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Relativistic structure of the nucleon self-energy in asymmetric nuclei
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The Dirac structure of the nucleon self-energy in asymmetric nuclear matter cannot reliably be deduced from
the momentum dependence of the single-particle energies. It is demonstrated that such attempts yield an
isospin dependence with a wrong sign. Relativistic studies of finite nuclei have been based on such studies of
asymmetric nuclear matter. The effects of these isospin components on the results for finite nuclei are inves-
tigated.[S0556-28187)01910-9

PACS numbegs): 21.60.Jz, 21.65:f

[. INTRODUCTION Goldstone equation. For relativistic models of ti#l inter-
action like the one-boson-exchang®BE) potentials this

During the last years substantial progress has been madiethe-Goldstone equation corresponds to a three-
in the microscopic description of the bulk properties of dimensional reduction of the Bethe-Salpeter equation, which
nuclear matter by the inclusion of relativistic features in theaccounts for Pauli and dispersive corrections due to the sur-
so-called Dirac-Brueckner-Hartree-FodOBHF) approxi-  rounding nuclear mediuf2].
mation. One finds that the self-energy of the nucleon in TheG matrix derived from this Bethe-Goldstone equation
nuclear matter contains a large attractive compornegt can be analyzed and decomposed into five Lorentz invariant
which is of the order of-300 MeV and transforms like a amplitudes. From these amplitudes one can calculate the
scalar under a Lorentz transformation. This very attractivenucleon self-energy within the Brueckner-Hartree-Fock ap-
contribution is compensated to a large extent by a repulsivggroximation and determine its relativistic structure, which
timelike Lorentz-vector componet,. This partial cancel- means its decomposition into a scalar te¥y, a timelike
lation betweerZ ¢ and 3, leads to single-particle energies vector term2, and a spacelike vector terln, . This self-
and binding energies for the nucleons, which are of the ordegnergy is included in a Dirac equation to determine the Dirac
of —40 MeV, small compared to the nucleon rest massspinors for the nucleons. A self-consistent solution of these
Based on this small binding energy it has been argued for BBHF equations requires that the resulting spinors are used
long time that relativistic effects should be small in nuclearto evaluate the matrix elements of the OBE interaction and
physics. determine theG matrix.

However, considering a self-energy with a relativistic ~ Such self-consistent DBHF calculations for nuclear matter
structure as just outlined in a Dirac equation for a nucleon irhave been performed by various groups employing different
a medium of nuclear matter, one finds that Dirac spinorsnodels for theNN interaction[2—6]. All these investigations
derived from this equation exhibit a substantial enhancemerghow that the relativistic effects modify the saturation prop-
of the small component as compared to the Dirac spinor of @&rties of nuclear matter derived from realigidN interaction
free nucleon with the same momentum. This Dirac spinowithin the BHF scheme. The density dependence of the
essentially corresponds to one for a nucleon with an effectivaucleon Dirac spinors yields some repulsion which increases
massm* which is the sum of the bare massplus the scalar significantly with the nuclear density. Due to this mechanism
part of the self-energy,. Assuming a value foZ of the Dirac effects of the DBHF approach supply a fine-tuning
—300 MeV, which is quite typical for nuclear matter at satu-in the calculated energy of nuclear matter as a function of
ration density, it is obvious that this reduction of the effec-density, which moves the prediction for the saturation point
tive mass can result in non-negligible effects. The matrixoff the well-known Coester banf¥], which is obtained in
elements of the nucleon-nucleoNK) interaction for two  nonrelativistic many-body calculations of nuclear matter, to-
nucleons in nuclear matter should be evaluated employingvards the empirical result. Brockmann and Machleidt actu-
these Dirac spinors modified by the nuclear medium, whichally succeeded in finding a version of the Bonn potential,
means that th& N interaction is density dependent. It is this which fits theNN scattering data and reproduces the empiri-
density dependence which leads to the saturation of nucleaal saturation point of symmetric nuclear matter using the
matter in simple relativistic mean-field calculations within DBHF approacH4].
the Walecka modd|1]. Various groups analyzed the relativistic structure of@e

Replacing the phenomenological approach forki¢in-  matrix and derived the three components of the self-energy,
teraction used in the Walecka model by a realistic mesons, 3, and3,,, in symmetric nuclear matter. They find the
exchange potential, one has to perform a nuclear structudependence of these three components on the momentum of
calculation which goes beyond the mean-field or Hartreethe nucleon is rather weak and that the effects of the space-
Fock approximation and account for the effectsNdfl cor-  like vector component,, is rather small as compared to the
relations. This can be done in a relativistic extension of theother two[5,6,8,9. Therefore it seems to be justified that one
Brueckner-Hartree-Fock approximation. For that purposdakes advantage of this feature and derives the decomposi-
one has to evaluate th& matrix by solving the Bethe- tion of the self-energy int& and3,, from the momentum-
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dependence of the single-particle enekdk) (see also be- The amplitudesT® are parametrized in terms of Yukawa
low). In this way one can avoid the analysis of the relativisticfunctions, depending on the Mandelstam variabées
structure ofG, which simplifies the self-consistent procedure
of DBHF significantly. 9%,

After the DBHF scheme had been applied with great suc- T“=r§l 2, 3
cess to symmetric nuclear matter, it was an obvious exten- Kn

sion to use the same scheme for pure neu@ron matter arWith effective meson massgs, and coupling constants,, .
asymmetric nuclear matter with various fractions of proton; a given density of nuclear matter, these coupling con-

to neutron density as well10-12. In Sec. II, below, We  gantq are adjusted in such a way that the antisymmetrized
would like to demonstrate that it is very dangerous to applyyatix elements of the parametrizatitt)—(3) reproduce the

the simplified version of the DBHF self-consistency, i.e., de-.,re5n0nding matrix elements of tBematrix, calculated in
d_ucmg the Dirac components from the Slnglg-partmle ENeTihe rest frame of nuclear mattgt9]. More details of this
gies, to asymmetric nuclear systems. We will see that this; . metrization can be found [9,20]. All the results dis-
scheme, which has been used, e.g.[1-13 even tends 0 h3veq in this manuscript are obtained using the parameter
predict the “wrong sign" for the isovector dependenceXaf o) of[9,20]. Results derived from parameter sets | and Il

and>. are rather similar.
Attempts have also been made to apply the DBHF ap- Using this parametrization one can easily determine the

proach to finite nuclei as wefl14—-18. One possibility in gt energysi(k) for protons and neutrons, labeled by index
this direction is the so-called relativistic mean-field approach) | ith momenturrk

with density dependent coupling consta(®VFD) [16,17.
The first step of this approach considers the relativistic ey — 1S S (k)OS
mean-field or Dirac-Hartree approach for nuclear matter at a (k) =125(k) + y k2, (K) = ¥ 2o (k), “)
given density, adjusting an effective coupling constant forby solving the Dirac-Hartree-Fock equation for theN in-
the scalar mesomr and the vector mesoa to reproduce the  araction defined by the parametrization of EG3~(3) in a
results of microscopic DBHF calculations at this density. Ingg|t.consistent way. Inserting this self-energy into the Dirac

a second step these density dependent coupling constants @i, ation for a nucleon in the nuclear medium, we obtain
employed in a Dirac-Hartree calculation to evaluate the

4

o P> Of finte nuclel in & kdnd of local 11 13110 1y-k+ M+ 54001~ 5(k) 2}l
Recently this RMFD approach has been extended to = €,(k) y°u; (k). (5

asymmetric nuclear systems. Using the DBHF results of En-

gvik et al. [12], Shenet al. [17] determined density depen- Now it is convenient to eliminat&, and rewrite this Dirac

dent coupling constants for the isoscalar mesaenand w equation into a form which only contains a scalar and a time-

and the isovector mesordsandp to fit the relativistic com-  like vector component

ponents of the self-energy for protons and neutrons at vari- _ _

ous densities and asymmetries. Since, however, this analysis {7-K+[M+2g(k)1— (k) y%}ui(k) = € (k) y°ui(k),

is based on DBHF calculations which exhibit the “wrong (6)

sign” in the isospin structure, one obtains coupling constants

for the isovector mesons in particular, which are not a royvhere
p ' pp

priate. In Sec. Il we would like to correct this sigh and show

Si_ i
the effect of a proper treatment of the isovector mesons on si :ZS M'Ev
the structure of finite nuclei using the RMFD approach. S 1+3) '
Il. ISOVECTOR MESONS AND ASYMMETRIC NUCLEAR i _Eio— 63!
MATTER So=———- 7)
1+3)

Our investigation of the role of isovector mesons in the , L i
effectiveNN interaction in a nuclear medium is based on the, W& will assume that the parametrization®f which has
analysis of Boersma and Malflig8]. They parametrize the been determined by Boersma and Malfliet for symmetric

relativistic structure of th& matrix in terms of five Lorentz Nucléar matter at various densitipsmay also be used for -
invariants asymmetric nuclear matter at the same density. With this

assumption we ignore the fact that tBematrix will not only
depend on the density of nuclear matter but also on the

5
aFa Ca asymmetr arameter
G= Zl T*FyFe), (1) Y yP

pP
. a=——, ®
with p"+pP

wherepP andp” denote the density of protons and neutrons,
_ 2) respectively. This implies that symmetric nuclear matter cor-
2m* responds taw=0.5 and pure neutron matter to=0. The

Fiy=1 L 0" ysy* v", 75
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assumption that th& matrix does not depend on this asym- 2 92
metry parametexr may not be sufficient for a very sophisti- Ug=-— —Z(p§+ pa)+ —‘;(ps—pg),
cated study of asymmetric systems. It should be sufficient, m, mss
however, for the more general remarks, which we wish to
make in the present study. 2 2
As a typical example we will now first consider the case UP=— %(pupn)_ &(pp_pn)
of asymmetric nuclear matter which is defined by a baryon 0 i mﬁ ’
densityp=0.185 nucleon fm3, which corresponds roughly
to the saturation density of nuclear matter and an asymmetry ) )
parametera=0.35. Results for the self-energy of protons Un= _ 90 Py oM 4 9%, p_ n 10
and neutrons are displayed in Fig. 1 as a function of the o m_i(p P Hi(p P")- (10

momenturrk. One observes a momentum dependence of the
scalar and vector componenk, andX, defined in Eq(7), ~ The parameterg, andm, in these equations refer to the

which is rather weak as compared to the total value of thesmeson-nucleon coupling constants and the masses of the
components. The variation of these quantities as a functiomarios mesons, the proton and neutron densities are repre-
of momentum is around 20 MeV for momenta below thesented bypP andp" and the scalar densities are defined by

Fermi momentum, which corresponds to about 5 percent of
the total value. Therefore one may be tempted to ignore this

, *
momentum dependence for a moment and interpret the mean i 8m [ ZM_'

ol k?—dk (11

value for these components, (2m)3Jo EF

. with the effective mass
Fi .
f k?S p(k)dk .

i 70 ©) M* =M+ Uy (12)

Vs kL3
and
in terms of a mean-field or Hartree-Fock model. The inBex
in this equation represents the scalg@=(s) or vector com- EX= ‘/Mi*er k2.
ponent (3=0) andkg; stands for the Fermi momentum of
protons (=p) and neutronsi=n), respectively. Assuming Inserting these Hartree results for the self-energy into the
a meson exchange model for tNéN interaction, which con- Dirac equation(6) one obtains the single-particle energy in
siders the exchange of a scalar mesof énd a vector me- the Hartree approximation
son (w) plus the exchange of the corresponding isovector

mesonsé and p, the components of the self-energy for pro- Hik) = VM* 2+ K2— U' 13
tons and neutrons are easily evaluated within the Hartree & (k) : 0 (13
approximation as For nuclear matter witp"> pP the Hartree approximation of
Eq. (10) predicts more negative values for the self-energy
g2 g2 components for neutron&)j and U7, as compared to the
Ub=— —;(pg-i-pg)— —Z(ps—pg), corresponding results for the protons. Looking again at the
m; ms momentum-dependent results for these self-energy compo-
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nents displayed in Fig. 1 we observe that this feature is reto demonstrate that the isospin dependence of the effective
produced by the momentum-dependent self-energy compenassM? reported in[12] is wrong and that this mistake is
nents derived from the Groningen parametrization of DBHF caused by the fact that Engviét al. deduce the effective
From this figure we can furthermore observe that the isospifhass from the momentum dependence of the single-particle
dependence is larger for the vector component of the selfanergy, a method which has been used by other groups be-
energy=., than for the scalar component. Translated into thege [4,10,13.
Hartree analysis of Eq10) this means that the effectie In order to demonstrate this, we consider the momentum
exchange contribution to th® matrix seems to be stronger 3 ix ;
than the effects of the isovector scalar megomhis is de- dependent self energlé‘go(k) deduceq from the Groningen
. - _— otential and calculate the single-particle enesd¥k) calcu-
finetely true for a realistic meson-exchange potential like th .

ated according to Eq.14). In a next step we analyze these

Bonn potential[2], and obviously remains valid for thé . . .
matrix. The difference in the isospin dependenc& gfand functions fi(k) and deduce from ithesg functions effective
massedM;" and vector potentials)y. This can be done by

3, is also responsible for the single-particle energies . e
taking € at two values ofk=k;,k, (our choice isk;

_ =0.7g, ko=kg) and by adjusting the parametev® and
6(K)=V[M+3L(K) >+ k> =2 q(k) (14 U} in such a way that Eq{13) reproduces the values(k,)
ande(k,). In this way we simulate the procedure of Engvik
and leads to the result that the single-particle energies for thet al. [12] and Leeet al. [13] for the Groningen potential.
protons are more attractive than those for the neuttees The results of this procedure are displayed in the right
part on the right-hand side of Fig).IThis reflects the fact part of Fig. 2. We find that the effective masses deduced
that the proton-neutron interaction is more attractive than th¢om the momentum dependence of the single-particle ener-
neutron-neutron interaction. ies show the same behavior as reported by Engvil.

One of the main features of the dependence of the selff12] and Leeet al. [13]. This demonstrates very clearly that
energy for protons and neutrons in asymmetric nuclear makhe jsospin dependence of the effective mass is very sensitive
ter is displayed in the left part of Fig. 2. There we show theyg the method used to determine it. Although the momentum
dependence of the average effective mdgscalculated ac- dependence of the components of the Se|f_eneg'gx is
cording to Eq.(12) using the momentum averagéfl de-  rather weak on the scale of the absolute values of these quan-
fined in Eq.(9) as a function of the asymmetry parameter tities (see discussion of Fig. 1 abdyat is obviously too
The effective mass is of course identical for protons andtrong to neglect it in analyzing the momentum dependence
neutrons in the case of symmetric nuclear mater0.5.  of ¢ (k). Therefore such an analysis leads to wrong results,
The effective mass for the protons increases with decreasing particular when we are interested in the isospin depen-
a, i.e., with an increasing fraction of neutrons. The effectivedence.
mass for the neutrons is smaller than the corresponilifig This observation led us to compare the two schemes of
for all values B<a<0.5. analyzing the Dirac structure of the nucleon also in the case

This is just opposite to the behavior observed by Engvikof symmetric nuclear matter. Results for the effective mass
et al.[12,2]] (see also Fig. 2 of17]) as well as Leeetal. as a function of the Fermi momentukr of symmetric
[13]. These investigations report effective masses for thewuclear matter are displayed in Fig. 3. The results are rather
proton to be smaller than those for the neutron. One couldimilar for densities around the empirical saturation density
argue that this different behavior &f, or M} is due to the (ke~1.4 fm~1). This suggests that the evaluation of the
different interactions: the results §12] have been derived saturation properties of nuclear matter, as performed by
from the Bonn potential, whereas we consider parametri- Brockmann and Machleidf4] may not be influenced too
zation of the Groningen potential. However, we would like much by improving the method to determine the Dirac struc-
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local density approximatiofl4—1§. One possibility is to
consider asymmetric nuclear matter at a given densiynd
asymmetrya and determine the scalar and vector compo-
nentsUg andU, of the nucleon self-energy for protons and
neutrons. Using the set of equatiofi®) one can determine
effective coupling constants;,, g2, g5, andg?. This means
that a Dirac-Hartree calculation of nuclear matter allowing
for the exchange ofr, w, 6, andp mesons with these cou-
pling constants would reproduce the results of the DBHF
calculation at this density and asymmetry. These effective
coupling constants depend on density and asymmetry.

As an example we present in Fig. 4 the density depen-
dence of these coupling constants, derived from the mean
values calculated according to E®). These coupling con-
stants are represented by the solid lines and have been evalu-
ated at an asymmetry defined by=0.35. The dependence of
these coupling constants enturns out to be weak. One can
L see that these effective coupling constants exhibit a moderate
density dependence. The coupling constants for the isovector

kp o [fm™] mesonss and p are weaker than those of the isoscalar me-
sons.

FIG. 3. Effective masses of symmetric nuclear matter as a func- Instead of using the momentum averaged self-ene(gies
tion of the Fermi momentunkg: . The results represented by the gne may also try to use the corresponding quantiﬂé%
solid line have been derived from the momentum averaged selfyerived from the momentum dependence of the éingle-
energyX of Eq. (9). Those shown by the dashed line are deducedyicle energieg(k). Using these quantities as input to de-
from the single-particle energiegk) according to Eq(13). termine the effective meson-coupling constants, we obtain

ture of the nucleon spinors. For other densities, however, thi1e results represented by the dashed line. It must be men-
effective mass deduced from the momentum dependence §pned that the coupling constang$ for the isovector me-

the single-particle energylashed lingdeviates significantly sons turn out to be negative in this analysis, which means
from the effective mass derived directly fraiy. In particu-  that the coupling constanig themselves would be imagi-

lar at smaller densities, these are the densities which amary. This is a consequence of the “wrong” isospin depen-
relevant for the description of finite nuclei with medium dence of these self-energy components. The effective cou-
mass, the effective mass derived from the single-particle erpling constants derived from the single-particle spectra also
ergies is considerably smaller than the corresponding valushow a much stronger density dependence and the absolute
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deduced fron. values for the isoscalar mesons are close to those of the
isovector mesons. We would like to mention again that both
IIl. RELATIVISTIC MEAN-FIELD CALCULATIONS sets of effective coupling constartepresented by the solid

FOR FINITE NUCLEI and dashed lines in Fig.) 4re determined for the same pa-
Relativistic calculations for finite nuclei have often beenrametrization of the Groninge@ matrix. The only differ-
based on DBHF studies of nuclear matter using a kind ofnce is that the solid line is derived from the self-energies
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of density. These coupling constants are derived
from Eqg. (10) assuming meson masses of 550
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are derived from the momentum averaged self-
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ing effective masses derived from the single-
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sons if they are derived frora(k).
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TABLE I. Energy per nucleonE/A) and radius of the charge in the limit of symmetric matter, i.e.x=0.5. The density
distribution Ry, calculated in various versions of the Dirac-Hartree dependent coupling constants for these mesons are obtained
approach with density dependent coupling constants. The calculatasl; analyzing the proton and neutron self-energies for asym-
energy has been corrected to account for the effects of the spurioyfetric nuclear matter, extrapolated to the symmetric case of
center qf mass motion. Details of the various approaches are digy—q 5. (©) A o, w, p-8 model for asymmetric nuclear mat-
cussed in the text. ter ata=0.36, which corresponds the proton fraction?¥®.

For each of these mode{a)—(c) the coupling constants de-
rived either from the relativistic structure of the self-energy
(results listed in the left part of the tabler from the mo-

FromX, From e(k)
E/A (MeV) Ry (fm) E/A (MeV) Ry, (fm)

%o 0,0 —6.94 2.56 —6.36 2.60 mentum dependence of the single-particle enengesilts in
Expt. -7.98 2.74 the right part.
20 o —6.72 256 583 259 One can see from these results that the two methods to
a=05 ~6.33 259 547 261 determlne the density deper)den.ce of the effective meson
a=0.36 —6.40 258 _535 263 coupling constants lead to quite different results even for the

isospin symmetric systert?O. The difference in the calcu-

lated binding energy is as large as 0.6 MeV per nucleon. The

deviation of the second scheme from the first one is even

directly, while the dashed lines are obtained from the attempgrger for the nonsymmetric nucledO. Note that the dif-

to derive these self-energies from the single-particle spederences between the two methods, around 0.9 MeV per

trum. nucleon, is larger than the effect of the isovector mesons: the
Shenet al. [17] determined effective coupling constants difference between the-» model and the models including

in the same way as we just outlined using as input data thisovector mesons is only around 0.3 MeV per nucleon.

results of Engviket al. [12]. This means that they start from

componentdJ , which are derived from the single-particle

spectrume(k) calculated for the Bonn potential. It is remark- IV. CONCLUSIONS

able that the coupling constants derivedii] show features

very similar to those represented by the dashed line abov

The coupling constantg® are negative for the isovector me-

Expt. —7.36

The accuracy of the simple technique which tries to ex-
fract the Dirac structure of the nucleon self-energy in nuclear

4 ' matter from the momentum dependence of the single-particle
sons[note that the isovector components in &6). of [17]  gnergy[4,10-13 has been investigated using the relativistic

have a wrong sighand all effective coupling constants show parametrization of th& matrix of Boersmaet al. [9]. It is

a strong density dependence, very similar to the dashed linggmonstrated that the analysis based on the single-particle
in our Fig. 4. _ spectrum fails if asymmetric nuclear systems are considered.
Considering a fixed asymmetry parameteone may Now  The isovector components of the self-energy derived in this
consider the various coupling constants, which for the asyMyay exhibit even the wrong sign. The simplified analysis
metry assumed just depend on the total baryon density androduces the structure of the self-energy around the satu-
solve the Dirac-Hartree or relativistic mean-field equationsation density but overestimates the scalar part of the self-
assuming a local-density approximation for the mMesONgnergy at smaller densities. Therefore the improvement of
nucleon coupling constant. Details of th_e procedure havenis scheme may not have a very significant effect on the
been presented {15]. Note that we do not include the effect .5jcylated saturation property of symmetric nuclear matter
of rearrangement ternfd.7]. _ _ _ [4]. A more apropriate analysis of the Dirac structure of the
Results for such Dirac-Hartree calculations with dens'tYnuclear self-energy is required to derive density-dependent

dependent meson nucleon coupling constants are listed ective coupling constants to be used in Dirac-Hartree cal-
Table I. As examples we consider the ground-state properties,jations of finite nuclei.

of the nuclei **0 and ??0. Three different models are con-

sidered.(a) A pure o-o model, the density dependent cou- This work was supported by the “Graduiertenkolleg
pling constants for these two mesons are derived from th&truktur und Wechselwirkung von Hadronen und Kernen”
results of symmetric nuclear mattéh) A o, w, p-6 model (DFG GRK 132/2.
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