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Antisymmetrized molecular dynamics plus Hartree-Fock model and its application to Be isotopes
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In order to study light unstable nuclei systematically, we propose a new method, the antisymmetrized
molecular dynamics plus Hartree-Fock~AMD1HF! method. This method introduces the concept of the single
particle orbits into the usual AMD. Applying the AMD1HF method to Be isotopes, it is found that the
calculated lowest intrinsic states with plus and minus parities have rather good correspondence with the
explanation by the two-center shell model. In addition, by active use of the single particle orbits extracted from
the AMD wave function, we construct the first excited 01 state of 10Be. The obtained state appears in the
vicinity of the lowest 12 state. This result is consistent with the experimental data.@S0556-2813~97!04510-X#

PACS number~s!: 21.10.Pc, 02.70.Ns, 21.60.2n, 27.20.1n
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I. INTRODUCTION

For the study of the structure of light unstable nuc
which are and have been extensively studied experimen
by the use of radioactive beams@1–3#, various theories@4–
20# have been used@21,22#. Among those theories, the ant
symmetrized molecular dynamics~AMD ! approach has al
ready proved to be useful and successful@23#. One of the
major merits of the AMD approach is that it does not rely
any model assumptions such as axial symmetry of the de
mation, existence of clustering, and so on.

Until now this AMD approach has not explicitly utilize
the concept of single particle motion in the mean field. T
experimental data, however, show that very often we can
a better understanding of the structure of unstable nucle
terms of single particle motion in the mean field. In order
see this point in more detail, we here discuss briefly so
features of Be isotopes as an example. In Be isotopes the
the famous problem that the ground state11Be has an anoma
lous parity. According to the usual shell model, its spin p
ity should be1

2
2. But in experiments it is12

1. An answer to
this problem is that due to the deformation theVp5 1

2
1 level

in thesd shell comes down below the upperVp5 1
2

2 and the
last neutron occupies the loweredVp5 1

2
1. 11Be is also fa-

mous as a halo nucleus. Since the lowered orbit contain
s-orbit component, we can understand that the halo prop
is due to the long tail of thes orbit. For the convenience o
later discussion we call this loweredVp5 1

2
1 level the ‘‘halo

level.’’
In order to discuss other Be isotopes than11Be, we use

the single-particle diagram by the two-center shell mo
@18–20#, which is shown in Fig. 1@24#. According to the
AMD calculation for Be isotopes, we can support the id
that Be isotopes have the core part with an approxim
dumbbell structure of twoa clusters, which is the reaso
why we use the two-center shell model.9Be is known to
have three rotational bands which have bandhead states
Jp5 3

2
2, 1

2
2, and 1

2
1. We can explain these three bands

the two-center shell model as follows. We put the four ne
trons in order from the lowest level at aboutZ052.5 fm in
560556-2813/97/56~4!/1844~11!/$10.00
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this model, and when the last neutron is put in the levels
Vp5 3

2
2 (a level!, 1

2
2 (b level!, and 1

2
1 (g level!, Jp be-

comes3
2

2, 1
2

2, and 1
2

1, respectively. Here,Z0 is the eccen-
tricity parameter, namely, the distance between two cen
in Fig. 1. 10Be is known to have two rotational bands whic
have bandhead states withJp501 and 12. In the same way
as above, the four neutrons are put in order from the low
level at about Z053 fm, and when the configuration

of the last two neutrons are @Vp5 3
2

2#2 and

@Vp5 3
2

2#1@Vp5 1
2

1#1, Jp becomes 01 and 12, respec-
tively. Here we note that theVp5 1

2
1 level is the halo level

which appeared in11Be.
These arguments show that by using the single part

orbits and by constructing the excited state by particle-h
excitation we can study the structure of Be isotopes syst

FIG. 1. The complete neutron level scheme of the two-cen
shell model as a function of the eccentricity parameterZ0 . On the
ordinate at the left are given the spherical shell model states of
original nucleus together with the energy scale, while on the rig
hand side the quantum numbers of the spherical shell model s
in the fragment nuclei are seen. This figure is quoted from@24#.
1844 © 1997 The American Physical Society
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56 1845ANTISYMMETRIZED MOLECULAR DYNAMICS PLUS . . .
atically. Therefore we recognize the importance of sin
particle motion in the mean field.

In this paper we propose the AMD1Hartree-Fock~AMD
1HF! method which introduces the concept of single p
ticle orbits into the usual AMD. We extract the component
the mean field from the AMD wave function. Once we g
the single particle wave functions in the mean field, we c
study the structure of the excited states by constructing v
ous particle-hole configurations. When we need an elabo
description of single particle motion like in the case of ne
tron halo phenomena, we need to improve the AMD sin
particle wave function in such a way that we adopt the
perposition of several Gaussians instead of the single Ga
ian wave packet in the usual AMD.

This paper is composed of six sections. In Sec. II
explain the formalism of the AMD1HF method. In Sec. III
we show the single particle levels of the ground states of
isotopes which are calculated with the AMD1HF method. In
Sec. IV we show the single particle levels obtained with
AMD1HF method as a function of the deformation para
eter. In Sec. V, based on the motivation of the AMD1HF
method, which means active use of the single particle lev
we construct the first plus-parity excited state of10Be by
putting two neutrons into the halo level and study it. A
Sec. VI contains a discussion and summary.

II. AMD 1HF METHOD

A. Variation under the constraint of deformation

1. Hamiltonian and wave function

In this paper, we used the Hamiltonian and wave funct
as described below. The Hamiltonian has the form:

Ĥ5T̂1V̂c1V̂LS2T̂G .

Here T̂, V̂c , V̂LS , and T̂G stand for the kinetic energy, th
central force, theLS force, and the center-of-mass kinet
energy, respectively. We neglected the Coulomb force.
used the Volkov No. 1 force@25# as the central force and th
G3RS force@26# for the LS force. These forces have th
forms

V̂c5
1

2(i , j ~w1bP̂s1hP̂t2mP̂sP̂t!@VRe2~ r̂ i j /r R!2

1VAe2~ r̂ i j /r A!2
#,

V̂LS5
1

2(i , j VLS@e2~ r̂ i j /r LSR!2
2e2~ r̂ i j /r LSA!2

#

3P~3O!L̂ i j ~ ŝi1 ŝj !,

wherem50.56,w512m, b5h50, VR5144.86 MeV,VA
5283.34 MeV,r R50.82 fm, r A51.6 fm, VLS5900 MeV,
r LSR50.20 fm, andr LSA50.36 fm. P(3O) is the projection
operator onto the triplet odd state.

The wave function of total system is expressed by a Sl
determinant

uF&5det@ uw i~ j !&],
e

-
f
t
n
ri-
te
-
e
-
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e

e

e
-
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n

e

er

^r uw i&5S 2n

p D 3/4

(
a

Ci
a expF2nS r2

Z i
a

An
D 2G ub i&,

where ub i& is the spin-isospin function. In the AMD1HF
method, the single particle wave function is in genera
linear combination of several Gaussians in order to desc
the single particle state more adequately than the usual A
method. However, in this paper we represented the sin
particle state by a single Gaussian wave packet for simp
ity. uF& is projected to parity eigenstatesuF6& and the en-
ergy variation is made after parity projection:

uF6&5
1

A2
@ uF&6PuF&].

2. Cooling equation with constraint

As mentioned above, the wave function is parametriz
by $Ci

a ,Z i
a%. These parameters are determined by solv

the cooling equation

Ẋi5~l1 im!
1

i\

]H
]Xi*

and c.c.,

H5
^F6uĤuF6&

^F6uF6&
.

Here $Xi% means$Ci
a ,Z i

a%, l is an arbitrary real number
and m is a negative arbitrary number. We can easily pro
that the energy of the total system decreases with time,

d

dt
H,0.

We often need to obtain the minimum-energy state un
some condition. For example, the condition is that the cen
of-mass be fixed to the coordinate origin or that the def
mation parameter be fixed to some value, etc. In such a c
the condition is combined with the cooling equation by an
ogy with the Lagrange-multiplier method. When the con
tion is represented asW(Xi

a ,Xi
a* )50, the previous cooling

equation is changed,

Ẋi5~l1 im!
1

i\ F ]H
]Xi*

1h
]W
]Xi*

G and c.c., ~1!

whereh is a Lagrange-multiplier function, which is dete
mined by (d/dt)W50,
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05
d

dt
W

5(
i

F ]W
]Xi

Ẋi1
]W
]Xi*

Ẋi* G
5(

i
F ]W
]Xi H ~l1 im!

1

i\ S ]H
]Xi*

1h
]W
]Xi*

D J
1

]W
]Xi*

H ~l2 im!
21

i\ S ]H
]Xi

1h
]W
]Xi

D J G .

From this equation we get

h52
F
G ,

F5(
i

F S 12 i
l

m D ]W
]Xi

]H
]Xi*

1S 11 i
l

m D ]W
]Xi*

]H
]Xi

G ,

G52(
i

]W
]Xi

]W
]Xi*

.

One may think that this method is applied only to the ca
where the number of conditions is 1. But we can use it a
in the case where several conditions exist. When several
ditions are represented as

W150,W250, . . . ,Wn50,

these conditions can be represented by a single equatio

W5c1uW1u21•••1cnuWnu250.

Herec1–cn are positive coefficients which adjust the diffe
ence of scale betweenW1 ,W2 , . . . ,Wn . In this way, we
can always use Eq.~1! without introducing several Lagrang
multipliers.

3. Deformation parameter

The deformation parameter (b,g) can be obtained from
the relations

Ax[
^x2&1/2

@^x2&^y2&^z2&#1/6
5expFA 5

4p
b cosS g1

2p

3 D G ,
Ay[

^y2&1/2

@^x2&^y2&^z2&#1/6
5expFA 5

4p
b cosS g2

2p

3 D G ,
Az[

^z2&1/2

@^x2&^y2&^z2&#1/6
5expFA 5

4p
b cosgG ,

where

^x2&5

^Fu ~1/A!(
i

xi
2uF&

^FuF&
, etc.
e
o
n-

Herex, y, andz directions are the directions of the princip
axes of inertia which are the coordinate axes of the bo
fixed frame. We can easily confirm that this definition of t
deformation parameter is the same as that of the Bohr m
to first order. Here the expectation value of every operato
calculated with the intrinsic wave function before parity pr
jection. In addition̂ x2&, ^y2&, and^z2& is redefined so tha
^z2&>^y2&>^x2&. We must note the fact that in this defin
tion thez axis is not always the axial symmetric axis of th
system. In the case of prolate deformation, thez axis deter-
mined by this definition is certainly the axial symmetric ax
while in the case of oblate deformation it is not the ax
symmetric axis.

When we execute the cooling calculation with a deform
tion constraint, it consumes time that in every step of
cooling we calculate the inertial axes to determine the de
mation parameters. Therefore we use rotational invariant
lar quantities for calculating the deformation parameters
as to avoid the time-consuming procedure. We define
tensor quantityQ in any coordinate system as

Qi j 5^r i r j&,

wherei and j arex, y, andz. Then calculating the trace o
the tensorsQ andQQ, we get the rotational invariant quan
tities TrQ and TrQQ. Since calculating these quantities
the space-fixed frame is identical to that in the body-fix
frame, we obtain the relations

TrQspace fixed5TrQbody fixed5(
i

^r i
2&body fixed

5@^x2&^y2&^z2&#1/3(
i

Ai
2

5@^x2&^y2&^z2&#1/3S 31
15

4p
b21••• D ,

TrQQspace fixed5TrQQbody fixed5(
i

^r i
2&body fixed

2

5@^x2&^y2&^z2&#2/3(
i

Ai
4

5@^x2&^y2&^z2&#2/3S 31
15

p
b21••• D .

Using these quantities, we defineD as

D[
TrQQ

~TrQ!2
in the space-fixed frame.

Then we can calculate the deformation parameterb as

b.A2p

5
~3D21!.

Thus we can obtainb without using the inertial axes. Thi
approximation is enough correct to second order ofb, which
in the ordinary case is less than unity.
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When we impose the constraint thatb is fixed to some
b0 , we useD and D0 corresponding tob and b0 in the
cooling calculation. The constraint condition functionWD is
given as

WD5~D2D0!2.

B. Single particle orbits described by the AMD method

1. Method of calculating single particle orbits

As mentioned in the Introduction, we need to calculate
single particle orbits. We calculate them by the meth
shown below. This method extracts the single particle or
from the AMD wave function by mimicking Hartree-Foc
theory.

In the Hartree-Fock method, the matrix elementshi j of
the single particle Hamiltonian in the orthonormal ba
$uf i&% are given as

hi j 5^f i u t̂ uf j&1(
k

^f ifkuv̂~ uf jfk&2ufkf j&).

By diagonalizing thishi j , we obtain the set of the singl
particle wave functions and the single particle energies. N
we construct Hartree-Fock-like single particle orbits and l
els from the total wave function of the AMD method. Th
single particle wave functions$w i% of the AMD method are
not orthonormal. So first we construct the orthonormal b
by making a linear combination of$w i%. We calculate the se
of eigenvalues and eigenvectors of the overlap matrixB,

(
j

Bi j cj
a5maci

a ,

Bi j [^w i uw j&.

The eigenvectors$ci
a% are normalized. We define the ne

base$u f a&% as

u f a&5
1

Ama(i
ci

auw i&.

We can confirm easily that this set forms an orthonorm
base.

Using this baseu f a& we construct the matrix$hab% corre-
sponding to the single particle Hamiltonian of the Hartre
Fock method as follows:

hab5^ f au t̂ u f b&1(
g

^ f a f guv̂~ u f b f g&2u f g f b&).

Diagonalizing this matrix$hab%, we calculate the eigenval
ues$ep% and eigenvectors$ga

p%,

(
b

habgb
p5epga

p .

The eigenvectors$ga
p% are normalized. The single particl

wave functionup& belonging to the single particle energyep

is given as
e
d
ts

w
-

e

l

-

up&5(
a

ga
pu f a&5(

a
ga

pF 1

Ama(i
ci

auw i&G
5(

i
F(

a
ga

p 1

Ama
ci

aG uw i&.

We call such single particle orbits$up&%, and energies$ep%
AMD-HF orbits and energies, respectively, since they
extracted from the AMD wave function.

Here we should note that these orbits and energies of
AMD-HF method are not totally equivalent to those of th
Hartree-Fock method. The reason is as below. In the AM
1HF method, the Hartree-Fock equation is solved o
within the functional space of single particle wave functio
which is spanned by$w i%. Thus in the AMD1HF method
the Hartree-Fock self-consistency is satisfied only within t
restricted functional space. We can regard the AMD1HF
method as being a kind of restricted Hartree-Fock meth
However, this restriction has a large merit because the fu
tional space spanned by the single particle wave functi
$w i% is obtained by the energy variation including parity pr
jection.

2. Identification of AMD-HF orbits

We need to identify the AMD-HF orbitsup& defined in the
previous section. As most nuclei seem to have an axi
symmetric deformation approximately, we expect that thz

component of the total angular momentum,ĵ z , is approxi-
mately a good quantum number, but that the magnitude o
ĵ2, is not. In addition, when the states that have the sa
absolute value ofj z are degenerate, the expectation value
ĵ z does not give us useful information. Therefore we use
square ofĵ z and ĵ z

2 , so as to avoid this difficulty. For ex
ample, let us consider the stateup& which includesu j z5m&
and u j z52m& as

up&5
1

A11ucu2
@ um&1cu2m&].

The expectation value ofĵ z is

^pu ĵ zup&5m
12ucu2

11ucu2
.

On the other hand, the expectation value ofĵ z
2 is

^pu ĵ z
2up&5m2,

from which we can identifym certainly.
By the way, this identification is done on the body-fixe

frame as noticed in Sec. II A 3. Here we calculate the iner
axes explicitly by diagonalizing the tensorQi j , which was
introduced in Sec. II A 3. We choose thez axis of the body-
fixed frame to the direction of theQspace’s eigenvector which
has the largest eigenvalue. HereQspacerepresentsQ calcu-
lated in the space-fixed frame. Using the eigenvectorcq, we
can relateĵ spaceand ĵbody as follows:
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ĵ q
body5cq

• ĵ space,

whereĵ spaceand ĵbody are the total angular momentum oper
tor in the space-fixed frame and that in the body-fixed fram
respectively. Thus the squarej z in the body-fixed frame is
represented using the quantities in the space-fixed frame

^pu ĵ z
2up&body fixed5(

i j
ci

zcj
z^pu ĵ i ĵ j up&space fixed.

In addition, we use also the square of the orbital angu
momentuml̂2, which is not a good quantum number. Th
enables us to relate the obtained levels to the levels w
would be obtained if the shape were spherical.

III. AMD-HF ORBITS IN Be ISOTOPES

In this section we show the results about AMD-HF orb
of the ground states that are obtained by the AMD meth
Here AMD single particle wave functions are composed
the single Gaussians.

In Table I, the AMD-HF levels are given.V2 and L2

indicate the expectation values of the operatorsĵ z
2 and l̂2,

respectively, which are obtained by the method mentione
Sec. II B 2.b and BE are the deformation parameter and
binding energy, respectively. We explain some results, ab
9Be, 10Be, and 11Be, that look interesting. Then we com
pare these with the simple model — the two-center sh
model — to help our understanding.

A. 9Be

In the minus-parity AMD state of9Be, V2 of the highest
level of neutrons is 1.260, which is not equal to any

0.25@5( 1
2 )2#, 2.25@5( 3

2 )2#, etc. This means the deforma
tion is not axial symmetric. ButL252.995 implies that this
level contains a rather large amount of the 0p3/2 component.

In the plus-parity state, the last neutron is in the level

V5 1
2 . In additionL2 of this level is 4.884. As this value i

rather large, we can suppose that this level consists large
a d orbit. In the two-center shell model given in Fig. 1, th
plus-parity level named theg level in Fig. 1 comes down in
energy when the distance between two alpha clusters is la
This is consistent with our result because the deforma
parameterb obtained with the AMD method for the plus
parity state is 0.801, which is very large.

B. 10Be

The calculated plus-parity state of10Be has a good corre
spondence with the two-center shell model, if we think o
highest level of neutrons corresponds to the level named
a level in Fig. 1 which comes fromj z5

3
2 of 0p3/2 in the

spherical case.
But on the other hand, the minus-parity state does

have a similarity with the two-center shell model. The mo
surprising point is that only three single-particle energies
neutrons appeared in our calculation. In the two-center s
model every single particle level is the eigenstate of par
So in the model four single-particle energies should app
The explanation of this result by the AMD1HF method is as
,

r

h

d.
f

in
e
ut

ll

f

f

of

e.
n

r
he

ot
t
f
ll
.
r.

follows: The single particle orbit~AMD-HF orbit! extracted
from the AMD wave function is the parity-mixing state. An
the last two neutrons are degenerate in that state. An ex
nation of this phenomenon in terms of the two-center sh
model is as follows. At some distance between twoa par-

ticles, the levelsV5 3
2 and V5 1

2 , coming from 0p3/2 and
0d5/2, respectively, approach each other. As a result, th
levels are mixed, and then we see the only one level in wh
two levels are mixed. Here we investigate the percentag
parity mixing in the last AMD-HF orbit of neutrons. Thi
AMD-HF level, which is represented asu f &, can be written
as

u f &5e1u1&1e2u2&,

e1
21e2

251,

whereu1& and u2& indicate plus- and minus-parity compo
nents, respectively. Using the operatorP which reverses the
parity, we calculate the following quantityA:

A[^ f uPu f &5e1
22e2

2 .

Then we obtain the ratio as follows:

e1
25

11A

2
, e2

25
12A

2
.

Calculated results aree1
250.60 ande2

250.40. As we ex-
pected this level is a state with large parity mixing.

C. 11Be

In the calculated plus-parity state of11Be, the last neutron
occupies what we call the ‘‘halo level.’’V250.25 of this
level meansV5 1

2 andL254.463 of this level means that thi
level contains a large component of 0d5/2. We think that this
result is similar to that of the two-center shell model with
medium distance between twoa particles. The obtained
value of the deformation parameterb50.504, which is me-
dium, is consistent with the medium inter-a distance in the
two-center shell model.

However, in the calculated minus-parity state of11Be, we
do not find so good a similarity between the AMD1HF and
two-center shell models. Asb50.271 is rather small, we try
to compare the obtained result to that of the two-center s
model with a small inter-a distance. In that case, the la
neutron should be put into the level named theb level in Fig.
1 which hasV5 1

2 and comes from 0p1/2 in the spherical
case. But according to AMD1HF calculations,V2 of the last
neutron level is 1.314, which means thatV is not 1

2.
By the way, there is the famous problem in11Be, which is

that the parity of the ground state is not minus but plus.
this calculation, we have not succeeded in reproducing
anomalous parity just like the previous AMD calculation
Ref. @23#. We think that this failure comes from an insuffi
cient description of the single particle orbits in the pres
calculation where we have assigned only one Gaussian
one nucleon.
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TABLE I. Single particle~s.p.! levels of the ground state of each nucleus. ‘‘B.E.’’ and ‘‘b ’’ are the
binding energy and the deformation parameter, respectively. ‘‘Occ.’’ indicates the occupation number
level. ‘‘Plus’’ indicates the percentage of plus-parity component. The units of the binding energies a
single particle energies are MeV. We regard two levels as the same level whose energy difference is l
100 keV. In such a case, the difference inV2 and l2 is about 0.01.

6Be(1) BE5221.26b50.437

s.p. energy V2 l2 Occ. Plus

Proton
22.48 0.250 2.077 2 7.4
224.47 0.250 0.118 2 96.0

Neutron
229.51 0.250 0.148 2 93.1

7Be(2) BE5230.48b50.566
s.p. energy V2 l2 Occ. Plus

Proton
211.04 0.250 2.083 2 5.1
228.88 0.250 0.219 2 96.5

Neutron
211.15 0.250 2.059 1 4.3
228.87 0.250 0.224 1 96.5
232.04 0.250 0.440 1 82.2

8Be(1) BE5248.00b50.656
s.p. energy V2 l2 Occ. Plus

Proton
218.99 0.250 2.189 1 2.3
219.58 0.250 2.127 1 0.2
234.69 0.250 0.345 2 100.0

Neutron
218.87 0.250 2.203 1 2.7
219.55 0.250 2.131 1 0.3
234.69 0.250 0.345 2 99.7

9Be(2) BE5246.96b50.521
s.p. energy V2 l2 Occ. Plus

Proton
221.82 0.249 2.098 2 0.7
239.03 0.250 0.231 2 99.7

Neutron
11.56 1.260 2.996 1 21.8

218.18 0.269 2.147 1 2.8
221.82 0.249 2.098 1 0.7
233.70 0.256 0.297 1 99.1
239.03 0.249 0.230 1 99.7

9Be(1) BE5242.97b50.801
s.p. energy V2 l2 Occ. Plus

Proton
222.48 0.250 2.287 2 3.1
235.04 0.250 0.494 2 99.6

Neutron
16.79 0.250 4.885 1 79.8
218.07 0.250 2.280 1 4.5
222.37 0.250 2.320 1 4.1
231.45 0.250 0.483 1 98.6
235.06 0.250 0.475 1 99.4
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TABLE I ~Continued!.

10Be(1) BE5253.11b50.381

s.p. energy V2 l2 Occ. Plus

Proton
223.00 0.254 2.049 2 0.5
243.30 0.254 0.108 2 99.6

Neutron
27.47 1.241 2.487 2 12.7
219.55 0.278 2.162 2 3.2
237.72 0.257 0.100 2 99.7

10Be(2) BE5244.95b50.637
s.p. energy V2 l2 Occ. Plus

Proton
224.65 0.250 2.106 2 0.0
239.75 0.250 0.304 2 100.0

Neutron
23.41 0.667 3.387 2 59.4
220.39 0.264 2.328 2 1.4
235.23 0.254 0.270 2 99.7

11Be(1)BE5247.25b50.505
s.p. energy V2 l2 Occ. Plus

Proton
225.97 0.250 2.089 2 1.9
244.97 0.250 0.140 2 99.4

Neutron
14.25 0.272 4.463 1 97.1
26.74 1.273 2.153 1 3.7
28.84 1.253 2.543 1 12.3
217.75 0.250 2.327 1 2.5
222.47 0.258 2.264 1 6.2
235.43 0.252 0.147 1 99.8
239.55 0.255 0.134 1 99.8

11Be(2) BE5254.70b50.271
s.p. energy V2 l2 Occ. Plus

Proton
224.97 0.250 2.034 2 1.2
248.62 0.250 0.042 2 99.7

Neutron
22.52 1.314 2.350 1 8.2
27.15 1.241 2.315 1 7.5
210.75 1.388 2.311 1 7.4
218.04 0.251 2.144 1 4.7
221.55 0.259 2.115 1 2.9
236.61 0.250 0.051 1 99.7
242.60 0.253 0.035 1 100.0
th

m

the
IV. AMD-HF ORBITS
WITH CONSTRAINED DEFORMATION

In this section, we show the AMD-HF orbits at variousb,
which look like Nilsson diagrams. The levels at eachb are
calculated by the method mentioned in Sec. II A 2. As in
previous section, we show only the results about9Be(2),
e

10Be(2), and 11Be(2), which look interesting. We show
the diagram of the neutron’s AMD-HF levels of9Be(2),
10Be(2), and 11Be(2) in Figs. 2~a!, 3~a!, and 4~a!, respec-
tively. As the behavior of the highest level in each diagra
looks especially interesting, we show the variation ofL2 and
V2 and the percentage of the plus-parity component of
highest level in Figs. 2~b!, 3~b!, and 4~b!. In addition as the



fo

th
te
n

t
n
e

bo
a

als

ge

s
ta
u

re
t

h

s
-

w

r
is

re

- -

-

56 1851ANTISYMMETRIZED MOLECULAR DYNAMICS PLUS . . .
second and third levels in11Be(2) look interesting too, we
show the same quantities about these levels in Figs. 4~c! and
4~d!. Notice that the scale on the right hand-side is used
the percentage of the plus-parity component.

A. 9Be„2…

In Fig. 2~a! we can see the inversion or the crossing of
single particle levels like that appearing in the two-cen
shell model. When we trace the behavior of the last neutro
level, in Fig. 2~b! we see that up tob50.67 the last level
seems to beuVu5 3

2 coming from 0p3/2 in spherical case. Bu
beyondb50.67, its behavior changes apparently. Sudde
L2 becomes rather large,V2 becomes about 0.25, and th
percentage of the plus-parity component becomes a
100%. Therefore we can recognize it as the lowered h
level that isuVu5 1

2 coming from 0d5/2. We notice that the
behaviors of the other levels than the highest level are
changed beyondb50.67 in Fig. 2~a!, but thatL2, V2, and
the percentage of the plus-parity component are not chan
As the parity of the last neutron is almost plus beyondb
50.67, the total intrinsic wave function is an almost plu
parity state. Therefore the projection to the minus-parity s
is made by picking up the very small component of min
parity.

B. 10Be„2…

In Fig. 3~a!, we can see that the last neutron’s level
mains parity mixed even ifb is changed. When we look a
the behavior of the quantum numbersV andL in Fig. 3~b!,
we find that asb becomes largeruVu approaches1

2 and L
increases too. This result seems to indicate that this level
two components, one beinguVu5 1

2 coming from 0d5/2 and
the other beinguVu5 3

2 coming from 0p3/2, and that asb
becomes larger the component ofuVu5 1

2 increases. In addi-
tion, according to the parity-mixing ratio, this insight seem
to be correct, since asb becomes larger the ratio of plus
parity component increases.

C. 11Be„2…

We can see the tendency that the halo level, which
uVu5 1

2 coming from 0d5/2, is lowered at largeb. Especially
at b50.7– 0.8 the tendency is prominent. In that region,

FIG. 2. ~a! Diagram of the AMD-HF levels of9Be(2). ~b!
Variation of L2 andV2 and the percentage of the plus-parity com
ponent of the highest level.
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can seeL2;2, V2;2, and the parity is 100% minus for the
highest level in Fig. 4~b!. And in Figs. 4~c! and 4~d!, L2 is
rather large,V2;0.25, and the parity is about 90% plus fo
the second and third levels. Therefore we can identify in th
region the highest level asuVu5 3

2 coming from 0p3/2 and the
second and third levels asuVu5 1

2 coming from 0d5/2 which
is the lowered halo level. Note that these two halo levels a
not degenerate in this odd-neutron-number nucleus11Be.
But beyondb50.8 the properties of the AMD-HF levels
change again. Especially in Fig. 4~b! ~the last neutron!, the
plus-parity component increases andL2 becomes very large.

FIG. 3. ~a! Diagram of the AMD-HF levels of10Be(2). ~b!
Variation of L2 andV2 and the percentage of the plus-parity com
ponent of the highest level.

FIG. 4. ~a! Diagram of the AMD-HF levels of11Be(2). ~b!
Variation of L2 andV2 and the percentage of the plus-parity com
ponent of the highest level.~c! and ~d! The same quantities as~b!
for the second and third levels, respectively.
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We can explain this phenomenon with the two-center s
model as follows. The large deformation parameterb corre-
sponds to the large inter-a distance in the two-center she
model. As shown in Fig. 1, in such a case thea level andg
level approach very closely and are degenerate. In our ca
lation the same phenomenon as the two-center shell m
seems to happen and then the component of the halo
mixes into the highest level.

V. EXCITED POSITIVE PARITY BAND IN 10Be

The original AMD method does not have the concept
the single particle orbit in the mean field. However, we ha
confirmed in Secs. III and IV that the AMD method contai
in it the mean field~and its single particle orbits!. In Secs. III
and IV, we used the single particle orbits only for analyzi
the AMD wave function. In this section, we truly use th
single particle orbits by performing particle-hole~p-h! exci-
tation for the ground state. Our idea is that if the AMD-H
orbits are really meaningful, the description of excited sta
by the particle-hole excitation should be meaningful.

Here we apply such p-h excitation for constructing t
first excited 01 state of 10Be at 6.179 MeV which is just
above the lowest 12 state at 5.960 MeV@27#. One possible
configuration for this 01 is that two neutrons occupy the ha
orbit, which is theV5 1

2 level coming from 0d5/2 in the
two-center shell model. So we want to confirm that the s
ond 01 constructed by such p-h excitation appears in
vicinity of the lowest 12 as shown by the experiment.

According to the two-center shell model, the lowe
minus-parity state, which has the total angular momentum
seems to have the configuration that each of the levels,Vp

5 3
2

2 from 0p3/2 (a level! andVp5 1
2

1 from 0d5/2 (g level!
which is the halo level, is occupied by one neutron. The
fore by raising up the neutron occupyingVp5 3

2
2 to Vp

5 1
2

1, the configuration becomes@Vp5 1
2

1#2 which gives us
the first excited plus-parity state having the total angular m
mentum 0.

But according to the AMD-HF calculation of the lowe
minus-parity state, we do not have good parityVp5 3

2
2 and

Vp5 1
2

1 levels but one parity-mixing level. In addition, th
levels except this one are eigenstates of parity. Therefor
this case we can easily make the first excited plus-parity s
from the lowest minus-parity state only by projecting o
from the intrinsic state of the lowest minus-parity state
plus-parity state: i.e., when the lowest minus-parity st
u2g& is represented with its intrinsic stateuF int& as

u2g&5
1

A2
@ uF int&2PuF int&],

the first excited plus-parity stateu118& is formed as

u118&5
1

A2
@ uF int&1PuF int&].

But this u118& may not be orthogonal to the lowest plu
parity stateu1g& whose value ofb is 0.381. In order to avoid
the mixing of this lowest plus-parity state, we orthogonal
u118& to u1g& as below:
ll

u-
el

bit

f
e

s

-
e

t
1,

-

-

in
te

t
e
e

u11&[u118&2
^118u1g&

^1gu1g&
u1g&.

Thoughu11& andu6g& are not the eigenstates of the tot
angular momentum, we can calculate the approximate e
gies of the projected states as below. For a given intrin
stateuF&, the approximate expression for the energyEI of
the projected state with angular momentumI is

EI5^FuĤuF&2
\2

2Jx
^FuĴ2uF&1

\2

2Jx
I ~ I 11!,

Jx[^Fu(
i 51

A

~ ŷi
21 ẑi

2!uF&.

In Fig. 5, we show the projected energies of10Be states as
functions of b. According to Fig. 5, the minimum energ
andb of each state is

lowest 01:259.84 MeV atb50.381,

lowest 12:251.90 MeV atb50.637,

second 01:249.95 MeV atb50.852.

Therefore we can see that the first excited 01 state appears in
the vicinity of the lowest 12 state with a small energy dif
ference of 1.95 MeV.

As mentioned previously, the AMD wave functions of B
isotopes have a core part with an approximate dumb
structure of two alpha clusters. Therefore the interalpha
tance is also useful as a measure of the deformation of
isotopes. The above three values ofb for 01

1 , 12, and 02
1 in

10Be correspond to the interalpha distance, 1.99 fm, 2.66
and 3.55 fm, respectively.

VI. SUMMARY AND DISCUSSION

In this paper we have proposed a new theoretical met
for the study of nuclear structure, which we have called
AMD1Hartree-Fock method~AMD1HF!. The purpose of
introducing this new method is to develop the AMD a
proach by incorporating into it the concept of single partic
motion in the mean field. The new method consists of
following two steps. In the first step we construct the AM
wave function by using the usual AMD method. Then in t

FIG. 5. Projected energies of10Be states as functions ofb.
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next step we extract the physical single particle motion in
mean field which is contained in the AMD wave functio
This is done by diagonalizing the Hartree-Fock Hamilton
in the functional space spanned by the single particle w
functions which constitute the AMD wave function. In th
paper, for the sake of simplicity, we represented the AM
single particle wave function by a single Gaussian wa
packet. But for a better description of single particle moti
we had better to represent the AMD single particle wa
function by the superposition of Gaussian wave pack
Once we obtain the physical single particle wave functions
the mean field, we can utilize them for many purposes. F
we can use them for understanding the physical situatio
the ground state~or the ground rotational band states! of the
system which the AMD wave function describes. Second
can use them for constructing the wave functions for
excited states of the system by constituting the particle-h
configurations. The latter way of utilizing the physical sing
particle wave functions in the mean field is beyond the sc
of the ordinary AMD approach.

The AMD1HF method is applicable for any nuclei, but
is expected to be especially useful for the study of unsta
nuclei. The reason is as follows. The original AMD meth
itself has proved to be very powerful for the study of u
stable nuclei, which has been largely due to its basic cha
ter that it needs no model assumptions such as the a
symmetric deformation and the existence of the clust
However, this merit of the original AMD method means
the same time that we need to perform adequate analys
the obtained AMD wave function in order to clarify th
physics which the AMD wave function contains. As an e
ample let us consider Be isotopes which we have treate
this paper. According to the AMD study of Be isotopes, t
wave function of Be isotopes has a core part with an appr
mate dumbbell structure of two alpha clusters even for v
neutron-rich isotopes near the neutron drip line. Then th
naturally arise questions about what kind of dynamics g
erns so many neutrons distributed around the core part
about what kinds of interaction are existent between the c
part and the neutrons. Our new approach, AMD1HF, can
give us important information in answering to these qu
tions.

It should be noted that the AMD1HF method inherits
most of the advantageous features of the original AM
method. We need no model assumptions, we can perf
variational calculation after projecting parity, we can use
alistic effective nuclear force with a finite range, we c
perform angular momentum projection rather easily, we
superpose Slater determinants with no difficulty, and so
Here we make a comment about the superposition of Sl
determinants. In performing the ordinary AMD calculatio
the superposition of Slater determinants causes no prob
as was reported in previous papers@23#. What we need to
comment here is about the extraction of the single part
wave functions in the mean field contained in the superpo
Slater determinants. In this paper, we have explained ho
extract the mean field only in the case where the AMD wa
function is expressed by a single Slater determinant. In
general case of the AMD wave function given by superpo
Slater determinants, we first calculate the single particle d
sity matrix from the AMD wave function. Then we can ca
e
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culate the Hartree-Fock-type single particle Hamiltonian
the use of a density matrix. We will discuss this generali
tion elsewhere.

As was pointed out in previous papers, the AMD meth
which adopts a single Gaussian wave packet for the sin
particle wave function is not suitable for the description
the long tails of the neutron halo orbits. For halo phenome
we have to adopt a superposition of Gaussian wave pac
for the single particle wave function. However, to repres
all the single particle wave functions by the superposition
many Gaussian wave packets means a very heavy comp
tional work. One of the aims of the AMD1HF method is to
make a more adequate description of the long tails of neu
halo orbits than the ordinary AMD method. By using th
AMD1HF method we can identify the least-bound neutr
orbits which correspond to neutron halo orbits. What is n
essary for us is to improve the single particle wave functio
only for these least-bound neutron orbits. Thus we exp
that the AMD1HF method will enable us to treat neutro
halo orbits in a more efficient way than the usual AM
method. We will discuss this problem elsewhere.

Generally speaking, the deformation of excited states
different from that of the ground state. Therefore in order
construct wave functions with particle-hole excited config
rations, we have to prepare the single particle wave functi
for various magnitudes of quadrupole deformation. In t
paper, we first calculated the minimum-energy AMD wa
functions for various magnitudes of deformation by the u
of the frictional cooling method under the constraint of t
deformation and then extracted the single particle orbits fr
the obtained AMD wave functions. The investigation of t
properties of the obtained single particle wave functions
cluding the deformation dependence of the single part
energies has shown that these AMD-HF orbits as functi
of quadrupole deformation are rather similar to the sin
particle orbits of the two-center shell model quoted in Sec
In spite of the overall similarity between AMD-HF orbit
and two-center shell model orbits, there exist some inter
ing differences. Among them the appearance of the par
mixed AMD-HF orbits is remarkable since it is out of th
scope of the two-center shell model. A good example of
parity-mixed AMD-HF orbit is the least-bound orbit ex
tracted from the minus-parity AMD wave function of10Be.
This orbit comes down in energy for large deformation a
can be regarded as corresponding to the ‘‘halo orbit.’’

In this paper we have studied Be isotopes by our n
AMD1HF method. However, the application of th
AMD1HF method to the study of excited states by co
structing wave functions with particle-hole excited config
rations has been made only for one problem, namely,
study of the second 01 state of10Be at 6.18 MeV. According
to the calculation reported in this paper, the 01 state with the
configuration of the two valence neutrons occupying the
lence halo orbit which is parity mixed has the excitati
energy near that of the lowest 12 state. This result is consis
tent with the experimental data which show that the sec
01 state at 6.18 MeV exists in the vicinity of the lowest 12

state at 5.96 MeV. We here would like to comment that t
calculated result can be improved by using the dens
dependent force. The density-dependent force works att
tively at low density and repulsively at high density. Ther
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fore in the case where the density-dependent force is ad
to the force used in this paper, the second 01 state comes
down in energy more than the lowest 12 state does, becaus
the second 01 state is more deformed than the lowest 12

state according to the calculated result. We expect that
second 01 state appears more closely to the lowest 12 state.

Our study of Be isotopes in this paper was made for
region of 6Be–11Be. But of course we can study12Be and
14Be in the same way. Especially it is very interesting
study the role of the halo orbit not only in the ground sta
but also in the excited states in these12Be and 14Be.

In summary, the AMD-HF theory can be expected to
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useful not only for the analysis of the AMD wave functio
but also powerful for the systematic study of excited state
a different way from the ordinary AMD approach by relyin
on the concept of particle-hole excitation.
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