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The isospin 0JP502 pNN resonance

Humberto Garcilazo
Escuela Superior de Fı´sica y Matema´ticas, Instituto Polite´cnico Nacional, Edificio 9, 07738 Me´xico D.F., Mexico

~Received 10 June 1997!

We studied the resonance behavior of thepNN system in the configurationJP502, isospin 0. We applied
nonrelativistic Faddeev equations with realistic local potentials for the pion-nucleon and nucleon-nucleon
interactions in theS11 and 1S0 channels, respectively. A resonance was found in this specific state; it lies
slightly above the pNN threshold and has a mass of 2018 MeV and a width of 1.75 MeV.
@S0556-2813~97!03510-3#

PACS number~s!: 14.20.Gk, 11.80.Jy, 13.75.Gx, 14.20.Pt
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I. INTRODUCTION

A pNN resonance that lies 47 MeV above thepNN
threshold has been observed in pionic double charge
change reactions in nuclei@1#. Analysis of these data indi
cated that this resonance has a mass of 2065 MeV, ang
momentum and parityJP502, and isospin even@1#. Accord-
ing to @1,2# the width of the resonance would beG 5 0.5
MeV if it has isospin 0 orG 5 1.0 MeV if it has isospin 2.
A signal of this resonance@3# has been observed in the r
actionpp→ppp2p1 which corresponds to appp2 invari-
ant mass of 2063 MeV and a width of; 5 MeV. A consid-
erable amount of discussion has been going on rece
whether the isospin of thed8 resonance is 0 or 2@4–9#.

Three-body calculations of thepNN system in the isospin
0 sector have been restricted hitherto to the use of sepa
potentials for the two-body interactions@10,11# and there are
some indications that a state with the required quantum n
bers may exist near thepNN threshold@11#.

Our motivation for performing a three-body calculation
the isospin 0JP502 state is the recent availability of loca
pN interactions obtained from the application of an inve
scattering method@12,13#. It has been kindly pointed out to
us by von Geramb and Sander@14# that the local pion-
nucleon interaction in theS11 channel exhibits a very stron
attraction at short distances, a feature not present in a s
rable potential description. It is thus interesting to investig
if this strong short-range attraction could be the drivi
mechanism giving rise to thed8 resonance.

Since local potentials have been proven to be very s
cessful in the description of theNN andNNN systems at low
energies, we expect that a local potential description of b
the pN and NN subsystems will provide also a reliab
framework to study thepNN system in the region nea
threshold.

II. FORMALISM

In order to investigate the location of thepNN resonance
in the complex plane we will use nonrelativistic Fadde
equations with local potentials. In general, a nonrelativis
formalism is appropriate for the description of the nucleo
nucleon system up to kinetic energies of about 300 Me
i.e., up to about one-third of the nucleon mass. Since thed8
resonance lies just 47 MeV above thepNN threshold which
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is about one-third of the pion mass, we consider a nonr
tivistic description also appropriate for this system@12#.

The pNN JP502 state contains two main three-bod
configurations. There is a (pN)N configuration in which the
pion and the nucleon interact in theS11 channel while the
spectator nucleon is in a relativeS state with respect to the
interacting pair. There is also a (NN)p configuration where
the two nucleons interact in the1S0 channel while the spec
tator pion is in a relativeS state with respect to the interac
ing pair. Thus, all three particles are in orbital angular m
mentum statesl 50 for the two main configurations of th
JP502 state. The next important three-body configuratio
involve either both the angular momentum of the pair and
the spectator, beingl 51 or at least one of them beingl 52.
Thus, these higher configurations are not expected to p
any important role.

Since for the two main configurations of the system
three particles are inS waves and one has only one chann
for each configuration, the Faddeev equations for the bou
state~or resonance! problem are

^piqi uTi uf0&

5(
j Þ i

bi j
1

2E0

`

qj
2dqjE

21

1

d cosu t i~pi ,p8 i ;E2qi
2/2n i !

3
1

E2pj
2/2h j2qj

2/2n j

^pjqj uTj uf0&, ~1!

wherepi andqi are the usual Jacobi coordinates andh i and
n i the corresponding reduced masses

h i5
mjmk

mj1mk
, ~2!

n i5
mi~mj1mk!

mi1mj1mk
, ~3!

with i jk an even permutation of 123. The momentap8 i and
pj in Eq. ~1! are given by

p8 i
25qj

21
h i

2

mk
2

qi
212

h i

mk

qiqjcosu, ~4!
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pj
25qi

21
h j

2

mk
2

qj
212

h j

mk

qiqjcosu. ~5!

bi j are the spin-isospin coefficients

bi j 5~2 !Sj 1sj 2SA~2Si11!~2Sj11!W~sjskSsi ;SiSj !

3~2 ! I j 1 i j 2IA~2I i11!~2I j11!W~ i j i kI i i ;I i I j !,

~6!

whereW is the Racah coefficient andsi , Si , andS ( i i , I i ,
and I ) are the spins~isospins! of particle i , of the pair jk,
and of the three-body system.

The two-body amplitudest i are obtained by the solutio
of the Lippmann-Schwinger equation

t i~pi ,p8 i ;e!5Vi~pi ,p8 i !1E
0

`

p9 i
2dp9 iVi~pi ,p9 i !

3
1

e2p9 i
2/2h i

t i~p9 i ,p8 i ;e!, ~7!

with

e5E2qi
2/2n i . ~8!

Since the variablespi in Eqs.~1! and~7! run from 0 to` it
is convenient to make the transformation

xi5
pi2b

pi1b
, ~9!

where the new variablexi runs from21 to 1 andb is a scale
parameter. With this transformation Eq.~1! takes the form

^xiqi uTi uf0&

5(
j Þ i

bi j
1

2E0

`

qj
2dqjE

21

1

d cosu t i~xi ,x8 i ;E2qi
2/2n i !

3
1

E2pj
2/2h j2qj

2/2n j

^xjqj uTj uf0&. ~10!

Since in the amplitudet i(xi ,x8 i ;e) the variablesxi andx8 i
run from21 to 1, one can expand this amplitude in terms
Legendre polynomials as

t i~xi ,x8 i ;e!5(
nm

Pn~xi !t i
nm~e!Pm~x8 i !, ~11!

where the expansion coefficients are given by

t i
nm~e!5

2n11

2

2m11

2 E
21

1

dxi

3E
21

1

dx8 i Pn~xi !t i~xi ,x8 i ;e!Pm~x8 i !. ~12!

Applying expansion~11! in Eq. ~10! one gets
f

^xiqi uTi uf0&5(
n

Ti
n~qi !Pn~xi !, ~13!

whereTi
n(qi) satisfies the one-dimensional integral equat

Ti
n~qi !5(

j Þ i
(
m

E
0

`

dqjAi j
nm~qi ,qj ;E!Tj

m~qj !, ~14!

with

Ai j
nm~qi ,qj ;E!5bi j (

l
t i

nl~E2qi
2/2n i !

qj
2

2

3E
21

1

d cosu
Pl~xi !Pm~xj !

E2pj
2/2h j2qj

2/2n j

.

~15!

The three amplitudesT1
l (q1), T2

m(q2), andT3
n(q3) in Eq.

~14! are coupled together. The number of coupled equati
can be reduced, however, since two of the particles are id
tical. The reduction procedure for the case where one
two identical fermions has been described before@10,15# and
will not be repeated here. With the assumption that particl
is the pion and particles 2 and 3 are the nucleons, only
amplitudesT1

n(q1) and T2
m(q2) are independent from eac

other and they satisfy the coupled integral equations

T1
l ~q1!5(

n
E

0

`

dq3A13
ln~q1 ,q3 ;E!T2

n~q3!, ~16!

T2
m~q2!5(

n
~2 ! IdenE

0

`

dq3A23
mn~q2 ,q3 ;E!T2

n~q3!

1(
l
E

0

`

dq1A31
ml~q2 ,q1 ;E!T1

l ~q1!, ~17!

with the identical-particles factor

Iden511s11s32S21 i 11 i 32I 2 . ~18!

Substitution of Eq.~16! into Eq.~17! yields an equation with
only the amplitudeT2

T2
m~q2!5(

n
E

0

`

dq3K23
mn~q2 ,q3 ;E!T2

n~q3!, ~19!

where

K23
mn~q2 ,q3 ;E!5~2 ! IdenA23

mn~q2 ,q3 ;E!

1(
l
E

0

`

dq1A31
ml~q2 ,q1 ;E!A13

ln~q1 ,q3 ;E!.

~20!

Since we want to find the solutions of Eqs.~19! and~20!
corresponding to resonances we follow a well-known pro
dure @16–18#. We let the variablesqi become complex and
run along a ray in the complex plane by making the repla
ment
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qi→uqi ue2 if, ~21!

wheref is a constant phase. This opens up large portion
the second Riemann sheet so that one can search fo
poles of Eq.~19! for energies of the form

E5Er2
i

2
G, ~22!

which correspond to resonances. It is easy to see from
~22!, ~7!, and ~8! that the propagator in the Lippmann
Schwinger equation~7! will never hit any singularity if we
take the variablespi also along a ray in the complex plane

pi→upi ue2 if. ~23!

Finally, in transformation~9! we also take the scale param
eterb complex by setting

b→ubue2 if. ~24!

As a consequence of Eqs.~23! and ~24!, the variablexi de-
fined by Eq.~9! remains real and running from21 to 1 so
that expansion~11! in terms of Legendre polynomials is sti
valid.

In order to find the solutions of Eq.~19! we replace the
integral by a sum applying a numerical integration quad
ture. In this way Eq.~19! becomes a set of homogeneo
linear equations. This set of linear equations has soluti
only if the determinant of the matrix of the coefficients~the

FIG. 1. The pion-nucleon local potential in theS11 channel
~solid line! obtained from the inverse-scattering method. T
dashed line is the result of the fit@Eq. ~25!# as a sum of Yukawa
terms.
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Fredholm determinant! vanishes for certain energies. Thu
the procedure to find the resonances of the system con
simply in searching for the zeroes of the Fredholm deter
nant in the complex energy plane.

III. RESULTS

As we mentioned in the Introduction, the pion-nucle
potential in theS11 channel obtained recently from the in
verse scattering method@12,13# has a very strong attractio
at short distances. We show this potential in Fig. 1 toget
with a parametrization of it as a sum of Yukawa terms of t
form

V~r !5(
i 51

10

ai

e2m i r

r
~25!

that we used in our calculations. The parametersai and m i
are given in Table I. For the nucleon-nucleon interaction
the 1S0 channel we used the Reid soft-core potential@19#
which is also a linear combination of Yukawa terms simi
to Eq. ~25!.

In order to check our program we solve the equations a
with separable interactions. In that case, the solution of
~7! has the simple form

t i~pi ,p8 i ;e!5gi~pi !t i~e!gi~p8 i !, ~26!

and Eqs.~14! and ~15! are replaced by

Ti~qi !5(
j Þ i

E
0

`

dqjAi j ~qi ,qj ;E!Tj~qj ! ~27!

and

Ai j ~qi ,qj ;E!5bi j t i~E2qi
2/2n i !

qj
2

2 E
21

1

d cosu

3
gi~p8 i !gj~pj !

E2pj
2/2h j2qj

2/2n j

, ~28!

with p8 i andpj given by Eqs.~4! and~5!. Using Yamaguchi
potentials @20# for the interactions, the function
Ai j (qi ,qj ;E) given by Eq.~28! is known in analytical form
so that the extension into the complex plane is straig

TABLE I. Parametersm i and ai of the S11 pion-nucleon local
potential given by Eq.~25!.

i m i ~fm21) ai ~MeV fm!

1 1.70826 -147.64313
2 2.70826 737.54486
3 3.70826 -1782.89172
4 4.70826 231.05701
5 5.70826 5072.75977
6 6.70826 -1033.93457
7 7.70826 -7917.12305
8 8.70826 -1232.88196
9 9.70826 3545.22607
10 10.70826 2297.15698
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forward @16#. Thus, we checked our local-potential progra
by applying it to the separable-potential model.

As an additional check of our program, we also inves
gated the bound-state problem of the system, i.e., we so
Eqs. ~19! and ~27! for E on the real axis andE,0. In that
case, one does not need to extend the equations into
complex plane so that one can takef50 in Eqs.~21!, ~23!,
and ~24!. ThepNN system in theJP502 channel does no
possesses bound-state solutions. A bound-state solution
pears, however, when one multiplies the pion-nucleonS11
interaction by a factorf larger than one. After having foun
the bound-state energies for several values off , we repeated
the calculation withfÞ0 in Eqs.~21!, ~23!, and ~24! and
obtained the same energy eigenvalues~notice that by in-
creasing the amount of attraction in theNN interaction one
can generate aNN bound state but this does not give rise
a pNN bound state!.

Thus, after we generated apNN bound state by introduc
ing the factorf , we then started to decrease this factor a
followed the resonance into the complex plane up to
physical position corresponding tof 51. We show in Fig. 2
the energy eigenvalueE as a function of this parameterf for
the local-potential model. As can be seen from this figu
for f .2.37 the energy eigenvalue is purely real and nega
so that one is in the bound-state problem region. Betw
f 52.2 andf 51 the eigenvalue remains practically consta
The point f 51 represents the physical problem and for th

FIG. 2. Energy eigenvalue of the local-potential model as
function of the strength parameterf by which the pion-nucleonS11

potential has been multiplied.
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point the energy eigenvalue has the valueE50.0422 i0.876
MeV. Thus, the resonance lies slightly above thepNN
threshold with a mass of 2018 MeV and a width of 1.
MeV. These values of the mass and width of the resona
are not far from those of thed8 resonance reported in@1,3#.

It is interesting to see how a totally different descriptio
like that of separable potentials compares with the result
Fig. 2. Therefore, we show in Fig. 3 the corresponding
sults of the model using pion-nucleon@21# and nucleon-
nucleon @20# separable potentials. In that case the bou
state region corresponds tof .3.06, which reflects the
fact that the separableS11 potential is less attractive than th
local one. The physical pointf 51 has an eigenvalue
E50.0092i1.022 MeV, which is comparable to that of th
local-potential model.

Thus, we conclude that thed8 resonance observed in@1,3#
may perhaps be explained as aJP502 pNN resonance with
isospin 0.
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FIG. 3. Same as Fig. 2 for the model with separable potentia
ler,
@1# R. Bilger, H. A. Clement, and M. G. Schepkin, Phys. Re
Lett. 71, 42 ~1993!.

@2# R. Bilger, H. A. Clement, and M. G. Schepkin, Phys. Re
Lett. 72, 2972~1994!.
.

.

@3# W. Brodowskiet al., Z. Phys. A355, 5 ~1996!.
@4# H. Garcilazo and L. Mathelitsch, Phys. Rev. Lett.72, 2971

~1994!.
@5# G. Wagner, L. Ya. Glozman, A. J. Buchmann, and A. Faess



ys

n

56 1755THE ISOSPIN 0JP502 pNN RESONANCE
Nucl. Phys.A594, 263 ~1995!.
@6# B. Schwesinger and N. N. Scoccola, Phys. Lett. B363, 29

~1995!.
@7# A. Valcarce, H. Garcilazo, and F. Fernandez, Phys. Rev. C54,

1010 ~1996!.
@8# E. Moro, A. Valcarce, H. Garcilazo, and F. Fernandez, Ph

Rev. C54, 2085~1996!.
@9# A. J. Buchmann, G. Wagner, K. Tsushima, L. Ya. Glozma

and A. Faessler, Prog. Part. Nucl. Phys.36, 383 ~1996!.
@10# H. Garcilazo and L. Mathelitsch, Phys. Rev. C34, 1425

~1986!.
@11# T. Ueda~unpublished!.
.

,

@12# M. Sander and H. V. von Geramb, Phys. Rev. C~in press!.
@13# M. Sander and H. V. von Geramb, Lect. Notes Phys.~in press!.
@14# H. V. von Geramb and M. Sander, private communication.
@15# H. Garcilazo and T. Mizutani,pNN Systems~World Scien-

tific, Singapore, 1990!.
@16# B. C. Pearce and I. R. Afnan, Phys. Rev. C30, 2022~1984!.
@17# H. Garcilazo and L. Mathelitsch, Phys. Lett. B34, 243~1990!.
@18# H. Garcilazo and L. Mathelitsch, Few-Body Syst.17, 5 ~1994!.
@19# R. V. Reid, Jr., Ann. Phys.~N.Y.! 50, 411 ~1968!.
@20# Y. Yamaguchi, Phys. Rev.95, 1628~1954!.
@21# I. R. Afman and A. W. Thomas, Phys. Rev. C10, 109 ~1974!.


