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Fock-space diagonalization of the state-dependent pairing Hamiltonian
with the Woods-Saxon mean field
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A particle-number conserving approach is presented to solve the nuclear mean-field plus pairing Hamil-
tonian problem with a realistic deformed Woods-Saxon single-particle potential. The method is designed for
the state-dependent monopole pairing Hamilton-?bdairZEQBGchzcicy:B with an arbitrary set of matrix
elementsG, ;. Symmetries of the Hamiltonians on the many-body level are discussed using the lang®age of
symmetry introduced earlier in the literature and are employed to diagonalize the problem; the only essential
approximation used is a many-bo@yock-spacgbasis cutoff. An optimal basis construction is discussed and
the stability of the final result with respect to the basis cutoff is illustrated in details. Extensions of the concept
of P symmetry are introduced and their consequences for an optimal many-body basis cutoff construction are
exploited. An algorithm is constructed allowing to solve the pairing problems in the many-body spaces
corresponding t@~ 40 particles om~ 80 levels and for several dozens of lowest lying states with precision
~(1-2 % within seconds of the CPU time on a CRAY computer. Among applications, the presence of the
low-lying senioritys=0 solutions, that are usually poorly described in terms of the standard approximations
(BCS, HFB, is discussed and demonstrated to play a role in the interpretation of the spectra of rotating nuclei.
[S0556-28187)02210-3

PACS numbg(s): 21.60.Ev, 21.10.Re, 21.30.Fe, 27.%@.

[. INTRODUCTION thes=0 ands=2 excitations are found to compete energeti-
cally in the exact solutions, while the=0 exact states cor-

In the nuclear structure calculations based on the microrespond within the BCS/HFB type algorithms to four quasi-
scopic treatment of the multifermionic systems, the averageparticles and are predicted to lie far too high in the energy
field plus pairing Hamiltonian played a central role in the scale. The latter observation implies that an important class
past. Despite visible progress in the nuclear shell-modebf the low-lying excitations in nuclei cannot be described in
technigues, the approximations employing either the determs of the standard BCS- or HFB-like theories and this
formed potentials of the Nilsson or Woods-Saxon type, ormay have further important consequences for our under-
those using the Hartree-Fock techniques, turned out to bstanding of the nature of excitations, e.g., in exotic nuclei, or
extremely powerful tools helping us to understand the quansome low-spin excitations in rotating nuclei.
tum mechanisms observed, among others, in the high-spin Another group of problems with the approximate standard
physics or the physics of exotic nuclei. treatment of the pairing Hamiltonian is related to the fact that

In order to be realistic, these average-field approximation®oth the BCS and the HFB approximations break down for
must be supplemented with residual interactions, the shoran important class of physical situations. The remedy in
range interactions of the pairing type being so far the mosterms of, e.g., particle number projection techniques compli-
commonly used. However, the calculations could only becates the algorithms considerably, yet without helping to ap-
performed by resorting to approximate methods such as thgroach better the description of the higher-excited part of the
Bardeen-Cooper-Schrieffer (BCS or  Hartree-Fock-  spectrum of the pairing Hamiltonian.

Bogolyubov (HFB) approaches, sometimes in conjunction Over recent years, some effort has been observed to
with the correction terms evaluated within the random-phaselaborate algorithms that bypass the Bogolyubov transforma-
approximation(RPA). These approximations have becometion ansatz, and thus are free from problems related to the
standard in the nuclear physics literature. nonconservation of the particle number. These methods are

Both BCS and HFB approximations suffer from seriousbased on the direct diagonalization of the pairing Hamil-
defects, the nonconservation of the number of particles beintpnian in the many-body Fock space.
one of them. Moreover, the precision of these approxima- For instance, in Ref2] the pairing Hamiltonian has been
tions, acceptable for the class of the two quasiparticle excidiagonalized exactly in the seniorig=0 space for an ex-
tations, becomes questionable when it comes to four, cample of 10 fermions distributed over 20 equispaced, doubly
higher order excitations. In addition, as mentioned, e.g., bylegenerate orbitals. It has been found that the number of
Richardsor{ 1] on the basis of an exactly soluble algorithm configurations with the important weights in the lowest-
for the monopole pairing problem, the two quasiparticle ex-energy solutions is very restricted, only a few lowest-energy
citations that are interpreted in terms of a standard paireonfigurations contributing significantly. The principle of a
breaking mechanism are not necessarily lihgestexcita- truncation of the many-body basis by retaining a certain
tions of the paired systenisee also examples belpw number of the lowest energy states became an evident work-
Defining the senioritys as the number of unpaired nucleons, ing scheme to follow. Furthermore, the superiority of such a
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many-body truncation as compared to a single-particle oreusly the question of exploring all possible symmetries of
bital truncation has been demonstrated. the problem with Hamiltonian matrices of large dimensions

In this context several possibilities have been studiedplays an important role. Here we would like to discuss both,
One of those has been developed in a series of arfigle§,  the aspect of the very existence of the many-body symme-
in which the authors have suggested a method based ont@es in the Hamiltonians of interest as well as a possibility of
diagonalization of the pairing Hamiltonian in spaces spanneéh€ application of these symmetries in realistic calculations
by some energy-truncated ensembles of the many-body wa\y reducing th_e_S|zes of the corresponding Hamiltonian
functions. A discussion of approximate solutions in terms of2l0cks to the minimum.

the truncated many-bodgFock spaces based on cranked _ N the following we present the most general class of
single-particle orbitals can be found in Refg—9]. Exten- P1-symmetric Hamiltonians first. This symmetry is of inter-

sions to include effective truncations in termskof(projec- gitvilr;I?ert'?#l;g%ﬁscg?ﬁs'gg‘%igz g?ﬁg?;ﬁ@é%sdmﬁggﬁ'
tion of the angular momentum on the elongation peee 9 y y

described in Refl10]. Another extension using a truncation tonian blocks, as it will be described in Sec. II. High sym-

h based on th I : i t sel t.metries of the state-dependent monopole pairing Hamilto-
scheme based on tn€ angular momentum alignment SEIECUQfL s \yij| pe explored, in particular in terms of the seniority

is d(.ascr_ibed in Refg[11,17. Extensive studies and many (and/or P, symmetry and P,-quantum number in the de-
applications of the energy truncated many-body basis coryyrmed nuclear Hamiltoniangl.1) and (1.2). Here also the
struction were performed in Reff2,13—18. These applica-  fact that Hamiltonian(1.1) conserves both the number of
tions concern, for example, studies of testructures of the  particlesand the number of pairs of particles will explicitly
many-body wave functions, of the yrast-yrare interactionhe employed, leading to a tremendous lowering of the sizes
strengths, as well as of the band crossing frequencies.  of the Hamiltonian blocks. We will introduce a concept of a

In the majority of the above mentioned articles, a consid{ocal weight associated with the many-bo¢iock) states
erable effort has been attached to a characteristic property @hd demonstrate how to use this concept to further block-
the monopole pairing Hamiltonian: by a certain scaling ofdiagonalize analytically the state-dependent monopole-
the strength constant, the particle number conserving solyairing Hamiltonians.
tions could be brought closer to the BCS solutions and vice A possibility of practical applications of the above men-
versa. Such comparisons are to some extent useful, yet leatjoned symmetry considerations requires the tests of stability
ing several issues not answered, such as, for example, ti§é the basis cutoff. The illustration of the test of stability
quality of the underlying algorithms and their comparisonallowing to obtain well approximated solutions in the many-
with the exact results, and perhaps most importantly, th&0dy spaces of the Hamiltonian matrices “billion billion”
stability of the solutions with respect to the basis cutoff. ~ OF larger by effectively applying only about 1000 1000

In the present article, we would like to focus on a study ofMatrix diagonalizations, will be presented in Sec. Ill. We
the particle number conserving algorithms that could be apWill illustrate the behavior of the obtained solutions using
plied for realistic nuclear Hamiltonians of essentially two Very few configurations, approximating well the results that

forms. The one related to the nuclear structure problem¥ould require in principle formidably large matrices. As a
without collective rotation is typical example, the seniority zero eigenvalue problem of a

system composed of 32 particles on 64 orbitals would need
N + T 1 in principle the use of 601 080 390 configurations, whereas
A=2 sa(clcatc,en) =2 Gupic,iCs, (1D one can obtain stable eigenvalues within a few % accuracy
“ b with approximately “a couple of thousana a couple of
where the creation and annihilation operators for fermionghousand” matrices out of well preselected states. We will
satisfy the usual anti-commutation rules 'C}f}: Sqp and also compare in some detail the solutions based on the BCS
{C.,C5}=0); we have also c(L)T=ca and chO) corre- quasiparticle picture with the model calculations. Section IV

. . . . will be devoted to applications of the method discussed in
sponding to states conjugated with respecttD), e.g., in s article, in the realistic cases of selected nuclei in the

terms of time-reversdl17] or signature(see below opera-  are_earth mass region. Conclusions and consequences of the
tions. We will not assume that the pairing matrix elements (o ,its obtained will be discussed in Sec. V.

G,z must be degenerate to a consta@t,g~G). In other
words, most of the conclusions of the present study will re-||. A HIERARCHY OF P-SYMMETRIC HAMILTONIANS

main valid for state-dependent pairing. The second family of OF DEFORMED NUCLEI
Hamiltonians that are of interest here are the so-called crank- ) ) ]
ing Hamiltonians that take the form The construction of this chapter follows a hierarchy of

symmetries that standard Hamiltonians of a deformed
N A A - + nucleus may obey. Hamiltoniail.1) is a particular form of
H-H®=H- waEB (aljdB)cacs- (1.2 a more general structure and we recall briefly a typical chain
of Hamiltonian structures that have been widely used in the
In the latter relation the external rotation terforanking  literature, together with the implied symmetries in the Fock
term) describes a rotation of the system about an @rishis ~ SPace.
case theD, axis).
In the construction of this article we let ourselves be in-
spired by a previous workL8] where the concept P sym-
metry has been introduced, based on studying relatively Let us begin with two most commonly exploited dichoto-
small-size systems within an exact diagonalization. Obvi-mic symmetries of the Hamiltonians of deformed nuclei, the

A. Introduction: Nuclear Hamiltonians
and dichotomic symmetries
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parity 7 and the signature, sa, () [a rotation through an 1 . b

.2 oo~ . + = +,B8—|h(2)|y—,6+)c, . Cp_Cs.C,_
angles about theO, axis, R (7)=exp(—iwJ,)]. The signa- ZQEB_ (at.p=[h(2)]y )Ca+Cp-Co+Cy
ture symmetry has further going consequences for the many- Y=ot

body structure of the realistic effective Hamiltonians, mainly (249
because pairing Hamiltonians distinguish the interaction
N . 1 . M-
scheme that couples the states of opposite signatorasi- + = Z (a+,B-|h(2)] 7+,5—>CQ+CB_C5—Cy+
mum overlap. 2“1?:
Let us introduce a single-particle basis spanned by the 4 (2.409
eigenstates of a one-body Hamiltonian commuting with a
dichotomic symmetry operator, e.&(1)=R,(7) where the 1 . -
argument 1 refers to the one-body representation of the cor- + §Q_ZB_ (a=,B—|h(2)|y+,6+)c, Cp_Cs.Cps
responding operators. We then have y+ o+
(2.4¢
A(1)=2 (alh(D)]B)eles;  [S(1).A(1)]=0, 1 A
ap = Z (a—,B—|h(2)|y—,8-)c! ¢ cs_c,_
(2.3) 2 0 e TRy
2.4
and thus we may introduce the states labeled by the eigen- 249
values of §(1). Since the operator in question satisfies 1
S(1)?=—1 in a fermion space, we have a possibility to se- §a2/;+ (a=.B+IR@)|y—,6+)c, chicsu.C,
lect a representation in such a way that y— o+ (2.49

ﬁ(1)|asa>:eas |asa>; 1 .
) =3 (a— B+IA@)]y+,6-)c] chicsc,e
T2.%,

y+o6—

S(1)|as,)=S,|as,); S,==*i. (2.2 (2.4h

The corresponding symmetry operat8¢2) acting in the The many-body image of the above Hamiltonian has a

space of the two particle wave functions can be viewed as two sub-block structure, the two sub-blocks corresponding to
direct productS(2)=§(1)®é(1) the opposite signatures of the total many-body wave func-

o ; . . . tions: =1 or xi. Without further limiting assumptions re-
Within the basis of eigensolutionas,)=|a=i)=|a*) lated to the structure of the nuclear Hamiltonian of a de-

of Hamiltonianh(1), onerepresents any one-body plus two- formed nucleus, no additional simplification is evidef.
body Hamiltonian operator in a standard way by standard one due to the Hermitean form of the operators
and/or time reversal properties are considered obvious and

. + + are employed below in diagonalizations of the Hamiltonians
H=§ 8a(Cq1Ca+ TCoCq-) studied herg.

1 - B. P, symmetry and unitary groups
+§2ﬁ (ax,p=|h(2)|y=,6=)c] . ch.csiC,n . 1Y y Y9 p
o5 i We proceed now to narrow the generality of the form of
2.3 H(2) and to explore the implied symmetries. An important
' next class of slightly less general Hamiltonians is obtained if
in Eq. (2.4), the terms(2.4b and (2.49 are assumed to be

In the above relation there are in fact 16 types of two-body, ., "thus by setting

matrix elements, distinguished by the signs)(combined in
any possible way. ASSl:ImIng, as it is often p0§5|blg, that the (a+,,8+|ﬁ(2)|y—,5—)=0 (2.59
two-body operator h(2) commutes with $(2),

[h(2),5(2)]=0, implies that half of the matrix elements in and

Eq. (2.3) must vanish. The nonvanishing ones give

(a—,B~|h(2)|y+,6+)=0, (2.5
H(2)= 2 4 2 (a+,B+|h(2)|y+, 5+>Ca+05+05+0y+ we obtain an interesting family of Hamiltonians that after
y+ At Ref.[18] will be further on referred to @B symmetric. There

(2.43 are a few good reasons to be interestedPisymmetric
Hamiltonians in the nuclear physics context. First, the stan-
1 R dard nuclear pairing Hamiltonians belong to such a family as
+§ 2 (a+,,8+|h(2)|y—,5—>cl+cg+c5,c,/, a subclass, and thus by studyifysymmetry one obtains
atht some rather unexplored properties of pairing in the many-
(2.4b body spacesgsee below. SecondlyP; symmetry, which will
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be introduced later in this section, remains a valid symmetra relation coinciding with that of the unitary-group genera-
of the one-dimensional cranking Hamiltonians studied venytors.

often in the literature. Similar to Ref.[18], we may identifyn,; with the gen-

Be'OW we will give only a short account of the orlglna_l eratorséaﬁ of the unitary group im dimensions and write
formulation of the? symmetry that uses the concept of uni- down the corresponding Hamiltonian in the many-body
tary groupd18]. Next, however, we will extend this concept space

introducing a hierarchy oP-type symmetries without mak-
ing an explicit use of the group theory formalism. o, . . 10 . o

To prepare the discussion of the following section, let usH =, (alh’'(1)|B)Gap— 5 > (aBh(2)|y8)G,sGpy.
divide the full ensemble of the single-patrticle states into two @B aByd
subsets denoted as above {py+); «=1,2,...N,} and (212
{la=); @=1,2,...N_} such that the following direct-

. A where then? operatorsf;aﬁ represent matrices of dimension
sum relation is satisfied:

dim(n,p)=(P) each.

{la)t={la+@{la=)}; N.+N_=n, (2.6 We can also introduce the Casimir operator
n n
n denoting the total number of the single-particle levels. The e=Sn.=>6... (2.13
numbersN, andN_ may, but do not need to be equal. For s a0

simplicity we will assume that the numbeiis even, and that .

N, =N_=N. The physical criteria for introducing the above SO far all the expression.7)—~(2.13 are general and stan-
subdivision into two ensembles may vary, but there are adard. Assuming that Hamiltoniaf2.12 commutes withS
least three following cases which are encountered most ofte@nd recalling that we are particularly interested in the case of
in nuclear structure application&) The two ensembles cor- vanishing of the matrix elements in EgR.58—(2.5b we
respond to the opposite time reversal properties, e.gRroceed by rewriting first the form of the Casimir operator:

la+)=T|a—); (b) the two ensembles differ in terms of the

signaturesymmetry so thaiR,(1)| @+ )=r.|a. ), where the = %ﬁa_‘_a*_ T %ﬁa_a_

signature quantum number.=*i; (c) the two ensembles ;+ o

differ in terrps of th:a S|mpl.equu§ntur.n numt{srm.plex op- _ ZECZ+CQ++ZCZ_C<,_ = KT+ A

erator, sayS,(1)=mexp(—imJ,), = being the parity opera- ot a

tor], so thatS,|a.)=s.|a.) where the simplex quantum it o

numbers. = *i. (2.149

In the Hamiltonians of the form It is straightforward to show that Hamiltoniaf2.12 after

n L0 limiting itsAgeneraIity as jl;ISt specjfied does not only com-
A=> (a|ﬁ(l)|,8)clcﬁ+ > > (a,3|ﬁ(2)|75>02020507 mute withC but also with\V; and A separately, and that

h *pyo 27 N{ and N commute withC and among themselves. Con-
' sequently, both the particle-number operatéf + ] and

[whereh(1) may contain a one-dimensional cranking term the new operator of thdifference/\Vy — A7y, arbitrarily de-
we may trivially anticommute the operataréc,;, leading to  notedP; in Ref.[18] (where the term P symmetry” comes

a modified expression that can be cast into the form from)
n n N o— A N
- R - 1 . I Ny =Ny + Ny
A=2 (alh'(1)|B)Nap— 5 2 (aBlIh(2)]y8)Nasng,,
af 20/375 and
(2.9
where Pi=NT =Ny (2.19
. commute with the Hamiltonian, and we arrive at a possibility
~, e 1z A of bringing the Hamiltonian in question into a block-
(afh (1)|'8>_<0‘|h(1)|'8>+§ ~ (ayIh(2)[B7), diagonal form, each block labeled by tfg-quantum num-
(2.9 ber.
Observe that all the above operators have been written in
and where the many-body(Fock) space. Indepegdently of a possible
formal derivation of the spectrum of tli¢, operator, one can
ﬁaBECZCB_ (2.10  easily deduce such a spectrum. Recalling fbatEgs.(2.14
and (2.15] P, is a difference between the operators repre-
As is well known senting the number of particles occupying single-particle

states of symmetry- and the number of particles occupying
the states of symmetry, we see immediately that the pos-

[Nap:Nysl= OpyNas— SasNys, @ B,7,6=1,2,...1, _ _
(2.1)  sible eigenvalues oP; are
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TABLE |. Table illustrating the block structure of a [N A~]1=0. The corresponding many-body states can be
‘P1-symmetric Hamiltonian for an example @f=16 particles on labeled with (V*,A/"). That form, however, may not be the
n= 32 single-particle levels. The table indicates the possible valueﬁmSt general neither the most convenient to express the cor-
of the P;-quantum number, and the corresponding dimensions ofoqn,nding block-diagonalization procedure of the Hamil-
;iheu;fi';nr:lstosn':rr‘msi’ﬁb'tbt:gcé(;nTrei;(ga;:e%%iegoif On;gngégody ““"tonian. There exists Hamiltonians of interest in nuclear and

9 P g P P ' solid state physics whose form allows us to find the relation
’Pl value Dimension [H,fDl:N+—N_]=O Wh”e [H,N++N_]7&O TO stress
this point that illustrates certain advantages of the formula-

0 165 636 900 tion in terms of “P=A* — A" language let us refer to an
*2 130873 600 important class of the Hamiltonians discussed in Appendix
*+4 64 128 064 A,
*6 19079 424
8 3312400 D. Generalized pairing Hamiltonians as a particular case
10 313600 of a P,-symmetric operator
+ 12 14 400 .
+ 14 256 If in Eq. (2.4) only the four termg2.49, (2.40), (2.49,
+ 16 1 and (2.4h are retained, the two-body Hamiltonian may be
_ written in the form
- 1 — -
P1=p,p—2p—4,...,—p (2.19 ng(2)=§ % (a+B—1|h(2)|y—6+)cy.Cp_CsiC,pe
a+ B—
for a system ofp particles onn levels withp=n/2, and Yoot
1 —
Pi=(n—p),(n—p—2),(n—p—4), ...,—(n—p) += > {(a—pB+|h(2)]y—+)
(2.17) 20" B+
) y—656+
for a system for whicm/2<p=n. (From now on,p andn XCLC%CMC«/— (2.19

will be assumed to be even, for simplicity.
Hamiltonian (2.12 splits therefore into §+1) sub- [where we have introduced the antisymmetrized matrix ele-

blocks in the case of Eq2.16) and in (hn—p)+ 1 sub-blocks ments(aﬂlﬁ(\23| _ n 0
: : : y8)=(apIn(2)|y8)—(apIh(2)|y)]. In
in the case of Eq2.17. Table | illustrates the corresponding this case the corresponding operator obviously still obeys the

dimensionalities for an “academic test” system pf 16 3 4 thé o £ th |
particles om=32 levels. It is easily seen that the dimension symmetry and thé>; symmetry. ) perato_rs_ of that genera
form are referred to as generalized pairing Hamiltonians

of a given block characterized by the quantum nunBgers X . ; ! .
g y d since the only interaction allowed here is the scattering of

given by ) - _
" N pairs of nucleons of the opposit& symmetry 6,==*i,
Those Hamiltonians preserve thd¥y symmetry also in

Recall that the condition for the validity of the above 1\ .o<e of the cranking version with tBesymmetry pre-
results is that the Casimir operator can be split into two term§erving one-body term of Ed1.2)

as in Eq. (2.14, ie., that [h(1),5(1)]=0 and

[h(2),5(2)]=0, and excluding the matrix element®.53 H—HY=H(1)+Hgy(2) — w,Jx (2.20
and(2.5b as announced earlier. Consequently, the most gen-

eral form of a’P;-symmetry-conserving Hamiltonian is the since the operator

one composed of only six terms in E@.4); those in Egs.
2.4b—(2.46 are excluded. B -
( )~(2.49 szz:r ; <a+|Jx|:8+>CIz+C,8+
C. P, symmetry as a concept independent

of the unitary group considerations + 2 2 (a— |Jx|,3_>01;70,37 (2.2
Although the first mention ofP symmetry and possible « BT
profits for the Hamiltonians of the deformed nuclei, Ref. ) A A
[18], involved the unitary group language together with the@lSO commutes with both andA; .
use of the Casimir operators, etc., an important aspect of the
block-diagonalization of the many-body Hamiltonians can be E. State-dependent monopole-pairing Hamiltonian
obtained rather easily using directly the properties of the as a particular case of aP;-symmetric operator
Fock-space veqtors. By narrowing the allowed choice of the coupling scheme
The mechanism calle® symmetry[18] can be summa- in Eq. (2.4 to only those nucleonic pairs that occupy the
rized as follows. Suppose that a Hamiltoniincommutes  mutually time-reversedor mutually signature inversgar-
with two operators, sayv" and A/~ that characterize a cer- bitals, we obtain a general form of what is called a
tain set of configurations in the Fock space andmonopole-pairing Hamiltonian:
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. 1 . $=2: (Pa,Pa)=(0,1) or (p.,ps)=(1,0.
Amd(2)= 525 (= 0¥ A28 ,B7 )c]Cl-Chepe PPt Prube)™t (2.28

2.2 . . .
(2.2 Senioritys=4 states are characterized by occupation vectors
the summation in Eq2.22 containing formally four groups in which strictly four pairs of indices are correlated through

of terms with thes symmetries
[(Pa;Pa)i (PayPa;)i (P Py )3 (Pays P ]

=[(1,0) or(0,1);(1,0) or(0,1);

(+_1+_)1 (+_1_+)= (_+=+_)1

and (—+,—+). (2.23
(1,0 or (0,1);(1,0 or (0,1], (2.29
The state-dependent monopole-pairing Hamiltonian obeys
the P, symmetry as a particular case of more generaktc. Let us now introduce, in analogy to the operathfs

Pl—symmetnc structgres discussed above, and consequen%dm (cf. Sec. Il B, the following two operators:
its matrix structure in the many-body space takes a block-

diagonal form labeled with th®; quantum numbers. THg, N
quantum numbers may then take the values listed in Egs. M= ctelere, (2.30
(2.16 and(2.17). e B R

F. P, symmetry and the seniority scheme;P, symmetry and

In this section we are going to combine tRg-symmetry . N -
scheme of nuclear Hamiltonians composed of the average /ngzl (1—€4,CoCo,Cay)- (2.3
field and state-dependent monopole-pairing terms and the se- -

niority structure. By , They both commute, and in addition they also commute with
Let us focus first on the stati¢e., no rotation case. We  pamiitonian (2.24. It is easy to show that the action of

assume that the average f|e_ld term has already been d'a98perator(2.3® on stateg2.26 gives the number opaired
nalized so that the Hamiltonian takes the foftnl) couples, while the action of the operat(#.31) gives the

number of conjugate orbitals not occupied by a pair of par-

A= eu(clc,+clen) - Gusclctese,. ticles.
@ ap Continuing in analogy to the discussion of tRe symme-

(2.24 try, where the symmetry of single-particle states together

Let us introduce many-body states expressed through thiith the properties of the one-body Hamiltonian-related op-
occupation labels erators\; and N has been exploited, we may now define

two auxiliary many-body operators related to two-body
[(Pay:Pay)(PayPay) -+ (PaysPag) - (229  terms in the Hamiltonian

Those states are defined in the following way: szﬂ/‘; +ﬁ/§ (2.32
_ ot T \pa (et
|(pa1! pal) e (paN! paN)>:(Ca1) pal(cal)pal(caz) Pa and
(GL)Pez- - (cf, )Pen(c] )Pen] ). (2.26 Pp=N; =1 . (.33

Since all of the above operators commute among themselves

Symbol(2.26) represents a totally antisymmetric state in theaS well as with the HamiltoniafEq (2.24], we have

Fock space if

|1 forthe statew(a;) occupied [N2,H]=0
Plajora)™| g otherwise; and
(2.273
and [P,,H]=0. (2.39
N The action of the operatd?, on stateg2.26) gives
2)1 (Po,+P2) =P, (2.27h

Pol(PayPay) -+ (Pay Pag)) = P2l (PaysPay) -+ (P Pa))s

wherep denotes the number of particles aNdthe number (2.35

of available pairwise-conjugate single-particle orbitals.
Within the above notation, the seniority equal to two

stgtes are charactgn;ed by og:upat]on vectors in which P,=p—N,p—2-N, ...,—N, (2.363

strictly two pairs of indices pﬁai,pai) satisfy one of the fol-

lowing equalities: for p=n/2, and

whereP, may take any of the following values:
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TABLE II. Table illustrating the reduction of th@,/seniority
blocks into sub-blocks of differerf®;-quantum number. The system
if n/2<p=n. The states wittP, andP’,# P, do not couple  considered is the same as the one illustrated in Table I. The third
through the Hamiltoniari2.24 and consequently the corre- and the last columns indicate the dimensior\s of yéseniority
sponding Hamiltonian-matrix structure becomes block diagblocks and tho_se_of th®, sub-blocks, respectively. Recall that the
onal in terms of theP, quantum number as well. P, and seniority qugntum numbers are relateq through
Let us observe that the operatdgs32, (2.33 [or (2.30), P,=2N5 —N, N; denoting the number of single-particle states

. ~ . . occupied pairwise andN the number of available pairwise-
(2.31] commute with theP, operator introduced in Sec. conjugate states. Note that for the particular example chosen here

I1B, and consequently we may write, in addition to EQ. ghe has simplyP, = —s.

P,=p—N,p—2—N,...,.Ap—N)—N (2.36b

(2.39,
N Seniority P, Dimension P, values Dimension
Prl(PayPay) -+ (Payy Pag)) =Pl (Pay s Pa) - - (P Pay)
237 O 0 12870 0 12870
2 -2 1647 360 0 823 680
where in the present conte®; can take the following val- +2 411 840
ues: 4 —4 26 906 880 0 10 090 080
*+ 2 6726 720
Pi=-—s,—s+2,—s+4,...,+s. (2.38 44 1 681 680
Each block of a giverP, quantum number can be divided 6 —6 129153 024 0 40 360 320
into (s+1) sub-blocks of the differerf; quantum numbers *2 30270240
given in Eq.(2.38. Of course, the conservation of parity *4 12108 096
would allow for further splitting of the above structure. *6 2018016
In the static caséno rotation, both the?; and the?P, 8 -8 230 630 400 0 63 063 000
symmetries can be applied simultaneously; in such a +2 50 450 400
case the many-body solutions can be labeled by + 4 25 225 200
|(PayrPay)  *  (Payy Pay))p, 2,0 Wherev denotes all pos- + 6 7 207 200
sible quantum numbers other th@y andP,. In the case of + 8 900 900
a one-dimensional rotation, the seniority schefoe P, 10 —10 164003840 0 40 360 320
schemé¢ does not, in general, offer any simplification in + 2 33633 600
terms of blpck—diagonal structures whereasmesym.metry _ + 4 19 219 200
;:iogs remain an exact symmetry of the corresponding Hamil- + 6 7207 200
onian. +8 1601 600
An example of the block structure of the discussed Hamil- + 10 160 160
tonian for the system op=16 particles om=32 levels is -
given in Table Il. At this stage it will be instructive to con- 12 12 44728 320 . g 8124%924%80
sider the dimensions of the sub-blocks of givep (or se- .
niority s) and; quantum numbers. It is straightforward to t4 5405 400
show that these dimensions are given by +6 2402 400
+8 720720
dim(P,,P;) + 10 131 040
_cN N—(p—N—Pp+ P2 ~2N—p+P, + 12 10920
T (P-N=P+ P2 2 (p—N-Py—Py)/2 (N+Pp)/2 * 14 -14 3932160 0 823 680
239 2 e
+
From formula(2.39, the full dimensions of the blocks of +6 240 240
given P, (or senioritys) quantum numbers are therefore + 8 87 360
Py=+s + 10 21 840
. . -+
dim(Py)= > dim(P,,Py), (2.40 - ij 3;%0
731:—5 -
_ _ 16 -16 65536 0 12 870
the summation being such tha; take the value$2.38). + 9 11 440
* 4 8008
G. Further block diagonalization of Hamiltonians + 6 4368
with state-dependent pairing; P;, Symmetry +8 1820
Here we would like to discuss yet another important + 10 560
block-diagonalization of the Hamiltonians in question. Pur- + 12 120
suing the scheme dP; and P, symmetries, let us consider + 14 16
the following construction. First we will identify a given + 16 1

many-body statg2.26) with its occupation representation
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(2.25 or, equivalently, with its binary-number representa- TABLE lIl. lllustration of a reduction of theP, Hamiltonian
tion. This is always possible because of the conditionplocks into sub-blocks of differer®;,-quantum number. The sys-
(2.273. We associate with each position of a labelor o tem considered is the same as the system relative to Table I.

: : i
in a symbol(2.25 a weight factor defined with the help of an
index u;=2i—2 as follows:

Number Dim.
Seniority P,  Full dimension of sub-blocks of sub-block

aj—2M; a2kt 241 o 0 12 870 1 12 870
. . . . . 2 -2 1647 360 480 3432
According to this construction, each position in the symbol, 4 26 906 880 29120 924
(2.29 carries the weight2.4)) if the corresponding single- 6 129153024 512512 259
particle state is occupied, or z_ero_otherwise. We introduce, iré 8 230630400 3294 720 70
2Be?2tzlggy to the construction in Secs. IIB and Il F, the10 _10 164003 840 8200 192 20
12 —12 44728320 7454720 6
N 14 —-14 3932160 1966 080 2
=2, (2%l c, 2% el (2.42 16 -16 65 536 65 536 1
=1 I
and ample of the correspondingPg, P15 Structure is given in
\ Table Ill for the case of 16 particles on 32 levels. As it
an R becomes clear from the table, the increasing-seniority states
NIZ:; (2H142K77)C 4, € Cary- (243 (decreasingP, state$ form the Hamiltonian blocks of de-

creasing size. However thmumberof such blocks increases
With the he|p of these two operators we introduce a nev\fap|d|y for the lowest values of Senlorlty. A formula for the

P-type operator dimensions of the different sub-blocks can be found in Ref.
[20]. Of course, it can be checked that the sum of the dimen-
Pro=Ny— N (2.44  sions of thesePy, sub-blocks with the san®, values must

lead to the dimensions obtained previously in Ef40 with
the use of theP; substructure.

The above scheme is obviously very advantageous. We
may decidea priori which class of states are of particular

The indices 12 refer to the fact th&, operator is expressed
in terms of “one-body” and “two-body” representations si-

multaneously. It is now straightforward to show thHai, interest for an application. For a giveR, (or seniority

commutesi with thAe I.-|am|Iton|a(12.24)- as well as with the guantum number the corresponding matrices to diagonalize
operatorsP; and P, introduced earlier. Observe also that haye the same dimension, often orders of magnitude smaller
Ni, and Np, are linearly independent of thd/*- and than that related to the traditional seniority scheme.

N~ -type operators introduced above, and therefore they can In the present paper we aim at the effective calculations

be used to generate an independent symmetry as well. THer the heaviest nuclei as well as for lighter ones. As it has

meaning of the operator®.42—(2.43 is as follows. The been demonstrated by numerous calculations employing the
many-body stateg2.25 are eigenvectors of the operator pairing interactions, the spaces sihgle-particle stategor-

N, the eigenvalues being simply the sum of the weights of ©SPOnd roughly to an energy windowg{—5 MeV, hg+5
the occupied single-nucleon states corresponding uniquely t§€Y) Where g denotes the Fermi level. Such an energy

the binary representation of these states. This number wili b¥indow contains usuallp~ (30 to 40 particles om~ (60
called thetotal weightof the many-body configuration, and t© 80 levels. Spaces of this size produce, even after applying

the numbers 2 (and 2i*1) are thepartial weightsof the the (Py, P,, P1p) reduction, the many-body matrices that are

single-particle states, (anda_i). (The weight concept intro- still relatively large. Fop=32 particles om=64 levels we

i . obtain in analogy to the first few entries in Table Il
duced here differs from the one used, e.g., in REJ].) The P, = 0— dimyo= 601 080 390, Py= — 2 diMgupprone

action of Vj, on these states gives the sum of the powers ot 155 117 520, etc. These blocks are the most important
2 for the corresponding doubly degenerate orbitals if they argjnce the corresponding solutions are among the lowest in
occupied, and zero otherwise. Let us also introduce a concephergy. Since our goal is to construct a rapid algorithm, one
of a class of many-body states; all states that have the samgat can be used to generate, e.g., the nuclear potential en-
particle-hole structure i.e., strictly the same particle stategrgy surfaces with pairingsimilar to those of, e.g., Reff21],
occupied and strictly the same hole states empty but differ ifhe |atter obtained without taking the pairing into account
terms of the excitations in pairs form a common class. It iSye see that a direct diagonalization is not advantageous. For
easily seen that, by acting witR;, on a state(2.25, one that reason we replace such a scheme by a Lanczos approach
obtains an eigenvalue that characterizes uniquélg. and proceed to develop a many-body basis construction op-
through a one-to-one correspondenaelass of states. With timized in such a way that an efficient cutoff will become
this construction, the states first classified according to theipossible. To convince ourselves that the average field plus
P, and P, quantum numbers can be grouped further intopairing Hamiltonians allow for such solutioiand anticipat-
subclasses labeled with the help7f,. ing a detailed discussion of the next sec}iome present in

A similar subdivision into blocks obtained formally in a Table IV a stability test obtained for the=7,=0 solutions
slightly different manner is exploited in Ref20]. An ex-  with the Lanczos method and our basis optimization dis-
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TABLE IV. Evolution of the first fours=P,=0 excitation energie§n MeV) in function of the many-body basis configurations for a
system ofp= 32 particles om= 64 equispacedl MeV) doubly degenerate levels. The pairing constar@ is0.345 MeV. The many-body
basis contains the ground state, all thex1l®= 256 (one-pair stateés and the number of two-pair states is increased in the consecutive
diagonalizations. The total number of many-body basis statess Mdicated in each column. The last column indicates the first two exact
excitations obtained with the Richardson mettt¢l

State No. N=2050 N;=3243 N;=4225 N=4763 N=5920 N=6529 N=7145 N;=7769 Exact

1 2.961 2.973 2.992 3.003 3.027 3.039 3.051 3.063 3.107
2 4871 4.814 4.799 4.796 4.797 4.800 4.805 4.810 4.900
3 5.008 4.970 4.966 4.968 4.977 4.983 4.990 4.998
4 6.919 6.840 6.813 6.805 6.815 6.801 6.900 6.903

cussed in detail later compared to the exact results of Rich- A. Principles of the basis construction and of the cutoff

ardson forp=32 particles onn=64 levels(for the exact The many-body basis to be used consists of a finite en-
results, only the first two eigenvalues are m_dlcat@wese semble of fully antisymmetric many-particle configurations
examples demonstrate that already at the dimensions of the

order of a couple of thousand very precise results are o gon_structed out oh single-nucleon states occupied pyn
rticles, Eq(2.26).

tained. Storing only the nonzero matrix elements and usingﬁ)aIn the first step the ground state configuration is con-

the Lanczos technique one can perform this kind of calcula- d Thi ds by definiti h i
tion on a personal computer; more efficient machines take 8Ucted. This state corresponds by definition to the configu-

minute to some seconds of CPU time. ration in which all the lowest-lying single-particle orbitals

A great advantage in this context is that the transition®® occupied pairwise. In the static case these are usually the
energiesthe differences among the calculated leyatmbi- ~ Kramers-degenerate stafel]. In the second step we con-
lize much faster with respect to the basis cutoff as compare8tructs=0 excited configurations by promotingirs of par-
to the absolute values of eigenenergies. This allows us ttcles to originally inoccupied levels. Next we constrget2
accelerate the algorithms even further. excited configurations by creating one-particle—one-hole

The above mentioned block-diagonalization scheme re¢lp-1h) many-body basis states. Each new particle-hole
mains valid also in the case of an interestibgt so far not state is supplemented with its pair excitation ensenibbe
well explored in the literatudeclass of Hamiltonians for ro- tained as in the second step abpleading to a class of its
tating nuclei own that does not couple through Hamiltoni&h24) with

another class of states built on a differemt-1h state. Our
. N interest is to apply that scheme for as large spaces as pos-
Ae=3 escl(w)c () + 2 e%w)cato) sible: we feel thah~ 80, p~ 40 offers sufficiently rich space
“ “ for realistic calculations in heavy nuclei. The configurations
+ + corresponding to particle-hole excitations lower than a given
-2 Gupap(®)Ch(w)C fw)Chlw)Cs(w), energy cutoff are retained and the stability of the final results
i with respect to the basis cutoff is tested with the exact ones
(2.45  obtained through the Richardson method. Then the same se-
lection is performed for “two-particle—two-hole” (2-2h),
where|a,w)=c!(w)|0) denotes a single-particle Routhian “three-particle—three-hole” (B-3h) states, etc. One-pair
of a given signature symmetry and, ) its signature part- statels tuthUt to bg the mqst lr:nportagt glnpe they_ dlr.ecr;]t'ly
ner, whileG, 4., 5(w) represents the rotation-dependent ma_icsoilljlzse'cr?tet debg{gijn state via the two-body interaction; this
trix elements, e.g., in the form of an overlap between the :
corresponding signature partners. A study of the Hamilto- _ o
nians of this form is in progress and will be reported else- B. An example of a full diagonalization
where. Let us consider an “academic” case pf 10 particles on

Except for the Hamiltonians of the tyg2.49, the above n=20 levels for which the diagonalization is done easily
scheme does not hold if a rotation term is included in thewithout any basis cutoff. The model used here has been stud-
Hamiltonian, because the cranking term in the case of colied often in the literature, see, e.g., RE].
lective rotation couples different sub-blocks B and Pi, In order to illustrate the role of the “one-pair,” “two-
symmetries. pair,” “three-pair” --.-s=0 states, we give in Table V the
structure of the first 2094=0) eigenstates for this system.
The single-particle levels are composed of equispaced
(1 MeV) doubly degenerate orbitals, the first orbital chosen
arbitrarily at the energy of 1 MeV. The pairing strength pa-

We begin by discussing a technique of handling therameter is taken to b&=0.5 MeV.
many-body basis; we then proceed to illustrate the applied The dimension of the fuls=0 space is 252. It is clearly
constructions in the tests of stability with respect to theseen from the table that the most important contributions
many-body cutoff. come from the ground state and the “one-pair” and “two-

IIl. MANY-BODY BASIS CONSTRUCTION
FOR REALISTIC HAMILTONIANS
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TABLE V. Structure of the exact first twentys&0) solutions of a system composed of 10 particles on
20 equispacedl MeV) doubly degenerate levels. The pairing strengtlGis 0.5 MeV. The percentages
indicate the sum of the amplitude squares of the different basis states in the eigensolutions.

No. Energy(MeV) % GS % one pair % two pair % three pair % four, five pair
1 0.000 60.14 35.49 4.22 0.15 0.00
2 2.806 27.81 63.80 8.09 0.30 0.00
3 4.716 6.39 82.12 10.98 0.51 0.00
4 4,716 0.00 94.45 5.46 0.09 0.00
5 6.662 1.99 85.66 11.83 0.52 0.00
6 6.662 0.07 89.18 10.52 0.23 0.00
7 7.149 0.19 93.94 5.66 0.21 0.00
8 8.635 0.88 85.30 13.24 0.57 0.01
9 8.635 0.02 86.83 12.76 0.39 0.00
10 8.888 0.85 14.65 80.71 3.78 0.01
11 9.178 0.15 91.35 8.15 0.35 0.00
12 9.178 0.00 91.48 8.33 0.20 0.00
13 10.637 0.42 84.66 14.29 0.63 0.00
14 10.637 0.00 85.38 14.09 0.53 0.00
15 11.128 0.38 13.05 83.09 3.49 0.00
16 11.128 0.01 11.90 86.32 1.77 0.00
17 11.170 0.04 86.00 13.59 0.37 0.00
18 11.199 0.08 90.22 9.30 0.40 0.00
19 11.199 0.00 90.28 9.39 0.32 0.01
20 12.958 0.18 5.86 89.49 4.47 0.00

pair” states. The states of more complicated structfmar tive to the selection of the “one-pair” states, especially for
and five pairs excitedhave almost no contribution in as high the low-lying solutions. The coupling between the “one-
as~ 10 MeV above the ground state. Let us remark that thepair” and the “two-pair’ states on the one hand and be-
number of “five-pair” states is only one in this particular tween the “two-pair” and the “three-pair”’ states on the
example and that the number of “four-pair” configurations other hand influences more the higher-excited solutions in
is not very large; there are as many “four-pair” as “one- the spectrum.
pair” configurations. However, we will see that also for  Thjs result is intuitively understandable if we recall that,
much richer spaces\(>20, p>10) the role of the high-order ¢ g the “three-pair” states are of high excitation energies
pair-excitation configurations is very Im_nted, resembling to (the lowest excitation being equal to 18 MeV in this dase
this academic casef. the following section and thus they mix much less with the low-energy solutions.
This mechanism should of course be even more pronounced
C. Basis cutoff and convergence study on larger model spaces if we consider for instance “four-pair” states, and calcula-
for s=0 solutions tions (not displayedl show that this is indeed the case.

The stability of the final results with respect to the basis An important indication here is that applying the only
cutoff is a primordial aspect. As the next case let us considegnergetic cutoff criteria as studied in R¢8], is not suffi-
once again the example of a model space compospeFde  cient to ensure a high quality of the many-body basis. A
particles distributed ovem= 32 levels representing a single- similar point has also been remarked by other auth®?$
particle spectrum of the same type as in the previous sectioMore precisely, in the discussed example, one has to take
We have again sé6=0.5 MeV, so that this example corre- into account at leasall the “one-pair” states and some
sponds to a realistic situation in light nuclei leading to a gap‘two-pair”’ states to obtain a good-precision description of
between the lowest eigensolution and the first excited soluthe lowests=0 solutions. The influence of the “one-pair”
tion of 3.715 MeV. states on the final result stability shows a characteristic fea-

The dimension of the fulb=0 many-body space is in this ture(see Fig. 1 the energies of excited states converge very
caseN,=12 870. The largest seniority zero basis we haveregularly when the number of these basis states increases.
considered with our cutoff procedure was composed of thé&ince the curves in question are nearly parallel, the stability
ground statdalways taken into accountthe 64(=8x8) all of the diagonalization results for theansition energieds
existing “one-pair,” 428 “two-pair”’ (out of 784 possibili- better than that of the absolute eigenvalues.
ties), and 400 “three-pair”(out of 3136 states(reference This typical behavior does not depend very much on the
cutoff).. We have varied the number of the “one-pair,” dimensions of thsingle-particlespace used, as illustrated in
“two-pair’ and “three-pair’ s=0 basis states separately in Fig. 2 for the spectrum obtained by diagonalizing the same
order to study the convergence properties. The results atdamiltonian but forp=40 particles distributed ovar=380
given in Fig. 1, where the absolute energies are plotted. Froraquispaced doublets separated by 0.3 MeV; the pairing
these results we can see that the eigenvalues are most sergiength here isG=0.114 MeV. We see from this
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Number of 1—pair States FIG. 2. Similar to the first spectrum in Fig. 1, but fpr=40

particles distributed oven=80 doubly degenerate orbitals sepa-
T T y T T T T ] rated by 0.3 MeV. Here the pairing strengthds=0.114 MeV. The

76 ‘ 132 p=l6  s=0 | C A largest many-body spa(teafgrence cut-offis c_omposed now of t_he
S 1 ground state, 400 “one-pair,” 300 “two-pair,” 150 “three-pair”
ﬁ 74 r T ] states, and 50 “four-pair” states.
23 2 I ] figure that the lowest lying eigenvalue is the most sensitive
§ 70 + - with respect to an increase in number of “one-pair” states,
&3 whereas the excited states stabilize again in fact very rapidly,
g8y 1 similarly to the previously discussed case of much smaller
'S 66 I ) dimensionalities.
j@ ! ] In order to demonstrate the degree of precision one can
64 | (Bquidistant S.P.spoctrum] . obtain with the above described basis construction, let us
I ) : ) : . . . present an example far= 32 particles om= 64 levels taken
62 100 200 300 400 from Table IV. The dimension of the fuB=0 space is in
Number of 2—-pair States this caseN,,;,=601 080 390. A diagonalizatiofusing the
Lanczos techniqydn a space composed of the ground state,
6 - ' ' ' ' ' ' T the total number of “one-pair”’ state€256 configurations

‘ n=32 p=16 s=0 | ] and 6272 “two-pair” states gives for the first and second
excitation energies the values 3.039 and 4.800 MeV; the ex-
act results are 3.107 and 4.900 MeV. Therefore the first two
excitation energies are calculated with a precision of 2.19
and 2.04 %, respectively, whereas the number of basis states
represent approximately 0.001% of the full space.

The way of constructing an ensemble of many-body basis
configurations that are adapted to the specificities of the pair-
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66 | 1 ing interaction studied, together with the explicit use of the
64 i ] concept of P symmetry is referred to, in the following, as
| |Equidistant S.P. spectrum | ] PSY-MB (P symmetry and many-bodlynethod.
62 1 1 1 1 1 1 1
100 200 300 400

’ D. PSY-MB method vs BCS approximation
Number of 3—pair States

1. The s=0 solutions

In this section we shall analyze the main differences

FIG. 1. Stability of the seniority zero eigenvalues in function of &M0Ng the solutions obtained by using the PSY—_MB and thg
the number of “one-pair,” “two-pair,” and “three-pair’ states. BCS methods, as compared to the exact solutions. In this
The calculations correspond to a model system containing 16 pa€Xample we use once more the model space composed of 16
ticles distributed over 32 equispaced doubly degenerate orttitals ~ fermions distributed over 32 equispacddMeV) double or-
first double orbital lies arbitrarily at 1 MeV, and the level spacing is bitals; the constant pairing interaction is again used with
1 MeV). The pairing strength i§=0.5 MeV. The largest many- G=0.5 MeV. We will consider here only the solutions cor-
body space considered hefalso called “reference cutofff’is  responding to seniority zero states as demanding the most
composed of the ground state, 64 “one-pair,” 428 “two-pair,” and important numerical effort.
400 “three-pair” states. The right-hand side spectrum in the first The PSY-MB basis used is composed of the reference
plot corresponds to the exact solutions; for each eigenvalue, theutoff introduced in Sec. Il C. The exact solution is obtained
relative differenceabsolute valugsbetween the calculated excita- with the Richardson methogee Refs[1,23,24): the corre-
tions (normalized to the ground statand the exact ones are indi- sponding eigenenergies are those relative to the right-hand
cated in this case. side part of the first spectrum calculated in Fig. 1, top.
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TABLE VI. Absolute value of the lowest lying eigensolution
obtained with different methods. The PNC solution is described in
Ref.[3]. The system studied is the same as described by the spectra

6.534

in Fig. 1.
5.309
Ecs (MeV) |Ecs— Egs; exad (MeV) 4731 4689
Exact 64.492 o oo 3590 —=——m- 3589 ~=--=- 3.691
BCS 66.411 1919 | 2863 2709 "7 39 TTTTT 3267
PNC 66.130 1.638 286 T 2055 T 653
PSY-MB 64.799 0.307
. . 0 0 0 0
We can see clearly from Fig. 1 that the Fock-space diago- EXACT  PSY_MB BCS BCS

nalization offers excellent results although only a minute part G=042 MeV  G=0.3888 McV
of the full basis is retained. In fact, we have used in our
calculation only 893 states, whereas the full spectrum con- o _
tainsCéez 16!/818!=12 870 configurations. F!G. 4. Exmtanon spectra obt.alned for the samg.system as th.at
In Table VI we indicate the absolute value of the energyrelat've to Fig. 1. For the three flrst_spectr_a t.he pairing constant is
of the lowest eigenstate obtained within several methods. IE N ﬁ:;zs Ntlﬁz.szT;iﬁﬁzltsv?t;tienﬁovl\rliItt; _sgnforl'r% gsgcr:;z ptlgtiﬁg as
e P e e e eflashed nes i the plot. For he PSY-MEB method, he ate states
; . . dre obtained by diagonalizing the many-body Hamiltonian involv-
[3]’ where the Conflgur_atlc_)ns are selected acco_rdlng tq OnlYng 3p-3h configurations generated in clasgese texk built on a
simple energy cutoff criteria. One can check easily that in th

) Qlifferent 1p-1h “parent” state. One can note that the obtained
PNC calculations whose results are taken from R&f. the eigenvalues are highly degeneratas an example: one can con-

many-body basis is composed of the ground state, 36 “ONegyct four p-1h configurations with the same lowest energies. As
pair” and 30 “two-pair” states, i.e., all the configurations e corresponding doublets of orbitals are blocked in the same way,
with the excitation energies lower than 16 MeV. We includehis |eads to a fourfold degenerate many-body solytidhe basis
the results obtained with this smaller basis to point out theysed for the senioritg=0 states corresponds to the reference cutoff
discrepancies that may appear if this basis is too restricte¢h Fig. 1. We have plotted the spectrum obtained by two and four
Although the absolute value of the lowest eigensolution haguasiparticle excitations in the BCS formalism. The spectrum on
no physical interest, it should be used as a measure of thae right-hand side of the figure corresponds to a BCS calculation
accuracy of the method itself. The results point out that thevith the pairing interaction strength adjusted to the value
ground state solution given by the BCS approximation isG=0.3888 MeV. See text for more details.
rather inaccurate. In order to confirm this point we have plot-
ted in Fig. 3 the occupation probabilities of the single-PSY-MB method gives significantly better agreement with
particle orbitals in the ground solution, and it is seen that thehe exact solution.

The authors of Ref.3] argue that the PNC approximation
leads to too strong pairing effects. We believe that the solu-

- 0N ] tions obtained with the PNC approach offer a quality com-
% 0.15 - ;g;ég” 1 parable to that of the BCS results, because the used PNC
T 010 learvowe et basis is too smal(similar point was raised in Ref22]). In

%' 005 | o ] addition it should be mentioned that in RE3] the compari-

= e N DS, sons with the quasiparticle excitations were made by using a
£ 000 T *\‘\.\ 1 readjusted value of the BCS pairing strength so that the di-
§ 005t ~a ] rect comparison with the exact treatment seems to be addi-
‘g _0.10 | | tionally biased.

8 —~0.15 : Equidistant S.P. spectrum |

© N 2. The s#0 solutions

1 2 3 4 5 6 7 8

- ) We would like to focus on the states with seniority 0.
Single—particle Levels

We consider here the same system as in the previous section,
FIG. 3. Occupation probabilities, relative to the exact solution,bUt with the pairing strength somewhat modifiéd < 0.42
of the single-particle orbitals in the lowest lying eigensolution of MeV). Th',s value corresponds exactly to one of the V‘?"“es
the physical system illustrated in Fig. 1. The plot shows the differ-used by Rlchardsq[ri] who has compared the BC_S solutions
ences between the results obtained with various approaches and fifethe exact ones in several model spaces. In Fig. 4 we have
exact results. In this figure, PNC denotes the results obtained bflotted the excitation spectrum obtained by diagonalizing the
using the same basis as in RES]. Note that the figure illustrates Hamiltonian with the PSY-MB method, in comparison with
only the occupation probabilities of the “hole” statdse., the  the exact spectrum. For completeness, we have illustrated the
states below the Fermi surfacéhe occupation probabilities of the Seniority zero stategsolid lineg as well as the states with
particle states can be deduced immediately by symmetry considesenioritys= 2 (dashed lineson the same plot. As we can see
ations, and are therefore not indicated. from the figure, the basis selection proposed here works very
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well, whereas we have only useg-h states and 8-3h
states. The latter are grouped in different “families”

(classep each family being generated out of a givep-1h —~25F |- s=2 n=40 p=20 160% (neutrons) 7
state and corresponding to the Hamiltonian block dimensiol %
Ng=49. The reduction of the dimensions can be easily see = 20 } e T
as follows. For each member of the same “family,” the four . | . zz=oo TEEES
single-particle levels participating in thepilh excitation Mst zzze 0D T T
will be blocked. Therefore, there arex77 =49 possibilities 2 S —
to create $-3h states by exciting one pair of particles in the Lf'_:l ot - — .
remaining space. One obtains very accurate solutions withi S -
such a strongly limited space, because blocking of some lev S 05 b 4
els leads to gaps in the single-particle spectrum thus weal '3
ening the pairing. For comparison, Table Il shows that by L?j 00 L |
not using the discussed scheme one would need to perfor '
the diagonalization of matrices 3 432 3 432 (seeP,= —2 125 135 145 155 165
sub-blocks.
3. Quasiparticle excitations and=s0 and s=2 solutions — =0 170
PO [ §=2 n=40 p=20 Yb (neutrons)

To complete our very limited comparison of the PSY-MB > 20 —mr—77 - T
and BCS method results with the exact solutions, let us GE) _______________
present the description of the excited states in terms of th ~— 5 }+ __.___ = ceees .
BCS quasiparticle$QP’s). I

We consider here the same physical system as the one & — T
the previous section; the results of the calculations are als Lﬁ 1o r - - |
illustrated in Fig. 4. g

We will follow here the usual interpretation, see, €[], =05t .
according to which the states corresponding to two QP exci = -
tations are related, at the vanishing pairing limit, to the one 2
particle one hole excitations; these states correspond to tf m 00 F 1

1.25 1.35 1.45 1.55 1.65

dashed lines in Fig. 4 and should be compared to the solt
tions of senioritys=2. The four QP states are represented by
solid lines and should be compared to 80 excitations.

We can read from Fig. 4 that the BCS description of — =0 174
_____ <=2 n=40 p=20 Yb (neutrons)

excited states in terms of quasiparticles differs considerabl ~ 2.5
from the exact solutions. % . m==s

It has been argued by several authors thatone couldpo = 29} — — T - 7 -
sibly improve the description in the BCS approach by read 3. e TTTTTL L emeee T
justing the pairing constant. Following this kind of an ap- 20 ;g | =~ z=--- 22222 22 —— =
proach, we adjusted the BCS pairing strength to locate th & — [ --—--—- 77 - 77
first 2 QP state at the value obtained by the PSY-MB resul & | ok — 77 i
(viz. 2.655 Me\). The adjusted value i6=0.3888 MeV. E '
The corresponding new spectrum is plotted on the right-han 3 05 b ]
side of Fig. 4. Although this spectrum is more “com- '35
pressed,” the results remain unsatisfactory. [}j 0.0 k |

One of the most important drawbacks of the solutions
constructed on the basis of quasiparticle excitations is the 1.25 1.35 1.45 1.55 1.65
the excited states corresponding to four QP lie systematicall
higher in energy as compared to those constructed with tw
guasiparticles. This point seems to be essential in a correct
interpretation of the experimental spectra in terms of pairing. FIG. 5. Evolution of the calculated many-body spectra in func-
As can be seen on the basis of the exact calculations with trén of the pairing strength parameter. The system studied is com-
Richardson method, or with the use of the PSY-MB methodPOS@d of p=20 neutrons distributed oven=40 single-particle
it is possible that the=0 solutions(corresponding structur- \l/\éoodsl-78axon ort;thaIs located argund the Fermi Ic_avel for the nuclei
ally to four QP excitations in the BCS formalismay be- Yb, *"°Yb, and *"*b. Deformation of the potentialy,q=0.294,
come lower in energy than the two QP-type solutions which*4~ ~0-017.
is an evident conflict since the four QP BCS excitations lie
markedly higher than the two QP excitations. section). To complete the comparison, we have plotted in

In order to illustrate this specific point, we have reportedFig. 6 the used single-particle Woods-Saxon spectra for each
in Fig. 5 the calculated many-body spectra for the neutronsiucleus, indicating in each case the position of the Fermi
in the nuclei®b, "%b, and 1"4Yb. The figure illustrates energy\. It appears clearly that the order of tse-0 and
the spectra obtained for different pairing strengtbse next s=2 lowest solutions depends on the level density and the

Multiplicative Factor F
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FIG. 6. Figure illustrating the neutron level density around the 00 200 300 400
Fermi surface, in the Woods-Saxon single-particle spectrum, for the Number of 1-pair States
three nuclei studied in Fig. 5.

pairing, which is intuitively clear; what is less evident is that
for the physically reasonable strength constants and realistic
single-particle spectra the lowest=0 solutions compete
with the lowests=2 solutions: if the pairing strength be-
comes larger, the seniority zero solutions may become lower
in energy than the seniority two states.

n=80 p=40 s=0 If’éEr (neutrons) |

4 F |
- 1

_

w
T
1

—_—

J—
—
1

E. A state-dependent model interaction:
Gaussian dependence 16,4

0 - .

: ‘ Woods—Saxon S.P. spectrum — Gaussian Pairing

Constant pairing-strength interaction is not a very good

Many-Body Energy Spectrum (MeV)
(3=

approximation to the physical situation in nuclei. In fact, 100 200 300

within such an approach a transition amplituUgairing ma- Number of 2—pair States

trix elemenj for a pair of states say, 1 MeV distant and, say,

25 MeV distant, are the same and equal3an contrast to FIG. 7. The top Figure is similar to Fig. 2, but for a Gaussian-

what one would expect for realistic many-body systems. Waype pairing and the Woods-Saxon neutron spectrun®®r. The
would like to illustrate a simple alternative, interesting from figure also illustrates the behavior of the solutions with respect to
the PSY-MB point of view, by considering an interaction the number of “two-pair” states in the many-body basis, bottom.
where the pairing strength is given by a Gaussian-type funcrhe reference cutoff basis is composed here of the ground state, 400

tion “one-pair,” 300 “two-pair,” and 150 “three-pair” states.(For
plotting convenience, the spectra are shifted by an arbitrary con-
Gaﬁ=Ae‘B<ea‘eﬂ)2, (3.2 stant)

where e, and eg represent single-particl@Voods-Saxop ~ However, an optimal parametrization of tk&,; matrix to
energies of the states and 8. The parameterd andB are  the Woods-Saxon spectra and systematic comparison with
adjusted in such a way that the location of the first excitedexperiment need still to be studied.
eigensolution lies approximately at the same energy as for
the constant pairing case. Of course, there is some freedom
in adjusting those parameters, allowing to control in a phe-
nomenological manner the interaction among the states that
differ more and more in energy. Expressithl) allows us So far we have shown that the procedure used in the
to model in a schematic way the interactions between th&SY-MB method for selecting the many-body basis configu-
couples of single-particle state&,(3) that are closest in en- rations is effective, offering a fast stabilization of the final
ergy. The scattering between particles occupying such statégsult with respect to the many-body basis cutoff. We would
will be favored, whereas scatterings between particles itike to extend the discussion further to realistic situations.
states whose energies differ importantly will be reduced. For this purpose we plot in Fig. 8 the calculated energies of
We have illustrated in Fig. 7 the convergence behavior othe many-body problem obtained for an example of a single-
the calculated spectrum in the case of this model interactiomarticle neutron Woods-Saxon spectrum, for the nucleus
The most interesting feature consists of the fact that the con*®®Er. Again a constant pairing interaction has been used
vergence is, as one might expect, more rapid than in the cadeere.
of the constant pairingsee also next sectipnlt seems that The figure shows that for a realistic case one obtains eas-
the lowest eigenvalue converges rapidly, even if only a fewily a stabilization of the finak=0 result as well. In particu-
one pair states are used in the calculations. For the FocHar, it appears that the convergence of the solutions is im-
space diagonalization approach such a model dependenpeoved when the two-pair states are considered. One is also
seems extremely encouraging because of both, the physicaterested in the particle-hole configurations with seniority
advantages mentioned above and the convergence propertiss: 2 or higher seniority values.

F. The s=0 and s#0 solutions for a realistic single-particle
Woods-Saxon spectrum



56 FOCK-SPACE DIAGONALIZATION OF THE STATE- ... 1809

T T T T T T T

l n=80 p=40 s=0 166, (neutrons)

(U84
T
1

[\
T
i

—
T
!

T ]

‘Woods—Sm(on S.P. spectrum — Constant Pairing

<o
T

100 200 300 400
Number of 1-pair States

Many-Body Energy Spectrum (MeV)

| n=80 p=40 =0 '%g (neutrons)

w
T
!

—
T
i

]
’Woods—Saxon S.P. spectrum — Constant Pairing

100 200 300
Number of 2-pair States

Many-Body Energy Spectrum (MeV)

W =)}
T
=1
[i
o)
o
k=3
1]
i
S
v
)
)

x
N

m
5
s
)
o
]
=3
5
=]
%z
«
I3

N
T
t

~o
—T T
1

—
T

=)
—

‘ Woods—Saxon S.P. spectrum — Constant Pairing

50 150 250 350
Number of 3—ph States

Many-Body Energy Spectrum (MeV)
[O%)

FIG. 8. Similar to Fig. 7, but for the constant pairing interaction.
The reference cutoff fas=0 (top and middlgis the same as in Fig.
7. Here is also indicated the behavior of the2 solutions with
respect to the number ofp33h states in the many-body basis,
bottom. These B-3h correspond to the clagsee texk constructed
on a common p-1h parent configuration.

Here again, we have let ourselves be guided by the fact
that the pairing Hamiltonian annihilates and creatass of
particles. We have proven by a direct calculation that the
PSY-MB way of proceeding is much more efficient than that
using a construction of any set op33h states and applying
an energetic cutoff criteria alone, for the studies of higher-
excited solutions.

We illustrate a characteristic behavior of the eigenvalues
in function of the number ofg=2) 3p-3h configurations in
the basis for a realistic spectrum in Fig. 8, bottom, where we
have plotted the corresponding PSY-MB spectrum for the
case of the neutron single-particle Woods-Saxon levels for
16%Er. These calculations are performed using a family of
3p-3h states built on a chosen commop-1h parent con-
figuration (in this case a fi-1h with lowest excitation en-
ergy). The convergence properties in the=(2) case are
even better than in thesE0) case. This is because the
blocked levels are located near the Fermi level; as mentioned
previously, their blocking creates effectively an increased
gap in the spectrum, leading to a reduced effect of the pairing
Hamiltonian, and thus intuitively explaining an accelerated
convergence of the solutions. We can note in relation to this
specific example that the number of levels below and above
the Fermi level are in both cases equal to 40. It is therefore
straightforward to realize that the total number of tee@)
3p-3h states one can construct with the above scheme is
equal to 1% 19= 361, the value appearing on the right-hand
side in the corresponding spectrum of Fig. 8, bottom. Let us
remark that formally these calculations resemble tsa
calculation in an auxiliary configuration space spanned by
(p—2) particles on i—4) levels. The gap introduced is of
advantage, making the effects of possible higher-order pair
excitations significantly smaller.

IV. SOME REALISTIC CALCULATIONS;
P SYMMETRY AND ROTATION

We would like to illustrate the use of the optimized basis
selection method in realistic calculations for selected nuclei
in the rare-earth mass region. The results presented have
been obtained by chosing as the valence space the one
spanned byp=20 particles distributed ovem=40 single-
particle Woods-Saxon orbitals located around the Fermi
level. After having performed the stability tests like those
discussed in detail in the preceding section, we have retained
the many-body basis composed of the following 901 con-
figurations:(a) The ground-state configuratioth) 100 (one
pair) states E10x 10, all possible stateés(c) 100 (two
pairg states(d) 400 (1p-1h) states &20X 20, all possible
state$, (e) 150 (2p-2h) states and(f) 150 (3p-3h) states.

For the one-body cranking term, the one pair anutlh
states are of major importance. The quadrupole and hexade-
capole deformations have been taken from R2&]. We
have also made use of the parity conservation to reduce fur-
ther the sizes of the Hamiltonian blocks. This is important
from a numerical point of view, because the dimensions of
the matrices to be diagonalized diminish roughly by a factor
of 2.

To illustrate the reduction of the Hamiltonian-matrix sizes
throughP; symmetry, we indicate in Table VII the typical
dimensions of the positive and negative parity blocks classi-
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TABLE VII. Example of a reduction of the dimensions of the

matrices to be diagonalized with the PSY-MB method, by making
use of P, and parity quantum numbers in a realistic case. The total R

number of basis configurations is 901 in this case.

P, value Dim. parity+ Dim. parity —
-4 4X 4 5X 5
-2 83X 83 92X 92
0 359X 359 174X 174
+2 83X 83 91x 91
+4 4X 4 6 X 6

fied according to theiP; quantum numbers. Even though we
could have easily diagonalized the matrices of the full cutoffohains of Er, Yb, Gd, and Dy isotopes, and comparison to the ex-
(901x 901 in the example usingP; symmetry brings sev-
eral smaller-size matrices and in addition offers the symmeone would obtain in the case of zero pairing.
try classification of the resulting solutions.

A. Empirical pairing strength determination

As it is well known from standard approaches such as th
BCS approximation, the inclusion of a residual pairing inter-

action should be responsible for an important decrease of the

nuclear moments of inertia.

In order to get an idea about the monopole-pairing
strengths that one should consider optimal for our basis se-

lection, we first consider the monopole pairing const&s
andG, taken from Ref[26]:

G,=[19.30-0.084 (N-2)]/A
G,=[18.95-0.078 (N-2)]/A

and

G,=[13.30+0.217 (N-2)]/A
G,=[17.90+0.176 (N—Z)]/A

if Z=88,
if Z<88

if Z=88,
if Z<88.

4

4

J)

2

200

AEr-Exp.
e Bt = G=l)
— Er-P=125

B Yb - Exp.
——- Yb-G=0
—-— Yb-F=135

*Gd - Exp.
---- Gd-G=0
s Gd - F=1.25

¥Dy - Exp.
——- Dy-G=0
—-—= Dy-F=1.35

150 F NN L

100

2 J(1) (st. units)

50 r

0 1 1 " L n
154 164 174 184 194
Mass Number (A)

FIG. 9. Moments of inertigstandard units#?/MeV) for the

perimental values. The plot also indicates the moments of inertia

ues of the moments of inertia close to the experiment. The
results are reported in Table VIII. From this table we can
onclude that for the valence space of 20 particles on 40
evels and the many-particle cutoff configurations consid-
ed, the empirical multiplicative factor 5~ 1.30.

B. Reduction of the moments of inertia for Er, Yb, Gd,
and Dy isotopes

In order to illustrate the Fock space calculations, also
when systematically varying andN numbers, we have per-
formed calculations of the moments of inertia for the chains
of isotopes of Er, Yb, Gd, and Dy nuclei. For these calcula-
tions, one central nucleus has been chosen in each chain, and
the value ofF has been adjusted for this nucleus. The ob-
tained value ofF has been kept constant for all the other
isotopes of the same nuclide.

The results are plotted in Fig. 9 where we have indicated
the experimental moments of inertia, and the calculated ones.
In the same plot are also reported the results of the calcula-

Starting from the above expressions we have adjusted th#ons one obtains when the residual pairing interaction is
multiplicative factorF necessary to bring the calculated val- switched off.

TABLE VIII. Empirical determination of multiplicative factoF (common for protons and neutrgns
adjusted to reproduce the experimentally observed moments of inertia of some selected nuclei in the rare-
earth mass region. Column8) and (4) give the cranking spin values obtained at rotational frequency
#.w=0.05 MeV for protons and neutrons, respectively. These values have been used to catukdtio.

Nucleus  F  (307%™n)  (J0VSMR) 200 (nomev)  230)H%MeV)
158cd 0 1.214 2.660 154.96 75.5
158Gd 1.25 0.525 1.323 73.92 75.5
160Dy 0 1.173 2.811 159.36 69
160Dy 1.35 0.556 1.179 69.40 69
168 0 0.877 2.594 138.84 75
168 1.25 0.462 1.457 76.76 75
170y 0 0.810 2.701 140.44 71
170y 1.35 0.459 1.303 70.48 71
186\ 0 0.466 1.555 80.84 48.5
186\ 1.35 0.275 0.986 50.44 48.5
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long, when using the quasiparticle language, to configura-
tions differing in terms of four QP’s which corresponds to
relatively high excitation energies—and thus a comparison
] of an experimentaP; splitting with theory requires a simul-
taneous measurement of two specific highly excited bands
simultaneously—which seems to be not a totally trivial ob-
jective at present.

. : v T
== (P1=0Par=+1)
—— (P1=-2,Par=—1)
—— (P1=+2,Par=—1)
—-— (P1=0,Par=-1)
—-— (P1=0.Par=-1)
20 r —-— (P1=0.Par=+1)
=== (P1=42,Par.=+1)
---- (P1=—-2,Par.=+1)

1.0 1

0.0 r - V. SUMMARY AND CONCLUSIONS

In this article we presented a many-body basis-
optimization approach, called the PSY-MBP (symmetry
and many-body method, adapted for treating the nuclear

. state-dependent pairing correlations in realistic calculations.
] | We have_ demonstrat_ed _that this method, based_ on a
g i symmetry-prlented optimization Qf the many-body paS|s and
L BrShre) | of the basis cutoff, leads to reliable results both in model

spaces and in realistic spaces. Advantages of this method lie
. in the fact that it conserves the number of particles and there-
fore does not show the known deficiencies, when the pairing
interactions decrease, of particle nonconserving approaches
such as the HFB formalism. On the contrary, the PSY-MB
treatment becomes more reliable in the weak pairing limit.

Another advantage of the method is that it leads to a di-
, ) ) ) ~_ ] rect determination of many eigenvalu@gthin a given sym-

0.0 0.1 0.2 0.3 metry blocK in a single diagonalization. Yet another advan-

Rotational Frequency (MeV) tage is the possibility of applying the same approach to the

pairing Hamiltonians with nontrivially state dependent ma-

FIG. 10. lllustration of the phenomenon &% splitting in the  trix elements. We have presented a simple model pairing
calculated cranking spectra for neutrdisp) and protongbottom interaction of a Gaussian type and illustrated a rapid stabili-
in the nucleus'®*Er; for details see text and R¢fL8]. In both cases  zation of the obtained solutions with respect to a basis cutoff.
the spectra are normalized to the lowest eigenvalue obtained at zero Finally we have demonstrated on the explicit examples
rotational frequency. with the realistic Woods-Saxon spectra that the seniority

s=0 states compete very often with the two quasiparticle

We can see clearly from this figure that the calculatedstates, only the latter ones being usually treated within the
moments of inertia are consistent with the observed oneBCS/HFB approaches; the PSY-MB method offers naturally
giving therefore an indication that PSY-MB can be used ina good description of these states.
standard realistic situations. The characteristic small devia-
tions from experiment wheN varies have also been ob- ACKNOWLEDGMENTS
tained in the standard BCS calculations, REf6], and

should not be attributed to the Fock space diagonalization  We would like to express our thanks to thestitut du
method as its possible deficiency. Developpement et de Ressources en Informatique Scienti-

fique (IDRIS) of CNRS, France, for providing us with the
computing facilities under Project No. 960333.
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C. lllustration of the 7P splitting on a realistic example

One pf the interesting poss!bilities in tHe-symmetry APPENDIX A: GENERAL 7P;-SYMMETRIC
context is that of comparison with the measured spectra. In HAMILTONIANS—AN ALTERNATIVE
fact, a possibility of finding an experimental evidence Ryr ) _
symmetry was already mentioned in REE8]. The mecha- As already mentioned in Sec. Il, the most general

nism of P, splitting consists in a splitting between the eigen-P1-Symmetric Hamiltonian is represented by E¢@.4), if
values obtained for states with oppositequantum numbers ~ the terms in Eqs(2.4b and (2.4¢ vanish. Within a single-
(that are degenerate at=0), as the rotational frequency particle basis that obeys tH&1) symmetry we may write
increases. One should not confuse fAesplitting with the  the one-body part of the Hamiltonian in the form
well-known signature splitting phenomenon. In fact, the
splitting corresponds to levels with opposiig but with the 2 <a|ﬁ(l)|,3>CTC —>E 2 <a+|ﬁ(1)|ﬁ+>c1‘ c
same signature quantum numbas]. ap B atht

In Fig. 10 we have reported the calculated many-body
spectra obtained for the nucled¥Er for neutrons and pro- +2 2 (a—|h(1)|B-)c) _c
tons. This figure shows that one obtains nonzero and mea- a— B- am
surableP; splitting in the calculated many-body spectra. A (A1)
difficulty is that P, splitting requires, by definitionP; # 0,
P,= =2 being the first possibility. Corresponding states be- It is now straightforward to obserd 8] that by setting
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N _ 4 e X i
Ourt g+ =Cat Cpr=Nas g (A28 A=~ (B=[A(D)]a—)+ 3 (B-y-|(2)|y-a-)
-~
éa*ﬁ*zcafcgfzf\\lafﬁf ’ (AZb) 1 “
—52 (B=y=[h(@)|a—y-), (A5c)
~ ~ Y=
ga+B—EC£+CI§7EBZ+B— ) (A2¢)
1 .
~ ~ +— —_——
G ps=CaCpr=Bu_pe . (A2d) A; = 2<a+ y+|h(2)| 6+ B+), (A5d)
we obtain an ensemble of operators satisfying the commuta- 1 .
tion rules A£=—§<B—5—|h(2)|y—a—>, (A5e)
Okt 9pa] = B1pOka— Okapr;  kl,P,G=1,2,...n. —
[gkl gpq] ngkq kqul p.q (A3) A3=<a+ﬂ—|h(2)|5+ ‘)’_>- (A5f)

(In the last relation we introduced for convenience the indi-

For p particles onn levels, the corresponding dimension

ces numbering at the same time both classes of states, i.6f the Gy matrlces[Gk,],] is given by the Newton symbol

a+" and “a—

" within one uniform notation; the sym- dim(n,p)=(f); i.j= . dim(n,p) (compare Sec. Il B

bolsN, B, andB* will be needed below. The first order Ca5|m|r operator can be constructed:

The importance of relatiofA3) lies in its representing the n N N
set of commutation relations that are characteristic for the A A A ~
. o ) C= = + e

generators of a unitary group mdimensiondJ(n). Denot- ; ik 2 Yartar ; Ya-a

ing the generators dfi(n) by G,,, we can identify the two

ensembles{g,} —{Gy}. The Hamiltonian in question can

be expressed in terms of the generators of the corresponding
unitary group(see belowand the solutions of the eigenvalue
problem transform according to the totally antisymmetric ir-
reducible representations &f(n). This observation allows

us to apply any matrix representation @f; known in the
literature, such as, for instance, that of Gelfand and Zetlin
[27], to obtain directly a many-body matrix representation of
the Hamiltonians in question. One can show that the related
Hamiltonian, composed of the one-bo@1) and the two-
body term(2.4) [where Egs.(2.4b—(2.4e have been ex-
cluded, written down in the many-body representation is
[compare with Eq(A2)]

- E CZ+Ca+ + 2 Ca—CZ—
=Ny —Ny+N_, (AB)

where the auxiliary operators
N,
A t
N1+=2 Co+Cat
a+
and

N_
Ny=2 el com, (A7)
T +K -R a—
H=Ao+ > A] Ng+prt > A Ny-p-
a+ B+ a—fB—
give the number of particles with symmetry and —, re-

+ 2 AINL 5N s+ %_ AN, 5 N5

spectively. This Casimir operator is obviously a symmetry

a¥ B+ operator for the Hamiltonian sin¢€,g, ]=0 Vi,k, so that
o [ we have
+ %7 AsBL. 5 B, s, (A4)
ymot [H,C1=0-[H, (A7 - A7)]=0 (A8)
where Defining
Ao=2 (a=Ih(1)|a~) -
= Pi=(M AT +N)=N_=AF —R;,  (A9)
1 e «
+ > 2 (a—B—|h(2)|a—B-), (A5a) i.e., arbitrarily normalizing thé; operator in order to get rid
a— -

. 1 .
Af=(a+|h(1)|ﬂ+>+§§ (a+y+[h(2)| B+ y+),

of the additive constant in EqA6), we find that all the
solutions can be numbered with the quantum nunferan

eigenvalue of thef?l operator and that the corresponding
quantum numbers take the valu@s16) and(2.17) indicated

(A5b) in Sec. Il B. In this case the numb@, represents again the
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difference between the number of particles occupying the one-particle scattering\n=—2), (A10f)
states §,=+i) and the number of particles occupying the
states §,= —1i). ~ N . o

The results of the above discussion can easily be extended Bo-p+N,- 5-—(one-pair annihilation,
to the case of the Hamiltonians whose two-body terms are
generalized to include, e.g., the quadratic forms in terms of
all the generatordA2). Such Hamiltonians may contain
terms of the following structure:

one-particle scatteringn=—2). (A109)

In the above expression an interpretation in terms of the
physical significance of the contributing matrix elements as
well as the fact of nonconservation of the number of particles

B+ R+ i i —
Ba+g-By+s-—(twWo-palr creation, An=4), (An==4, An=*£2) by the generalized form of the Hamil-

(A103) tonian have been indicated.
) . The Casimir operatofA6) still commutes with such a
B, p+B,- s+ —(two-pair annihilation, An=—4), generalized Hamiltonian and consequently
(A10b) L R
Pr=Ny =Ny (A11)
B, B,-s+— (0ne-pair scattering,An=0), is a symmetry operation of that more general Hamiltonian as

(A100)  well. Hamiltonians of that mathematical form can be studied
in particular in the context of Bogolyubov transformations.
I§2+ﬁ_l§l7+5+ﬂ(one—paircreation, Here we do not examine their properties further since the
principal goal of this work is to study the particle-number
. ] conserving algorithms. These Hamiltonians are also of inter-
one-particle scattering\n=2), (A10d) st within the models that explicitly allow a variation of the
particle numbers.
Let us emphasize that in the case examined here the

N{ + Ay operator has no interest since it does not commute
with the Hamiltonian. This example demonstrates also the

B:. 5-N,_5_— (one-pair creation,

one-particle scatteringAn=2), (A108)  zgvantage of the formulation in terms of tRsymmetry
language @1Eﬁff—ﬁq) and that this is the only possible
IASQ_BJJQIer s+ — (one-pair annihilation, formulation of the related symmetry problem in this case.
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