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The isospin 0J°=0" NN resonance

Humberto Garcilazo
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We studied the resonance behavior of tgN system in the configuratiod”=0", isospin 0. We applied
nonrelativistic Faddeev equations with realistic local potentials for the pion-nucleon and nucleon-nucleon
interactions in theS;; and 'S, channels, respectively. A resonance was found in this specific state; it lies
slightly above the #NN threshold and has a mass of 2018 MeV and a width of 1.75 MeV.
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PACS numbg(s): 14.20.Gk, 11.80.Jy, 13.75.Gx, 14.20.Pt

[. INTRODUCTION is about one-third of the pion mass, we consider a nonrela-
tivistic description also appropriate for this systgh2].
A wNN resonance that lies 47 MeV above theNN The 7NN JP=0" state contains two main three-body

threshold has been observed in pionic double charge exsonfigurations. There is ansN)N configuration in which the
change reactions in nuclgl]. Analysis of these data indi- pion and the nucleon interact in ttf#, channel while the
cated that this resonance has a mass of 2065 MeV, angulapectator nucleon is in a relatisstate with respect to the
momentum and parity*=0", and isospin evefl]. Accord-  interacting pair. There is also &) 7 configuration where
ing to [1,2] the width of the resonance would e = 0.5  the two nucleons interact in thkS, channel while the spec-
MeV if it has isospin 0 ol = 1.0 MeV if it has isospin 2. tator pion is in a relativeS state with respect to the interact-
A signal of this resonancgS] has been observed in the re- ing pair. Thus, all three particles are in orbital angular mo-
actionpp—ppm_ a* which corresponds to pp7~ invari-  mentum state$=0 for the two main configurations of the
ant mass of 2063 MeV and a width ef 5 MeV. A consid- JP=0" state. The next important three-body configurations
erable amount of discussion has been going on recentlinvolve either both the angular momentum of the pair and of
whether the isospin of thé’ resonance is 0 or p4-9|. the spectator, being=1 or at least one of them beirg 2.

Three-body calculations of theNN system in the isospin  Thus, these higher configurations are not expected to play
0 sector have been restricted hitherto to the use of separakday important role.

potentials for the two-body interactioh%0,11 and there are Since for the two main configurations of the system all
some indications that a state with the required quantum nunthree particles are i waves and one has only one channel
bers may exist near theNN threshold[11]. for each configuration, the Faddeev equations for the bound-

Our motivation for performing a three-body calculation of state(or resonanceproblem are
the isospin 0I°=0" state is the recent availability of local
N interactions obtained from the application of an inversePidi I Til po)
scattering methofi12,13. It has been kindly pointed out to

us by von Geramb and Sandgt4] that the local pion- _ ” 2

nucleon interaction in th&;; channel exhibits a very strong ;I b"3 q dql d cos 6 ti(pi.p'i E~ q|/2v)
attraction at short distances, a feature not present in a sepa-

rable potential description. It is thus interesting to investigate 1

if this strong short-range attraction could be the driving (P;a;| Tl #0), 1)
mechanism giving rise to th@’ resonance.

Since local potentials have been proven to be very suc.,
cessful in the description of tHéN andN NN systems at low
energies, we expect that a local potential description of bott’

the wN and NN subsystems will provide also a reliable

E pii2m—qfi2y,

wherep; andq; are the usual Jacobi coordinates apdand
the corresponding reduced masses

; ; mm
framework to study thewNN system in the region near ni=— K ©
threshold. m; +my

Il. FORMALISM L milmy +my) @
bomi+my+m’

In order to investigate the location of tAeN N resonance
in the complex plane we will use nonrelativistic Faddeevwith ijk an even permutation of 123. The momepta and
equations with local potentials. In general, a nonrelat|V|stICp in Eq. (1) are given by
formalism is appropriate for the description of the nucleon-
nucleon system up to kinetic energies of about 300 MeV, n?
i.e., up to about one-third of the nucleon mass. Sincedthe p'i=qr+ —'2q2+2 q,q]cose (4)
resonance lies just 47 MeV above th&N threshold which my
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2
p?= 2+ L o2+ 21 g;C0S 6. (5) (0| Til o) = 2 T Po(x), (13
My My

bil are the spin-isospin coefficients whereT]'(q;) satisfies the one-dimensional integral equation

bl =(—)37%75(25+1)(25+ )W(s;5S5:SS)) @)= 2 fmdqu:}"‘(qi 0 E) TNy, (14
#i m 0
X(=)TN2E+ D21+ D)Wl 1), J
©) with
whereW is the Racah coefficient argl, S;, andS (i;, |;, Air}m(qi . ;E):bijZ r{"(E—in/ZVi)q?jz

and|) are the spingisosping of particlei, of the pairjk,
and of the three-body system.

The two-body amplitudeg are obtained by the solution
of the Lippmann-Schwinger equation

Pi(X) Pm(X;j)
E—pf2n—q7/2v,
(15

1
xj d cos @
-1

ti(pi,p'i;e)=Vi(p; ap'i)+f p"i2dp”;Vi(pi.p")
0 The three amplitude®}(q,), TH(g,), andT5(qs) in Eq.
(14) are coupled together. The number of coupled equations
—ti(p".pi€), (7) can be reduced, however, since two of the particles are iden-
e—p"%27, tical. The reduction procedure for the case where one has
. two identical fermions has been described befa®& 15 and
with will not be repeated here. With the assumption that particle 1
is the pion and particles 2 and 3 are the nucleons, only the
amplitudesT}(qg,) and T5(q,) are independent from each
other and they satisfy the coupled integral equations

e=E—q%/2v,. (8)

Since the variablep; in Egs.(1) and(7) run from 0O tow it
is convenient to make the transformation o
o Tll(‘h):; Jo dgzATY(d1,03;E) TH(s), (16)
pi—

XFm, 9

-I—m — _ Idenjwd Amn , ;E Tn
where the new variabbg runs from—1 to 1 andb is a scale 2(dz) 2 (=) 0 UsA2s (G2, 03:E) T2(0a)
parameter. With this transformation Ed,) takes the form

* ml . |
(x| Tl o) +Z fodqlAal(qz,ql,E)Tl(ql), 17

alr=, 1 , ) with the identical-particles factor
=E bJEJO qjdqu:ld cos b ti(x; ,x"i;E—qf/2v;)

J#I

X ! (x;0|T;| o) (100  Substitution of Eq(16) into Eq.(17) yields an equation with
E- pj2/2’71' - q12/2VJ only the amplitudeT,

Since in the amplitudé, (x; ,x’; ;e) the variablest; andx’; _ * )
run from—1 to 1, one can expand this amplitude in terms of T2(dz)= En: 0 dosK25102.03:E)To(0e), (19
Legendre polynomials as

where
ti(xi ,x'i;€)=2, Pu(x)m'™(e)Pm(X'}), 11
i(x,x'i;e) ;ﬂ n(Xi) 7 (€)Pm(X;) 11 K?g”(Qzﬂg;E):(_)IdenA?3n(Q2,Q3;E)
where the expansion coefficients are given by +> jwd%A'gnl'(Qzﬂl;E)AH%(Ql,Q:s;E)-
T Jo

2n+12m+1 (1
Tinm(e): 2 2 Jll X; (20)
. Since we want to find the solutions of Eq49) and(20)

« dx' P (X )t(X X' @) P(X'1). (12 corresponding to resonances we follow a well-known proce-
f—l POt X' 58)Pm(X'y). (12) dure[16—18. We let the variables; become complex and

run along a ray in the complex plane by making the replace-

Applying expansior(11) in Eq. (10) one gets ment



56 THE ISOSPIN 0J°P=0" #NN RESONANCE 1753

TABLE I. Parametersu; and a; of the S;; pion-nucleon local

0
potential given by Eq(25).
[ wi (fm™1 a; (MeV fm)
1 1.70826 -147.64313

-5 - 2 2.70826 737.54486

3 3.70826 -1782.89172
4 4.70826 231.05701
5 5.70826 5072.75977

—_ 6 6.70826 -1033.93457

% 7 7.70826 -7917.12305

= -0 i 8 8.70826 -1232.88196
9 9.70826 3545.22607

> 10 10.70826 2297.15698

Sis L | Fredholm determinaptvanishes for certain energies. Thus,
the procedure to find the resonances of the system consists
simply in searching for the zeroes of the Fredholm determi-
nant in the complex energy plane.
Ill. RESULTS
-20 — . . . .
. | , , , | , As we mentioned in the Introduction, the pion-nucleon
0 I 2 3 4 potential in theS;; channel obtained recently from the in-

r{fm) verse scattering methdd 2,13 has a very strong attraction
at short distances. We show this potential in Fig. 1 together
FIG. 1. The pion-nucleon local potential in tr&; channel  with a parametrization of it as a sum of Yukawa terms of the
(solid line obtained from the inverse-scattering method. Theform
dashed line is the result of the fiEq. (25)] as a sum of Yukawa

terms. 10

V(r)zzl a;

e_,u'ir

. . (25)
ai—|aile™"?, (21)

. . . at we used in our calculations. The parametgrand u;
where¢ is a constant phase. This opens up large portions of P & K

h d Ri h h h f re given in Table I. For the nucleon-nucleon interaction in
the second Riemann sheet so that one can search for the, IS, channel we used the Reid soft-core potenti]
poles of Eq.(19) for energies of the form

which is also a linear combination of Yukawa terms similar
to Eq. (25).

T, (22 In order to check our program we solve the equations also
with separable interactions. In that case, the solution of Eq.
g) has the simple form

i
E= Er - z
which correspond to resonances. It is easy to see from Eq
(22), (7), and (8) that the propagator in the Lippmann- t.(pi,p’i:€)=gi(p)m(e)gi(p’), (26)
Schwinger equatiori7) will never hit any singularity if we

take the variablep; also along a ray in the complex plane as and Eqs.(14) and(15) are replaced by

i—|pile” . (23 *
P led Ti@)=3 fo dgjA (0,0 E)Tj(a) (27
Finally, in transformation(9) we also take the scale param- .
eterb complex by setting and

b—|ble” . (24) y a7 (1
_ Aij(qi,qj;E)=b'JTi(E—qi2/2vi)7lJ d cos 6
As a consequence of Eq®3) and(24), the variablex; de- -1
fined by Eq.(9) remains real and running from1 to 1 so ,
that expansiori11) in terms of Legendre polynomials is still % 9i(P"i)g;(p)) 29
valid. E—p?/2n;—ofl2v;’
In order to find the solutions of Eq19) we replace the

integral by a sum applying a numerical integration quadrawith p’; andp; given by Eqs(4) and(5). Using Yamaguchi
ture. In this way Eq.19) becomes a set of homogeneous potentials [20] for the interactions, the function
linear equations. This set of linear equations has solutiondy;(q; ,q;;E) given by Eq.(28) is known in analytical form
only if the determinant of the matrix of the coefficieritte ~ so that the extension into the complex plane is straight-
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FIG. 2. Energy eigenvalue of the local-potential model as a 2o 30
function of the strength parameteiby which the pion-nucleo’;; £
potential has been multiplied.
FIG. 3. Same as Fig. 2 for the model with separable potentials.

forward[16]. Thus, we checked our local-potential program
by applying it to the separable-potential model. ] ) )
As an additional check of our program, we also investi-Point the energy eigenvalue has the valiie 0.042-10.876
gated the bound-state problem of the system, i.e., we solvéfeV. Thus, the resonance lies slightly above th&IN
Eqs(lg) and (27) for E on the real axis an&<0. In that threshold with a mass of 2018 MeV and a width of 1.75
case, one does not need to extend the equations into tﬁéev These values of the mass and width of the resonance
complex plane so that one can tae=0 in Eqs.(21), (23),  are not far from those of thé’ resonance reported [d,3].
and(24). The NN system in theJ’=0" channel does not It is interesting to see how a totally different description
possesses bound-state solutions. A bound-state solution dg?e that of separable potentials compares with the results of
pears, however, when one multiplies the pion-nucl&p ig. 2. Therefore, we show in Fig. 3 the corresponding re-
interaction by a factof larger than one. After having found Sults of the model using pion-nucled21] and nucleon-
the bound-state energies for several values, ofe repeated nucleon[20] separable potentials. In that case the bound-
the calculation with¢+0 in Egs.(21), (23), and(24) and  State region corresponds t6>3.06, which reflects the
obtained the same energy eigenvaliestice that by in- fact that the separabl®,, potential is less attractive than the
creasing the amount of attraction in theN interaction one local one. The physical poinf=1 has an eigenvalue
can generate BIN bound state but this does not give rise to E=0.009-11.022 MeV, which is comparable to that of the
local-potential model.
Thus, we conclude that th¥ resonance observed |if,3]

a wNN bound state
haps be explained aga=0~ 7NN resonance with

Thus, after we generatedseNN bound state by introduc-
ing the factorf, we then started to decrease this factor andMay per

followed the resonance into the complex plane up to it§SOSPin 0.
physical position corresponding fo=1. We show in Fig. 2
the energy eigenvalug as a function of this parametérfor ACKNOWLEDGMENTS
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The pointf =1 represents the physical problem and for thatlPN.

[1] R. Bilger, H. A. Clement, and M. G. Schepkin, Phys. Rev. [3] W. Brodowskiet al, Z. Phys. A355 5 (1996.
[4] H. Garcilazo and L. Mathelitsch, Phys. Rev. LetR, 2971

Lett. 71, 42 (1993.
[2] R. Bilger, H. A. Clement, and M. G. Schepkin, Phys. Rev. (19949.
[5] G. Wagner, L. Ya. Glozman, A. J. Buchmann, and A. Faessler,

Lett. 72, 2972(1994.



56 THE ISOSPIN 0J°P=0" #NN RESONANCE 1755

Nucl. Phys.A594, 263(1995. [12] M. Sander and H. V. von Geramb, Phys. Rev(ilCpress.
[6] B. Schwesinger and N. N. Scoccola, Phys. Lett3&3 29 [13] M. Sander and H. V. von Geramb, Lect. Notes Pliiyspress.
(1995. [14] H. V. von Geramb and M. Sander, private communication.
[7] A. Valcarce, H. Garcilazo, and F. Fernandez, Phys. Res4,C  [15] H. Garcilazo and T. MizutanizNN SystemgWorld Scien-
1010(1996. tific, Singapore, 1990
[8] E. Moro, A. Valcarce, H. Garcilazo, and F. Fernandez, Phys[16] B. C. Pearce and I. R. Afnan, Phys. Rev3@ 2022(1984.
Rev. C54, 2085(1996. [17] H. Garcilazo and L. Mathelitsch, Phys. Lett.3, 243(1990.
[9] A. J. Buchmann, G. Wagner, K. Tsushima, L. Ya. Glozman,[18] H. Garcilazo and L. Mathelitsch, Few-Body Sy&¥, 5 (1994.
and A. F_aessler, Prog. Part. Nucl. Phgs, 383(1996. [19] R. V. Reid, Jr., Ann. PhysN.Y.) 50, 411 (1968.
[10] H. Garcilazo and L. Mathelitsch, Phys. Rev. &, 1425 [20] Y. Yamaguchi, Phys. Re®5, 1628 (1954).
(1986. [21] I. R. Afman and A. W. Thomas, Phys. Rev.10, 109(1974).

[11] T. Ueda(unpublished



