com
plex manner. Solving this set of nonlinear equations pres

FIG. 1. Summary of coupled, nonlinear equations
pN→pN: ~a! Dressed vertex, Eq.~26!; ~b! dressed propagator, Eq
~12!; ~c! nonpolar amplitudeX, Eq.~22!; ~d! full T matrix, Eq.~24!.
Open circles~without descriptive letters! denote bare quantities
whereas solid circles depict the respective fully dressed ones.
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a formidable task in practical terms. Perhaps it is for t
reason that nonlinear formulations of the pion-nucleon pr
lem are often avoided. However, thepN scattering problem
is nonlinear. We therefore would like to advocate that su
stantial insight can be gained from first formulating the pro
lem in its full complexity and then implementing approxim
tions that make the problem manageable, instead
linearizing the problem from the very beginning. The relati
simplicity of the gauge-invariance investigation of Sec.
might be taken as a case in point for this view.

D. Nonpolar driving term

By construction, the nonpolar driving termU is two-
particle irreducible; in other words, every internal cut acro
an entire diagram must necessarily cut across at least t
particle lines. Moreover, as seen from Eqs.~12! and~26!, the
complete dressings of propagators and vertices happen a
one- and two-particle-reducible levels, respectively. There
fore, sinceU is at most three-particle reducible, without lo
of generality all contributions toU can be taken as bein
constructed in terms of fully dressed propagators and ve
ces.

Some of the lowest-order contributions thus are read
seen to be given by

UN5^GNuS̄NuGN&1BN1••• ,

UD5^GDuS̄DuGD&1BD1••• , ~27!

with both channels having similar box-type contributionsBN
andBD , i.e.,

B5^GNu~S̄NXNS̄N!+DuGN&1^GNu~D̄TppD̄!+SNuGN&

1^GDu~D̄TppD̄!+SDuGD&1^GNu~S̄NTDS̄N!+DuGN&,

~28!

with the differences betweenBN and BD being due to their
total spin and isospin values.GN andGD here are the dresse
vertices forpNN and pND, respectively. Figure 2 depict
this structure. The respective first terms^GuS̄uG& here are the
u-channel counterparts of the pole termsuG&S^Gu of Eq.
~24!. The bar overS signifies thatS in the context of
^GuS̄uG& describes a baryon exchange across vertices and

FIG. 2. Some of the lowest-order contributions for the drivi
term U of the nonpolar amplitudeX of Fig. 1~c!. First graph on
right-hand side is theu-channel crossed counterpart of th
s-channel graph of Fig. 1~d!. The other three box graphs depi
intermediate scattering processes of the nonpolarP11 pN amplitude
X dressed by a pion, of thepp amplitude dressed by a baryo
~which subsumes both nucleon and delta!, and of the fullP33 pN
amplitude with pion dressing, respectively. All vertices and pro
gators here are fully dressed.
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56 2045GAUGE-INVARIANT THEORY OF PION . . .
a loop-type matrix element~cf. first graph on the right-hand
side of Fig. 2!. Furthermore,U contains several box graph
where intermediate two-particle scattering is dressed b
third particle: The two termŝGu(D̄TppD̄)+SuG& describe
pp scattering dressed by a nucleon and a delta; again,
exchange~see Fig. 2! is indicated by the bar over the pio
propagatorD. IntermediatepN scattering proceeds throug
both P11, ^GNu(S̄NXNS̄N)+DuGN&, and P33, ^GNu(S̄NTDS̄N)
+DuGN&. For theP11 nucleon channel, however, the scatte
ing involves only the nonpolar contributionXN since the pole
term provides apN-reducible intermediate state; i.e., th
contribution is generated through an iteration of t
u-channel crossed diagram. In keeping with the simplifyi
assumptions made here, we have omitted intermediate
tering processes likepN→pD, pD→pD, etc., and dress
ings by other mesons. However, there should be no prob
in writing down the corresponding contributions followin
the procedure outlined here.

The driving termU of the nonpolar amplitudeX is seen
here to depend not just on theT matrix of the respective
other channel, the way it was written in Eq.~21!, but also on
the complete solution of its own channel; i.e., generica
one can write Eq.~22! as

X5U@X#1U@X#G0X. ~29!

Without going into any details here, we would like to subm
that this nonlinear structure is of immediate practical con
quence in that some of the resonances usually considere
being independent actually originate from dressed pole c
tributions of the intermediateTpp and/orTD amplitudes.

III. PION PHOTOPRODUCTION AMPLITUDE

In this section, we will introduce a current for the dress
nucleon and the corresponding pion-production current
doing so, we will define an exchange current, describ
electromagnetic interactions during hadronic exchange
cesses. The latter will be contributing to an all-encompass
interaction current for the photon’s action within the ha
ronic interaction region.

A. Current of the dressed nucleon

In a simplified picture, ignoring angular momentum e
fects, the primary dynamical change brought about by a p
ton entering a hadronic system is that it deposits its fo
momentumk into a charged constituent of the system th
changing the latter’s momentum fromp→p1k. At its most
elementary level this is thedynamicalbasis for the usua
minimal substitution rule which in practical terms is ofte
paraphrased as ‘‘attach a photon to every moment
dependent piece of a hadronic graph.’’ In the Appendix,
define an operation, called the ‘‘gauge derivative,’’ that
similar in its effect to a functional derivatived/dAm, which
allows one to formalize this procedure in a very simple m
ner and derive current operators from hadronicn-point
Green’s functions.

According to Eq.~A15! of the Appendix, the current of a
nucleon is given by

Jm~p8,p!5$S21~p!%m, ~30!
a
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where$•••%m is the gauge derivative defined in the Appe
dix, andk5p82p is the momentum of the incoming photon
Using the rules of the Appendix, we then find~omitting all
momentum dependence for notational clarity!

Jm5$S0
212^FuG0uG&%m

5QNZgm1^FmuG0uG&1^FuG0gmG0uG&

1^FuG0uGm&, ~31!

where Fm52$F%m, G0gmG052$G0%
m, and Gm52$G%m

result from attaching a photon to the bare vertex, the t
constituents of thepN pair propagator, and the dressed ve
tex, respectively; see the Appendix for the correspond
definitions and other technical details. Using Eq.~26!, one
finds, for the dressed vertex,

uGm&5uFm&1UmG0uG&1UG0gmG0uG&1UG0uGm&

5~11XG0!@ uFm&1gmG0uG&1UmG0uG&]

2gmG0uG&

5~11XG0!ubm&2gmG0uG&

5umm&2gmG0uG&, ~32!

where the exchange currentUm52$U%m arises from the
photon’s interactions within the driving termU ~see Sec.
III B for details! and

ubm&5uFm&1gmG0uG&1UmG0uG&, ~33!

umm&5~11XG0!ubm&5ubm&1UG0umm& ~34!

were used as abbreviations. Note that the quantitymm ap-
pearing here has the same integral-equation kernel as
nonpolar hadronic amplitudeX of Eq. ~22!. Its relation to the
full photoproduction amplitudeMm @see Eq.~A19! of the
Appendix and Eq.~42! below# will be seen to be on par with
the relation~24! of X to the full T, and it will be referred to
as the nonpolar photoproduction amplitude.

FIG. 3. Various equivalent representations of the fully dres
electromagnetic current for the nucleon:~a! Eq. ~31!; ~b!–~d! cor-
respond to the last three equalities of Eq.~35!. Open circles depict
bare and solid ones fully dressed quantities. See also Figs. 4
6~a!.
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2046 56HELMUT HABERZETTL
We can write now several alternative expressions for
dressed current~31!:

Jm5 j 0
m1^FmuG0uG&1^Fu~G01G0XG0!ubm&

5 j 0
m1^FmuG0uG&1^GuG0ubm&

5 j 0
m1^FmuG0uG&1^FuG0umm&

5 j 0
m1^FmuG0uG&1^GuG0uFm&1^GuG0gmG0uG&

1^GuG0UmG0uG&, ~35!

with j 0
m5QNZgm being the bare current.4 A structurally

similar result can be obtained from the work of van Antwe
pen and Afnan@8# upon combining their equations~5.11!
and ~5.15! ~see also discussion in Sec. VI!.

Figure 3 summarizes the various mechanisms of Eqs.~31!
and~35!; Fig. 4 shows Eq.~34! and its driving term Eq.~33!,
and Fig. 5 depicts the interaction currentGm of the dressed
vertex, Eq.~32!. As can be read off these graphs, the desc
tion of the dressed nucleon current given here is nonlin
similar to what was found already for the hadronic sector
Sec. II.

B. Exchange currentUµ

In order to exhibit the structure of the exchange curre
for simplicity we concentrate only on the first two terms
Eqs.~27! and ~28! for the nucleon,

Um52$UN%m52$^GNuS̄uGN&1^GNu~S̄XS̄!+DuGN&1•••%m.
~36!

In the following we suppress the indexN. We find

Um5U0
m1U1

m1••• , ~37!

with

U0
m5^GmuS̄uG&1^GuSJmSuG&1^GuS̄uGm& ~38!

originating from the first graph in Fig. 2 and

4Z appears here because we choose to work with properly nor
ized vertices@cf. remarks after Eq.~26!#. Z could be absorbed into
the vertices at the expense of having to multiply the final result
AZ for every external nucleon leg. For vanishing interactionU or
for vanishing photon momentum,Jm just becomesQNgm, of
course.

FIG. 4. ~a! Born term of pion-photoproduction amplitude, E
~33!. ~b! Auxiliary nonpolar amplitude, Eq.~34!.
e

-

-
r,

n

t,

U1
m5^Gmu~S̄XS̄!+DuG&1^Gu~S̄XS̄!+DuGm&1^Gu~SJmSXS̄!

+DuG&1^Gu~S̄XS̄!+~DJp
mD!uG&1^Gu~S̄XmS̄!+DuG&

1^Gu~S̄XSJmS!+DuG& ~39!

from the second; the overbar again signifies exchanged
rons.Xm is given by

Xm52$X%m5~11XG0!Um~G0X11!1XG0gmG0X,
~40!

as can be found from the gauge derivative of Eq.~22!. @The
same result was obtained in Eq.~5.8! of @8#.# These equa-
tions are summarized graphically in Fig. 6. In general, ev
vertex, every internal propagator, and every transition am
tude generates a separate contribution to the exchange
rent. Therefore, there are three contributions toU0

m and six
for U1

m . As we shall discuss below in the context of gau
invariance, when making approximations mandated by pr
tical considerations, one may omit entire pieces from
exchange currentUm without violating gauge invariance, a
long as one keeps together all pieces originating from
same hadron graph. For example, omittingU1

m in its entirety
would not violate gauge invariance, but neglecting just o
or two pieces in general would.

C. Pion production current

The currentMm(k;p8,p) for a photon of momentumk
hitting a nucleon of initial momentump to produce a pion

al-

y

FIG. 5. Interaction currentGm: ~a! Definition, Eq.~32!, and~b!
relation to full pion-photoproduction amplitudeMm, Eq. ~43!.

FIG. 6. ~a! Exchange currentUm, Eq. ~36!, and~b! currentXm,
Eq. ~40!, associated with the photon attaching itself inside the h
ronic interaction region described by the nonpolar amplitudeX.
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56 2047GAUGE-INVARIANT THEORY OF PION . . .
with momentumq5p1k2p8, leaving behind the nucleon
with momentump8, according to Eq.~A19! of the Appen-
dix, is given by

Mm~k;p8,p!52S21~p8!D21~p2p81k!$S~p8!D~p2p8!

3G~p8,p!S~p!%mS21~p!

52G~p8,p1k!$S~p!%mS21~p!

2D21~p2p81k!$D~p2p8!%mG~p8,p!

2S21~p8!$S~p82k!%mG~p82k,p!

2$G~p8,p!%m. ~41!

In a more concise notation which suppresses the mome
the preceding equation can be written as

uMm&52G0
21$G0uG&S%mS21

5gmG0uG&1uGm&1uG&SJm

5uG&SJm1~11XG0!ubm&

5uG&SJm1umm&, ~42!

where use was made of Eqs.~32!–~34! to simplify the result.
The only difference, therefore, of the full currentMm and the
nonpolar currentmm of Eq. ~34! is the pole termuG&SJm,
where the reaction proceeds through an intermediary nuc
propagator~see Fig. 7!.

The vertex current proper, i.e., that piece of the prod
tion amplitude where the photon attaches itself within
hadronic interaction region, and not to any one of the th
legs of thepNN vertex, which is described byGm of Eq.
~32!, is then given by

uGm&5uMm&2gmG0uG&2uG&SJm. ~43!

This well-known result@2,6,8# is sometimes referred to as
‘‘contact term.’’ In view of its rich internal dynamical struc
ture exhibited in Fig. 5, we prefer to call it an interactio
current. Indeed, at the level of fully dressed, physical p
ticles, it is the only term that contains any final-state inter
tion between pions and nucleons.

FIG. 7. ~a! Alternative Born termBm, Eq. ~45!, for the full
pion-photoproduction amplitudeMm if the pN final-state interac-
tion is described by the fullT instead of by the nonpolarX; ~b!
shows the resulting two, completely equivalent describtions ofMm,
Eqs.~44! and ~42! @see also Fig. 4~b!#.
ta,

on

-
e
e
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As an addendum to the last remark, we mention that
fully dressed pole termuG&SJm may be viewed as coming
about through the final-state interaction mediated by the
T, of Eq. ~20!, rather than by the nonpolarX, as in Eq.~34!.
To this end, we mention without derivation that, instead
via mm, as in Eq.~42!, Mm can be obtained directly as

uMm&5uBm&1TG0uBm&, ~44!

where the modified Born termBm is now

uBm&5uF&S0J0
m1uF&S0^F

muG0uG&1ubm&; ~45!

in other words, as compared tobm of Eq. ~33!, it contains
explicit bare hadronic vertices and propagators. It is
final-state interaction inT which produces the direct dresse
pole termuG&SJm and reduces the remaining final-state i
teraction to one viaX. These relations are also depicted
Fig. 7.

IV. GAUGE INVARIANCE

The gauge invariance of the electromagnetic interact
requires@15# that the divergencies of all physical curren
vanish if all external hadrons are on their respective m
shells. In technical terms, this applies to all currents that
based on the reduction of ann-point Green’s function~see
Appendix!, i.e., to the pion currentJp

m , the nucleon current
Jm and the production currentMm:

kmJp
m~q1k,q!50, ~46a!

kmJm~p1k,p!50, ~46b!

kmMm~k;p8,p!50. ~46c!

It does not apply, for example, to the exchange currentUm

and the interaction currentGm since they do not involve elec
tromagnetic interactions with external legs and therefore
not directly observable. For these currents different ga
conditions apply, as discussed below.

The key here are the Ward-Takahashi identities@1# for the
off-shell propagators,

kmJp
m~q8,q!5D21~q8!Qp2QpD21~q!, ~47a!

kmJm~p8,p!5S21~p8!QN2QNS21~p!, ~47b!

where

Qp,i j 5 ie« i3 j , ~48!

QN5
e

2
~11t3! ~49!

are the respective charge operators. Note that the place
of the charge operators in Eqs.~47! is mindful of the fact that
for dressed particles, the self-energies within the propaga
carry isospin dependence and therefore do not commua
priori with the charge operators. One may argue, of cou
that this subtlety is largely academic since the Wa
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Takahashi identity is a statement about charge conserva
and therefore immediately implies@S,Q#50. Nevertheless
since in the present formulation the placements of the cha
operators will carry the additional information where, and
which particle, the photon momentum is fed into the eq
l
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tions, we will strictly apply the Ward-Takahashi identities
the form given here.

Taking the divergence of the production currentMm given
by Eq.~42! and assuming the validity of the Ward-Takahas
identities readily gives@2,8#
kmuM p1k,p
m t&5D21~p2p81k!Q̂pD~p2p8!uGpt&1S21~p8!Q̂NS~p82k!uGpt&2uGp1kt&S~p1k!Q̂NS21~p!

1kmuGp1k,p
m t&1uGp1kt&Q̂N2Q̂puGpt&2Q̂NuGpt&, ~50!
y-
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where the momentum indices exhibit the total availablehad-
ronic momentum andp8 is the momentum of the fina
nucleon. Entities carrying a photon indexm have two indices
since the hadron momentum available after the electrom
netic interaction is increased by the photon’s momentumk.
We have also now explicitly included the symbolt in the
kets as a mnemonic that there is an isospin index assoc
with each vertex and to remind us that one cannot sim
commute charge operators with vertices. From the conte
will be clear how to choose this index.

In the notation adopted in Eq.~50! the meaning of the
charge operatorQx of particlex has now been expanded: I
addition to performing the usual charge operationQx , Q̂x
adds a photon momentumk to the charged particle x at
the corresponding place in the equations: e
Q̂pD(p2p8)uGpt& means that for all subsequent intera
tions the pion coming out of the vertex with momentu
p2p8 will have momentump2p81k. With all external
momenta fixed, the placement and particle index ofQx al-
lows one to unambiguously determine all internal mome
~except for loop integrations, of course! at every stage of the
reaction. For example, inuGp1kt&Q̂N , we could drop the
total-momentum indexp1k since the rule tells us thatQ̂N
will add a photon momentumk to the incoming momentum
p to provide an initial nucleon momentump1k for the ver-
tex uGt&. This shorthand notation will turn out to be ex
tremely useful in keeping the following expressions as c
cise as possible without becoming sketchy.

Since the first three terms on the right-hand side of
~50! vanish on shell, the current conservation is tantamo
to the well-known@2,8# condition

kmuGp1k,p
m t&1uGp1kt&Q̂N2Q̂puGpt&2Q̂NuGpt&50

~51!

for the interaction currentGm. Note that the form of this
condition is similar to a continuity equation with a surfa
term,

kmGm1DkRG50, ~52!

where the ‘‘surface term’’

DkRG5uGp1kt&Q̂N2Q̂puGpt&2Q̂NuGpt& ~53!
g-

ted
ly
it

.,

a

-

.
nt

measures the sum of all changes in the internal reaction d
namics brought about when a photon momentumk is trans-
mitted through the hadronic system from an incoming
charged particle to an outgoing charged particle; of cours
within the interaction regionk can be shared with any par-
ticle, charged or uncharged. This quantity is illustrated i
Fig. 8 for a somewhat more general case. For brevity, w
will refer to DkRG as the~purely hadronic! photonic reaction
change or simply reaction change. As will be shown pres
ently, continuity equations similar to Eq.~52!, with DkR’s
exactly analogous to Eq.~53!, govern all aspects of the in-
teraction of photons with hadrons.

In the following, we will prove gauge invariance of the
formalism developed here by showing that the Ward
Takahashi identity~47b! and the continuity equation~51!
hold true. In view of the nonlinearities of the present equa
tions, a direct proof does not seem possible and the pro
will be one of self-consistency. In other words, we first show
that assuming the validity of the Ward-Takahashi identitie
leads to the continuity equation for the interaction curren
and then, second, proceed that we can verify the se
consistency of the assumption by deriving Eq.~47b! using
the details ofJm given by Eq.~31!.

FIG. 8. Generic representation of the photonic reaction chang
@cf. Eq. ~97!#. R is an arbitrary hadronic reaction mechanism wher
all incoming and outgoingunchargedparticles have been subsumed
in the upper lines and all incoming and outgoingchargedparticles
in the lower, thicker lines. The first graph on the left sums up a
contributions where the photon is attached to an incoming partic
whereas the one on the right depicts the sum of all contribution
from the photon being attached to an outgoing particle. The phot
nic reaction change is the difference between the purely hadron
contributions enclosed in the dashed boxes; it measures the cha
brought about in the hadronic reaction when a photon momentum
transmitted through the hadronic interaction region entering an
leaving via charged particles.
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A. Gauge condition for the interaction current

With Eq. ~32! the divergence of the interaction currentGm

is written as

kmuGm&5km~ uFm&1UmG0uG&1XG0ubm&). ~54!

In a more detailed notation, where isospin and the dep
dence on the corresponding total hadron momenta
shown, we have

kmuGp1k,p
m t&5km~ uFp1k,p

m t&1Up1k,p
m G0,puGpt&

1Xp1kG0,p1kubp1k,p
m t&). ~55!

Now, as a first step, let us define

Ũ5kmUp1k,p
m 1Up1kQ̂p1Up1kQ̂N2Q̂pUp2Q̂NUp .

~56!

The right-hand side here is seen to be constructed in e
analogy to the left-hand side of the continuity equation~51!
with
s

e
.

n-
re

ct

DkRU5Up1kQ̂p1Up1kQ̂N2Q̂pUp2Q̂NUp ~57!

being the corresponding photonic reaction change. We c
jecture, therefore, that Eq.~56! is indeed a continuity equa
tion and that

Ũ50, ~58!

hence,

kmUp1k,p
m 1DkRU50. ~59!

In Sec. IV B, we will show that this conjecture is indee
valid.

Using

Q̂xUG0uGt&5Q̂xuGt&2Q̂xuFt&, ~60!

we then have, for Eq.~55!,
kmuGp1k,p
m t&5kmuFp1k,p

m t&2Q̂puFpt&2Q̂NuFpt&1Q̂puGpt&1Q̂NuGpt&2~Up1kQ̂p1Up1kQ̂N!G0,puGpt&

1Xp1kG0,p1kkmubp1k,p
m t&. ~61!

To simplify this further, let us look atkmbm, using Eqs.~33! and ~59! and the Ward-Takahashi identities~47!,

kmubp1k,p
m t&5kmuFp1k,p

m t&2Q̂puFpt&2Q̂NuFpt&1Q̂puGpt&1Q̂NuGpt&1@D21~p2p81k!Q̂p2Q̂pD21~p2p8!#

3D~p2p8!uGpt&1@S21~p81k!Q̂N2Q̂NS21~p8!#S~p8!uGpt&2~Up1kQ̂p1Up1kQ̂N!G0,puGpt&

5kmuFp1k,p
m t&2Q̂puFpt&2Q̂NuFpt&1D21~p2p81k!Q̂pD~p2p8!uGpt&1S21~p81k!Q̂NS~p8!uGpt&

2~Up1kQ̂p1Up1kQ̂N!G0,puGpt&, ~62!

wherep8 is the momentum of the outgoing nucleon.
Introducing now a continuity-equation term in analogy to Eq.~56!,

uF̃&5kmuFp1k,p
m t&1uFp1kt&Q̂N2Q̂puFpt&2Q̂NuFpt&, ~63!

and collecting all partial results, Eq.~61! becomes

kmuGp1k,p
m t&5uF̃&1Xp1kG0,p1kuF̃&1Q̂puGpt&1Q̂NuGpt&2uFp1kt&Q̂N2Xp1kG0,p1kuFp1kt&Q̂N

2~Up1kQ̂p1Up1kQ̂N!G0,puGpt&1~Xp1kQ̂p1Xp1kQ̂N!G0,puGpt&2~Xp1kG0,p1kUp1kQ̂p

1Xp1kG0,p1kUp1kQ̂N!G0,puGpt&, ~64!
d
ith-
ms

n-
c-
where the last three terms cancel, and one finally obtain

kmuGp1k,p
m t&1uGp1kt&Q̂N2Q̂puGpt&2Q̂NuGpt&

5~11Xp1kG0,p1k!uF̃&. ~65!

We thus find that a sufficient condition for the validity of th
continuity equation~51! is thatF̃50, in other words, that Eq
~63! become a proper continuity equation itself.
At this stage, in view of its ambiguity in an effective fiel
theory based on hadronic degrees of freedom only, i.e., w
out any reaction-dynamical basis for discerning mechanis
that contribute to the bare contact currentFm, we may simple
demand thatFm be such that

uF̃&50. ~66!

It then follows that the interaction current satisfies the co
tinuity equation~51! and hence the divergence of the produ
tion current,
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kmuM p1k,p
m t&5D21~p2p81k!Q̂pD~p2p8!uGpt&

1S21~p8!Q̂NS~p82k!uGpt&

2uGp1kt&S~p1k!Q̂NS21~p!, ~67!

vanishes on shell, thus makingMm gauge invariant.
In Sec. V, a physical justification for the requirement~66!

will be given.

B. Gauge condition for the exchange current

We need to verify now that the gauge condition~58! is
indeed satisfied forUm. In order to do so, we will make
liberal use of the facility offered by theQ̂x notation to keep
track of where a photon momentum needs to be injected
the equation. Note that the Ward-Takahashi identities~47!
can be written as simple commutators,

kmSJmS5Q̂NS2SQ̂N , ~68a!
to

kmDJp
mD5Q̂pD2DQ̂p , ~68b!

without any need for momentum arguments. Similarly,
have for the continuity equation~51!,

kmuGmt&5~Q̂p f
1Q̂Nf

!uGt&2uGt&Q̂Ni
, ~69!

where the indicesi and f refer to initial and final, respec
tively. With external momenta fixed, these shorthand v
sions allow one to determine every momentum unambi
ously. With this notation, what needs to be proved now
@cf. Eq. ~59!#

kmUm1U~Q̂Ni
1Q̂p i

!2~Q̂Nf
1Q̂p f

!U50. ~70!

To this end, we first consider the three terms ofU0
m of Eq.

~38!, making use of the commutator notation just presen
and consulting Fig. 6~a!:
y

ncy. Note
m.

re.

clude,
ture of
kmU0
m5km~^GmuS̄uG&1^GuSJmSuG&1^GuS̄uGm&!

5@Q̂Nf
^Gu2^Gu~Q̂N1Q̂p i

!#S̄uG&1^Gu~Q̂NS̄2S̄Q̂N!uG&1^GuS̄@~Q̂N1Q̂p f
!uG&2uG&Q̂Ni

#

5Q̂Nf
^GuS̄uG&2^GuQ̂NS̄uG&2^GuQ̂p i

S̄uG&2^GuS̄Q̂NuG&1^GuQ̂NS̄uG&1^GuS̄Q̂NuG&1^GuS̄Q̂p f
uG&2^GuS̄uG&Q̂Ni

5~Q̂Nf
1Q̂p f

!^GuS̄uG&2^GuS̄uG&~Q̂Ni
1Q̂p i

!

5~Q̂Nf
1Q̂p f

!U02U0~Q̂Ni
1Q̂p i

!, ~71!

which is the desired result~Q̂N here is the charge operator of the exchanged nucleon!. U0 by itself, therefore, satisfies alread
the continuity equation.

The key for calculating the divergence ofU1
m is the divergence ofXm of Eq. ~40! since this is the only new piece@see also

Fig. 6~b!# required in the calculation ofkmU1
m . One has

kmXm5km~11XG0!Um~XG011!1kmXG0gmG0X

5~11XG0!@~Q̂Nf

i 1Q̂p f

i !U2U~Q̂Ni

i 1Q̂p i

i !#~XG011!1X@~Q̂Nf

i 1Q̂p f

i !G02G0~Q̂Ni

i 1Q̂p i

i !#X

5~11XG0!~Q̂Nf

i 1Q̂p f

i !X2X~Q̂Ni

i 1Q̂p i

i !~XG011!2XG0~Q̂Ni

i 1Q̂p i

i !X1X~Q̂Nf

i 1Q̂p f

i !G0X

5~Q̂Nf

i 1Q̂p f

i !X2X~Q̂Ni

i 1Q̂p i

i !, ~72!

where the superscripti stands for ‘‘intermediary.’’ The result ofkmG0gmG0 was obtained from Eq.~A22! of the Appendix. In
the first term, we have assumed here that what we want to prove holds true, and so again we only show self-consiste
that the structure of this result is exactly the same as Eq.~70!; i.e., Xm also satisfies a continuity equation of the desired for
The final steps of the calculation ofkmU1

m proceed now exactly analogous to Eq.~71! and we do not present the details he
The result is indeed

kmU1
m5~Q̂Nf

1Q̂p f
!U12U1~Q̂Ni

1Q̂p i
!, ~73!

as stipulated.
We refrain from continuing this any further and simply mention that any individual term of the nonpolar driving termU of

Eq. ~28! will give rise to a current contribution satisfying a continuity equation of the required structure. We con
therefore, that Eq.~70! is true—i.e., is self-consistent with the general formalism developed here—and that the conjec
the preceding subsection was justified.
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C. Self-consistency of the Ward-Takahashi identities

The final step to come full circle now in our presentation is to show that the divergence of the dressed nucleon cuJm

of Eq. ~31! will give us back the Ward-Takahashi identity~47b!. Using the same commutator notation as in the previous s
we find, for Eq.~31!,

kmJm5S0
21Q̂N2Q̂NS0

211~Q̂N^Fu2^FuQ̂i !G0uG&1^GuG0~Q̂i uF&2uF&Q̂N!1^Gu~Q̂iG02G0Q̂i !uG&

1^GuG0~Q̂iU2UQ̂i !G0uG&

5~S0
212^GuG0uF&!Q̂N2Q̂N~S0

212^FuG0uG&!2^FuG0Q̂i uG&1^GuG0Q̂i~ uF&1UG0uG&)

1^GuQ̂iG0uF&2~^GuG0U1^Fu!Q̂iG0uG&

5S21Q̂N2Q̂NS21, ~74!
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which is exactly Eq.~68a!. The charge operatorQ̂i within the
loop is the sum of the corresponding pion and nucle
charge operators.

We thus have completed the proof of self-consistency
the present formalism.

V. CONTINUITY EQUATIONS FOR THE CONTACT
TERM

Within the purely hadronic approach, i.e., without a d
tailed picture of the underlying QCD reactions, all curre
mechanisms contributing toFm must come from interaction
related to the three legs of the vertex since there is no ‘
side’’ for a bare vertex. If this intuitive picture is to be co
rect, one should be able to read this off the expressions
the currentFm. To this end let us write Eq.~66! as

uF̃&5uFpt&QN2QNuFpt&2QpuFpt&

5~tQN2QNt2Qpt!uFp&, ~75!

which indeed is zero because of charge conservation a
bare vertex~the Q’s here have no hats!, i.e.,

~tQN2QNt2Qpt! i5t i

e

2
~11t3!2

e

2
~11t3!t i2ei« i3 jt j

50, ~76!

in other words, we relate the validity of Eq.~66! to the most
basic conservation law available within the present cont
Subtracting then Eq.~75! from both sides of Eq.~63!, we are
led to define reaction changes for each leg of the bare ve
by

DkRNi
5~ uF@q,p8,p1k#&2uF@q,p8,p#&)tQN , ~77a!

DkRNf
5~ uF@q,p8,p#&2uF@q,p82k,p#&)QNt, ~77b!

DkRp5~ uF@q,p8,p#&2uF@q2k,p8,p#&)Qpt, ~77c!

where the indicesNi and Nf denote the initial and fina
nucleons, respectively, andp the ~final! pion. The notation
chosen here for the vertex functions exhibits all hadro
momenta, i.e.,
n

f

-
t

-

or

he

t.

ex

c

F5F@qp ,pf ,pi #, ~78!

with pi , pf , and qp the initial and final nucleon and pion
momenta, respectively, at the vertex~which arenot necessar-
ily the corresponding momenta of the reaction!. However,
the choice of brackets@•••# rather than parentheses~•••! sig-
nifies that only the two independent momenta are active.
third is silent in the sense that the physically relevant ver
is given by a ray on which the dependent momentum
take any value. For example, if we choose—as we have d
throughout this paper—the nucleon momenta as indepen
variables, then

Fphysical[F~pf ,pi !5F@qp ,pf ,pi #5F@qp8 ,pf ,pi #,
~79!

irrespective of the value ofqp specified inF@qp ,pf ,pi #; the
physically relevant pion momentum for the vertex
q5pi2pf . In other words, in writing down Eqs.~77!, we do
not want to imply thatF@q,p8,p# is an unphysical vertex
here, which would violate momentum conservation,

p1k5p81q, ~80!

in the pion production reaction.5 We merely want to leave
the choice of independent variables open. As a conseque
of course, once a choice has been made, one of the rea
changes~77! becomes identically zero. For example, if th
nucleon momenta are independent, then

F@q,p8,p#2F@q2k,p8,p#5F~p8,p!2F~p8,p!50
~81!

and hence

DkRp50. ~82!

However, as we shall see, the contributions from hadron l
for which DkR50 will enter through another mechanism
a matter of course.

5This is rather different from the treatment of Ohta@5#, who re-
quires unphysical values for vertex functions to assure gauge inv
ance.
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With these preliminaries and without loss of generali
we can now write the contact term as a sum of three curre
one for each leg of the vertex, i.e.,

uFp1k,p
m &5Fm~k;q,p8,p!

5 j c,Ni

m ~p1k,p!1 j c,Nf

m ~p8,p82k!1 j c,p
m ~q,q2k!,

~83!

with each current satisfying a continuity equation,

km j c,Ni

m 1DkRNi
50, ~84a!

km j c,Nf

m 1DkRNf
50, ~84b!

km j c,p
m 1DkRp50. ~84c!

In other words, the validity of Eq.~66! is being assured in
terms of separate continuity equations for the three leg
,
ts,

of

the vertex. At this stage,any choice of currentsj c
m which

satisfy these continuity equations will lead to a gaug
invariant pion-photoproduction amplitude.

To see how this might work out in practice for pseud
scalar and pseudovector couplings, let us consider the ve
of Eq. ~14! described in terms of nucleonic momentap and
p8. Writing the coupling operator as

g0G55G5ps1G5pv

q”

2m
, ~85!

where q is the appropriate pion momentum, we can tre
both pseudoscalar~G5ps5g0g5 , G5pv50! and pseudovecto
~G5pv5g0g5 , G5ps50! couplings at the same time. In view
of our choice of independent momenta, the pion contact c
rent and its photonic reaction change vanish identically, i
j c,p
m 50 andDkRp50. For the initial nucleon we have
ing

ith

omentum
DkRNi
5@F~p8,p1k!2F~p8,p!#tQN

5F S G5ps1G5pv

p” 1k”2p” 8

2m D f ~p8,p1k!2S G5ps1G5pv

p” 2p” 8

2m D f ~p8,p!GtQN

5S G̃5@ f ~p8,p1k!2 f ~p8,p!#1G5pv

k”

2m
f ~p8,p1k! D tQN

5kmF G̃5

ni
m

ni•k
@ f ~p8,p1k!2 f ~p8,p!#1G5pv

gm

2m
f ~p8,p1k!GtQN , ~86!

where

G̃55G5ps1G5pv

p” 2p” 8

2m
, ~87!

and, in the last step, we have introduced an arbitrary four-vectorni
m in order to be able to pull out an overall factor ofkm . This

procedure is well defined sincef (p8,p1k)2 f (p8,p) compensates the singularity which would otherwise occur for vanish
photon momentum. The most straightforward choice forni

m is

ni
m5~2p1k!m, ~88!

since p and k are the only available four-vectors andni
m it is the well-known current operator of a scalar particle w

momentump. The appropriateness of this choice is reinforced by noting that

ni
m

ni•k
5

1

2p•k1k2 ~2p1k!m5
1

~p1k!22p2 ~2p1k!m, ~89!

which is the dynamical picture of a scalar-particle electromagnetic vertex and a subsequent scalar propagation with m
p1k and dynamical ‘‘squared mass’’p2 that indeed becomesm2 when the external nucleon is on shell.

The minimal choice forj c,Ni

m suggested by these considerations, therefore, is simply

j c,Ni

m ~p1k,p!52S G̃5

ni
m

ni•k
@ f ~p8,p1k!2 f ~p8,p!#1G5pv

gm

2m
f ~p8,p1k! D tQN . ~90!

Similarly, for j c,Nf

m one finds

j c,Nf

m ~p8,p82k!52S G̃5

nf
m

nf•k
@ f ~p8,p!2 f ~p82k,p!#2G5pv

gm

2m
f ~p82k,p! DQNt, ~91!
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with

nf
m5~2p82k!m ~92!

being the appropriate scalar operator.
When adding up the various contributions to obtain the contact current, one has

Fm~k;p8,p!52F G̃5

ni
m

ni•k
@ f ~p8,p1k!2 f ~p8,p!#1G5pv

gm

2m
f ~p8,p1k!GtQN2F G̃5

nf
m

nf•k
@ f ~p8,p!2 f ~p82k,p!#

2G5pv

gm

2m
f ~p82k,p!GQNt ~93a!

52G5pv

gm

2m
@tQNf ~p8,p1k!2QNt f ~p82k,p!#2G̃5@ f ~p8,p1k!n̂i

m2n̂f
m f ~p82k,p!2p̂m f ~p8,p!#.

~93b!
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The first part of these expressions forFm, Eq. ~93a!, is actu-
ally to be used in practical calculations—since it is explici
free of any singularities atk50. The second part, Eq.~93b!,
was written merely to exhibit the general structure of t
result. It shows that, apart from the spin-1/2gm nucleon
pieces arising only in the pseudovector case, one has t
scalar contributions—one for each leg, where the co
sponding bare cutoff functionf is multiplied by one of the
following operators:

n̂i
m5

ni
m

ni•k
tQN5

tQN

~p1k!22p2 ~2p1k!m, ~94a!

n̂f
m5

nf
m

nf•k
QNt5~2p82k!m

QNt

~p82k!22p82 , ~94b!

p̂m5
ni

m

ni•k
tQN2

nf
m

nf•k
QNt. ~94c!

Whereas the isospin description of the nucleons is st
here, the last operator,p̂m, corresponds to a dynamic trea
ment in the sense that the pion’s isospin is obtained dire
only upon taking the divergence, i.e.,

kmp̂m5tQN2QNt5Qpt. ~95!

The reason for this is our present choice of taking b
nucleon variables as independent. If we had chose
nucleon and a pion momentum as independent, then the
spin descriptions of the pion would be analogous to
nucleons’ now and the isospin of the corresponding ot
nucleon would change in analogy to Eq.~94c!.

The result we have obtained here for the bare con
current Fm certainly is not the most general form one c
write down. One can add arbitrary transverse pieces to
current ~93! without affecting any of the gauge-invarianc
results. However, we would like to submit that it is the sim
plest, nontrivial form that satisfies the requirement of con
nuity equations that seems to govern every aspect ofgpN
physics. Moreover, since there does not yet exist a deta
ee
-
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h
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o-
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r

ct
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d

derivation of the bare hadron vertex from QCD, there is
tually no dynamical basis for going beyond the form pr
posed here.

The present expressions are reminiscent of Ohta’s@5# re-
sults for extended nucleons obtained by minimal substitut
and analytic continuation~see also@9#!. They are different,
however, in two important aspects. Since we formulate
vertex with arbitrary momenta not constrained by mome
tum conservation in terms of rays rather than analytic c
tinuation, we do not require the cutoff function at unphysic
values in the expressions for the current, which considera
simplifies practical applications. Furthermore, with o
choice of independent momenta, an explicit pion term is
sent; rather, the pion’s isospin is described entirely in ter
of nucleonic degrees of freedom. Overall, as shown by
form ~93b! of the contact current, with the operators defin
as in Eq.~94!, this has the advantage that one has a rat
clear interpretation of the underlying dynamical picture, w
just one form factor per leg, with the appropria
momentum-conserving variable dependence.

VI. DISCUSSION

We have presented here a complete and consistent
scription of the interactions of pions, nucleons, and photo
It should be pointed out here that the basic structure of
internal dynamical mechanisms for the pion photoproduct
amplitude obtained in Sec. III is the same as the one p
sented in the work of van Antwerpen and Afnan@8# ~who
used a different method of derivation!. As far as the final
results are concerned, the main difference is that these
thors employ an expansion in terms of the irreducibility
the contributing mechanisms which seeks to avoid non
earities in the final equations@see remarks before Eq.~3.30!
of @8##, whereas we consider these nonlinearities an esse
and unavoidable consequence of the nature of thepN and
gpN systems. At the same time, however, the high degre
nonlinearity of our equations presents the greatest prac
obstacle to a numerical solution. The nonlinearities occu
two stages. First, at the purely hadronic level, in the way
full solution X couples back into the driving termsU, as
described in Sec. II. Given the degree of sophistication
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wishes to achieve, there exist a number of obvious
straightforward ways to approximate the hadronic drivi
term U to render the equations manageable from a pract
point of view. Since this is not our main concern, we will n
enter a discussion here how this can be done in detail.
second stage at which nonlinearities come to bear is at
level of the electromagnetic interaction where the vario
pieces of the current exhibit a high degree of nonlinear
terdependence, as described in Sec. III. Again, in pract
calculations, one presumably needs to resort to some
proximations which—at least partially—linearize the pro
lem. The guiding principle for such approximations must
gauge invariance. In other words, acceptable approximat
of the currents should at the very least maintain gauge
variance.

A. Approximating currents

The considerations of the preceding two sections, S
IV and V, show that the gauge invariance of all physic
currents hinges on only one aspect of the formalism.
current contributions resulting from the photon entering
interior of the hadronic interaction region—be it propagato
vertices, or other transition elements—must satisfy conti
ity equations analogous to those for the vertex currentGm,
the exchange currentUm, or the bare currentFm. In general,
for every hadronic reaction mechanism described by an
eratorR, with an associated interaction current

Rm52$R%m, ~96!

the quantity

R̃5kmRm1RQ̂i2Q̂fR50 ~97!

must vanish~cf. Fig. 8!. Here,

Q̂f5(
xf

Q̂xf
~98!

and

Q̂i5(
xi

Q̂xi
~99!

are the respective total charge operators for the final
initial channels of the reaction, obtained by summing o
the individual charge operators of all outgoing or incomi
legs. We recall that the operatorQ̂x adds a photon momen
tum k to particle x; with all external momenta given, a
momentum variables ofR are therefore unambiguously de
fined in Eq.~97!. Note that Eq.~97! subsumes all continuity
equations considered so far, including the Ward-Takaha
identities@cf. Eq. ~47!#.

Following the procedure of the last section, Sec. V, co
cerning the bare current, we may cast the condition thaR̃
vanish in the form

R̃5RPQi2QfRP50, ~100!

which is simply charge conservation. Note that theQ’s here
have no caret, andP is the total momentum available for th
reaction mechanism. Without loss of generality, therefo
we may rewrite Eq.~97! as
d

al

he
he
s
-
al
p-

e
ns
n-

s.
l
ll
e
,
-

p-

d
r

hi

-

,

kmRm1~RQ̂i2RPQi !1~QfRP2Q̂fR!50. ~101!

For the purpose of gauge invariance, it suffices now to
proximate the full currentRm by

Rm→Rapprox
m 5(

xf

j c,xf

m 1(
xi

j c,xi

m , ~102!

where each ‘‘surface’’ currentj c,x
m satisfies an individual

continuity equation,

km j c,xf

m 1Qxf
RP2Q̂xf

R50, ~103a!

km j c,xi

m 1RQ̂xi
2RPQxi

50, ~103b!

which pertains only to a single charged leg of the reactio
Let us illustrate this procedure for the exchange curr

Um of Sec. IV B. One readily finds that the continuity equ
tions for the individual currentsj c

m for each of the four legs
of the driving termU for pN→pN are given by

km j c,Nf

m 1QNf
@UP~p8,p!2UP~p82k,p!#50,

~104a!

km j c,p f

m 1Qp f
@UP~p8,p!2UP~p8,p!#50, ~104b!

km j c,Ni

m 1@UP1k~p8,p1k!2UP~p8,p!#QNi
50,

~104c!

km j c,p i

m 1@UP1k~p8,p!2UP~p8,p!#Qp i
50. ~104d!

The independent momentum variables appearing here a
guments ofU are those of the nucleons and the subscriptP,
or P1k, denotes the total momentum available for the ha
ronic transitionU; one has

P1k5p1qp i
1k5p81qp f

, ~105!

where theqp’s are the~suppressed! dependent pion moment
of the exchange currentUP1k,P

m (k;p8,p). Again, as with the
bare current in Sec. V, we find that choosing the nucle
momenta and the total momentum as independent makes
of the pion-leg currents vanish, namely, Eq.~104b!. Follow-
ing the exact same procedure of Sec. V, we can there
approximateUm by the sum of four contact currents, one f
each incoming and outgoing leg,

Um→Uapprox
m 5 j c,Nf

m 1 j c,p f

m 1 j c,Ni

m 1 j c,p i

m , ~106!

with

j c,Nf

m 52
~2p82k!mQNf

~2p82k!•k
@UP~p8,p!2UP~p82k,p!#,

~107a!

j c,p f

m 50, ~107b!

j c,Ni

m 52@UP1k~p8,p1k!2UP~p8,p!#
QNi

~2p1k!m

~2p1k!•k
,

~107c!
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j c,p i

m 52@UP1k~p8,p!2UP~p8,p!#
Qp i

~2P22p1k!m

~2P22p1k!•k
.

~107d!

This result assumes a pseudoscalarpN coupling; for
pseudovector coupling, one might have additional terms
volving gm, similar to the findings of Sec. V. Note also th
in the sum~106!, we can rearrange the terms such that
three contributions containingUP(p8,p) provide a dynamic
description of the isospin of the final pion whose surfa
current j c,p f

m , Eq. ~107b!, vanishes here due to our choice

independent variables. The considerations for the bare
rent of the preceding section, Sec. V, regarding a dyna
isospin description for the pion thus carry over to the out
ing pion leg of the exchange current in complete analogy

The single-particle surface currents~107! are sufficient to
provide the same gauge condition as the exact exchange
rent Um,

kmUm5kmUapprox
m , ~108!

and thus allow one to preserve gauge invariance without h
ing to take into accountany of the complex mechanism
contributing toUm. One could, of course, go to a more s
phisticated~and more complicated! level of approximation
if, instead of forUm directly, one employed similar surfac
current approximations for the current ingredients that c
tribute toUm @cf. Eqs.~38!–~40!#. In other words, depending
on the hierarchical level of the reaction mechanism at wh
one employs the approximation scheme presented here
has complete control over the degree of sophistication w
out ever sacrificing gauge invariance.

B. Summary

Despite the fact that the nonlinear formalism presen
here is extremely complex in its full implementation, it
quite simple as far as its general structure is concerned
we hope to have made clear, it lends itself immediately
approximations which can be as cursorily or as detailed
desired. Following the general procedure outlined abo
gauge invariance is never at issue, since the exact ga
condition can always be turned into a set of single-part
‘‘surface’’ continuity equations for all charged particles e
tering or leaving the interaction region. It is obvious that th
will remain true even if applied to other mechanisms,
example, eta photoproduction, since they can be treate
complete analogy to the present formalism.

Furthermore, it is equally obvious that the present pho
production formalism also carries over to larger hadro
systems since formally every many-body~or even infinite-
body! problem can be turned into an effective scatter
problem similar in structure to Fig. 1~c! with all complicated
subsystem reaction mechanisms subsumed into a dri
term not unlike the structure found forU here ~see Fig. 2!
@18#. The gauge conditions for this larger hadronic syste
therefore, look similar to what we have found here forpN,
and the same type of approximations will allow one to p
serve gauge invariance.

In summary, the formalism developed here provides
only a detailed dynamical picture of all contributing reacti
-
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mechanisms but at the same time suggests a consisten
proximation scheme that allows one to ensure the gauge
variance of the final result. At whatever level of the reacti
dynamics one chooses to employ this scheme, the requ
pieces involve only purely hadronic contributions, with th
photon’s effect on the system being described simply by
change brought about in the hadronic reaction by feeding
extra photon momentum through the interaction region
otherwise leaving the hadronic mechanisms undisturb
This provides an intuitively appealing and practically eas
manageable way of maintaining gauge invariance for all
teractions of photons with hadrons.
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APPENDIX: GAUGE DERIVATIVE
AND CURRENTS DEFINED

The connected part of then-point Green’s function of a
hadronic transition described by an amplitudeTP , with m
incoming andn2m outgoing hadrons is given schematical
as

GT5@ t f 1
t f 2

••• t f n2m
#PTP@ t i 1

t i 2
••• t i m

#P , ~A1!

where @ t i 1
t i 2

•••t i m
#P and @ t f 1

t f 2
•••t f n2m

#P are the products
of propagators of all initial and final hadron legs, respe
tively, of the process; the indexP signifies the total momen
tum. Gauging the momenta appearing inGT according to the
minimal-substitution rule,

pm→pm2QAm, ~A2!

the resulting Green’s function, denoted symbolically
GT,A , to first order in the electromagnetic fieldAm,
becomes6

GT,A→GT1@ t f 1
t f 2

••• t f n2m
#P1kMTP1k,P

m @ t i 1
t i 2

••• t i m
#PAm ,

~A3!

wherek is the momentum of the photon, andMTP1k,P

m the

electromagnetic current associated with the hadronic tra
tion TP . This result amounts to defining the current as

MTP1k,P

m 5@ t f 1
t f 2

••• t f n2m
#P1k

21 F d

dAm
GT,AG

Am50

3@ t i 1
t i 2

••• t i m
#P

21 . ~A4!

In other words, currents are described by a Lehma
Symanzik-Zimmermann-type reduction procedure@15,19#.

6This is merely a sketch of the procedure and of course not to
taken as a rigorous derivation.
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We would like to introduce an operation which achiev
the same result yet is very simple to use. Replacing the fu
tional derivative in Eq.~A4! by

F d

dAm
GT,AG

Am50

→2$GT%m, ~A5!

i.e.,

MTP1k,P

m 52@ t f 1
t f 2

••• t f n2m
#P1k

21 $@ t f 1
t f 2

••• t f n2m
#P

3TP@ t i 1
t i 2

••• t i m
#P%m@ t i 1

t i 2
••• t i m

#P
21 , ~A6!

we introduce an operation which we call a ‘‘gauge deriv
tive,’’ denoted by the symbol$•••%m. It acts on the total-
momentum operator of the particular subsystem to which
photon attaches itself and is defined by the following rule

Rule 0: $•••%m is a linear operation, i.e., witha, b being
numbers,

$aA1bB%m5a$A%m1b$B%m, ~A7!

and its action on a constant produces a zero,

$const%m50 ~A8!

~because such an entity cannot absorb the photon’s mom
tum!.

Rule 1: The action on a momentum componentpn pro-
duces the charge operatorQ for the particle or system car
rying momentump multiplied by the metric tensor,

$pn%m5Qgmn. ~A9!

The origin of this rule is the functional derivative of th
minimal substitution~A2!, i.e.,

$pn%m[2
d

dAm
~pn2QAn!5Qgmn, ~A10!

which is the reason for calling$•••%m a gauge derivative
~Note that this is the only place where the particular nature
the electromagnetic field enters the rules. Other types
gauge fields would produce a different result here.!

Rule 2: Any momentum-conserving delta function val
for all parts within the gauge-derivative braces$•••%m must
be taken outside the braces and replaced by one where
total initial momentump is shifted by the photon momentum
k, i.e.,

$d~p82p!B~p8!A~p!%m5d~p82p2k!$B~p8!A~p!%m.
~A11!

In many instances, there will only be an implicit delta fun
tion because all terms are already written taking into acco
momentum conservation. For such cases, the result mu
taken to have an overall implicit delta function with shifte
momenta.~Formally, however, one is on safer grounds if o
writes out all delta functions explicitly and then remov
them after having taken the gauge derivatives.!

Rule 3:
c-

-

e
.

n-

f
of

the

nt
be

$B~p!A~p!%m5B~p1k!$A~p!%m1$B~p!%mA~p!.
~A12!

The physical background for this rule is that if the phot
attaches itself to a process described by two successive
ronic subprocessesA and B depending on the same~con-
served! total four-momentump, one can break up the de
scription by attaching it first to subprocessA and then toB.
In the first case, however, the total four-momentum availa
for processB has changed by the momentumk of the pho-
ton. Note that this is an example where there is an impl
delta function relating the momentum arguments ofB andA.

Rule 4: If there is a branch in a hadronic reaction whe
schematically

A~p!→B~p8!1C~q!,

with p5p81q andG(q,p8,p) describing the transition, this
rule states that

$B~p8!C~q!G~q,p8,p!d0A~p!%m

5dk$B~p8!C~q!G~q,p8,p!A~p!%m

5dkB~p8!C~q!G~q,p8,p1k!$A~p!%m

1dkB~p8!C~q!$G~q,p8,p!%mA~p!

1dkB~p8!$C~q2k!%mG~q2k,p8,p!A~p!

1dk$B~p82k!%mC~q!G~q,p82k,p!A~p!,

~A13!

whered05d(p2p82q) anddk5d(p1k2p82q) abbrevi-
ate the delta functions. The branching occurs in the last
terms where in the first theC-branch is gauged and in th
second theB-branch. This rule follows from momentum con
servation at the vertexG(q,p8,p) and from the fact that the
external momenta are fixed already; it takes care also of l
processesA→B1C→D. Note thatB(p8) andC(q) are in-
dependent reaction mechanisms after the branching, tied
gether only by momentum conservation; in other words, th
correspond to a convolutionB+C similar toG05S+D of Eq.
~17!.

Having established the rules, the currentJm for a nucleon
is given via gauging the nucleon propagatorS ~which is the
appropriate two-point Green’s function for this case! and am-
putating the propagators of external legs according to
~A6!, i.e.,

Jm~p1k,p!52S21~p1k!$S~p!%mS21~p!. ~A14!

Because of$SS21%m5$1%m50 and rule 3, we have

Jm~p1k,p!5$S21~p!%m ~A15!

as the general definition of the nucleon current opera
Similarly for the pion,

Jp
m~q1k,q!5$D21~q!%m. ~A16!

For the example of bare propagators, one then reproduce
expected results for both the nucleon and the pion, i.e.,
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J0
m~p1k,p!5$S0

21~p!%m5$p” 2m%m5$p” %m

5~p1k!n$gn%
m1$pn%mgn5QNgm,

~A17!

and

Jp0
m ~q1k,q!5$D0

21~q!%m5$q22mp
2 %m5$q2%m

5~q1k!n$qn%
m1$qn%mqn

5Qp~2q1k!m, ~A18!

QN andQp are the respective charge operators.
For the pion-production currentMm for a nucleon with

momentump going into a nucleon and a pion with tota
momentump1k upon absorbing a photon with momentu
k, the definition~A6! then yields

Mm~p1k,p!52G0
21~p1k!$G0~p!G~p!S~p!%mS21~p!,

~A19!

where the quantity in the gauge-derivative braces is
three-point Green’s function forN→N1p, with G being the
dressed vertex of Eq.~26!. We have exhibited here only th
total momentum of the system; the details are to be foun
Sec. III.
e

in

This completes the definitions of the gauge derivative a
the currents. Let us add a note of caution here. The ga
derivative is based on the assumption that the quantitie
acts on are physically meaningful in the sense that they
be broken down into their reaction-dynamical content.
application, therefore, does not seem to be warranted w
this is no longer possible. An example of this is the applic
tion to the bare vertexF of Eq. ~14!,

Fm~k;p8,p!52$F~p8,p!%m. ~A20!

SinceF(p8,p) is an~at this stage largely ambiguous! param-
etrization of the unsolved underlying QCD dynamics, it is
our opinion not very meaningful to apply the procedure
the functional form ofF(p8,p). This is quite different from
the corresponding quantity of the dressed vertex@cf. Eq. ~32!
and Fig. 5#,

Gm~k;p8,p!52$G~p8,p!%m, ~A21!

which is based on the detailed dynamical picture develo
here.

Finally, since it is required in Secs. III and IV, let us loo
at letting$•••%m act on thepN propagatorG05D+S,
t

2$G0~p1q!%m52$D~q!%m+S~p!2D~q!+$S~p!%m

5@D~q1k!$D21~q!%mD~q!#+S~p!1@S~p1k!$S21~p!%mS~p!#+D~q!

5@D~q1k!Jp
m~q1k,q!D~q!#+S~p!1@S~p1k!Jm~p1k,p!S~p!#+D~q!

5G0~p1q1k!gm~k;p,q!G0~p1q!, ~A22!

wherep1q andp1q1k are the total initial and final hadronic four-momenta;G0gmG0 in the last step is only a convenien
shorthand notation defined by the preceding expression. If one removes the left-hand sideG0 from G0gmG0 , one has

gm~k;p,q!G0~p1q!5@Jp
m~q1k,q!D~q!#+1N1@Jm~p1k,p!S~p!#+1p , ~A23!

with 1N and1p denoting momentum conservation for the respective particles, and hence

gm~k;p,q!5Jp
m~q1k,q!+S21~p!1Jm~p1k,p!+D21~q!. ~A24!
t
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