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Relativistic structure of the nucleon self-energy in asymmetric nuclei

S. Ulrych and H. Mu¨ther
Institut für Theoretische Physik, Universita¨t Tübingen, D-72076 Tu¨bingen, Germany

~Received 16 June 1997!

The Dirac structure of the nucleon self-energy in asymmetric nuclear matter cannot reliably be deduced from
the momentum dependence of the single-particle energies. It is demonstrated that such attempts yield an
isospin dependence with a wrong sign. Relativistic studies of finite nuclei have been based on such studies of
asymmetric nuclear matter. The effects of these isospin components on the results for finite nuclei are inves-
tigated.@S0556-2813~97!01910-9#

PACS number~s!: 21.60.Jz, 21.65.1f
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I. INTRODUCTION

During the last years substantial progress has been m
in the microscopic description of the bulk properties
nuclear matter by the inclusion of relativistic features in t
so-called Dirac-Brueckner-Hartree-Fock~DBHF! approxi-
mation. One finds that the self-energy of the nucleon
nuclear matter contains a large attractive componentSs
which is of the order of2300 MeV and transforms like a
scalar under a Lorentz transformation. This very attract
contribution is compensated to a large extent by a repuls
timelike Lorentz-vector componentS0. This partial cancel-
lation betweenSs and S0 leads to single-particle energie
and binding energies for the nucleons, which are of the or
of 240 MeV, small compared to the nucleon rest ma
Based on this small binding energy it has been argued f
long time that relativistic effects should be small in nucle
physics.

However, considering a self-energy with a relativis
structure as just outlined in a Dirac equation for a nucleon
a medium of nuclear matter, one finds that Dirac spin
derived from this equation exhibit a substantial enhancem
of the small component as compared to the Dirac spinor
free nucleon with the same momentum. This Dirac spi
essentially corresponds to one for a nucleon with an effec
massm* which is the sum of the bare massm plus the scalar
part of the self-energySs . Assuming a value forSs of
2300 MeV, which is quite typical for nuclear matter at sat
ration density, it is obvious that this reduction of the effe
tive mass can result in non-negligible effects. The ma
elements of the nucleon-nucleon (NN) interaction for two
nucleons in nuclear matter should be evaluated employ
these Dirac spinors modified by the nuclear medium, wh
means that theNN interaction is density dependent. It is th
density dependence which leads to the saturation of nuc
matter in simple relativistic mean-field calculations with
the Walecka model@1#.

Replacing the phenomenological approach for theNN in-
teraction used in the Walecka model by a realistic mes
exchange potential, one has to perform a nuclear struc
calculation which goes beyond the mean-field or Hartr
Fock approximation and account for the effects ofNN cor-
relations. This can be done in a relativistic extension of
Brueckner-Hartree-Fock approximation. For that purpo
one has to evaluate theG matrix by solving the Bethe-
560556-2813/97/56~4!/1788~7!/$10.00
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Goldstone equation. For relativistic models of theNN inter-
action like the one-boson-exchange~OBE! potentials this
Bethe-Goldstone equation corresponds to a thr
dimensional reduction of the Bethe-Salpeter equation, wh
accounts for Pauli and dispersive corrections due to the
rounding nuclear medium@2#.

TheG matrix derived from this Bethe-Goldstone equati
can be analyzed and decomposed into five Lorentz invar
amplitudes. From these amplitudes one can calculate
nucleon self-energy within the Brueckner-Hartree-Fock
proximation and determine its relativistic structure, whi
means its decomposition into a scalar termSs , a timelike
vector termS0 and a spacelike vector termSv . This self-
energy is included in a Dirac equation to determine the Di
spinors for the nucleons. A self-consistent solution of the
DBHF equations requires that the resulting spinors are u
to evaluate the matrix elements of the OBE interaction a
determine theG matrix.

Such self-consistent DBHF calculations for nuclear ma
have been performed by various groups employing differ
models for theNN interaction@2–6#. All these investigations
show that the relativistic effects modify the saturation pro
erties of nuclear matter derived from realisticNN interaction
within the BHF scheme. The density dependence of
nucleon Dirac spinors yields some repulsion which increa
significantly with the nuclear density. Due to this mechani
the Dirac effects of the DBHF approach supply a fine-tun
in the calculated energy of nuclear matter as a function
density, which moves the prediction for the saturation po
off the well-known Coester band@7#, which is obtained in
nonrelativistic many-body calculations of nuclear matter,
wards the empirical result. Brockmann and Machleidt ac
ally succeeded in finding a version of the Bonn potent
which fits theNN scattering data and reproduces the emp
cal saturation point of symmetric nuclear matter using
DBHF approach@4#.

Various groups analyzed the relativistic structure of theG
matrix and derived the three components of the self-ene
Ss , S0, andSv , in symmetric nuclear matter. They find th
dependence of these three components on the momentu
the nucleon is rather weak and that the effects of the sp
like vector componentSv is rather small as compared to th
other two@5,6,8,9#. Therefore it seems to be justified that on
takes advantage of this feature and derives the decomp
tion of the self-energy intoSs andS0 from the momentum-
1788 © 1997 The American Physical Society



tic
re

uc
te
a
on

pl
e
e
th

ap

c

ti
at
fo

In
ts
th
l-

En
-

a
ly
g
n
ro
w
o

he
he

a

n-
ized

eter
II

the
x

ac

e-

tric
r
this

the

s,
or-

56 1789RELATIVISTIC STRUCTURE OF THE NUCLEON SELF- . . .
dependence of the single-particle energye(k) ~see also be-
low!. In this way one can avoid the analysis of the relativis
structure ofG, which simplifies the self-consistent procedu
of DBHF significantly.

After the DBHF scheme had been applied with great s
cess to symmetric nuclear matter, it was an obvious ex
sion to use the same scheme for pure neutron matter
asymmetric nuclear matter with various fractions of prot
to neutron density as well@10–12#. In Sec. II, below, we
would like to demonstrate that it is very dangerous to ap
the simplified version of the DBHF self-consistency, i.e., d
ducing the Dirac components from the single-particle en
gies, to asymmetric nuclear systems. We will see that
scheme, which has been used, e.g., by@10–13# even tends to
predict the ‘‘wrong sign’’ for the isovector dependence ofSs
andS0.

Attempts have also been made to apply the DBHF
proach to finite nuclei as well@14–18#. One possibility in
this direction is the so-called relativistic mean-field approa
with density dependent coupling constants~RMFD! @16,17#.
The first step of this approach considers the relativis
mean-field or Dirac-Hartree approach for nuclear matter
given density, adjusting an effective coupling constant
the scalar mesons and the vector mesonv to reproduce the
results of microscopic DBHF calculations at this density.
a second step these density dependent coupling constan
employed in a Dirac-Hartree calculation to evaluate
ground-state properties of finite nuclei in a kind of loca
density approximation.

Recently this RMFD approach has been extended
asymmetric nuclear systems. Using the DBHF results of
gvik et al. @12#, Shenet al. @17# determined density depen
dent coupling constants for the isoscalar mesonss and v
and the isovector mesonsd andr to fit the relativistic com-
ponents of the self-energy for protons and neutrons at v
ous densities and asymmetries. Since, however, this ana
is based on DBHF calculations which exhibit the ‘‘wron
sign’’ in the isospin structure, one obtains coupling consta
for the isovector mesons in particular, which are not app
priate. In Sec. III we would like to correct this sign and sho
the effect of a proper treatment of the isovector mesons
the structure of finite nuclei using the RMFD approach.

II. ISOVECTOR MESONS AND ASYMMETRIC NUCLEAR
MATTER

Our investigation of the role of isovector mesons in t
effectiveNN interaction in a nuclear medium is based on t
analysis of Boersma and Malfliet@9#. They parametrize the
relativistic structure of theG matrix in terms of five Lorentz
invariants

G5 (
a51

5

TaF ~1!
a F ~2!

a , ~1!

with

F ~ i !
a 5H 1, smn,g5gm,gm,g5

q”

2m* J . ~2!
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The amplitudesTa are parametrized in terms of Yukaw
functions, depending on the Mandelstam variablet as

Ta5 (
n51

4 gan
2

mn
22t

~3!

with effective meson massesmn and coupling constantsgan .
At a given density of nuclear matter, these coupling co
stants are adjusted in such a way that the antisymmetr
matrix elements of the parametrization~1!–~3! reproduce the
corresponding matrix elements of theG matrix, calculated in
the rest frame of nuclear matter@19#. More details of this
parametrization can be found in@9,20#. All the results dis-
played in this manuscript are obtained using the param
set III of @9,20#. Results derived from parameter sets I and
are rather similar.

Using this parametrization one can easily determine
self-energyS i(k) for protons and neutrons, labeled by inde
i , with momentumk

S i~k!51S̃s
i ~k!1g•kSv

i ~k!2g0S̃0
i ~k!, ~4!

by solving the Dirac-Hartree-Fock equation for theNN in-
teraction defined by the parametrization of Eqs.~1!–~3! in a
self-consistent way. Inserting this self-energy into the Dir
equation for a nucleon in the nuclear medium, we obtain

$@11Sv
i ~k!#g•k1@M1S̃s

i ~k!#2S̃0
i ~k!g0%ui~k!

5e i~k!g0ui~k!. ~5!

Now it is convenient to eliminateSv and rewrite this Dirac
equation into a form which only contains a scalar and a tim
like vector component

$g•k1@M1Ss
i ~k!#2S0

i ~k!g0%ui~k!5e i~k!g0ui~k!,
~6!

where

Ss
i 5

S̃s
i 2MSv

i

11Sv
i

,

S0
i 5

S̃0
i 2e iSv

i

11Sv
i

. ~7!

We will assume that the parametrization ofG, which has
been determined by Boersma and Malfliet for symme
nuclear matter at various densitiesr may also be used fo
asymmetric nuclear matter at the same density. With
assumption we ignore the fact that theG matrix will not only
depend on the density of nuclear matter but also on
asymmetry parameter

a5
rp

rn1rp
, ~8!

whererp andrn denote the density of protons and neutron
respectively. This implies that symmetric nuclear matter c
responds toa50.5 and pure neutron matter toa50. The
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FIG. 1. Scalar (Ss , left part!
and vector component (S0,
middle part! of the self-energy
and the single-particle energy@e,
see Eq.~14!, right part of the fig-
ure# for protons ~solid line! and
neutrons~dashed line! as a func-
tion of momentumk. Results are
displayed for asymmetric nuclea
matter with a baryon densityr
50.185 nucleon fm23 and an
asymmetry parametera50.35.
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assumption that theG matrix does not depend on this asym
metry parametera may not be sufficient for a very sophist
cated study of asymmetric systems. It should be suffici
however, for the more general remarks, which we wish
make in the present study.

As a typical example we will now first consider the ca
of asymmetric nuclear matter which is defined by a bary
densityr50.185 nucleon fm23, which corresponds roughly
to the saturation density of nuclear matter and an asymm
parametera50.35. Results for the self-energy of proto
and neutrons are displayed in Fig. 1 as a function of
momentumk. One observes a momentum dependence of
scalar and vector components,Ss

i andS0
i defined in Eq.~7!,

which is rather weak as compared to the total value of th
components. The variation of these quantities as a func
of momentum is around 20 MeV for momenta below t
Fermi momentum, which corresponds to about 5 percen
the total value. Therefore one may be tempted to ignore
momentum dependence for a moment and interpret the m
value for these components,

Ub
i 5

E
0

kFi
k2Sb

i ~k!dk

kFi
3 /3

, ~9!

in terms of a mean-field or Hartree-Fock model. The indexb
in this equation represents the scalar (b5s) or vector com-
ponent (b50) andkFi stands for the Fermi momentum o
protons (i 5p) and neutrons (i 5n), respectively. Assuming
a meson exchange model for theNN interaction, which con-
siders the exchange of a scalar meson (s) and a vector me-
son (v) plus the exchange of the corresponding isovec
mesonsd andr, the components of the self-energy for pr
tons and neutrons are easily evaluated within the Har
approximation as

Us
p52

gs
2

ms
2 ~rs

p1rs
n!2

gd
2

md
2 ~rs

p2rs
n!,
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Us
n52

gs
2

ms
2 ~rs

p1rs
n!1

gd
2

md
2 ~rs

p2rs
n!,

U0
p52

gv
2

mv
2 ~rp1rn!2

gr
2

mr
2 ~rp2rn!,

U0
n52

gv
2

mv
2 ~rp1rn!1

gr
2

mr
2 ~rp2rn!. ~10!

The parametersgm and mm in these equations refer to th
meson-nucleon coupling constants and the masses of
varios mesons, the proton and neutron densities are re
sented byrp andrn and the scalar densities are defined b

rs
i 5

8p

~2p!3E0

kFi
k2

Mi*

Ei*
dk ~11!

with the effective mass

Mi* 5M1Us
i ~12!

and

Ei* 5AMi*
21k2.

Inserting these Hartree results for the self-energy into
Dirac equation~6! one obtains the single-particle energy
the Hartree approximation

e i
H~k!5AMi*

21k22U0
i . ~13!

For nuclear matter withrn.rp the Hartree approximation o
Eq. ~10! predicts more negative values for the self-ener
components for neutrons,U0

n and Us
n , as compared to the

corresponding results for the protons. Looking again at
momentum-dependent results for these self-energy com
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FIG. 2. Effective masses of nuclear matter (r
50.185 nucleon fm23) as a function of the
asymmetry parametera. The effective masses
displayed in the left part of the figure have bee
derived from the momentum averaged se
energySs of Eq. ~ 9!, while those in the right part
of the figure are deduced from the single-partic
energiese(k) according to Eq.~13!.
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nents displayed in Fig. 1 we observe that this feature is
produced by the momentum-dependent self-energy com
nents derived from the Groningen parametrization of DBH
From this figure we can furthermore observe that the isos
dependence is larger for the vector component of the s
energyS0 than for the scalar component. Translated into
Hartree analysis of Eq.~10! this means that the effectiver
exchange contribution to theG matrix seems to be stronge
than the effects of the isovector scalar mesond. This is de-
finetely true for a realistic meson-exchange potential like
Bonn potential@2#, and obviously remains valid for theG
matrix. The difference in the isospin dependence ofSs and
S0 is also responsible for the single-particle energies

e i~k!5A@M1Ss
i ~k!#21k22S0

i ~k! ~14!

and leads to the result that the single-particle energies for
protons are more attractive than those for the neutrons~see
part on the right-hand side of Fig. 1!. This reflects the fact
that the proton-neutron interaction is more attractive than
neutron-neutron interaction.

One of the main features of the dependence of the s
energy for protons and neutrons in asymmetric nuclear m
ter is displayed in the left part of Fig. 2. There we show t
dependence of the average effective massMi* calculated ac-
cording to Eq.~12! using the momentum averagedUs

i de-
fined in Eq.~9! as a function of the asymmetry parametera.
The effective mass is of course identical for protons a
neutrons in the case of symmetric nuclear matter (a50.5!.
The effective mass for the protons increases with decrea
a, i.e., with an increasing fraction of neutrons. The effect
mass for the neutrons is smaller than the correspondingM p*
for all values 0<a,0.5.

This is just opposite to the behavior observed by Eng
et al. @12,21# ~see also Fig. 2 of@17#! as well as Leeet al.
@13#. These investigations report effective masses for
proton to be smaller than those for the neutron. One co
argue that this different behavior ofSs

i or Mi* is due to the
different interactions: the results of@12# have been derived
from the Bonn potentialA, whereas we consider paramet
zation of the Groningen potential. However, we would li
e-
o-
.
in
lf-
e

e

he

e

lf-
t-

d

ng

k

e
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to demonstrate that the isospin dependence of the effec
massMi* reported in@12# is wrong and that this mistake i
caused by the fact that Engviket al. deduce the effective
mass from the momentum dependence of the single-par
energy, a method which has been used by other groups
fore @4,10,13#.

In order to demonstrate this, we consider the moment
dependent self-energiesSs,0

i (k) deduced from the Groninge
potential and calculate the single-particle energye i(k) calcu-
lated according to Eq.~14!. In a next step we analyze thes
functions e i(k) and deduce from these functions effecti
massesMi* and vector potentialsU0

i . This can be done by
taking e i at two values ofk5k1 ,k2 ~our choice is k1

50.7kF , k25kF) and by adjusting the parametersMi* and
U0

i in such a way that Eq.~13! reproduces the valuese i(k1)
ande(k2). In this way we simulate the procedure of Engv
et al. @12# and Leeet al. @13# for the Groningen potential.

The results of this procedure are displayed in the ri
part of Fig. 2. We find that the effective masses dedu
from the momentum dependence of the single-particle e
gies show the same behavior as reported by Engviket al.
@12# and Leeet al. @13#. This demonstrates very clearly tha
the isospin dependence of the effective mass is very sens
to the method used to determine it. Although the moment
dependence of the components of the self-energyS0,s

i is
rather weak on the scale of the absolute values of these q
tities ~see discussion of Fig. 1 above!, it is obviously too
strong to neglect it in analyzing the momentum depende
of e i(k). Therefore such an analysis leads to wrong resu
in particular when we are interested in the isospin dep
dence.

This observation led us to compare the two schemes
analyzing the Dirac structure of the nucleon also in the c
of symmetric nuclear matter. Results for the effective m
as a function of the Fermi momentumkF of symmetric
nuclear matter are displayed in Fig. 3. The results are ra
similar for densities around the empirical saturation dens
(kF'1.4 fm21). This suggests that the evaluation of th
saturation properties of nuclear matter, as performed
Brockmann and Machleidt@4# may not be influenced too
much by improving the method to determine the Dirac str
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ture of the nucleon spinors. For other densities, however,
effective mass deduced from the momentum dependenc
the single-particle energy~dashed line! deviates significantly
from the effective mass derived directly fromSs . In particu-
lar at smaller densities, these are the densities which
relevant for the description of finite nuclei with mediu
mass, the effective mass derived from the single-particle
ergies is considerably smaller than the corresponding v
deduced fromSs .

III. RELATIVISTIC MEAN-FIELD CALCULATIONS
FOR FINITE NUCLEI

Relativistic calculations for finite nuclei have often be
based on DBHF studies of nuclear matter using a kind

FIG. 3. Effective masses of symmetric nuclear matter as a fu
tion of the Fermi momentumkF . The results represented by th
solid line have been derived from the momentum averaged s
energySs of Eq. ~9!. Those shown by the dashed line are deduc
from the single-particle energiese(k) according to Eq.~13!.
e
of

re

n-
e

f

local density approximation@14–18#. One possibility is to
consider asymmetric nuclear matter at a given densityr and
asymmetrya and determine the scalar and vector comp
nentsUs andU0 of the nucleon self-energy for protons an
neutrons. Using the set of equations~10! one can determine
effective coupling constantsgs

2 , gv
2 , gd

2 , andgr
2 . This means

that a Dirac-Hartree calculation of nuclear matter allowi
for the exchange ofs, v, d, andr mesons with these cou
pling constants would reproduce the results of the DB
calculation at this density and asymmetry. These effec
coupling constants depend on density and asymmetry.

As an example we present in Fig. 4 the density dep
dence of these coupling constants, derived from the m
values calculated according to Eq.~9!. These coupling con-
stants are represented by the solid lines and have been e
ated at an asymmetry defined bya50.35. The dependence o
these coupling constants ona turns out to be weak. One ca
see that these effective coupling constants exhibit a mode
density dependence. The coupling constants for the isove
mesonsd andr are weaker than those of the isoscalar m
sons.

Instead of using the momentum averaged self-energies~9!
one may also try to use the corresponding quantitiesUs,0

i

derived from the momentum dependence of the sing
particle energiese(k). Using these quantities as input to d
termine the effective meson-coupling constants, we ob
the results represented by the dashed line. It must be m
tioned that the coupling constantsg2 for the isovector me-
sons turn out to be negative in this analysis, which me
that the coupling constantsg themselves would be imagi
nary. This is a consequence of the ‘‘wrong’’ isospin depe
dence of these self-energy components. The effective c
pling constants derived from the single-particle spectra a
show a much stronger density dependence and the abs
values for the isoscalar mesons are close to those of
isovector mesons. We would like to mention again that b
sets of effective coupling constants~represented by the solid
and dashed lines in Fig. 4! are determined for the same p
rametrization of the GroningenG matrix. The only differ-
ence is that the solid line is derived from the self-energ

c-

lf-
d

e
on
ed
0

s
lf-
us-
e-

-

FIG. 4. Effective coupling constants to b
used in Dirac-Hartree calculations as a functi
of density. These coupling constants are deriv
from Eq. ~10! assuming meson masses of 55
MeV, 783 MeV, 983 MeV, and 769 MeV fors,
v, d, andr mesons, respectively. The solid line
are derived from the momentum averaged se
energies, while the dashed lines are obtained
ing effective masses derived from the singl
particle spectrume(k). Note that the coupling
constantsgi

2 are negative for the isovector me
sons if they are derived frome(k).
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directly, while the dashed lines are obtained from the atte
to derive these self-energies from the single-particle sp
trum.

Shenet al. @17# determined effective coupling constan
in the same way as we just outlined using as input data
results of Engviket al. @12#. This means that they start from
componentsUs,0

i which are derived from the single-partic
spectrume(k) calculated for the Bonn potential. It is remar
able that the coupling constants derived in@17# show features
very similar to those represented by the dashed line ab
The coupling constantsg2 are negative for the isovector me
sons@note that the isovector components in Eq.~6! of @17#
have a wrong sign# and all effective coupling constants sho
a strong density dependence, very similar to the dashed
in our Fig. 4.

Considering a fixed asymmetry parametera one may now
consider the various coupling constants, which for the as
metry assumed just depend on the total baryon density
solve the Dirac-Hartree or relativistic mean-field equatio
assuming a local-density approximation for the mes
nucleon coupling constant. Details of the procedure h
been presented in@15#. Note that we do not include the effec
of rearrangement terms@17#.

Results for such Dirac-Hartree calculations with dens
dependent meson nucleon coupling constants are liste
Table I. As examples we consider the ground-state prope
of the nuclei 16O and 22O. Three different models are con
sidered.~a! A pure s-v model, the density dependent co
pling constants for these two mesons are derived from
results of symmetric nuclear matter.~b! A s, v, r-d model

TABLE I. Energy per nucleon (E/A) and radius of the charge
distributionRch calculated in various versions of the Dirac-Hartr
approach with density dependent coupling constants. The calcu
energy has been corrected to account for the effects of the spu
center of mass motion. Details of the various approaches are
cussed in the text.

From S From e(k)
E/A ~MeV! Rch ~fm! E/A ~MeV! Rch ~fm!

16O s,v 26.94 2.56 26.36 2.60
Expt. 27.98 2.74

22O s,v 26.72 2.56 25.83 2.59
a50.5 26.33 2.59 25.47 2.61
a50.36 26.40 2.58 25.35 2.63

Expt. 27.36
kin
pt
c-

e

e.

es

-
nd
s
-
e

y
in

es

e

in the limit of symmetric matter, i.e.,a50.5. The density
dependent coupling constants for these mesons are obta
by analyzing the proton and neutron self-energies for as
metric nuclear matter, extrapolated to the symmetric cas
a50.5. ~c! A s, v, r-d model for asymmetric nuclear ma
ter ata50.36, which corresponds the proton fraction of22O.
For each of these models~a!–~c! the coupling constants de
rived either from the relativistic structure of the self-ener
~results listed in the left part of the table! or from the mo-
mentum dependence of the single-particle energies~results in
the right part!.

One can see from these results that the two method
determine the density dependence of the effective me
coupling constants lead to quite different results even for
isospin symmetric system16O. The difference in the calcu
lated binding energy is as large as 0.6 MeV per nucleon.
deviation of the second scheme from the first one is e
larger for the nonsymmetric nucleus22O. Note that the dif-
ferences between the two methods, around 0.9 MeV
nucleon, is larger than the effect of the isovector mesons:
difference between thes-v model and the models includin
isovector mesons is only around 0.3 MeV per nucleon.

IV. CONCLUSIONS

The accuracy of the simple technique which tries to e
tract the Dirac structure of the nucleon self-energy in nucl
matter from the momentum dependence of the single-par
energy@4,10–13# has been investigated using the relativis
parametrization of theG matrix of Boersmaet al. @9#. It is
demonstrated that the analysis based on the single-par
spectrum fails if asymmetric nuclear systems are conside
The isovector components of the self-energy derived in
way exhibit even the wrong sign. The simplified analys
reproduces the structure of the self-energy around the s
ration density but overestimates the scalar part of the s
energy at smaller densities. Therefore the improvemen
this scheme may not have a very significant effect on
calculated saturation property of symmetric nuclear ma
@4#. A more apropriate analysis of the Dirac structure of t
nuclear self-energy is required to derive density-depend
effective coupling constants to be used in Dirac-Hartree c
culations of finite nuclei.
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