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Antisymmetrized molecular dynamics plus Hartree-Fock model and its application to Be isotopes
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In order to study light unstable nuclei systematically, we propose a new method, the antisymmetrized
molecular dynamics plus Hartree-Fo@kMD +HF) method. This method introduces the concept of the single
particle orbits into the usual AMD. Applying the AMBHF method to Be isotopes, it is found that the
calculated lowest intrinsic states with plus and minus parities have rather good correspondence with the
explanation by the two-center shell model. In addition, by active use of the single particle orbits extracted from
the AMD wave function, we construct the first excited 8tate of1%Be. The obtained state appears in the
vicinity of the lowest I state. This result is consistent with the experimental d&8556-28137)04510-X]

PACS numbe(s): 21.10.Pc, 02.70.Ns, 21.66n, 27.20+n

[. INTRODUCTION this model, and when the last neutron is put in the levels of
O™=2" (a level), 37 (B level), andi™ (y level), J™ be-

For the study of the structure of light unstable nucleicomess~, 3, and3 ", respectively. HereZ, is the eccen-
which are and have been extensively studied experimentalliricity parameter, namely, the distance between two centers
by the use of radioactive bearfik—3], various theorie§4—  in Fig. 1. 1°Be is known to have two rotational bands which
20] have been use®1,22. Among those theories, the anti- have bandhead states withi=0" and 1". In the same way
symmetrized molecular dynami¢&MD) approach has al- as above, the four neutrons are put in order from the lowest
ready proved to be useful and succes$f28]. One of the level at aboutZ,=3 fm, and when the configurations
major merits of the AMD approach is that it does notrely ongf  the Jast two neutrons are[Q"=2"12 and
any model assumptions such as axial symmetry of the defor[—QW: 3-1Q7=1*]1 J7 becomes 0 and I, respec-

mation, existence of clustering, and so on. : .14 .
Until now this AMD approach has not explicitly utilized tvely- Here we note that th@”=3" level is the halo level
hich appeared irt'Be.

the concept of single particle motion in the mean field. The"’ . . .
experimental data, however, show that very often we can get |"€S€ arguments show that by using the single particle
a better understanding of the structure of unstable nuclei iRTPItS and by constructing the excited state by particle-hole

terms of single particle motion in the mean field. In order to€XCitation we can study the structure of Be isotopes system-
see this point in more detail, we here discuss briefly some

features of Be isotopes as an example. In Be isotopes there is s1p

the famous problem that the ground st&tBe has an anoma-

lous parity. According to the usual shell model, its spin par- ds2 pl2
ity should bej ~. But in experiments it ig*. An answer to [MeV] P32
this problem is that due to the deformation B&=3" level 20

in thesd shell comes down below the upp@f =3~ and the A {level

last neutron occupies the lower€lf=3%". Be is also fa-

mous as a halo nucleus. Since the lowered orbit contains an
s-orbit component, we can understand that the halo property P32
is due to the long tail of the orbit. For the convenience of 15
later discussion we call this loweréd™= 3 * level the “halo
level.”

In order to discuss other Be isotopes thdBe, we use
the single-particle diagram by the two-center shell model
[18—-20, which is shown in Fig. 124]. According to the 10 5112
AMD calculation for Be isotopes, we can support the idea L L 1 1 1 1 1 1 |

. . . 0 1 2 3 4 5 6 7 8 zifm

that Be isotopes have the core part with an approximate
dumbbell structure of twar clusters, which IS the reason  fig 1. The complete neutron level scheme of the two-center
why we use the two-center shell modéBe is known t0  spell model as a function of the eccentricity param&gr On the
have three rotational bands which have bandhead states Wifiinate at the left are given the spherical shell model states of the
J7=3", 37, and;*. We can explain these three bands in original nucleus together with the energy scale, while on the right-
the two-center shell model as follows. We put the four neu-hand side the quantum numbers of the spherical shell model states
trons in order from the lowest level at abafg=2.5 fm in  in the fragment nuclei are seen. This figure is quoted ffadj.
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atically. Therefore we recognize the importance of single 2\ 34 za\ 2
i - , i

particle motion in the mean field. <r|¢’i>:(_) > cf exr{ - V( r- —) |Bi),

In this paper we propose the AMEHartree-FocKAMD @ 1
+HF) method which introduces the concept of single par-
ticle orbits into the usual AMD. We extract the component of
the mean field from the AMD wave function. Once we getwhere|8;) is the spin-isospin function. In the AMBHF
the single particle wave functions in the mean field, we carinethod, the single particle wave function is in general a
study the structure of the excited states by constructing variinear combination of several Gaussians in order to describe
ous particle-hole configurations. When we need an elaboraf@e single particle state more adequately than the usual AMD
description of single particle motion like in the case of neu-method. However, in this paper we represented the single
tron halo phenomena, we need to improve the AMD singleparticle state by a single Gaussian wave packet for simplic-
particle wave function in such a way that we adopt the suity. |®) is projected to parity eigenstaté® ) and the en-
perposition of several Gaussians instead of the single Gaus§rgy variation is made after parity projection:
ian wave packet in the usual AMD.

This paper is composed of six sections. In Sec. Il we
explain the formalism of the AMB-HF method. In Sec. IlI .1
we show the single particle levels of the ground states of Be |P=)= Eﬂ‘miﬂ@)]-
isotopes which are calculated with the AMIPIF method. In
Sec. IV we show the single particle levels obtained with the
AMD +HF method as a function of the deformation param- 2. Cooling equation with constraint
eter. In Sec. V, based on the motivation of the AMBF
method, which means active use of the single particle level
we construct the first plus-parity excited state ‘9Be by
putting two neutrons into the halo level and study it. And
Sec. VI contains a discussion and summary.

As mentioned above, the wave function is parametrized
s‘t:)y {C{*,Z{"}. These parameters are determined by solving
the cooling equation

I )U Iﬁ * Bt}

1. Hamiltonian and wave function

In this paper, we used the Hamiltonian and wave function _ (®|H[P7)
as described below. The Hamiltonian has the form: (D*| D) '
H :-’I\-+\A/C+\,\/LS_:|\—G .
i oA a . o Here {X;} means{C",Z{"}, \ is an arbitrary real number,
HereT, V¢, Vs, andTg stand for the kinetic energy, the and 4 is a negative arbitrary number. We can easily prove

central force, theLS force, and the center-of-mass kinetic that the energy of the total system decreases with time,
energy, respectively. We neglected the Coulomb force. We

used the Volkov No. 1 forcf25] as the central force and the
G3RS force[26] for the LS force. These forces have the

d
forms &H< 0.

f/f%E (W+bP,+hP,—mP,P )[Vee i /®’
] We often need to obtain the minimum-energy state under
ERP some condition. For example, the condition is that the center-

+Vae AT, of-mass be fixed to the coordinate origin or that the defor-

mation parameter be fixed to some value, etc. In such a case,

\A/LS:EE VLS[e*(Fii IrisR?— o= (fj /rLSA>2] the condition is combined with the cooling equation by anal-
277 ogy with the Lagrange-multiplier method. When the condi-
o tion is represented ag/\(X{",X{*)=0, the previous cooling
XP(PO)Lij(5+S), equation is changed,

wherem=0.56,w=1-m, b=h=0, Vg=144.86 MeV,V,

= —83.34 MeV,r=0.82 fm,r,=1.6 fm, V, s=900 MeV, _ o aw
r sg=0.20 fm, andr s,=0.36 fm.P(30) is the projection Xi=()\+i,u)? ~+n—| andcc, (1)
operator onto the triplet odd state. | 9X; X

The wave function of total system is expressed by a Slater
determinant
where 7 is a Lagrange-multiplier function, which is deter-
|©)=def|¢i(}))], mined by @/dt)W=0,
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From this equation we get

__]-'
7m7g

(1 )aw IH (1 ,)\)aw oH
i i~ 270
IXj gx* m] gxF X

W aWw
g= 22 ‘?X| (7)(*'

Herex, y, andz directions are the directions of the principal
axes of inertia which are the coordinate axes of the body-
fixed frame. We can easily confirm that this definition of the
deformation parameter is the same as that of the Bohr model
to first order. Here the expectation value of every operator is
calculated with the intrinsic wave function before parity pro-
jection. In addition(x?), (y?), and(z?) is redefined so that
(z%)=(y?)=(x?). We must note the fact that in this defini-
tion thez axis is not always the axial symmetric axis of the
system. In the case of prolate deformation, thaxis deter-
mined by this definition is certainly the axial symmetric axis,
while in the case of oblate deformation it is not the axial
symmetric axis.

When we execute the cooling calculation with a deforma-
tion constraint, it consumes time that in every step of the
cooling we calculate the inertial axes to determine the defor-
mation parameters. Therefore we use rotational invariant sca-
lar quantities for calculating the deformation parameters so
as to avoid the time-consuming procedure. We define the
tensor quantityQ in any coordinate system as

QIJ :<rirj>,

wherei andj arex, y, andz. Then calculating the trace of
the tensor®) andQQ, we get the rotational invariant quan-
tities TrQ and TIQQ. Since calculating these quantities in

One may think that this method is applied only to the casgne space-fixed frame is identical to that in the body-fixed
where the number of conditions is 1. But we can use it alsgrame. we obtain the relations

in the case where several conditions exist. When several con-

ditions are represented as

W]_:O,WZZO, e ,Wn:O,

these conditions can be represented by a single equation

W= Cl|W1|2+ "+Cn|Wn|2=0-

Herec,—c, are positive coefficients which adjust the differ-
ence of scale betweaV; ,W,, ... W,. In this way, we
can always use Eql) without introducing several Lagrange

multipliers.

3. Deformation parameter

The deformation parameteB(y) can be obtained from

the relations

<X2>l/2 % 2m
STrEREYE \FB °°S(“

R G p[ 5 2w

SRRy e \/;B C“( 3)

<22>1/2
M Loy "[\fﬂ o

where

(@] (1A) D x| )

(x?)= @D , etc.

_ _ 2
TrQspace fixed T"Qbody fixed™ Z () body fixed
I

=[N, A7

15 2,
477"8

~L0A) A 3+
TrQQspacefixed_’TrQQbodyfixed:Ei: <ri2>godyfixed
=[Ny )N(2)17 A

=[O N

3+ o 24+
-k

Using these quantities, we defileas

TrQQ
(TrQ)?

in the space-fixed frame.

Then we can calculate the deformation paramgters

_ 2
B= \/?(3D—l).

Thus we can obtai8 without using the inertial axes. This
approximation is enough correct to second ordeg pivhich
in the ordinary case is less than unity.
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When we impose the constraint thatis fixed to some 1
Bo, We useD and D, corresponding tg3 and 8, in the =2 gblf)=2 gb| =2 cfle)
cooling calculation. The constraint condition functia¥y is « “« VM
given as 1
- p cIlo ).
WD:(D_D())Z- EI |:§ ga ,_Iu,a i |(PI>
B. Single particle orbits described by the AMD method We call such single particle orbifgp)}, and energiege®}
o ) _ AMD-HF orbits and energies, respectively, since they are
1. Method of calculating single particle orbits extracted from the AMD wave function.

As mentioned in the Introduction, we need to calculate the Here we should note that these orbits and energies of the
single particle orbits. We calculate them by the methodAMD-HF method are not totally equivalent to those of the
shown below. This method extracts the single particle orbitdiartree-Fock method. The reason is as below. In the AMD
from the AMD wave function by mimicking Hartree-Fock +HF method, the Hartree-Fock equation is solved only
theory. within the functional space of single particle wave functions

In the Hartree-Fock method, the matrix elemenhfsof ~ which is spanned bye;}. Thus in the AMD+HF method
the single particle Hamiltonian in the orthonormal basethe Hartree-Fock self-consistency is satisfied only within this
{|#i)} are given as restricted functional space. We can regard the ANMF

method as being a kind of restricted Hartree-Fock method.
- - However, this restriction has a large merit because the func-
hij:<¢i|t|¢j>+2k (didulv(|djdi) —dxed))). tional space spanned by the single particle wave functions
{¢;} is obtained by the energy variation including parity pro-
By diagonalizing thish;;, we obtain the set of the single jection.
particle wave functions and the single particle energies. Now
we construct Hartree-Fock-like single particle orbits and lev- 2. ldentification of AMD-HF orbits
els from the total wave function of the AMD method. The e need to identify the AMD-HF orbitp) defined in the
single particle wave function§p;} of the AMD method are  previous section. As most nuclei seem to have an axially
not orthonormal. So first we construct the orthonormal bas@ymmetric deformation approximately, we expect thatzhe
by ”.‘ak'”g a linear co_mblnatlon ¢tpi}. We calculate th_e set component of the total angular momentu}g, is approxi-
of eigenvalues and eigenvectors of the overlap m&ltix  ately a good quantum number, but that the magnitude of it,

j2, is not. In addition, when the states that have the same

2 Bijci'=n"c", absolute value of, are degenerate, the expectation value of
. i, does not give us useful information. Therefore we use the
Bij=(¢il#j)- square ofj, and |2, so as to avoid this difficulty. For ex-

ample, let us consider the std{) which includes|j,=m)
The eigenvectorgc’} are normalized. We define the new and|j,=—m) as

base{|f*)} as
1

[p)= ——=—==5[Im)+c|-m)].
t=—==3 cilep. VLFfer?
The expectation value gf, is
We can confirm easily that this set forms an orthonormal
base. R 1-|c|?
Using this bas¢f®) we construct the matrigh,,z} corre- (plizp)=m

-
sponding to the single particle Hamiltonian of the Hartree- 1+]c|

Fock method as follows: R
On the other hand, the expectation valug i)fs

haB:<fa|t|fB>+27 <fafy|v(|fﬂfy>_|fyf,8>)' <p|]§|p>:m2'
Diagonalizing this matrixh, s}, we calculate the eigenval- from which we can identifym certainly.
ues{e”} and eigenvector§g®}, By the way, this identification is done on the body-fixed
frame as noticed in Sec. Il A 3. Here we calculate the inertial
2 h o qP— PgP axes explicitly by diagonalizing the tensQ;, which was
> ap9p= € 0u- introduced in Sec. Il A 3. We choose thexis of the body-
fixed frame to the direction of th®3"2°®s eigenvector which
The eigenvector§gP} are normalized. The single particle has the largest eigenvalue. He@&™**represent<Q calcu-
wave function|p) belonging to the single particle energy  lated in thAe space—flxed frame. Using the eigenvectpwe
is given as can relatgsPaandj*°% as follows:
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Jfbody: Cq_j“spac? follows: The single particle orbitAMD-HF orbit) extracted
q from the AMD wave function is the parity-mixing state. And

wherejsPaceandj®°% are the total angular momentum opera- the'last twol neutrons are degenerate in that state. An expla-
nation of this phenomenon in terms of the two-center shell

tor in the space-fixed frame and that in the body-fixed frame, ) )
respectively. Thus the squajg in the body-fixed frame is Mmodel is as follows. At some distance between w@ar-
represented using the quantities in the space-fixed frame ticles, the levels)=3 and =3, coming from (3, and
0ds),, respectively, approach each other. As a result, these
levels are mixed, and then we see the only one level in which
two levels are mixed. Here we investigate the percentage of
parity mixing in the last AMD-HF orbit of neutrons. This

In addition, we use also the square of the orbital angulanMD-HF level, which is represented 4), can be written
momentumi?, which is not a good quantum number. This as
enables us to relate the obtained levels to the levels which
would be obtained if the shape were spherical.

<p|j§|p>bodyfixed:% CiZCjZ<p|]\i]j|p>spacefixed

[f)=eil+)+el-),

Ill. AMD-HF ORBITS IN Be ISOTOPES 6%‘" e%: 1,

In this section we show the results about AMD-HF orbits - . .
of the ground states that are obtained by the AMD methodVhere|+) and|—) indicate plus- and minus-parity compo-
Here AMD single particle wave functions are composed of '€NtS, respectively. Using the operafomhich reverses the
the single Gaussians. parity, we calculate the following quantit:

In Table I, the AMD-HF levels are giver? and L? ,
indicate the expectation values of the operafdrsand i2, A=(f|P|f)=€1— €.
respectively, which are obtained by the method mentioned in
Sec. Il B 2.8 and BE are the deformation parameter and theThen we obtain the ratio as follows:
binding energy, respectively. We explain some results, about
°Be, 1%Be, and'Be, that look interesting. Then we com- 1+A
pare these with the simple model — the two-center shell 6%7, &= -
model — to help our understanding.

A %Be Calculated results are2=0.60 ande5=0.40. As we ex-
pected this level is a state with large parity mixing.

In the minus-parity AMD state ofBe, (2 of the highest
level of neutrons is 1.260, which is not equal to any of
0.29=(3)?], 2.25=(2)?], etc. This means the deforma- _
tion is not axial symmetric. But2=2.995 implies that this " the calculated plus-parity state 5Be, the last neutron

¢ . o 2 .
level contains a rather large amount of the,@ component. ~ 0Ccupies what we cali the “halo level.£2°=0.25 of this
In the plus-parity state, the last neutron is in the level oflevel meand)=3 andL“=4.463 of this level means that this

Q=1 In additionL2 of this level is 4.884. As this value is V€l contains a large component al,. We think that this

2 L ' . result is similar to that of the two-center shell model with a
rather large, we can suppose that this level consists largely ?ﬁedium distance between twa particles. The obtained
ad orbit. In the two-center shell model given in Fig. 1, the value of the deformation parametge=0 504 which is me-
plus-parity level named the level in Fig. 1 comes down in o

. . dium, is consistent with the medium interdistance in the
energy when the distance between two alpha clusters is Iargﬁvo-center shell model
This is consistent with our result because the deformation™ |, " ™o calculated minus-parity state’Be, we

parameters obtained with the AMD method for the plus- do not find so good a similarity between the AMBIF and

parity state is 0.801, which is very large. two-center shell models. A8=0.271 is rather small, we try
B, 108 to compare the obtained result to that of the two-center shell
- b€ model with a small inte distance. In that case, the last
The calculated plus-parity state 41Be has a good corre- neutron should be put into the level named ghievel in Fig.
spondence with the two-center shell model, if we think ourl which hasQ =3 and comes from Py, in the spherical
highest level of neutrons corresponds to the level named thease. But according to AMBHF calculations()? of the last
« level in Fig. 1 which comes fronj,=3 of Op,, in the  neutron level is 1.314, which means titis not 3.
spherical case. By the way, there is the famous problemitBe, which is
But on the other hand, the minus-parity state does nothat the parity of the ground state is not minus but plus. In
have a similarity with the two-center shell model. The mostthis calculation, we have not succeeded in reproducing this
surprising point is that only three single-particle energies ofanomalous parity just like the previous AMD calculation of
neutrons appeared in our calculation. In the two-center sheRef. [23]. We think that this failure comes from an insuffi-
model every single particle level is the eigenstate of paritycient description of the single particle orbits in the present
So in the model four single-particle energies should appearcalculation where we have assigned only one Gaussian for
The explanation of this result by the AMEHF method is as one nucleon.

C. "Be
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TABLE I. Single particle(s.p) levels of the ground state of each nucleus. “B.E.” ang™are the
binding energy and the deformation parameter, respectively. “Occ.” indicates the occupation humber of the
level. “Plus” indicates the percentage of plus-parity component. The units of the binding energies and the
single particle energies are MeV. We regard two levels as the same level whose energy difference is less than
100 keV. In such a case, the difference(d? and|? is about 0.01.

5Be(+) BE=—21.26 3=0.437

s.p. energy 0?2 12 Occ. Plus
Proton
—2.48 0.250 2.077 2 7.4
—24.47 0.250 0.118 2 96.0
Neutron
—29.51 0.250 0.148 2 93.1
"Be(—) BE=—230.483=0.566
S.p. energy 0?2 12 Occ. Plus
Proton
—11.04 0.250 2.083 2 5.1
—28.88 0.250 0.219 2 96.5
Neutron
-11.15 0.250 2.059 1 4.3
—28.87 0.250 0.224 1 96.5
—32.04 0.250 0.440 1 82.2
8Be(+) BE=—48.008=0.656
S.p. energy 0?2 12 Occ. Plus
Proton
—18.99 0.250 2.189 1 2.3
—19.58 0.250 2.127 1 0.2
—34.69 0.250 0.345 2 100.0
Neutron
—18.87 0.250 2.203 1 2.7
—19.55 0.250 2.131 1 0.3
—34.69 0.250 0.345 2 99.7
%Be(—) BE=—46.968=0.521
S.p. energy 0?2 12 Occ. Plus
Proton
-21.82 0.249 2.098 2 0.7
—39.03 0.250 0.231 2 99.7
Neutron
+1.56 1.260 2.996 1 21.8
—18.18 0.269 2.147 1 2.8
-21.82 0.249 2.098 1 0.7
—33.70 0.256 0.297 1 99.1
—39.03 0.249 0.230 1 99.7
%Be(+) BE=—42.973=0.801
s.p. energy 0?2 12 Occ. Plus
Proton
—22.48 0.250 2.287 2 3.1
—35.04 0.250 0.494 2 99.6
Neutron
+6.79 0.250 4.885 1 79.8
—18.07 0.250 2.280 1 45
—22.37 0.250 2.320 1 4.1
—31.45 0.250 0.483 1 98.6
—35.06 0.250 0.475 1 99.4
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TABLE | (Continued.

19Be(+) BE=—53.113=0.381

s.p. energy 0?2 12 Occ. Plus
Proton
—23.00 0.254 2.049 2 0.5
—43.30 0.254 0.108 2 99.6
Neutron
—-7.47 1.241 2.487 2 12.7
—19.55 0.278 2.162 2 3.2
—-37.72 0.257 0.100 2 99.7
1%Be(—) BE=—44.953=0.637
s.p. energy 0?2 12 Occ. Plus
Proton
—24.65 0.250 2.106 2 0.0
—-39.75 0.250 0.304 2 100.0
Neutron
-3.41 0.667 3.387 2 59.4
—20.39 0.264 2.328 2 1.4
—35.23 0.254 0.270 2 99.7
1Be(+)BE=—47.258=0.505
s.p. energy 0?2 12 Occ. Plus
Proton
—25.97 0.250 2.089 2 1.9
—44.97 0.250 0.140 2 99.4
Neutron
+4.25 0.272 4.463 1 97.1
—-6.74 1.273 2.153 1 3.7
—8.84 1.253 2.543 1 12.3
—-17.75 0.250 2.327 1 2.5
—22.47 0.258 2.264 1 6.2
—35.43 0.252 0.147 1 99.8
—39.55 0.255 0.134 1 99.8
1Be(—) BE=—54.708=0.271
s.p. energy Q2 12 Occ. Plus
Proton
—24.97 0.250 2.034 2 1.2
—48.62 0.250 0.042 2 99.7
Neutron
—2.52 1.314 2.350 1 8.2
—-7.15 1.241 2.315 1 7.5
—10.75 1.388 2.311 1 7.4
—18.04 0.251 2.144 1 4.7
—21.55 0.259 2.115 1 2.9
—36.61 0.250 0.051 1 99.7
—42.60 0.253 0.035 1 100.0

IV. AMD-HF ORBITS
WITH CONSTRAINED DEFORMATION

1%B8e(—), and *'Be(—), which look interesting. We show
the diagram of the neutron’s AMD-HF levels dBe(-),
10Be(—), and *'Be(—) in Figs. 2a), 3(a), and 4a), respec-

In this section, we show the AMD-HF orbits at varioBs  tively. As the behavior of the highest level in each diagram
which look like Nilsson diagrams. The levels at eg@lare  looks especially interesting, we show the variatioriéfand
calculated by the method mentioned in Sec. Il A 2. As in theQ)? and the percentage of the plus-parity component of the
previous section, we show only the results abdBe(—), highest level in Figs. @), 3(b), and 4b). In addition as the
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Variation of L2 and Q2 and the percentage of the plus-parity com- Variation of L2 e_mdQ2 and the percentage of the plus-parity com-
ponent of the highest level.

ponent of the highest level.

second and third levels ih'Be(—) look interesting too, we can sed_2~2, O%~2, and the parity is 100% minus for the
highest level in Fig. ). And in Figs. 4c) and 4d), L2 is

4(d). Notice that the scale on the right hand-side is used forather large{)?~0.25, and the parity is about 90% plus for
the percentage of the plus-parity component.

show the same quantities about these levels in Figs.ahd

level, in Fig. Zb) we see that up t@=0.67 the last level
seems to b&|= 2 coming from o5, in spherical case. But

A. °Be(—)

the second and third levels. Therefore we can identify in this

region the highest level 46)| = $ coming from (g, and the
second and third levels a8 |= 3 coming from @ls, which

In Fig. 2(a) we can see the inversion or the crossing of theis the lowered halo level. Note that these two halo levels are
single particle levels like that appearing in the two-cente0t degenerate in this odd-neutron-number nuclétige.

shell model. When we trace the behavior of the last neutron’8Ut beyond3=0.8 the properties of the AMD-HF levels
change again. Especially in Fig(b} (the last neutrop the

plus-parity component increases dntlbecomes very large.

beyondB=0.67, its behavior changes apparently. Suddenly

L? becomes rather larg&)? becomes about 0.25, and the
percentage of the plus-parity component becomes abol
100%. Therefore we can recognize it as the lowered hali
level that is|Q2| =3 coming from @ls,. We notice that the

behaviors of the other levels than the highest level are als
changed beyon@=0.67 in Fig. Za), but thatL?, Q?, and

the percentage of the plus-parity component are not change
As the parity of the last neutron is almost plus beyghd

=0.67, the total intrinsic wave function is an almost plus-
parity state. Therefore the projection to the minus-parity stat

Energy(MeV)

is made by picking up the very small component of minus

parity.

parity component increases.

B. 1OBe(_)
In Fig. 3(@), we can see that the last neutron’s level re-
mains parity mixed even iB is changed. When we look at
the behavior of the quantum numbeésandL in Fig. 3(b),
we find that asB becomes largef(}| approaches and L
increases too. This result seems to indicate that this level he
two components, one beirj§|= 3 coming from @5, and
the other beindQ|=2 coming from (5,, and that as3
becomes larger the component|6¥| =3 increases. In addi-
tion, according to the parity-mixing ratio, this insight seems
to be correct, since a8 becomes larger the ratio of plus-
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FIG. 4. (a) Diagram of the AMD-HF levels of*'Be(—). (b)

We can see the tendency that the halo level, which is/ariation of L2 and? and the percentage of the plus-parity com-
ponent of the highest levelc) and (d) The same quantities db)
at 8=0.7-0.8 the tendency is prominent. In that region, wefor the second and third levels, respectively.

|Q| =3 coming from Qlg,, is lowered at larggd. Especially
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We can explain this phenomenon with the two-center shell
model as follows. The large deformation paramedesorre-
sponds to the large inter-distance in the two-center shell
model. As shown in Fig. 1, in such a case théevel andy
level approach very closely and are degenerate. In our calcus
lation the same phenomenon as the two-center shell mode3
seems to happen and then the component of the halo orbg
mixes into the highest level.

En

V. EXCITED POSITIVE PARITY BAND IN  1%Be
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The original AMD method does not have the concept of | loWestOF oo™ min -59.84 MeV at p=0.381

the single particle orbit in the mean field. However, we have 0 02 04 04 08 1B
confirmed in Secs. lll and IV that the AMD method contains
in it the mean fieldand its single particle orbitsin Secs. llI
and IV, we used the single particle orbits only for analyzing
the AMD wave function. In this section, we truly use the
single particle orbits by performing particle-hdle-h) exci-
tation for the ground state. Our idea is that if the AMD-HF
orbits are really meaningful, the description of excited states Though|+ ;) and|* ) are not the eigenstates of the total
by the particle-hole excitation should be meaningful. angular momentum, we can calculate the approximate ener-

Here we apply such p-h excitation for constructing thegies of the projected states as below. For a given intrinsic
first excited 0 state of 1%Be at 6.179 MeV which is just state|®), the approximate expression for the enekjyof
above the lowest 1 state at 5.960 Me\27]. One possible the projected state with angular momentuns
configuration for this 0 is that two neutrons occupy the halo
orbit, which is theQ2=3 level coming from @, in the
two-center shell model. So we want to confirm that the sec-
ond O constructed by such p-h excitation appears in the
vicinity of the lowest I as shown by the experiment.

According to the two-center shell model, the lowest
minus-parity state, which has the total angular momentum 1,
seems to have the configuration that each of the le¥#fs, In Fig. 5, we show the projected energies'tBe states as
=3~ from Opg, (a level) andQ)™=3" from Ods, (y leve)  functions of 8. According to Fig. 5, the minimum energy
which is the halo level, is occupied by one neutron. Thereand g8 of each state is
fore by raising up the neutron occupyifg™=3" to Q7
=1* the configuration becomé&$) ™= 1" ]2 which gives us
the first excited plus-parity state having the total angular mo-
mentum O.

But according to the AMD-HF calculation of the lowest
minus-parity state, we do not have good paft§f=32~ and
Q7=3" levels but one parity-mixing level. In addition, the Therefore we can see that the first excitéddlate appears in
levels except this one are eigenstates of parity. Therefore ifhe vicinity of the lowest I state with a small energy dif-
this case we can easily make the first excited plus-parity stat@rence of 1.95 MeV.
from the lowest minus-parity state only by projecting out  As mentioned previously, the AMD wave functions of Be
from the intrinsic state of the lowest minus-parity state the’lsotopes have a core part with an approximate dumbbell
plus-parity state: i.e., when the lowest minus-parity stateé;rycture of two alpha clusters. Therefore the interalpha dis-
| —¢) is represented with its intrinsic sta®;,;) as tance is also useful as a measure of the deformation of Be
isotopes. The above three valuegofor 0 , 17, and G in
10Be correspond to the interalpha distance, 1.99 fm, 2.66 fm,

FIG. 5. Projected energies dfBe states as functions ¢f.
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lowest 0': —59.84 MeV at3=0.381,
lowest 1': —51.90 MeV atB3=0.637,

second 0:—49.95 MeV at3=0.852.

1
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the first excited plus-parity state- 1) is formed as

1

D=7

[|q)int>+P|q)int>]-

and 3.55 fm, respectively.

VI. SUMMARY AND DISCUSSION

In this paper we have proposed a new theoretical method
for the study of nuclear structure, which we have called the
AMD +Hartree-Fock methodAMD +HF). The purpose of
introducing this new method is to develop the AMD ap-

But this |+1) may not be orthogonal to the lowest plus- proach by incorporating into it the concept of single particle
parity statg + ) whose value of3 is 0.381. In order to avoid motion in the mean field. The new method consists of the
the mixing of this lowest plus-parity state, we orthogonalizefollowing two steps. In the first step we construct the AMD

|+1) to|+4) as below: wave function by using the usual AMD method. Then in the
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next step we extract the physical single particle motion in theulate the Hartree-Fock-type single particle Hamiltonian by
mean field which is contained in the AMD wave function. the use of a density matrix. We will discuss this generaliza-
This is done by diagonalizing the Hartree-Fock Hamiltoniantion elsewhere.
in the functional space spanned by the single particle wave As was pointed out in previous papers, the AMD method
functions which constitute the AMD wave function. In this which adopts a single Gaussian wave packet for the single
paper, for the sake of simplicity, we represented the AMDparticle wave function is not suitable for the description of
single particle wave function by a single Gaussian wavehe long tails of the neutron halo orbits. For halo phenomena
packet. But for a better description of single particle motionwe have to adopt a superposition of Gaussian wave packets
we had better to represent the AMD single particle wavefor the single particle wave function. However, to represent
function by the superposition of Gaussian wave packetsall the single particle wave functions by the superposition of
Once we obtain the physical single particle wave functions irmany Gaussian wave packets means a very heavy computa-
the mean field, we can utilize them for many purposes. Firstional work. One of the aims of the AMBHF method is to
we can use them for understanding the physical situation ofake a more adequate description of the long tails of neutron
the ground statéor the ground rotational band stated the  halo orbits than the ordinary AMD method. By using the
system which the AMD wave function describes. Second weAMD +HF method we can identify the least-bound neutron
can use them for constructing the wave functions for theorbits which correspond to neutron halo orbits. What is nec-
excited states of the system by constituting the particle-hol€ssary for us is to improve the single particle wave functions
configurations. The latter way of utilizing the physical single only for these least-bound neutron orbits. Thus we expect
particle wave functions in the mean field is beyond the scopéhat the AMD+HF method will enable us to treat neutron
of the ordinary AMD approach. halo orbits in a more efficient way than the usual AMD
The AMD+HF method is applicable for any nuclei, but it method. We will discuss this problem elsewhere.
is expected to be especially useful for the study of unstable Generally speaking, the deformation of excited states is
nuclei. The reason is as follows. The original AMD methoddifferent from that of the ground state. Therefore in order to
itself has proved to be very powerful for the study of un-construct wave functions with particle-hole excited configu-
stable nuclei, which has been largely due to its basic chara¢ations, we have to prepare the single particle wave functions
ter that it needs no model assumptions such as the axi#r various magnitudes of quadrupole deformation. In this
symmetric deformation and the existence of the clusterspaper, we first calculated the minimum-energy AMD wave
However, this merit of the original AMD method means at functions for various magnitudes of deformation by the use
the same time that we need to perform adequate analyses of the frictional cooling method under the constraint of the
the obtained AMD wave function in order to clarify the deformation and then extracted the single particle orbits from
physics which the AMD wave function contains. As an ex-the obtained AMD wave functions. The investigation of the
ample let us consider Be isotopes which we have treated iproperties of the obtained single particle wave functions in-
this paper. According to the AMD study of Be isotopes, thecluding the deformation dependence of the single particle
wave function of Be isotopes has a core part with an approxienergies has shown that these AMD-HF orbits as functions
mate dumbbell structure of two alpha clusters even for verpf quadrupole deformation are rather similar to the single
neutron-rich isotopes near the neutron drip line. Then ther@article orbits of the two-center shell model quoted in Sec. I.
naturally arise questions about what kind of dynamics govin spite of the overall similarity between AMD-HF orbits
erns so many neutrons distributed around the core part arehd two-center shell model orbits, there exist some interest-
about what kinds of interaction are existent between the coring differences. Among them the appearance of the parity-
part and the neutrons. Our new approach, AMBF, can mixed AMD-HF orbits is remarkable since it is out of the
give us important information in answering to these quesscope of the two-center shell model. A good example of the
tions. parity-mixed AMD-HF orbit is the least-bound orbit ex-
It should be noted that the AMBHFE method inherits  tracted from the minus-parity AMD wave function dfBe.
most of the advantageous features of the original AMDThis orbit comes down in energy for large deformation and
method. We need no model assumptions, we can perforrdan be regarded as corresponding to the “halo orbit.”
variational calculation after projecting parity, we can use re- In this paper we have studied Be isotopes by our new
alistic effective nuclear force with a finite range, we canAMD +HF method. However, the application of the
perform angular momentum projection rather easily, we caf®MD +HF method to the study of excited states by con-
superpose Slater determinants with no difficulty, and so onstructing wave functions with particle-hole excited configu-
Here we make a comment about the superposition of Slatgations has been made only for one problem, namely, the
determinants. In performing the ordinary AMD calculation, study of the second Dstate of'%Be at 6.18 MeV. According
the superposition of Slater determinants causes no probletn the calculation reported in this paper, the §tate with the
as was reported in previous pap¢S]. What we need to configuration of the two valence neutrons occupying the va-
comment here is about the extraction of the single particldence halo orbit which is parity mixed has the excitation
wave functions in the mean field contained in the superposeédnergy near that of the lowest Istate. This result is consis-
Slater determinants. In this paper, we have explained how ttent with the experimental data which show that the second
extract the mean field only in the case where the AMD wave) " state at 6.18 MeV exists in the vicinity of the lowest 1
function is expressed by a single Slater determinant. In thstate at 5.96 MeV. We here would like to comment that this
general case of the AMD wave function given by superposedalculated result can be improved by using the density-
Slater determinants, we first calculate the single particle derdependent force. The density-dependent force works attrac-
sity matrix from the AMD wave function. Then we can cal- tively at low density and repulsively at high density. There-
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fore in the case where the density-dependent force is addedseful not only for the analysis of the AMD wave function
to the force used in this paper, the second €late comes but also powerful for the systematic study of excited states in
down in energy more than the lowest btate does, because a different way from the ordinary AMD approach by relying
the second O state is more deformed than the lowest 1 on the concept of particle-hole excitation.
state according to the calculated result. We expect that the
second J state appears more closely to the loweststate.

Our study of Be isotopes in this paper was made for the ACKNOWLEDGMENTS
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