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Neutron-proton pairing in the BCS approach
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We investigate the BCS treatment of neutron-proton pairing involving time-reversed orbits. We conclude
that an isospin-symmetric Hamiltonian, treated with the help of the generalized Bogolyubov transformation,
fails to describe the ground state pairing properties correctly. In order farghgovector pairs to coexist with
the like-particle pairs, one has to break the isospin symmetry of the Hamiltonian by artificially increasing the
strength of thenp pairing interaction above its isospin-symmetric value. We briefly discuss the prescription
how to choose the coupling constant of this auxiliary isospin-breaking pairing f&0856-281®7)03710-2

PACS numbd(s): 21.60.Fw, 21.30.Fe, 23.40.Hc

[. INTRODUCTION the isospin projection indices. Obviously, when isospin sym-
metry is imposed, the s.p. energies become independent of
Pairing correlations are an essential feature of nucleathe isospin labet, andG,,=G,,=G,,=G,,=G. The in-
structure[1]. In proton-rich nuclei withN~Z the neutron teraction then describes the isovecto=1 pairing. How-
and proton Fermi levels are close to each other and therefogg/er, as will be seen below, it is advantageous to keep the
the neutron-protonr(p) pairing correlations can be expected general form of the Hamiltoniaft).
to play a significant role in their structure and decéyr a One can find the exact ground state of Ef) in the
review of the early work omp pairing theory see Ref2]).  simple case of a one- or two-level system. However, in the
In contrast, in the heavier nuclei with large neutron excesgeneral case of a multilevel system the dimension increases
the neutron-proton pairing correlations can be usually negyponentially and therefore the standard procedure is to use
glected. the generalized Bogolyubov transformation approach in the

'ca-lrgirsecrhatsoaegfn z;_;_encer_]r'i rce)lv|_\I/1aI g;ﬂten;esttn')géhaen?e?:tform [10] where the quasiparticle operators are related to the
! Pt pairing involving u P particle operators by

tons[3—6]. This renaissance stems from the advent of ex-
periments with radioactive beams, as well as from the

application of neutron-proton pairing concepts in the descrip- + +
tion of alpha decay7] and double-beta decd,9]. How- Cj1 Ui Uiz Uy Vag)| [ p
ever, the theoretical treatment is not without a controversy. Csz Uygj Upy  Uoyj Uy aJ-Tn
While intuition and arguments of isospin symmetry suggest o I a | 3]
that the neutron-proton pairing correlations should be as im- i . 1 T Ty ip
portant as the like-particle pairing correlations in tHe=Z Ci2 —v3y —Uay Uy U/ \ajy

nuclei, the balance between these pairing modes is delicate
and the standard approximations often fail.

In order to elucidate what is going on we examine theHere j denotes the full set of quantum numbers of a s.p.
treatment of neutron-proton pairing in the generalizedorbit, and the indices “1” and “2” are the quasiparticle
Bogolyubov transformation approach, in particular the roleanalogs ofp or n, i.e., of the corresponding isospin projec-
of isospin symmetry. The problem at hand is the determinations. The transformation amplitudes, ; and v, ; with i
tion of the ground state of an even-even system with the#k describe the neutron-proton pairing. They are, in general,
Hamiltonian complex. We refer t95] and[10] for the unitarity conditions

which u;, ; andvj, ; have to obey, as well as for the relation
H= ,Emt Ejtaijtajmt getween the amplitudes and the gap parametgtsA,, and
no -
1 E)I'o find the ground state we minimize the quantity, the
= ot expectation value of the Hamiltonian in the quasiparticle
4 jmjz,m, ? G &medjme &mame (1 vacuum, while simultaneously obeying the unitarity condi-
tions and the usual conservatiéon averaggof the number
where (mt) represents the angular momentum, its projecof neutrons and protongThis procedure is equivalent to
tion, and the isospin projection of the single-partittep)  demanding that the “dangerous graph” terityg, which
state createdannihilated by the operatoaj*mt (ajmy), and as  creates or annihilates a pair of quasiparticles, vahigfe
usual aj=(—1)'"Ma;_m;. The three coupling constants use the Newton-Raphson methfitll] and check, by com-
Gy (we assume the®, =G,/;) characterize the monopole paring to the “standard BCS” solution fdg,,=0, that the
pairing interaction. The interaction couples only states inground state energy is lower than in the state without the
time-reversed orbits, but allows an arbitrary combination ofneutron-proton pairing. The procedure allows us to find at
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. FIG. 2. The pairing gaps for the one-level case wik11, as
FIG. 1. The pairing gaps for the one-level case vl 11, N f,10ti0n of the neutron excesi—2Z. Short-dashed lines, long-
=6, andZ=4. Gy4;=0.242 MeV was used and the results are y,qneq lines, and solid lines correspond to valueSaf.A,,,, and
plotted as a function of the ratiG,,/Gpq;- In both panels of the o, respectively. Both panels are far=4 while the neutron num-

figure long-dashed lines, solid lines, and short-dashed lines repr%-gr is varied;Gpy=16/(N+Z+56) MeV. The exact solutions for
sent the neutron-neutron(,,), proton-proton Q ), and proton- Gnp/Gpar=1.1 are in the upper panel. The BCS solutions for

neutron @pp) pai_ring gaps, respe_ctively. The upper panel is for thean/Gpai,=1.25 are in the lower panel.
exact solution with gaps determined as described in the text. The

lower panel is for the BCS solution. crease withN—Z. We expect that this behavior is “ge-
neric,” i.e., survives even in the case of more than one
i o o ingle-particle level.
?sisggzd“vra?htthhee %ilﬂtrlgnt_g?o?ggu;;r;tgfe binding energy Indeed, the generalization of the one-level model to the
case of two nondegenerate levgl®] supports this conjec-
ture. Such a generalization is straightforward if we restrict
ourselves only to the states with seniority zero. It is then easy
to construct the corresponding Hamiltonian matrix which has
The Hamiltonian(1) with €j,=¢j, andG,,=G,,=G,, Vvery manageable dimensions even for laye For com-
describes the isovector pairing, in which all three kinds ofpleteness we give the expressions for the corresponding ma-
pairs (1, pp, andnp with T=1) are treated equally on the trix elements, applicable to both the one- and two-level mod-
interaction level. One expects then that in an even-evefls for seniority-zero states in the AppendiXhe results
nucleus withN=Z the corresponding gap parameters shoulgShown in Figs. 1 and 2 below are, for simplicity, for the

be the same for all three possible pairs. one-level casg. , _
In fact, in the exactly solvable manifestation of this Unlike the exact solutions described above, the general-

Hamiltonian, in which there is only one s.p. state of degen-Ized BO?OIWbﬁV transformation approach Igi;]/es \t;ery dkiffer-
IS T : . _ent results in the isospin-symmetric case. It has been known
eracy 2}, this is indeed the case. Defining the pair creatlon]cor some time[13] thaFt) in t);\e one-level case the approach
operator as leads to nanp pairing whenN>Z. The relationship between
the occurrence afip pairing and the conservation of average
; values of the total isospinT?) and its projectionT,, in a
sz=.2 [afmaimll (3 multilevel BCS approach was studied by Ginocchio and
J,m>0 Wenesel[14]. These authors have reported the finding of a
class of BCS solutions with the same ground state energy
: o : — .. and different values of , and the fact that the solution cor-
wheret, is the corresponding isospin projection, the quanutyresporlding 0 the maxizmum isospin projectich(T,) has
L . . .
related to theT pairing gaptz is the ground state expectation no proton-neutron pairing. Our calculations show that these
value My, =(S; S;,). (We calculate the “gap”A from the  results are generally valid when the dependencempair-
expression\; = A?/G2 valid up to the terms 1. This in? Cor_relati?nhs upon the neutrgor protor) el_xc_:tlass ano_ldtheOI
. z Fa . relaxation of the isospin symmetry are explicitly considered.
relation, however,' fails for full .shell)s.As shown in(3], We find, in fact, that the ground states of even-even nuclei
based on the earlier work on this ) model, one can ob-

. . . - with N>Z have vanishingA,, when isospin-symmetric
tain analytic expressions foMz' Indeed, wherN=2 and Hamiltonian is used. FoON=Z nuclei there is still no mix-

both are even, all three values &f are equal, and when jng. But in that case there are tdegenerateninima of the
N—Z increases\j, and therefore alsa\,,, sharply de- energy: one with nonvanishing,=A, andA,,=0, and the
creases, while the other tvw;fil remain the same or in- other one withA,=A,=0 andA,,# 0. (This conclusion was

Il. ISOSPIN-SYMMETRIC HAMILTONIAN
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also reached ifd] for the one-level model, and 6] in the = goes more smoothly through the “critical point,” as it must
more general case. for a finite system. Nevertheless, the basic similarity is ap-

We see, therefore, that the generalized Bogolyubov trangarent.

formation fails to describe correctly the treatment of |t is now clear that the failure of the BCS method to
isovector-pairing correlations. However, since we expect, agescribe the neutron-proton pairing in the isospin-symmetric
stated above, that the effectiop pairing decreases fast with case is not a fundamental one. It is related to the abrupt
increasingN—Z, the standard BCS theory is still applicable phase transition inherent in the BCS. The isospin-symmetric

for most heavier nuclei wherd—Z is relatively large. valueG,= G g is less than the critical value needed for the
phase transition from the pure like-particle pairing to the
IIl. BREAKING THE ISOSPIN SYMMETRY situation where both like-particle and neutron-proton pairs

_ _ coexist. Since, as stated earlier, the quasiparticle vacuum
Let us consider now what happens when the requiremerfreaks isospin anyway, it should not matter much that the
of isospin symmetry is relaxed; i.e., in the Hamiltonidd  jsospin violation is also imposed on the Hamiltonian level.

one allows different coupling constanG,,#G,,#Gnp,  We have to choose, however, the proper value of the cou-
and possibly different single-particle energies for neutron§)|ing constanG,,

and protons. It was shown already 30 years &b@ that
such a Hamiltonian, treated using the generalized Bogoly

ubov transformatior{2), results in nonvanishing,, in nu- to estimate the gap,,. This is easy to do for the pairing

clei with N==2. Hamiltonian (1). But a similar procedure can be also done
The Hamiltonian which breaks isospin symmetry leads A e p o .
\‘yhen working with a “realistic” Hamiltonian with noncon-

naturally, to eigenstates that do not have a definite value o - . o
isospin. Since the quasiparticle vacuum mixes states witfitant pairing matrix elements_. Such Hamiltonians are essen-
different particle number, and therefore also with differentti2lly always isospin symmetric. To break the symmetry, and
isospin, even for an isospin-conserving Hamiltonian, it isallgw the coexistence of the I|ke—part|cl_e :_;md neu_tron.—proton
perhaps worthwhile to explore effects associated with such Rairs, we propose to add to the realistic Hamiltonian the
more general situation. Interaction term

It is straightforward to treat the Hamiltonidm) exactly in
the one- or two-level model; the corresponding Hamiltonian
matrix can be calculated using the formulag 15] (see also 1 S R
the Appendi¥. The corresponding eigenstates are no longer HaUX_Z_ ~ Gnp3jmn@fmpdi m pdjm'n (5)
characterized by isospiit. Instead, all isospin values be- e
tweenT,=T.,;,=(N—2)/2 and T,,,,=(N+2Z)/2 contribute
to the wave function. The ground state enekgy; of a one-

The natural way to fix the ratiG,,/ G, is in nuclei with
N==Z where one can use the arguments of isospin symmetry

) containing an adjustable paramet@f,. This parameter is
Ievgl systgm .W'thG”P.#GPa"EG““:GPP decr.ea.ses MONO- then fixed in such a way that in nuclei witth=Z the corre-
toﬁ'ca”y with mcreasmanp'. However, the blndlng' energy sponding gaps have values following from isospin symme-
gain between a s_ystem with no neutron-proton .|nteract|oqry_ Once determined, the value 6, should be kept fixed
(and therefored,,=0) and the system with pure iSOVECIOr (4 ¢aicylation of other nuclei for which the same single-
interaction(and A,,#0) is only of the order 12, particle level scheme is applicable. While our prescription is
unigue for the pure pairing Hamiltoniaii), it is not obvi-

AE=Eys(Gnp/Gpair=1) —Eg5(Gnp=0)= —GpaiZ/2, ously unique for the realistic Hamiltonian. But as long as the
isospin breaking is relatively mild, its actual form should not
matter much.

What happens when neutrons are added to the symmetric
b\I=Z even-even nucleus? We show in Fig. 2 again the com-
parison between the exact and BCS gaps in the degenerate
case, how as a function &f—Z. There are again basic simi-
larities between the two situations, but the quantity, de-

compared to the leading termG;{2(N+Z)/2. Moreover,
the exact wave function of the ground state corresponding t
the isovector-pairing Hamiltonian witB,,,/G,4=1 can be
obtained from the ground state of the isospin-violating

Hamiltonian with any Gnp/Gpgi# 1 by simply projecting creases more rapidly witN—Z in the BCS case than in the

onto a state with isospifi=T,,,. This is an exact statement . . .
which follows from the uniqueness of the zero-seniority state"Xact case. We believe that this feature is related to the ap-
with given (N,Z,T). proximation involved in relating the ga‘;’stz to the ground

In Fig. 1 we show the exact and BCS gap parameters foptate expectation valu@ftZ in the exact case. What is clearly
the one-level system as a function of the raBq,/G,,,.  Visible in both cases, and intuitively obvious, is the tendency
The degenerac§) and the pairing strengtB . are chosen of the A, to decrease with increasing—Z. This tendency
in such a way that they resemble the situation in finite nuclehave been noted many times before; see €335]. In par-
discussed later on. One can see that the two methods gitieular Ref.[5] has shown that in the BCS approach for real
qualitatively similar results. They agree with each other quitenuclei, and with the ratiG,,/Gp,; fixed so that aN=Z the
well, with the exception of the narrow region near the “criti- gap A,, has reasonable value, the effect of neutron-proton
cal point” of the BCS methodfor the plotted case this point pairing disappears &tl—Z=6. It is important to keep in
is atGpp/Gpai=1.05). As usual, the BCS method is charac-mind that the decrease df,, with increasingN—Z occurs
terized by the sharp phase transition while the exact methodven though the protons and neutrons occupy the same shell.
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IV. CONCLUSIONS The necessary matrix elements of the pair creation and anni-

We have shown that treating pairing properties of a sys—h llation operators are

tem of interacting protons and neutrons with the help of the A/ 1 T+ 1T,+t,|ST N T, T,)
generalized Bogolyubov transformation requires specia z

care. The corresponding system of equations allows, in prin- (TTAL|T+1T,+t,)
ciple, three different solutions. There is the trivial “normal” = 2 Lz 2
solution with no pairing whatsoever. But there are also two V2T+3

competing solutions with pairing correlations present. One, K[(T+1)(20 - N-T)(T+N+3)2]¥2 (A1)

in which there are no neutron-proton pairs, corresponds to a '

product state with the neutron-neutron and proton-proto T 1T—1T+4tIS IV T.T

pairs not communicating with each other. The other solutior?N ’ TGS INT.T2)

corresponds to a system in which like-particle and neutron- B

proton isovector pairs coexist. When the generalized Bogoly- :<TTZHZ|T LT+t

ubov transformation is used, there is a sharp phase transition V2T-1

between these two paired regimes, with the critical pairing 12

strengthG,,,/ G pair SOMewhat larger than unity. X[TRA+1-N+T)N-T+2)/2]"%,  (A2)
Thus, if one wants to describe the neutron-proton pairin I

using the quasiparticle transformation method, one has t

break isospin symmetry at the Hamiltonian level. We pro-

pose to fix the unknown degree of isospin breaking in such a — (TTA-4[T+1T,—t)

way that the gap ,, in N=Z nuclei is reasonable, i.e., com- V2T+3

parable to the gapA,, andA,,. With this assignment all /
traces of the isovector neutron-proton pairing disappear for X[(T+1)(2Q+3-N+T)(N=-T)/2]"%  (A3)

N—Z=6 in real nuclei. (N~ 11T_11Tz_tz|StZ|MTaTz>

1T+1T,—t,|S |N.T.T,)
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