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Band termination of collective rotation: Dynamical mechanism of occurrence
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The phenomenon of band termination of the nuclear collective rotation has been originally discussed by
Bohr and Mottelson. The scenario is the following: In the high-spin rotational nucleus, the effect of the Coriolis
term produces a tendency to align the angular momenta of individual single particles in a deformed rotating
mean field in the direction of the rotation axis. This rotational alignment of the orbits of individual particles
tends to create a density distribution symmetric about the rotation axis. The band termination of collective
rotation is thus expected, when the density distribution about the rotation axis becomes symmetric, with the
total angular momentum being the sum of the contributions of aligned individual particles. The main purpose
of this paper is to formulate this scenario of the band termination from the standpoint of nuclear many-body
problems and disclose thliynamical mechanism of occurrenokthe band termination. It is clarified that the
band termination occurs when the intrinsic state in the rotating frame cannot be stable against a variation
toward an increase of the collective angular momentum. It is also shown that the value of the collective angular
momentum at the band termination is simply an inflection point of the collective rotational energy. The
behavior of the single-particle orbitals in the rotating frame is justified and visualized to be in accordance with
the scenario of Bohr and Mottelsof50556-28187)02807-(

PACS numbgs): 21.60.Jz, 21.60.Ev, 27.20n, 27.30+t

[. INTRODUCTION tendency to align the angular momenta of individual single-
particles in a rotating mean field in the direction of the axis

The nucleus is an isolated finite many-body quantum sysef rotation. This rotational alignments of the orbits of indi-
tem in which the self-consistent mean field is realized. Itsvidual particles tend to create a density distribution symmet-
collective modes of motion, which are associated with theic about the rotation axis. Thus, one may expect the band
time-evolution of the mean field, are inevitably of large- termination of collective rotation, when the density distribu-
amplitude and are nonlinearly interwoven with the single-tion about the rotation axis becomes symmetric with the total
particle modes of motion in a self-consistent way. One of theangular momentum being the sum of the contributions of
most typical modes of such a large-amplitude collective mo-aligned individual particles.
tion is the collective rotation. When the system has a de- In the heavier nuclei, the ground-state band does not ter-
formed stationary mean field which can define an orientatiorminate until very high spins, although the termination phe-
of the system as a whole, one inevitably needs the concept eiomena have been observed along the yrast line after several
spontaneous breakdovef the rotation symmetry. Thus, the band crossingg3]. In the sd-shell nuclei at high-spin, how-
very occurrence otollective rotational degreesf freedom  ever, one can observe the band termination of a single rota-
originates in restoring the broken rotation symmetry. tional band[3,4].

The focus in this paper is to disclose thynamical The scenario of band termination discussed by Bohr and
mechanism of occurrencg the band termination phenom- Mottelson were first numerically realized by Bengtsson and
ena of collective rotation. The band termination of collectiveRagnarsson[5] on the basis of the cranked Nilsson-
rotation is a characteristic quantum property difnée many-  Strutinsky method, and successfully appliedstshell nu-
body system such as the nucleus. It was originally discussedlei [4] and is being applied to medium-heavy nuclei. In this
by Bohr and Mottelson1,2]: In the high-spin rotational method, the band termination is described as a state having
nucleus, the effect of the Coriolis term can be viewed as @he maximum possible spin for the configuration in which

the band begins. In order to analyze the behavior of the con-
figuration and to find the maximum angular momentum,
*Present address: Institute for Particle and Nuclear Studies, Higtherefore, onenustnumerically calculate each state of the
Energy Accelerator Research Organization, Tanashi, Tokyo 188;onfiguration at each point of the deformatig®, {) and the
Japan. collective angular momentumn
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In this paper, we try to formulate the scenario of bandconcept of collective rotation. The occurrence of collective
termination by Bohr and Mottelson from theandpoint of rotational degrees of freedom is well understddg?] to
nuclear many-body problenn order to avoid unnecessary originate in abreaking of rotational invariangewhich intro-
confusions, we restrict ourselves to suchamd termination  duces a “deformation” that makes it possible to specify an

of a single rotational bandas observed isd-shell nuclej,  orientation of the system. With the use of the SCC method
in which the evolution of the rotational band to its termina-[,7], let us formulate the collective rotation.

tion does not encounter the band crossing. Our formulation e suppose for the sake of simplicity that a two-

can clearly disclose the dynamical interweaving between thgimensional nuclear system consisting of even nucleons is

collective rotation and the single-particle motion throughout . . . : . A
the evolution of a rotational band to its termination. given with a rotational invariant Hamiltoniad with an ef-

Our first task is to precisely formulate the very concept of €Ctivé (Smooth interparticle force, and the Hartree-Fock
collective rotation from the standpoint of nuclear many-body(HF) minimization withH gives a stationary local-minimum
problem. Such a formulation has been fully developgicby  state|¢o), satisfying
means of the self-consistent collective coordiné&CQO
method[7] on the basis of the time-dependent Hartree-Fock 8 ||:||¢ y=0 (1)
(TDHF) method. For the sake of self-containedness, it is re- OFTo/

capitulated in Sec. Il in a form suitable for later discussions. . , ) .
In Sec. IlI, the formulation of the collective rotation by With an axially symmetric deformation. We further suppose

the SCC method is compared with that of the conventionaihat the HF stat¢go) has a property
cranked Hartree-FockHF) method. It is shown that the for-
mulation by the SCC method reproduces the intrinsic state in (olI| o) =0, 2
rotating frame as well as the intrinsic Hamiltonian in the
rotating frame discussed in the cranked HF method. - )
Only one essential difference follows: In the SCC formu-WhereJ is the angular momentum operator along an axis
lation of the collective rotation, it is necessary to define aperpendicular to the symmetry axis of the deformation. The
collective angle operatowhich is a local infinitesimal gen- deformation ofl ¢,) leads us to a localization of the orienta-
erator for a variation of the intrinsic state toward the increasdion of the system, which inevitably needs the concept of
of the collective angular momentumwhile the cranked HF ~ spontaneous breakdown of the rotation symmetry. In the fi-
method does not specify any collective angle operator exdite quantum system under consideration, the broken sym-
plicitly. The intrinsic excitation modes in rotating frame are metry has to be restored by proper inclusion of the residual
described by the random-phase approximati@RPA) equa- interaction which has been neglected under the HF approxi-
tions for the intrinsic Hamiltonian. With the use of the in- mation. Thus, the microscopic structure of the collective ro-

trinsic excitation modes, the stability condition of the intrin- tation, which restores the broken rotation symmetry, is es-

sic state in rotating frame is discussed. sentially related to the problem of how to treat the residual
In Sec. IV, we discuss equations for the generators ofnteraction so as to restore the broken symmetry.

collective rotation, i.e., for the collective angle operator and In the SCC method the collective rotation, which restores

the angular momentum operator. It is shown that the equahe broken rotation symmetry due to the deformation of

tions are a typical set of RPA equations associated with thépo), is described by the following class of TDHF equations

Nambu-Goldstone mode, based on the broken rotation syn¢alled the *“invariance principle of the Schdimger

metry of the intrinsic state. The stability condition of the equation’*

intrinsic state in rotating frame toward a variation of the

collective angular momenturh is given by employing the d .

RPA equation for the collective angle operator. From the 5<¢(|,9)|[(|E—H)W’('ﬂ))]=0, (©)

stability condition, one can see that the intrinsic state in ro-

tating frame cannot be stable against the variation toward the

increase of the collective angular momentum, when the Col\_/vhere a single Slater-Determinant wave functigd!, 6)) is

lective angular momenturh arrives to an inflection point :reellits?grrtr?attigi ng ;’:}Zﬁi‘ﬁoénbzoﬁegmgc\jgr’izg?:g}_un'tary
I, of the collective rotational energy. P 9 '

In Sec. V, it is shown that the collective angle operator .
vanishes at this inflection poitg, demonstrating theccur- |p(1,0))=U(1,0)| o). 4
rence of the band terminatioof collective rotation. We can
also justify that the scenario of band termination by Bohr andrhe invariance principle means that the time dependence of
Mottelson(in terms of the behavior of single-particle orbit- the collective variables, i.e., the collective angular momen-
als) is actually realized at this inflection poihg. Section VI tum I(t) and the collective anglé(t), has to be determined
is devoted to visualizing the behavior of single-particle or-so as to satisfy Eq(3).
bitals by numerical investigations for the observed rotational With the statd ¢(1,6)), one can define infinitesimal gen-
bands in®Mg and *°0*. Concluding remarks are given in grators(i(1,6),0(1,6)} for variations of the collective vari-
Sec. V. ables{l, 6}, respectively, through the equations

II. DEFINITION OF COLLECTIVE ROTATION

In order to precisely formulate the band termination of Throughout the formulation of this paper, we adopt the conven-
collective rotation, one has to start with formulating the verytion2=1.
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which demonstrates that the collective rotation under consid-

|¢>(| 0)=1(1,0)|4(1,0), (1,0 eration is not anexternally “cranked” one but self-
consistently originates from the very system itself. This
d choice is compatible with the condition given in Eg) pro-
={i--0(1,6);0%1,0), B i —0.0=0))— o O(1=0.6—0)—
[ 96 ] vided that |¢(1=0,0=0))=|¢g), i.e., U(1=0,0=0)=1,

and enables us to reduce the unitary transformation if4q.
to the following simple form:

, 07||¢><| 0)=0(1,0)[4(1,0)), ©(,6)

[ g(10)y=e" (1)), [(1)=CV]g), (1)
190. N
= ,_—U(l,o)}u*(l,e). . —n A
[' Jl iG(=2 {gum(cien—Hc}, 16(0)=0,
In the SCC method, with the use of the generators g

{1(1,6),0(1,6)}, we impose the canonical-variable condi- {c .Cm! being the particle and hole creation operataat-
tion [6] |sfy|ng

|_ o( 9)> 6/L|¢O>:6Tn-’l| ¢0>:0- (12

With the form given in Eq.(11), the canonical-variable
condition in Eq.(6) is written as

<¢(|,e)|f(l,a)|¢<l,0)>z< (1,6)

_I+a68(| 0), (6) .
) < n—‘¢(l,o>>=<¢<|>|3|¢<|)>=|,
((1,0)0(1,6) (1,0)= <¢<| 0)| - ﬁ,‘w a>> (1]
; <¢(| a)’, a,‘w e>> ($(DIBD)](1))=0,
=—ES(I,0), (13
which guarantees the collective variablé¢sé} to be a pair @(|)=( 1d e|G(I)] e iG() 4
of canonical conjugate variabledn Eq. (6), S(I,0) is an i di

arbitrary(single-valuegireal function of{l, 6}, and expresses ) ) § . .
the freedom in choosing an appropriate set of the collectivé"h'c_h leads us to the “weak” canonical commutation-
variables{l, 8} from among possible canonical transforma- relation

tions of them. From Eq(6), one can easily derive the N A ]
“weak” canonical commutation relatidn (dHI[O1),I]| (1)) =i. (14)

A T . Here it should be emphasized an important fact which plays
| 1,6),1(1 1,0))=i. 7 o : , ; :
((1,0)[00,0),10,0][4(1,0))=i @ a decisive role in later discussions to define the concept of
One of the most appropriate choices of the collective variband termination: Although the infinitesimal generaldior
ables{l,d} for our purpose is to fix the collective rotation is global operator, theangle opera-
tor ®(1) for the collective rotationis a local one which
depends on the collective angular momentum variable
With the use of Eq(11), the invariance principle given in
Eq. (3) is simply written as

S(1,0)=0 (8)

SO as to obtain, from Ed6),

(GO0 g1 0)=1. © (A= BI+iBMIp1N=0. (15

In this case, one can choose the generafbrd) for the
collective rotation under consideration to be identical with
We use the convention of denoting occupied single-particle or-

the angular momentum operatbrof the system: bitals by indicesm,n, . .., andunoccupied single-particle orbitals

R R by indicesu,v, . ... Wealso use labels, B, ..., toindicate the
1(1,6)=J, (10) single-particle orbitals when we need not specify to be occupied or
unoccupied.

“The generatof (1) is a one-body operator, because of the rela-
From Eq.(6) one has tion

dG(l) i [d&() .
l—‘¢ | 9> :0<¢( ‘ I 0)> 6= (——G'G(')J _'G(')ZTJFE{T G(l)}

which is expressed as Eq7) with the use of the definition of H G G(I)} &0+

<¢(| 0)

generators in Eq5). 3!
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By taking [84(1))=|8p(1))= :@(1):|¢(1)) and condition in Eq.(21). The functional form ofw is known to

:3:| (1)) in Eq. (15) with be of the formw=d(H)/dl. Thus, the set of basic equations
of the cranking model is given by

O():=0(1)— ()]0 ¢(1)),

o . a()IH—wl[¢(1))=0, (228
J:=3— (DI (1)), (16) A
and by employing the commutation relatiti), one obtains (p(DI[(1))=1, (22b)
the equation of collective rotation and the Lagrange multipliep has to be of the form
. Jd . J
_9 __ 8. e dHo 1) .
iy AT e el 1= g te(1)=0, o= T =AY, @3

HeoD=(H(D|AB(1))Y=(b(1,0)|A| B(1,6)).
(N=(ADIHIE(1))=((1,OIH| & )>(17) Now, let us compare Eq$223), (22b), and(23) with the

set of basic equatiorf$], [II ] and[lll ] in the SCC method. It

By taking a variation| 6¢(1)) =16, ¢(1)) satisfying is self-evident that the basic equatifiti ] given in Eq.(20)
_ is nothing but Eq(223 together with Eq(23), and the first
(6, ¢(|)|5H¢(| ))=0, (18) one of the canonical-variable conditip given in Eq.(13)

one obtains from Eq(15) the equation of collective sub- just corresponds to the constraint conditi@2b). Only one
manifold S, (1) essential difference rests on the point that to precisely
ro 1

specify thecollective rotationof the system by the SCC
PR )||:||¢(| ))=6,{ (1 ,9)“:”(;5(' ,6))=0. (19 rpethod, it is inevitable to define the collective angle operator
O(l) in Eq. (13), which satisfies the weak canonical com-
This means that the optimum collective submanifold, tation relation with the angular momentum operaior

2 oi(1) should be extracted in such a way that the expectatiogile the cranking model does not specify any collective
value of the Hamiltonian with respect tg(1)) is stationary angle operator explicitly.

at each point on the collective submanifold for the variations \yjith the analogy of the conventional cranking model,
perpendicularto it. Without the explicit use ofd, #(1)), Ed.  hereafter we call(l)) defined in Eq(11) theintrinsic state
(19) can be expressed as in rotating frame and the operatoR(1)=H— w(1)J [with

w(l)=dH,x(1)/dI] the intrinsic Hamiltonian in rotating

~ [ dHiol1)] - : | : :

(] & é(l)H- —ar J|#(1))=0, (200 frame Since the intrinsic statep(l)) is a stationary state
satisfying Eq.(20), the intrinsic Hamiltonian in rotating

because the variatiops;¢(1)) in Eqg. (20) identically leads frame can be generally expressed as
to zero by the definition in Eq16). . . . .
Equationd 1], [II], and[I1l ] form a set of basic equations ~ R(D=H=w(1)I=((1)|R(1)[&(1))
of the SCC method for the collective rotation. It has been
shown[6] that the set of basic equations enables us to self- +> fu(|)6L(|)éu(|)_z em(DCm(DCh(1)
consistently determine the unknown functioggm(l) of 5 m
iG(1) in the statel (1)) defined by Eq(11) together with
the Hamiltonian™, (1) of collective rotation. After getting

iG(1), one obtains a concrete expression of the angle OP€Mjhere{c (1),cm(1)} are particle and hole creation operators
tor @(') through the definition in ECK13) in rotating framedefined by

+:R(:, (24)

lIl. INTRINSIC STATE IN ROTATING FRAME ¢, (Da(hy=ch(H]g(1))=0. (25

With the purpose of comparing the above description of A _ )
collective rotation by the SCC method with that of the con-The operator Riy(l): denotes two-body interaction terms
ventional cranking model, let us start with a recapitulation ofconsisting of normal-ordered four-particle-hole operators in
the basic idea of the cranking model. In this model, we areotating frame. With the intrinsic HamiltoniaR(l) in Eq.
interested in a HF wave functiors(l1)), which minimizes  (24), one can describmtrinsic excitation modes in rotating
the total energy under the constraint so that the angular mdrameby the RPA eigenvalue equation

mentum operatod has a fixed expectation value

I=(p(D[3](1))y=(3). (1)

This state is obtained by adding the condition with the +eoy(um:hch(he, (D},

Lagrange multipliero to the HamiltonianH and by mini-

mizing (R)=(H)— w(J). After obtaining the solution of this  &(¢(1)|[R(1),XI(1)]—Q,\ (DX (1)]#(1))=0, Q,(1)>0,
problem, » is determined as a function df through the (26)

XTI =2 {gn(um:)Ch(1)Cm(1)
um
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DITX, (1 ’)‘(T, | NEW Sec. |, in this paper we have restricted ourselves to the prob-
(pIDXD (DN 1)) =1 lem of band termination of a single rotational band in which
5 S the evolution of the band to its termination does not encoun-

(DX, Xy (D]l $(1)) =0. ter the band crossing. Thus, we may suppose that we only

The intrinsic excitation modes in rotating frame have a direcp.ave rgal _and nogvamshmg eigenvaldgy(l) of the intrin-
clear-cut correspondence to the “particle-hole” excitationsSIC €xcitation modes.

in the conventional cranking shell model, where the interac-

tion :Ry(1): is disregarded. WherR,(1): is neglected, the V- EQUATIONS FOR GENERATORS OF COLLECTIVE
ROTATION AND THE OCCURRENCE

intrinsic excitation modesX, (1) with excitation energies OF BAND TERMINATION

Q,(1) are reduced to the particle-hole excitations

c!(1)Cw(1) with excitation energies,, (1) — ex(l). The generator§d,® (1)} of the collective rotation given
It is well known that the RPA eigenvalue equation in Eq.in Eq. (13) satisfy the canonical commutation relation in Eqg.

(26) is related to the stability problem of the intrinsic state (14), i.e.,

|p(1)). Let ilf(l) be an infinitesimal generator of a variation ~ ~

of |¢(1)). Then, the caused variation of the mean intrinsic (dHI[O1), ]| &(1))=i. (3D

energy in rotating frame is given by
It is shown that they obey the equations

(B(D)]e FORMEFD| (1))~ (S(DIR(1)|B(1))
=(p(HI[R(,iIF(DI[p(1))

1 By (1N B 5< |‘ﬁe| il ——dw(l)j‘ |>—0
+ S(SMIIRALIFDLIFMIS)+- - $)|IRIIOMI= =g #(h) ) =0.

(27)  The first one of Eq(32) is trivial because ofH,J]=0. The

. L . . second one is derived in the following wa§]. From Eq.
Since the intrinsic stateg(1)) is a stationary state for the (20), it follows for a small variationsl of the collective

intrinsic HamiltonianR(1), the first term of the right-hand angular momentunh that
side in Eq.(27) vanishes. The stability condition of the in-

& P(HI[R(1),I4(1))=0, (32

trinsic state for the variation is thus given by S((1+ 6I)|IA?(I +61)| (1 +81))=0 (33)
SP($(IRM (1)) where
1 . A A N
=5 (OIIIRMLIFMLIFMD]|$(1))>0. (29 |p(1+8))={1+i810(1)} (1)), (34)
Now infinitesimal generators for variations toward the in- - o o e,
trinsic excitation mode$X/(1),X, (1)} may be defined by R{I+ol)=R(l)=ol =4=J.

. 1 o . . S . Within the first order of5l, we thus obtain the second one of
qx(l)EE{XA(IHXA(I)}, p}\(I)E_Z{X)\(I)_X)\(I)}- Eq. (32.
Equation(32) with Eq. (31) is a typical set of RPA equa-

S

(29 tions [8,9] associated with the Nambu-Goldstone mode,
One then obtains based on the broken rotation symmetry of the intrinsic state
|#(1)). The dynamical moment of inertig, (1) for the col-
SP(p(D|RM| (1)) lective rotation, called’houless-Valatin moment of inertia at
» a given value I[8], is defined by
1 . ~ ~
=57 (dIIIRM) ia()1ia(H)1[H(1) do(l)  d*H(l)
2! {u7TV(I)}71E Zl = d|2t ’
1 . - - 1
= 57 (@MIIIRMLIPMLIP(N]IA(1)) = 524(1)>0, .
' Heot ) =((1)[H|(1)). (35

(30) o
_ S ) ) Since the generatofd,® (1)} fulfill the RPA equation given
which means that the intrinsic stgté(1)) is stableagainst py Eq.(32), they have to be orthogonal to the intrinsic exci-

the intrinsic excitation modes. The level-crossing conditiont ; <Y X (] hich Iso th Iuti f
€,,(1)~ € (1)=0 in the rotating shell model, which is tﬁgogpﬂoggiaﬁ%(n)i’n AE(C()Z}@"," 'ch are also the solutions o

closely related to the band-crossing phenomenon, thus sim-
ply corresponds t@xo(l)zo for the lowest-energy intrinsic <¢(I)|[5(I(I),3]|¢(I)>=<¢(I)|[>A(I(I),@)(I)]|¢(I)>=O.
excitation modé({o(l) at a givenl value. As mentioned in (36)
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We are now ready to investigate the stability of the intrin-where J,, (1) and ® ,(1) are the coefficients of particle-
sic Statd (,Z’)(I)) for the variationdl of the collective angular hole Components (ij'(:)(l )}, respective'y:
momentuml. By takingiF (1)=i®(l) in Eq. (28), the sta-
bility condition toward the variatiodl is given b A - - - -
g Jven By 3= {3um(DELDEr(1) + i DERDELD},
o

S2(p(M[RM)| (1))

1 N N N ® —_ “tova * T
EE(({)(l)|[[R(|),i|:(|)],iF(l)]|¢(|)> ®ph(|)—§n {®,u.m(|)CM(l)Cm(l)"'@,um(l)Cm(l)c,u,(l)}-
' (41
1 « o o
= 5(¢(|)|[[R(|),i(|)],i(|)]|¢>(|)> Whenl <I,, one always has Eq31) by which one obtains
2
2 D )0, (@7 S {3un(O (1)~ IO} =1, (42
where we have used E(B2). Equations(40b) and (42) are sufficient to determin® (1)

Equation(37) denotes the important fact that when the and the moment of inertigi(1). By neglecting the two-
collective angular momentutnarrives to an inflection point  body interaction terms in Eq40b), one obtains the Inglis
lo of the collective rotational energy H,(l)  formulain the cranking shell model, with the aid of £42),

=(¢(1)|H|$(1)), satisfying as

dz,Hrot(l )
di?

-1
P, 6 .(1)= i O unl) s

€,(1)—em(l)
the intrinsic state/¢(1)) constructed upon the band-head | 3m(D?

state|¢o) in Eq. (1) cannot be stablegainst the variation \7Tv(|):2%1 e (D—en(l)’

toward increase of the collective angular momenturifihis

is a precisephysical definition of the band termination of At the band termination point=1, defined by Eq(38),
collective rotation Namely, at the inflection poirit=1,, the  onecannot enforcehe weak canonical commutation relation
collective rotation to restore the broken rotation symmetryin Eq. (31) so that Eq(43) cannot be adoptedn this case,
terminates. This definition is nadirectly connected with e therefore have to start with extending the condition in Eq.
whether all the valence nucleons under consideration arg13) to the following form. In the neighborhood of=1,, the

{Frv(lg)} = lim

I—19—0

coupled to a maximum angular momentum or not. condition may be written as
V. STRUCTURE OF SINGLE-PARTICLE ORBITALS R I for 1<lg,
AT BAND TERMINATION (D[S)=1=(1=1)B(1=1g)= lo for di=ly,
With the explicit use of the expression of the two-body (44)
interaction termsR,(1): in the intrinsic Hamiltonian A
" ($(D]O)] (1)) =0,
. 1 A - - A
Rin(1):1= 7 2 vagys(1):CLDEDEC, (1), where d(1 —1,) is the function defined by
40(,8}/6 '
(39 o \ [O for 1<ly, 5
I—lg)= 45
vaﬁ,yﬁ(l):_vﬁa,yﬁ(l):_Uaﬁ,ﬁy(l):vﬁa,ﬁy(l)y 1 for I>IO

the equations for generators of the collective rotation giverAt the band termination point=1,, Eq. (44) simply be-

in Eq. (32) are now explicitly written down as comes
{€u() = em(D (1) + 2 {0 unmul(1)Iun(1) (¢(10)[3l¢(10)) =10, (463
-v (NHJ*.(H}=0 (403 <¢(|o)|®(|o)|¢(|o)>:0a (46b
pv,mn vn [}

and Eqgs.(40g and(40b) are reduced to
{eu() = en(1}O () + 2 {0 un (DO (1)

{e.(10) = €10} um(10)+ 2 {0 unmul10)3un(10)
=V (DO % (N} = = i{Trv(D} 1,1, wn

(40b) =0 mnl10)I3n(10)}=0, (479
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dw
{E“(IO)_Em(IO)}®Mm(IO)+% {vunmul(10)© ,n(10) :;|22<|:|>= ar for 1<ly, 51)
_U;LV,mn(IO)®:n(IO)}:O- (47b) 0 for |>|0

) . ) ) At | =1, where the all valence particles in the occupied
Equation (47b) means that thesingle-particle orbitals at orpitals are in full alignment, one has from E&0)
I =1, have aspecial propertythatall the matrix elements of

0 ,.m(lo) vanish since we have supposed that the stability d2<l:|> . dw
matrix of the intrinsic Hamiltonian is to be positive definite. | —5z-| ={ lim |4~ {1=3(0)} — (1) 5(0).
This fact together with the condition in E¢46b) demon- I=lp (1=1o=0

strates that the collective angle operafl), which is es- (52)

sential to properly define the collective rotation, vanishes aII_
| =1,. Equation(403 is the identity for the conserved angu- . N
lar momentum operator. However, lat | o, it is expressed as Only when lim_, _o(dw/dI) satisfies
Eq. (479 having the same structure as E47b). This im-

plies that the single-particle orbitals bt |, have a special

property that all the particle-hole components of the angular
momentumwhich are responsible for the collective rotatjon

vanish and only the diagonal components remain. Physicallyg that one has the value given W(|:|>/d|2]|—| —0. This
this means that all valence patrticles in the occupied orbitals o

at1=1, arein alignmentto be coupled to the angular mo- means that the valug, where all thg valence_particles in the

menturqnl as is specified by Eq463), realizing the scenario occuple_d orb|.tals bepome in full ahgnment, just corresponds
0 &= ™=t BN to the inflection point of the collective rotational energy

of band termination by Bohr and Mottelson. Conceptually, i

the band termination is a dynamical restoration oftiheken (H). Equation(53) shows thatlw/dI cannot be convergent

symmetrywhere the one-body density operator and the an@t the inflection paint,.

gular momentum operator are diagonalized simultaneously.

When the particle-hole components of the total angular ~ VI. NUMERICAL INVESTIGATION OF SINGLE-

momentum operator vanishes, its canonical conjugate operdARTICLE ORBITALS NEAR BAND TERMINATIONS IN

tor ®(1) suddenly vanishes, satisfying the conditi@vh). *Mg AND 1°0*

Namely, the collective rotational state and the state with |y order to visualize the special character of single-

fully aligned single-particles are disconnected with eachyarticle orbitals in the intrinsic state &t ,, discussed in

other, and the band termination occurs at the singular poingec, v/, we have made numerical investigation of the single-

I =1o. After the band termination of the collective rotation, particle orbitals in the intrinsic state near the band termina-
one may thus has the situation of the so-cafle@tion about  {jons in 24Mg and 1%0*. The band termination isd-shell

symmetry axi$2] which is also referred to asoncollective 1 clej at high spin is not a phenomenon specific to the mean
rotation [3]. In the numerical calculations of the cranked HF fia1d method. but appears in spherisatshell model calcu-

state with the Lagrangian multiplies, it should be noticed |ations with particle-hole configuration mixing.0], and in
that thediscontinuous change between the collective rotationne Elliott SU3) model [11]: It is a basic quantum-

and the noncollective rotatiois often overlooked when one echanical property of a finite many-body systgh In this
uses the constraint condition in EQq(21), i.e. genpse, it is quite intersting to investigate behavior of the

hus, a physicafinite valueof [dZ(I:|)/dI2],=|0 is obtained

] dw)
lim = || =2w(14)8(0), (53)
I—1p—0 dl ]

(3)=(p(1)|I|p(1))=1. In this case, therefore, one has to single-particle orbitals near the band terminations2ig
properly employ the constraint condition given in E@4),  and'®0*, whose intrinsic states are expected to be stable for
i.e., (J)=1—(1—1o)9(I—1y). Then, upon the variation of the intrinsic excitation modes. The experimental evidence for

w, one has the ground-state rotational band structure’tilg (both en-

ergy spacing and transition probabilitiesith | <8 is defi-

d(AY = wd()=wd{1— 9(1—14)}, (48) nitely convincing[12,13, and it has been suggestedt, 15

that its band termination is &= 12 [Fig. 1(a)]. The excited
6.05 MeV 0, state in®0 has experimentally suggested as a
4p-4h excitation with a large intrinsic deformation, and to
be a band-head state forming a rotational band,2,4,6,8

w for 1<ly, with the band termination dt,=8 [Fig. 1(b)].

d .
E<H>: o{l=9(1-1o)}= 0 for I>l,. (49) The intrinsic states for these rotational bands are given by

and so(H), viewed as a function of, satisfies

From Eq.(49), one obtains
SWhen we employ the functional form af(x),

d> . do - jax fi 0
S (AY=—{1- (I~ 1} —wd(l— 1), (50 _ &7 _|0 for x<0,
di? dl 0 0 3() 2mi ), daa—is 1 for x>0,

which leads to thenormal relation whenl # 1, we haved(0)=1/2.
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FIG. 1. Rotational energy
Hroll) —H,o(0) vs angular mo-
mentuml! of Mg and *%0*. (a)

7 The ground rotational band of
2“Mg. We denote the yrast rota-
. tional band from the ground state
obtained with our method by a
- solid line, the band obtained by
Ragnarssoet al.[14] by a broken
line with diamonds, that obtained
by Boncheet al.[20] by a dotted
line, definite experimental values
[12] by crosses. Tentative states
(b) [21] are shown in the parentheses.
' ' ourCatr (b) The excited rotational band of
20 - Expl + ] 160. We denote the excited rota-
tional band from ¢ state ob-
) tained with our method by a solid
15 . line, the band obtained by Aberg
» et al. [22] by a broken line with
HealT) diamonds, definite experimental
—H,et(0) o L i values[23] by crosses. The tenta-
[MeV] - tive state[24] is shown in the pa-
9 rentheses.

Heor(1)
_Hrot (0)
[MeV] s
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solving the cranked HF state with the Lagrange multiplierobtain many rotational bands in place of many CHF lines.

w, i.e., Thus, the structure of single-particle orbitals in the rotational
o band in1%0 upon the excited g-4h 0™ state is easily evalu-
& b(DIH—wdy|b(1))=0, (54  ated.
In our program the major shells have been included up to
<¢(I)|3X|¢>(I)>=I, N=4 and the parity and the signature symmetry have been

) ) ~ imposed. It has been observed that the GoDry- force
where we have adopted the three-dimensional harmonic Oggel| reproduces the binding energies of the ground states of
cillator basis with the Gognip1’ force [16—1§ for the ef- 24\g and %0 (see Table )l but does not lead to a good
fective interaction, and the rotational axis is chosen as thggreement in absolute values between the experimental rota-
X axis. In numerically solvmg this cranked HF equation, wetjgnal energies and the calculated orfese Fig. 1 In this
have employed a new algorithit9] developed by Iwasawa sense, the obtained numerical results for the behavior of
et al. This algorithm, called theeference state methoen-  single-particle orbitals should be evaluated in a qualitative
ables us to solve the constrained (8HF) equation without point of view.
relying on the conventionadiabatic assumptiofi By this Figures 2 and 3 visualize the behavior of single-particle

method, one can obtain many CHF lines, which are formegypjtals atl =0,6,10,12 in the ground-state band?fg and
by continuously connected solutions of the CHF equation

with a maximum overlap criteria. By applying this algorithm

to the cranked HF equation given in E&4), one may thus TABLE |. Binding Energies of Ground States.

Nuclei Mg %0
5The terminologyadiabatic assumptionsed here means that itis Our calc.[MeV] —196.77 —129.99
characterized by finding oudnly the most energetically favorable Exp.[25] [MeV] —198.26 —127.62

CHF state satisfying a given constraint condition.
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I=10 FIG. 2. Density distribution and matrix ele-
ments ofd, of Mg (see text
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at1=0,4,6,8 in the excited-state band 80, respectively. space with parityr,= + and signature,= + of the proton
The right-hand side of these figures shows the magnitude afystem.(We have the same picture for the neutron system.
the matrix elements oﬁx, ie., |<a(|)|jx|ﬁ(|)>|, between The left-hand side shows density distributions projected on
the single-particle stateés (1)) and|B(1)) at an angular mo- the theyz plain perpendicular to the rotational axis, i.R.,
mentum |: The vertical axis represents the magnitudeaxis. It can be seen from Figs. 2 and 3 that the rotational
J(a,b;|)E|<a(|)|jx|g(|)>| and the horizontal axesandb  alignments of the single-particle orbit of individual particles
denote the ID numbers of the eigenstafks(l))} in a sub- are associated with a trend toward symmetry aboutxhe
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FIG. 3. Density distribution and matrix ele-
ments ofJ, of °0* (see text
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axis. Atl =1, all individual particles are thus in alignment VII. CONCLUDING REMARKS

so as to produce an oblate symmetry with respected to the

X axis in accordance with the scenario of Bohr and Mottelson By fully employing the concept of the broken rotation
[1,2]. With the employment of the reference state method irsymmetry as the origin of the collective rotation, we have
solving the cranked HF equation, we have also been able tshown the dynamical mechanism of occurrence of the band
justify the singularity shown in Eq53). termination of collective rotation from the standpoint of the
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nuclear many-body problem. It has been disclosed that thsetate in rotating frame is stable, throughout the evolution of
collective rotation to restore the broken symmetry vanisheshe rotational band to its termination. It is, therefore, outside
when the intrinsic state in rotating frame cannot be stablef the scope of this paper to discuss the termination phenom-
against the variation toward increase of the collective angulagnon along the yrast line in the heavier nuclei, where the
momentuml . It has also been demonstrated that the value ofotational alignments of particles individuallly occur accom-
the collective angular momentum at the band termination ipanied by the level crossings of single-particle orbitals. This
simply an inflection point of the collective rotational energy. problem will be discussed in a separate paper.

The behavior of the single-particle orbitals in rotating frame

is justified and visualized to be in accordance with the sce- ACKNOWLEDGMENTS
nario of the band termination, which was originally dis-
cussed by Bohr and Mottelson. The authors are deeply indebted to Dr. T. Une and Dr. Y.

In this paper, we have discussed the band termination of Blashimoto for their valuable discussions and useful com-
single collective rotational band, provided that the intrinsicments on this work.
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