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Band termination of collective rotation: Dynamical mechanism of occurrence
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The phenomenon of band termination of the nuclear collective rotation has been originally discussed by
Bohr and Mottelson. The scenario is the following: In the high-spin rotational nucleus, the effect of the Coriolis
term produces a tendency to align the angular momenta of individual single particles in a deformed rotating
mean field in the direction of the rotation axis. This rotational alignment of the orbits of individual particles
tends to create a density distribution symmetric about the rotation axis. The band termination of collective
rotation is thus expected, when the density distribution about the rotation axis becomes symmetric, with the
total angular momentum being the sum of the contributions of aligned individual particles. The main purpose
of this paper is to formulate this scenario of the band termination from the standpoint of nuclear many-body
problems and disclose thedynamical mechanism of occurrenceof the band termination. It is clarified that the
band termination occurs when the intrinsic state in the rotating frame cannot be stable against a variation
toward an increase of the collective angular momentum. It is also shown that the value of the collective angular
momentum at the band termination is simply an inflection point of the collective rotational energy. The
behavior of the single-particle orbitals in the rotating frame is justified and visualized to be in accordance with
the scenario of Bohr and Mottelson.@S0556-2813~97!02807-0#

PACS number~s!: 21.60.Jz, 21.60.Ev, 27.20.1n, 27.30.1t
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I. INTRODUCTION

The nucleus is an isolated finite many-body quantum s
tem in which the self-consistent mean field is realized.
collective modes of motion, which are associated with
time-evolution of the mean field, are inevitably of larg
amplitude and are nonlinearly interwoven with the sing
particle modes of motion in a self-consistent way. One of
most typical modes of such a large-amplitude collective m
tion is the collective rotation. When the system has a
formed stationary mean field which can define an orienta
of the system as a whole, one inevitably needs the conce
spontaneous breakdownof the rotation symmetry. Thus, th
very occurrence ofcollective rotational degreesof freedom
originates in restoring the broken rotation symmetry.

The focus in this paper is to disclose thedynamical
mechanism of occurrenceof the band termination phenom
ena of collective rotation. The band termination of collecti
rotation is a characteristic quantum property of afinitemany-
body system such as the nucleus. It was originally discus
by Bohr and Mottelson@1,2#: In the high-spin rotationa
nucleus, the effect of the Coriolis term can be viewed a
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tendency to align the angular momenta of individual sing
particles in a rotating mean field in the direction of the a
of rotation. This rotational alignments of the orbits of ind
vidual particles tend to create a density distribution symm
ric about the rotation axis. Thus, one may expect the b
termination of collective rotation, when the density distrib
tion about the rotation axis becomes symmetric with the to
angular momentum being the sum of the contributions
aligned individual particles.

In the heavier nuclei, the ground-state band does not
minate until very high spins, although the termination ph
nomena have been observed along the yrast line after se
band crossings@3#. In thesd-shell nuclei at high-spin, how-
ever, one can observe the band termination of a single r
tional band@3,4#.

The scenario of band termination discussed by Bohr
Mottelson were first numerically realized by Bengtsson a
Ragnarsson@5# on the basis of the cranked Nilsson
Strutinsky method, and successfully applied tosd-shell nu-
clei @4# and is being applied to medium-heavy nuclei. In th
method, the band termination is described as a state ha
the maximum possible spin for the configuration in whi
the band begins. In order to analyze the behavior of the c
figuration and to find the maximum angular momentu
therefore, onemustnumerically calculate each state of th
configuration at each point of the deformation (b,g) and the
collective angular momentumI .
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56 181BAND TERMINATION OF COLLECTIVE ROTATION: . . .
In this paper, we try to formulate the scenario of ba
termination by Bohr and Mottelson from thestandpoint of
nuclear many-body problem. In order to avoid unnecessar
confusions, we restrict ourselves to such aband termination
of a single rotational band~as observed insd-shell nuclei!,
in which the evolution of the rotational band to its termin
tion does not encounter the band crossing. Our formula
can clearly disclose the dynamical interweaving between
collective rotation and the single-particle motion througho
the evolution of a rotational band to its termination.

Our first task is to precisely formulate the very concept
collective rotation from the standpoint of nuclear many-bo
problem. Such a formulation has been fully developed@6# by
means of the self-consistent collective coordinate~SCC!
method@7# on the basis of the time-dependent Hartree-Fo
~TDHF! method. For the sake of self-containedness, it is
capitulated in Sec. II in a form suitable for later discussio

In Sec. III, the formulation of the collective rotation b
the SCC method is compared with that of the conventio
cranked Hartree-Fock~HF! method. It is shown that the for
mulation by the SCC method reproduces the intrinsic stat
rotating frame as well as the intrinsic Hamiltonian in t
rotating frame discussed in the cranked HF method.

Only one essential difference follows: In the SCC form
lation of the collective rotation, it is necessary to define
collective angle operatorwhich is a local infinitesimal gen
erator for a variation of the intrinsic state toward the incre
of the collective angular momentumI , while the cranked HF
method does not specify any collective angle operator
plicitly. The intrinsic excitation modes in rotating frame a
described by the random-phase approximation~RPA! equa-
tions for the intrinsic Hamiltonian. With the use of the in
trinsic excitation modes, the stability condition of the intri
sic state in rotating frame is discussed.

In Sec. IV, we discuss equations for the generators
collective rotation, i.e., for the collective angle operator a
the angular momentum operator. It is shown that the eq
tions are a typical set of RPA equations associated with
Nambu-Goldstone mode, based on the broken rotation s
metry of the intrinsic state. The stability condition of th
intrinsic state in rotating frame toward a variation of t
collective angular momentumI is given by employing the
RPA equation for the collective angle operator. From
stability condition, one can see that the intrinsic state in
tating frame cannot be stable against the variation toward
increase of the collective angular momentum, when the
lective angular momentumI arrives to an inflection poin
I 0 of the collective rotational energy.

In Sec. V, it is shown that the collective angle opera
vanishes at this inflection pointI 0, demonstrating theoccur-
rence of the band terminationof collective rotation. We can
also justify that the scenario of band termination by Bohr a
Mottelson~in terms of the behavior of single-particle orbi
als! is actually realized at this inflection pointI 0. Section VI
is devoted to visualizing the behavior of single-particle
bitals by numerical investigations for the observed rotatio
bands in24Mg and 16O* . Concluding remarks are given i
Sec. VII.

II. DEFINITION OF COLLECTIVE ROTATION

In order to precisely formulate the band termination
collective rotation, one has to start with formulating the ve
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concept of collective rotation. The occurrence of collecti
rotational degrees of freedom is well understood@1,2# to
originate in abreaking of rotational invariance, which intro-
duces a ‘‘deformation’’ that makes it possible to specify
orientation of the system. With the use of the SCC meth
@6,7#, let us formulate the collective rotation.

We suppose for the sake of simplicity that a tw
dimensional nuclear system consisting of even nucleon
given with a rotational invariant HamiltonianĤ with an ef-
fective ~smooth! interparticle force, and the Hartree-Foc
~HF! minimization withĤ gives a stationary local-minimum
stateuf0&, satisfying

d^f0uĤuf0&50, ~1!

with an axially symmetric deformation. We further suppo
that the HF stateuf0& has a property

^f0uĴuf0&50, ~2!

where Ĵ is the angular momentum operator along an a
perpendicular to the symmetry axis of the deformation. T
deformation ofuf0& leads us to a localization of the orienta
tion of the system, which inevitably needs the concept
spontaneous breakdown of the rotation symmetry. In the
nite quantum system under consideration, the broken s
metry has to be restored by proper inclusion of the resid
interaction which has been neglected under the HF appr
mation. Thus, the microscopic structure of the collective
tation, which restores the broken rotation symmetry, is
sentially related to the problem of how to treat the resid
interaction so as to restore the broken symmetry.

In the SCC method the collective rotation, which resto
the broken rotation symmetry due to the deformation
uf0&, is described by the following class of TDHF equatio
called the ‘‘invariance principle of the Schro¨dinger
equation’’1

d^f~ I ,u!u H S i ]

]t
2Ĥ D uf~ I ,u!&J 50, ~3!

where a single Slater-Determinant wave functionuf(I ,u)& is
related to the HF stateuf0& by a time-dependent unitar
transformation depending on collective variables$I ,u%:

uf~ I ,u!&5Û~ I ,u!uf0&. ~4!

The invariance principle means that the time dependenc
the collective variables, i.e., the collective angular mom
tum I (t) and the collective angleu(t), has to be determined
so as to satisfy Eq.~3!.

With the stateuf(I ,u)&, one can define infinitesimal gen
erators$ Î (I ,u),Q̂(I ,u)% for variations of the collective vari-
ables$I ,u%, respectively, through the equations

1Throughout the formulation of this paper, we adopt the conv
tion \51.
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i
]

]u
uf~ I ,u!&5 Î ~ I ,u!uf~ I ,u!&, Î ~ I ,u!

[H i ]

]u
Û~ I ,u!J Û†~ I ,u!, ~5!

1

i

]

]I
uf~ I ,u!&5Q̂~ I ,u!uf~ I ,u!&, Q̂~ I ,u!

[H 1i ]

]I
Û~ I ,u!J Û†~ I ,u!.

In the SCC method, with the use of the generat

$ Î (I ,u),Q̂(I ,u)%, we impose the canonical-variable cond
tion @6#

^f~ I ,u!u Î ~ I ,u!uf~ I ,u!&[ K f~ I ,u!U i ]

]u Uf~ I ,u!L
5I1

]

]u
S~ I ,u!, ~6!

^f~ I ,u!uQ̂~ I ,u!uf~ I ,u!&[ K f~ I ,u!U 1i ]

]I Uf~ I ,u!L
52

]

]I
S~ I ,u!,

which guarantees the collective variables$I ,u% to be a pair
of canonical conjugate variables. In Eq. ~6!, S(I ,u) is an
arbitrary~single-valued! real function of$I ,u%, and expresses
the freedom in choosing an appropriate set of the collec
variables$I ,u% from among possible canonical transform
tions of them. From Eq.~6!, one can easily derive th
‘‘weak’’ canonical commutation relation2

^f~ I ,u!u@Q̂~ I ,u!, Î ~ I ,u!#uf~ I ,u!&5 i . ~7!

One of the most appropriate choices of the collective v
ables$I ,u% for our purpose is to fix

S~ I ,u!50 ~8!

so as to obtain, from Eq.~6!,

^f~ I ,u!u Î ~ I ,u!uf~ I ,u!&5I . ~9!

In this case, one can choose the generatorÎ (I ,u) for the
collective rotation under consideration to be identical w
the angular momentum operatorĴ of the system:

Î ~ I ,u!5 Ĵ, ~10!

2From Eq.~6! one has

]

]I K f~ I ,u!U i ]

]u Uf~ I ,u!L 1
]

]u K f~ I ,u!U 1i ]

]I Uf~ I ,u!L 51,

which is expressed as Eq.~7! with the use of the definition of
generators in Eq.~5!.
s

e

i-

which demonstrates that the collective rotation under con
eration is not anexternally ‘‘cranked’’ one but self-
consistently originates from the very system itself. Th
choice is compatible with the condition given in Eq.~2! pro-
vided that uf(I50,u50)&5uf0&, i.e., Û(I50,u50)51,
and enables us to reduce the unitary transformation in Eq~4!
to the following simple form:

uf~ I ,u!&5e2 iu Ĵuf~ I !&, uf~ I !&5eiĜ~ I !uf0&, ~11!

iĜ~ I !5(
mm

$gmm~ I !ĉm
† ĉm2H.c.%, iĜ~0!50,

$ĉm
† ,ĉm% being the particle and hole creation operators3 sat-

isfying

ĉmuf0&5 ĉm
† uf0&50. ~12!

With the form given in Eq.~11!, the canonical-variable
condition in Eq.~6! is written as

@ I #

K f~ I ,u!U i ]

]u Uf~ I ,u!L 5^f~ I !uĴuf~ I !&5I ,

K f~ I ,u!U 1i ]

]I Uf~ I ,u!L 5^f~ I !uQ̂~ I !uf~ I !&50,

~13!

Q̂~ I ![H 1i d

dI
eiĜ~ I !J e2 iĜ~ I !,4

which leads us to the ‘‘weak’’ canonical commutatio
relation

^f~ I !u@Q̂~ I !,Ĵ#uf~ I !&5 i . ~14!

Here it should be emphasized an important fact which pl
a decisive role in later discussions to define the concep
band termination: Although the infinitesimal generatorĴ for
the collective rotation is aglobal operator, theangle opera-

tor Q̂(I ) for the collective rotationis a local one which
depends on the collective angular momentum variableI .

With the use of Eq.~11!, the invariance principle given in
Eq. ~3! is simply written as

d^f~ I !uĤ2 u̇ Ĵ1 İ Q̂~ I !uf~ I !&50. ~15!

3We use the convention of denoting occupied single-particle
bitals by indicesm,n, . . . , andunoccupied single-particle orbital
by indicesm,n, . . . . Wealso use labelsa,b, . . . , to indicate the
single-particle orbitals when we need not specify to be occupied
unoccupied.
4The generatorQ̂(I ) is a one-body operator, because of the re

tion

Q̂~I!5H1i ddI eiĜ~I!Je2iĜ~I!5
dĜ~I!

dI
1
i

2!
FdĜ~I!

dI
,Ĝ~I!G

1
i2

3!
FFdĜ~I!

dI
,Ĝ~I!G,Ĝ~I!G1•••.
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56 183BAND TERMINATION OF COLLECTIVE ROTATION: . . .
By taking udf(I )&5ud if(I )&} :Q̂(I ):uf(I )& and
: Ĵ:uf(I )& in Eq. ~15! with

:Q̂~ I !:[Q̂~ I !2^f~ I !uQ̂~ I !uf~ I !&,

: Ĵ:[ Ĵ2^f~ I !uĴuf~ I !&, ~16!

and by employing the commutation relation~14!, one obtains
theequation of collective rotation

@ II #
u̇5

]

]I
Hrot~ I !, İ52

]

]u
Hrot~ I !50,

Hrot~ I ![^f~ I !uĤuf~ I !&5^f~ I ,u!uĤuf~ I ,u!&.
~17!

By taking a variationudf(I )&5ud'f(I )& satisfying

^d'f~ I !ud if~ I !&50, ~18!

one obtains from Eq.~15! the equation of collective sub
manifoldS rot(I ),

d'^f~ I !uĤuf~ I !&5d'^f~ I ,u!uĤuf~ I ,u!&50. ~19!

This means that the optimum collective submanifo
S rot(I ) should be extracted in such a way that the expecta
value of the Hamiltonian with respect touf(I )& is stationary
at each point on the collective submanifold for the variatio
perpendicularto it. Without the explicit use ofud'f(I )&, Eq.
~19! can be expressed as

@ III # d K f~ I !UĤ2H dHrot~ I !

dI J ĴUf~ I !L 50, ~20!

because the variationud if(I )& in Eq. ~20! identically leads
to zero by the definition in Eq.~16!.

Equations@I#, @II #, and@III # form a set of basic equation
of the SCC method for the collective rotation. It has be
shown@6# that the set of basic equations enables us to s
consistently determine the unknown functionsgmm(I ) of
iĜ(I ) in the stateuf(I )& defined by Eq.~11! together with
the HamiltonianHrot(I ) of collective rotation. After getting
iĜ(I ), one obtains a concrete expression of the angle op
tor Q̂(I ) through the definition in Eq.~13!.

III. INTRINSIC STATE IN ROTATING FRAME

With the purpose of comparing the above description
collective rotation by the SCC method with that of the co
ventional cranking model, let us start with a recapitulation
the basic idea of the cranking model. In this model, we
interested in a HF wave functionuf(I )&, which minimizes
the total energy under the constraint so that the angular
mentum operatorĴ has a fixed expectation value

I5^f~ I !uĴuf~ I !&[^Ĵ&. ~21!

This state is obtained by adding the condition with t
Lagrange multiplierv to the HamiltonianĤ and by mini-
mizing ^R̂&[^Ĥ&2v^Ĵ&. After obtaining the solution of this
problem,v is determined as a function ofI through the
n

s

n
lf-

a-

f
-
f
e

o-

condition in Eq.~21!. The functional form ofv is known to
be of the formv5d^Ĥ&/dI. Thus, the set of basic equation
of the cranking model is given by

d^f~ I !uĤ2v Ĵuf~ I !&50, ~22a!

^f~ I !uĴuf~ I !&5I , ~22b!

and the Lagrange multiplierv has to be of the form

v5
dHrot~ I !

dI
, Hrot~ I ![^f~ I !uĤuf~ I !&. ~23!

Now, let us compare Eqs.~22a!, ~22b!, and~23! with the
set of basic equations@I#, @II # and@III # in the SCC method. It
is self-evident that the basic equation@III # given in Eq.~20!
is nothing but Eq.~22a! together with Eq.~23!, and the first
one of the canonical-variable condition@I# given in Eq.~13!
just corresponds to the constraint condition~22b!. Only one
essential difference rests on the point that to precis
specify thecollective rotationof the system by the SCC
method, it is inevitable to define the collective angle opera
Q̂(I ) in Eq. ~13!, which satisfies the weak canonical com
mutation relation with the angular momentum operatorĴ,
while the cranking model does not specify any collecti
angle operator explicitly.

With the analogy of the conventional cranking mod
hereafter we calluf(I )& defined in Eq.~11! the intrinsic state
in rotating frame, and the operatorR̂(I )[Ĥ2v(I ) Ĵ @with
v(I )[dHrot(I )/dI# the intrinsic Hamiltonian in rotating
frame. Since the intrinsic stateuf(I )& is a stationary state
satisfying Eq. ~20!, the intrinsic Hamiltonian in rotating
frame can be generally expressed as

R̂~ I ![Ĥ2v~ I !Ĵ5^f~ I !uR̂~ I !uf~ I !&

1(
m

em~ I !ĉm
† ~ I !ĉm~ I !2(

m
em~ I !ĉm~ I !ĉm

† ~ I !

1:R̂int~ I !:, ~24!

where$ĉm
† (I ),ĉm(I )% are particle and hole creation operato

in rotating framedefined by

ĉm~ I !uf~ I !&5 ĉm
† ~ I !uf~ I !&50. ~25!

The operator :R̂int(I ): denotes two-body interaction term
consisting of normal-ordered four-particle-hole operators
rotating frame. With the intrinsic HamiltonianR̂(I ) in Eq.
~24!, one can describeintrinsic excitation modes in rotating
frameby the RPA eigenvalue equation

X̂l
†~ I !5(

mm
$cl~mm:I !ĉm

† ~ I !ĉm~ I !

1wl~mm:I !ĉm
† ~ I !ĉm~ I !%,

d^f~ I !u@R̂~ I !,X̂l
†~ I !#2Vl~ I !X̂l

†~ I !uf~ I !&50, Vl~ I !.0,
~26!
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^f~ I !u@X̂l~ I !,X̂l8
†

~ I !#uf~ I !&5dl,l8,

^f~ I !u@X̂l~ I !,X̂l8~ I !#uf~ I !&50.

The intrinsic excitation modes in rotating frame have a dir
clear-cut correspondence to the ‘‘particle-hole’’ excitatio
in the conventional cranking shell model, where the inter
tion :R̂int(I ): is disregarded. When :R̂int(I ): is neglected, the
intrinsic excitation modesX̂l

†(I ) with excitation energies
Vl(I ) are reduced to the particle-hole excitatio
ĉm
† (I ) ĉm(I ) with excitation energiesem(I )2em(I ).
It is well known that the RPA eigenvalue equation in E

~26! is related to the stability problem of the intrinsic sta
uf(I )&. Let i F̂ (I ) be an infinitesimal generator of a variatio
of uf(I )&. Then, the caused variation of the mean intrin
energy in rotating frame is given by

^f~ I !ue2 i F̂ ~ I !R̂~ I !eiF̂ ~ I !uf~ I !&2^f~ I !uR̂~ I !uf~ I !&

5^f~ I !u@R̂~ I !,i F̂ ~ I !#uf~ I !&

1
1

2!
^f~ I !u@@R̂~ I !,i F̂ ~ I !#,i F̂ ~ I !#uf~ I !&1•••.

~27!

Since the intrinsic stateuf(I )& is a stationary state for th
intrinsic HamiltonianR̂(I ), the first term of the right-hand
side in Eq.~27! vanishes. The stability condition of the in
trinsic state for the variation is thus given by

d~2!^f~ I !uR̂~ I !uf~ I !&

[
1

2!
^f~ I !u@@R̂~ I !,i F̂ ~ I !#,i F̂ ~ I !#uf~ I !&.0. ~28!

Now infinitesimal generators for variations toward the
trinsic excitation modes$X̂l

†(I ),X̂l(I )% may be defined by

q̂l~ I ![
1

A2
$X̂l

†~ I !1X̂l~ I !%, p̂l~ I ![
i

A2
$X̂l

†~ I !2X̂l~ I !%.

~29!

One then obtains

dl
~2!^f~ I !uR̂~ I !uf~ I !&

[
1

2!
^f~ I !u@@R̂~ I !,i q̂~ I !#,i q̂~ I !#uf~ I !&

5
1

2!
^f~ I !u@@R̂~ I !,i p̂~ I !#,i p̂~ I !#uf~ I !&5

1

2
Vl~ I !.0,

~30!

which means that the intrinsic stateuf(I )& is stableagainst
the intrinsic excitation modes. The level-crossing condit
em0

(I )2em0
(I )50 in the rotating shell model, which i

closely related to the band-crossing phenomenon, thus
ply corresponds toVl0

(I )50 for the lowest-energy intrinsic

excitation modeX̂l0

† (I ) at a givenI value. As mentioned in
t

-

.

n

m-

Sec. I, in this paper we have restricted ourselves to the p
lem of band termination of a single rotational band in whi
the evolution of the band to its termination does not enco
ter the band crossing. Thus, we may suppose that we
have real and nonvanishing eigenvaluesVl(I ) of the intrin-
sic excitation modes.

IV. EQUATIONS FOR GENERATORS OF COLLECTIVE
ROTATION AND THE OCCURRENCE

OF BAND TERMINATION

The generators$Ĵ,Q̂(I )% of the collective rotation given
in Eq. ~13! satisfy the canonical commutation relation in E
~14!, i.e.,

^f~ I !u@Q̂~ I !,Ĵ#uf~ I !&5 i . ~31!

It is shown that they obey the equations

d^f~ I !u@R̂~ I !,Ĵ#uf~ I !&50, ~32!

d K f~ I !U@R̂~ I !,i Q̂~ I !#2
dv~ I !

dI
ĴUf~ I !L 50.

The first one of Eq.~32! is trivial because of@Ĥ,Ĵ#50. The
second one is derived in the following way@8#. From Eq.
~20!, it follows for a small variationdI of the collective
angular momentumI that

d^f~ I1dI !uR̂~ I1dI !uf~ I1dI !&50, ~33!

where

uf~ I1dI !&5$11 idI Q̂~ I !%uf~ I !&, ~34!

R̂~ I1dI !5R̂~ I !2dI
dv~ I !

dI
Ĵ.

Within the first order ofdI , we thus obtain the second one
Eq. ~32!.

Equation~32! with Eq. ~31! is a typical set of RPA equa
tions @8,9# associated with the Nambu-Goldstone mod
based on the broken rotation symmetry of the intrinsic st
uf(I )&. The dynamical moment of inertiaJTV(I ) for the col-
lective rotation, calledThouless-Valatin moment of inertia a
a given value I@8#, is defined by

$JTV~ I !%21[
dv~ I !

dI
5
d2Hrot~ I !

dI2
,

Hrot~ I !5^f~ I !uĤuf~ I !&. ~35!

Since the generators$Ĵ,Q̂(I )% fulfill the RPA equation given
by Eq. ~32!, they have to be orthogonal to the intrinsic exc
tation modes$X̂l

†(I ),X̂l(I )% which are also the solutions o
the RPA equation in Eq.~26!:

^f~ I !u@X̂l
†~ I !,Ĵ#uf~ I !&5^f~ I !u@X̂l

†~ I !,Q̂~ I !#uf~ I !&50.
~36!
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We are now ready to investigate the stability of the intr
sic stateuf(I )& for the variationdI of the collective angular
momentumI . By taking i F̂ (I )5 i Q̂(I ) in Eq. ~28!, the sta-
bility condition toward the variationdI is given by

d I
~2!^f~ I !uR̂~ I !uf~ I !&

[
1

2!
^f~ I !u@@R̂~ I !,i F̂ ~ I !#,i F̂ ~ I !#uf~ I !&

5
1

2!
^f~ I !u@@R̂~ I !,i Q̂~ I !#,i Q̂~ I !#uf~ I !&

5
1

2

dv~ I !

dI
5
1

2

d2Hrot~ I !

dI2
5
1

2
$JTV~ I !%21.0, ~37!

where we have used Eq.~32!.
Equation ~37! denotes the important fact that when t

collective angular momentumI arrives to an inflection poin
I 0 of the collective rotational energy Hrot(I )
[^f(I )uĤuf(I )&, satisfying

$JTV~ I 0!%
21[ lim

I→I020
Fd2Hrot~ I !

dI2 G50, ~38!

the intrinsic stateuf(I )& constructed upon the band-hea
stateuf0& in Eq. ~1! cannot be stableagainst the variation
toward increase of the collective angular momentumI . This
is a precisephysical definition of the band termination o
collective rotation. Namely, at the inflection pointI5I 0, the
collective rotation to restore the broken rotation symme
terminates. This definition is notdirectly connected with
whether all the valence nucleons under consideration
coupled to a maximum angular momentum or not.

V. STRUCTURE OF SINGLE-PARTICLE ORBITALS
AT BAND TERMINATION

With the explicit use of the expression of the two-bo
interaction terms :R̂int(I ): in the intrinsic Hamiltonian

:R̂int~ I !:5
1

4 (
abgd

vab,gd~ I !: ĉa
†~ I !ĉb

†~ I !ĉd~ I !ĉg~ I !:,

~39!

vab,gd~ I !52vba,gd~ I !52vab,dg~ I !5vba,dg~ I !,

the equations for generators of the collective rotation giv
in Eq. ~32! are now explicitly written down as

$em~ I !2em~ I !%Jmm~ I !1(
nn

$vmn,mn~ I !Jnn~ I !

2vmn,mn~ I !Jnn* ~ I !%[0, ~40a!

$em~ I !2em~ I !%Qmm~ I !1(
nn

$vmn,mn~ I !Qnn~ I !

2vmn,mn~ I !Qnn* ~ I !%52 i $JTV~ I !%21Jmm~ I !,

~40b!
-

y

re

n

where Jmm(I ) andQmm(I ) are the coefficients of particle
hole components of$Ĵ,Q̂(I )%, respectively:

Ĵ ph~ I ![(
mm

$Jmm~ I !ĉm
† ~ I !ĉm~ I !1Jmm* ~ I !ĉm

† ~ I !ĉm~ I !%,

Q̂ph~ I ![(
mm

$Qmm~ I !ĉm
† ~ I !ĉm~ I !1Qmm* ~ I !ĉm

† ~ I !ĉm~ I !%.

~41!

When I,I 0, one always has Eq.~31! by which one obtains

(
mm

$Jmm~ I !Qmm* ~ I !2Jmm* ~ I !Qmm~ I !%5 i . ~42!

Equations~40b! and ~42! are sufficient to determineQ̂ph(I )
and the moment of inertiaJTV(I ). By neglecting the two-
body interaction terms in Eq.~40b!, one obtains the Inglis
formula in the cranking shell model, with the aid of Eq.~42!,
as

Qmm~ I !52 i
$JTV~ I !%21Jmm~ I !

em~ I !2em~ I !
, ~43!

JTV~ I !52(
mm

uJmm~ I !u2

em~ I !2em~ I !
.

At the band termination pointI5I 0 defined by Eq.~38!,
onecannot enforcethe weak canonical commutation relatio
in Eq. ~31! so that Eq.~43! cannot be adopted. In this case,
we therefore have to start with extending the condition in E
~13! to the following form. In the neighborhood ofI5I 0, the
condition may be written as

^f~ I !uĴuf~ I !&5I2~ I2I 0!q~ I2I 0!5H I for I,I 0 ,

I 0 for dI>I 0 ,
~44!

^f~ I !uQ̂~ I !uf~ I !&50,

whereq(I2I 0) is the function defined by

q~ I2I 0!5H 0 for I,I 0 ,

1 for I.I 0 .
~45!

At the band termination pointI5I 0, Eq. ~44! simply be-
comes

^f~ I 0!uĴuf~ I 0!&5I 0 , ~46a!

^f~ I 0!uQ̂~ I 0!uf~ I 0!&50, ~46b!

and Eqs.~40a! and ~40b! are reduced to

$em~ I 0!2em~ I 0!%Jmm~ I 0!1(
nn

$vmn,mn~ I 0!Jnn~ I 0!

2vmn,mn~ I 0!Jnn* ~ I 0!%50, ~47a!
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$em~ I 0!2em~ I 0!%Qmm~ I 0!1(
nn

$vmn,mn~ I 0!Qnn~ I 0!

2vmn,mn~ I 0!Qnn* ~ I 0!%50. ~47b!

Equation ~47b! means that thesingle-particle orbitals at
I5I 0 have aspecial propertythatall the matrix elements o
Qmm(I 0) vanish, since we have supposed that the stabi
matrix of the intrinsic Hamiltonian is to be positive definit
This fact together with the condition in Eq.~46b! demon-
strates that the collective angle operatorQ̂(I ), which is es-
sential to properly define the collective rotation, vanishes
I5I 0. Equation~40a! is the identity for the conserved angu
lar momentum operator. However, atI5I 0, it is expressed as
Eq. ~47a! having the same structure as Eq.~47b!. This im-
plies that the single-particle orbitals atI5I 0 have a specia
property that all the particle-hole components of the angu
momentum,which are responsible for the collective rotatio,
vanish and only the diagonal components remain. Physic
this means that all valence particles in the occupied orbi
at I5I 0 are in alignmentto be coupled to the angular mo
mentumI 0 as is specified by Eq.~46a!, realizing the scenario
of band termination by Bohr and Mottelson. Conceptua
the band termination is a dynamical restoration of thebroken
symmetry, where the one-body density operator and the
gular momentum operator are diagonalized simultaneous

When the particle-hole components of the total angu
momentum operator vanishes, its canonical conjugate op
tor Q̂(I ) suddenly vanishes, satisfying the condition~47b!.
Namely, the collective rotational state and the state w
fully aligned single-particles are disconnected with ea
other, and the band termination occurs at the singular p
I5I 0. After the band termination of the collective rotatio
one may thus has the situation of the so-calledrotation about
symmetry axis@2# which is also referred to asnoncollective
rotation @3#. In the numerical calculations of the cranked H
state with the Lagrangian multiplierv, it should be noticed
that thediscontinuous change between the collective rotat
and the noncollective rotationis often overlooked when on
uses the constraint condition in Eq.~21!, i.e.,

^Ĵ&[^f(I )uĴuf(I )&5I . In this case, therefore, one has
properly employ the constraint condition given in Eq.~44!,
i.e., ^Ĵ&5I2(I2I 0)q(I2I 0). Then, upon the variation o
v, one has

d^Ĥ&5vd^Ĵ&5vdI$12q~ I2I 0!%, ~48!

and so^Ĥ&, viewed as a function ofI , satisfies

d

dI
^Ĥ&5v$12q~ I2I 0!%5H v for I,I 0 ,

0 for I.I 0 .
~49!

From Eq.~49!, one obtains

d2

dI2
^Ĥ&5

dv

dI
$12q~ I2I 0!%2vd~ I2I 0!, ~50!

which leads to thenormal relation whenIÞI 0,
t

r

lly
ls

,

-
.
r
ra-

h
h
nt

n

d2

dI2
^Ĥ&5H dv

dI
for I,I 0 ,

0 for I.I 0 .

~51!

At I5I 0 where the all valence particles in the occupi
orbitals are in full alignment, one has from Eq.~50!

Fd2^Ĥ&
dI2

G
I5I0

5H lim
I→I020

S dv

dI D J $12q~0!%2v~ I 0!d~0!.

~52!

Thus, a physicalfinite valueof @d2^Ĥ&/dI2# I5I0
is obtained

only when limI→I020(dv/dI) satisfies5

H lim
I→I020

S dv

dI D J 52v~ I 0!d~0!, ~53!

so that one has the value given by@d2^Ĥ&/dI2# I5I0
50. This

means that the valueI 0, where all the valence particles in th
occupied orbitals become in full alignment, just correspon
to the inflection point of the collective rotational energ

^Ĥ&. Equation~53! shows thatdv/dI cannot be convergen
at the inflection pointI 0.

VI. NUMERICAL INVESTIGATION OF SINGLE-
PARTICLE ORBITALS NEAR BAND TERMINATIONS IN

24Mg AND 16O*

In order to visualize the special character of sing
particle orbitals in the intrinsic state atI5I 0, discussed in
Sec. V, we have made numerical investigation of the sing
particle orbitals in the intrinsic state near the band termi
tions in 24Mg and 16O* . The band termination insd-shell
nuclei at high spin is not a phenomenon specific to the m
field method, but appears in sphericalsd-shell model calcu-
lations with particle-hole configuration mixing@10#, and in
the Elliott SU~3! model @11#: It is a basic quantum-
mechanical property of a finite many-body system@3#. In this
sense, it is quite intersting to investigate behavior of
single-particle orbitals near the band terminations in24Mg
and 16O* , whose intrinsic states are expected to be stable
the intrinsic excitation modes. The experimental evidence
the ground-state rotational band structure of24Mg ~both en-
ergy spacing and transition probabilities! with I,8 is defi-
nitely convincing@12,13#, and it has been suggested@14,15#
that its band termination is atI 0512 @Fig. 1~a!#. The excited
6.05 MeV 02

1 state in16O has experimentally suggested as
4p-4h excitation with a large intrinsic deformation, and
be a band-head state forming a rotational bandI50,2,4,6,8
with the band termination atI 058 @Fig. 1~b!#.

The intrinsic states for these rotational bands are given

5When we employ the functional form ofq(x),

q~x!5
1

2p i E2`

1`

da
eiax

a2 i«
5H 0 for x,0,

1 for x.0,

we haveq(0)51/2.
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FIG. 1. Rotational energy
Hrot(I )2Hrot(0) vs angular mo-
mentumI of 24Mg and 16O* . ~a!
The ground rotational band o
24Mg. We denote the yrast rota
tional band from the ground stat
obtained with our method by a
solid line, the band obtained by
Ragnarssonet al. @14# by a broken
line with diamonds, that obtained
by Boncheet al. @20# by a dotted
line, definite experimental value
@12# by crosses. Tentative state
@21# are shown in the parenthese
~b! The excited rotational band o
16O. We denote the excited rota
tional band from 02

1 state ob-
tained with our method by a solid
line, the band obtained by Åberg
et al. @22# by a broken line with
diamonds, definite experimenta
values@23# by crosses. The tenta
tive state@24# is shown in the pa-
rentheses.
ie

o

th
e

e
io
m

es.
nal

to
een

s of
d
rota-

r of
ive

cle

s
e

solving the cranked HF state with the Lagrange multipl
v, i.e.,

d^f~ I !uĤ2v Ĵxuf~ I !&50, ~54!

^f~ I !uĴxuf~ I !&5I ,

where we have adopted the three-dimensional harmonic
cillator basis with the Gogny-D18 force @16–18# for the ef-
fective interaction, and the rotational axis is chosen as
x axis. In numerically solving this cranked HF equation, w
have employed a new algorithm@19# developed by Iwasawa
et al. This algorithm, called thereference state method, en-
ables us to solve the constrained HF~CHF! equation without
relying on the conventionaladiabatic assumption.6 By this
method, one can obtain many CHF lines, which are form
by continuously connected solutions of the CHF equat
with a maximum overlap criteria. By applying this algorith
to the cranked HF equation given in Eq.~54!, one may thus

6The terminologyadiabatic assumptionused here means that it i
characterized by finding outonly the most energetically favorabl
CHF state satisfying a given constraint condition.
r

s-

e

d
n

obtain many rotational bands in place of many CHF lin
Thus, the structure of single-particle orbitals in the rotatio
band in16O upon the excited 4p-4h 01 state is easily evalu-
ated.

In our program the major shells have been included up
N54 and the parity and the signature symmetry have b
imposed. It has been observed that the Gogny-D18 force
well reproduces the binding energies of the ground state
24Mg and 16O ~see Table I!, but does not lead to a goo
agreement in absolute values between the experimental
tional energies and the calculated ones~see Fig. 1!. In this
sense, the obtained numerical results for the behavio
single-particle orbitals should be evaluated in a qualitat
point of view.

Figures 2 and 3 visualize the behavior of single-parti
orbitals atI50,6,10,12 in the ground-state band of24Mg and

TABLE I. Binding Energies of Ground States.

Nuclei 24Mg 16O

Our calc.@MeV# 2196.77 2129.99
Exp. @25# @MeV# 2198.26 2127.62
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FIG. 2. Density distribution and matrix ele

ments ofĴx of
24Mg ~see text!.
e

de
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at I50,4,6,8 in the excited-state band of16O, respectively.
The right-hand side of these figures shows the magnitud
the matrix elements ofĴx , i.e., u^a(I )uĴxub(I )&u, between
the single-particle statesua(I )& andub(I )& at an angular mo-
mentum I : The vertical axis represents the magnitu
J(a,b;I )[u^a(I )uĴxub(I )&u and the horizontal axesa andb
denote the ID numbers of the eigenstates$ua(I )&% in a sub-
of
space with paritypa51 and signaturesa51 of the proton
system.~We have the same picture for the neutron syste!
The left-hand side shows density distributions projected
the theyz plain perpendicular to the rotational axis, i.e.,x
axis. It can be seen from Figs. 2 and 3 that the rotatio
alignments of the single-particle orbit of individual particle
are associated with a trend toward symmetry about thx
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FIG. 3. Density distribution and matrix ele

ments ofĴx of
16O* ~see text!.
t
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axis. At I5I 0, all individual particles are thus in alignmen
so as to produce an oblate symmetry with respected to
x axis in accordance with the scenario of Bohr and Mottels
@1,2#. With the employment of the reference state method
solving the cranked HF equation, we have also been abl
justify the singularity shown in Eq.~53!.
he
n
n
to

VII. CONCLUDING REMARKS

By fully employing the concept of the broken rotatio
symmetry as the origin of the collective rotation, we ha
shown the dynamical mechanism of occurrence of the b
termination of collective rotation from the standpoint of th
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nuclear many-body problem. It has been disclosed that
collective rotation to restore the broken symmetry vanis
when the intrinsic state in rotating frame cannot be sta
against the variation toward increase of the collective ang
momentumI . It has also been demonstrated that the value
the collective angular momentum at the band terminatio
simply an inflection point of the collective rotational energ
The behavior of the single-particle orbitals in rotating fram
is justified and visualized to be in accordance with the s
nario of the band termination, which was originally di
cussed by Bohr and Mottelson.

In this paper, we have discussed the band termination
single collective rotational band, provided that the intrin
ics

cl
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g
,
n

da
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e
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-

a

state in rotating frame is stable, throughout the evolution
the rotational band to its termination. It is, therefore, outs
of the scope of this paper to discuss the termination phen
enon along the yrast line in the heavier nuclei, where
rotational alignments of particles individuallly occur accom
panied by the level crossings of single-particle orbitals. T
problem will be discussed in a separate paper.
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