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Quantum Monte Carlo calculations of nuclei with A<7

B. S. Pudliner* and V. R. Pandharipande†

Physics Department, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801

J. Carlson‡

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Steven C. Pieper§ and R. B. Wiringai

Physics Division, Argonne National Laboratory, Argonne, Illinois 60439
~Received 5 May 1997!

We report quantum Monte Carlo calculations of ground and low-lying excited states for nuclei withA<7
using a realistic Hamiltonian containing the Argonnev18 two-nucleon and Urbana IX three-nucleon potentials.
A detailed description of the Green’s-function Monte Carlo algorithm for systems with state-dependent poten-
tials is given and a number of tests of its convergence and accuracy are performed. We find that the Hamil-
tonian being used results in ground states of both6Li and 7Li that are stable against breakup into subclusters,
but somewhat underbound compared to experiment. We also have results for6He, 7He, and their isobaric
analogs. The known excitation spectra of all these nuclei are reproduced reasonably well and we predict a
number of excited states in6He and 7He. We also present spin-polarized one-body and several different
two-body density distributions. These are the first microscopic calculations that directly produce nuclear shell
structure from realistic interactions that fitNN scattering data.@S0556-2813~97!02810-0#

PACS number~s!: 21.10.2k, 21.45.1v, 21.60.Ka, 27.20.1n
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I. INTRODUCTION

A major goal in nuclear physics is to understand h
nuclear binding, stability, and structure arise from the und
lying interactions between individual nucleons. A lar
amount of empirical information about the nucleon-nucle
scattering problem has been accumulated over time, resu
in ever more sophisticatedNN potential models. However
for many years, it has been feasible to calculate exactly o
three- and four-body nuclei with realisticNN interactions.
Thanks to the ongoing advances in computational resour
particularly the advent of massively parallel computers, i
now possible to apply sophisticated quantum Monte Ca
methods to the study of lightp-shell nuclei, which have a fa
richer spectrum to investigate.

Thep shell has long been a testing ground for shell mo
methods@1#. Shell-model studies ofA5427 nuclei have
recently progressed to the stage of large-basis, ‘‘no-co
calculations usingG matrices derived from the lates
NN-interaction models@2#. Alternatively, there have bee
extensive studies of these light nuclei with cluster-clus
models, using combinations ofNN and aN potentials@3#.
Our goal here is to calculate properties, in particular grou
state energies, of the lightp-shell nuclei directly from bare
NN and NNN interactions, without any intermediate effe
tive interaction.

*Present address: Scientific Computing Applications Divisi
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electronic address: pudliner@llnl.gov

†Electronic address: vijay@rsm1.physics.uiuc.edu
‡Electronic address: carlson@qmc.lanl.gov
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i Electronic address: wiringa@theory.phy.anl.gov
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Recently we reported@4# results for the ground states o
6He, 6Li, and 6Be, and the first two excited states in6Li,
calculated with the Green’s-function Monte Carlo~GFMC!
method for a Hamiltonian containing the Argonnev18 NN
and Urbana IXNNN potentials. Here we present improve
and extended calculations for theA56 nuclei and the first
detailed studies of7He, 7Li, 7Be, and7B, including all the
observed low-lying excitations. In this work, it is possible
see the full splendor of the nuclear shell structure emana
directly from a microscopic interaction that fitsNN scatter-
ing data.

The Argonnev18 model @5# is one of a class of new
highly accurateNN potentials that fit bothpp andnp scat-
tering data up to 350 MeV with ax2/datum near 1. This
necessarily involves the introduction of charge-independe
breaking in the strong force; a complete electromagnetic
teraction is also included as an integral part of the mod
This makes the model useful for studying charge depende
and charge-symmetry breaking in nuclei. TheNN potential
is supplemented by a three-nucleon interaction from the
bana series ofNNN potentials@6#, including both long-range
two-pion exchange and a short-range phenomenolog
component. The Urbana model IX is adjusted to reprod
the binding energy of3H and give a reasonable saturatio
density in nuclear matter when used with Argonnev18. De-
tails of the Hamiltonian are given in Sec. II.

The first step in our calculation is the construction of su
able trial functions. Variational wave functions based
products of correlated operators have been used success
for 3H and 4He, giving binding energies about 2% abov
exact Faddeev, hyperspherical harmonic, or GFMC soluti
@7#. We generalize this type of trial function forA56,7 nu-
clei, addingp-wave orbitals and usingLS coupling to pro-
duce all possible (Jp;T) quantum states. Parameters in t

,
;
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56 1721QUANTUM MONTE CARLO CALCULATIONS OF NUCLEI . . .
trial functions are adjusted to minimize the energy expec
tion value, evaluated with Monte Carlo integration, subj
to the constraint that rms radii are close to the experime
values for6Li and 7Li. Unfortunately, the best trial function
we have been able to build do not givep-shell nuclei stable
against breakup into subclusters. Nevertheless, these
functions provide a good starting point for the GFMC calc
lation. The variational wave functions and a brief descript
of the variational Monte Carlo~VMC! calculations are given
in Sec. III.

The GFMC method projects out the exact lowest ene
state,C0, for a given set of quantum numbers, from a su
able trial function, CT , using C05limt→`exp@2(H
2E0)t]CT . The method has been used with great succes
a variety of condensed-matter problems, and ins-shell nuclei
with realistic interactions@8#. Our first calculations for
p-shell nuclei@4# were made with a short-time approxim
tion for the propagation in imaginary time, carried out
t50.06 MeV21 and extrapolated tot5`. In the present
work we have improved the algorithm by adopting an ex
two-body propagator which allows bigger time steps, sav
significantly on the computational cost. We also have sta
our calculations with better trial functions, which allow
more reliable results to be obtained from GFMC propa
tions that are limited to smallt. A detailed discussion of the
method as applied to realistic nuclear forces is given in S
IV.

The VMC and GFMC calculations forp-shell nuclei are
very computer intensive, and would not have been poss
without the recent advances in computational power due
the advent of massively parallel machines. Section V
scribes the implementation of the GFMC algorithm in a p
allel environment, including issues of communication b
tween processors and load balancing. We have
performed a number of tests of the GFMC method, includ
comparisons to other exact calculations fors-shell nuclei,
studies of extrapolation int, and sensitivity to the quality o
the input trial function. These tests are described in Sec.

Results of our GFMC calculations are presented in S
VII. We have obtained energies for five states of uniq
(Jp;T) in the A56 nuclei, and another five states inA57
nuclei, not counting isobaric analog states. In general we
the nuclei are slightly underbound with the present Ham
tonian, but 6Li ( 7Li ! is stable against breakup intoa1d
(a1t). The low-lying excited states are correctly order
with reasonable excitation energies. The VMC energies
found to lie;3 ~4.5! MeV above the GFMC results inA56
~7! nuclei, but with very similar excitation energies. We ha
also used the VMC wave functions to perform small-ba
diagonalizations of states with the same quantum num
but different symmetries. These calculations optimize the
mixtures of different-symmetry contributions to the grou
state, and also provide estimates for higher-lying exci
states with the same (Jp;T) quantum numbers. We verify
that these states, not all of which have been observed
indeed lie at moderately higher excitations. The VMC sp
tra are also discussed in Sec. VII.

One- and two-body density distributions from both VM
and GFMC calculations are presented in Sec. VIII. Th
include the densities of spin-up/down nucleons in polariz
6Li and 7Li. In general, the GFMC densities are slight
-
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more peaked than the input VMC densities, but overall th
are very similar. Unfortunately, both VMC and GFMC ca
culations are not very sensitive to the very long-range pr
erties of the wave functions. Therefore it is not yet possi
to accurately calculate the quadrupole moments
asymptotic D/S ratios with these methods. Finally, w
present our conclusions in Sec. IX.

II. HAMILTONIAN

Our Hamiltonian includes a nonrelativistic one-body k
netic energy, the Argonnev18 two-nucleon potential@5# and
the Urbana IX three-nucleon potential@4#,

H5(
i

Ki1(
i , j

v i j 1 (
i , j ,k

Vi jk . ~2.1!

The kinetic energy operator has charge-independent~CI! and
charge-symmetry-breaking~CSB! components, the latter du
to the difference in proton and neutron masses,

Ki5Ki
CI1Ki

CSB[2
\2

4 S 1

mp
1

1

mn
D¹ i

2

2
\2

4 S 1

mp
2

1

mn
D tzi¹ i

2 . ~2.2!

The Argonnev18 potential can be written as a sum o
electromagnetic and one-pion-exchange terms and a sho
range phenomenological part,

v i j 5v i j
g 1v i j

p1v i j
R . ~2.3!

The electromagnetic terms include one- and two-phot
exchange Coulomb interaction, vacuum polarizatio
Darwin-Foldy, and magnetic moment terms, with approp
ate proton and neutron form factors:

vg~pp!5VC1~pp!1VC21VVP1VDF1VMM~pp!,
~2.4!

vg~np!5VC1~np!1VMM~np!, ~2.5!

vg~nn!5VMM~nn!. ~2.6!

The VMM contain spin-spin, tensor, and spin-orbit comp
nents. Detailed expressions for these terms, including
form factors, are given in Ref.@5#. These terms should b
included in calculations aiming for better than 99% accura
For example, the contribution ofvg~np! to the binding en-
ergy of the deuteron is; 0.02 MeV, i.e., 1% of the total.

The one-pion-exchange part of the potential includes
charge-dependent~CD! terms due to the difference in neutr
and charged pion masses. It can be written in an oper
format as

v i j
p5 f 2S m

ms
D 2

1
3 mc2@Xi j t i•t j1X̃i j Ti j #, ~2.7!

whereTi j 53tzitz j2t i•t j is the isotensor operator and

Xi j 5
1
3 ~Xi j

0 12Xi j
6!, ~2.8!
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X̃i j 5
1
3 ~Xi j

0 2Xi j
6!, ~2.9!

Xi j
m5@Y~mr!s i•s j1T~mr!Si j #. ~2.10!

HereY(mr) andT(mr) are the normal Yukawa and tens
functions with a cutoff specified in Ref.@5#, and X6,0 are
calculated withm5mp6 andmp0.

The one-pion-exchange and the remaining phenome
logical part of the potential can be written as a sum of
operators,

v i j
p1v i j

R5 (
p51,18

vp~r i j !Oi j
p . ~2.11!

The first 14 are charge independent,

Oi j
p51,145@1,~s i•s j !,Si j ,~L–S!,L2,L2~s i•s j !,~L–S!2#

^ @1,~t i•t j !#, ~2.12!

and the last four,

Oi j
p515,185@1,~s i•s j !,Si j # ^ Ti j ,~tzi1tz j!, ~2.13!

break charge independence. We will refer to the poten
from thep515217 terms asvCD and from thep518 term
asvCSB. We note that in the context of isospin symmetry t
CI, CSB, and CD terms are respectively isoscalar, isovec
and isotensor.

The potential was fit directly to the NijmegenNN scatter-
ing data base@9,10# containing 1787pp and 2514np data in
the range 02350 MeV, with ax2 per datum of 1.09. It was
also fit to thenn scattering length measured ind(p2,g)nn
experiments and the deuteron binding energy. There co
in principle, be more charge-independence-breaking~CIB!
terms such asL•STi j or Si j (tzi1tz j) but the scattering data
are not sufficiently precise to identify them at present.

The Urbana series of three-nucleon potentials is written
a sum of two-pion-exchange and shorter-range phenom
logical terms,

Vi jk5Vi jk
2p1Vi jk

R . ~2.14!

The two-pion-exchange term can be expressed simply a

Vi jk
2p5 (

cyclic
A2p$Xi j

p ,Xjk
p %$t i•t j ,t j•tk%

1C2p@Xi j
p ,Xjk

p #@t i•t j ,t j•tk#, ~2.15!

where Xi j
p is constructed with an average pion ma

mp5 1
3 mp01 2

3 mp6. The anticommutator and commutat
terms are denoted byVi jk

A andVi jk
C , respectively, and for the

Urbana modelsC2p5 1
4 A2p , as in the original Fujita-

Miyazawa model@11#. The shorter-range phenomenologic
term is given by

Vi jk
R 5 (

cyclic
U0T2~mpr i j !T

2~mpr jk!. ~2.16!

The parameters for model IX areA2p520.0293 MeV and
U050.0048 MeV. They have been determined by fitting t
o-
8

al

r,

ld,

s
o-

,

l

density of nuclear matter and the binding energy of3H in
conjunction with the Argonnev18 interaction. These value
are only slightly different from the model VIII values
A2p520.028 MeV andU050.005 MeV, that were adjuste
for use with the older Argonnev14 interaction. In principle,
the Vi jk

R can have other terms@12#, however we need addi
tional data to obtain their strengths; presumably a part of
due to relativistic effects@13–15#.

Direct GFMC calculations with the full interaction~in
particular spin-dependent terms which involve the square
the momentum operator! have very large statistical errors
for reasons that will be discussed in Sec. IV. Also the C
terms inH are fairly weak and therefore can be treated co
veniently as a first-order perturbation. Further, using a w
function of good isospin significantly reduces the cost of
calculations. Hence we construct the GFMC propagator w
a simpler isoscalar Hamiltonian,

H85(
i

Ki
CI1(

i , j
v i j8 1 (

i , j ,k
Vi jk8 , ~2.17!

wherev i j8 is defined as

v i j8 5 (
p51,8

vp8~r i j !Oi j
p 1vC8 ~r i j !. ~2.18!

The interactionv i j8 has only eight operator terms, with op
erators@1,(s i•s j),Si j ,(L–S)# ^ @1,(t i•t j)#, chosen such tha
it equals the isoscalar part of the full interaction in allS and
P waves as well as in the3D1 wave and its coupling to the
3S1. The strong interaction terms are related to the fullv i j by

v185v11 5
4 v91 3

4 v101
3
4 v111

9
4 v121

3
4 v131

3
4 v14,

v285v21 1
4 v91 3

4 v101
3
4 v112

3
4 v121

1
4 v131

1
4 v14,

v385v31 1
4 v91 3

4 v101
3
4 v112

3
4 v121

1
4 v131

1
4 v14,

v485v41 1
4 v92 1

4 v102
1
4 v111

5
4 v121

1
12 v131

1
12 v14,

v585v52 5
16 v132

5
16 v14,

v685v62 5
48 v132

5
48 v14,

v785v72 1
2 v91 3

2 v102
1
2 v111

3
2 v122

9
8 v131

15
8 v14,

v885v81 1
2 v92 3

2 v101
1
2 v112

3
2 v121

5
8 v132

19
8 v14.

~2.19!

The isoscalar part ofVC1(pp) is also included inH8. We
derive it by writing the projector for a pair of protons i
terms of isoscalar, isovector, and isotensor operators:

1
4 ~11tzi!~11tz j!5 1

4 ~11 1
3 t i•t j1tzi1tz j1

1
3 Ti j !,

~2.20!

vC8 ~r i j !5@aC~A,Z,T!1 1
12t i•t j #VC1~pp!, ~2.21!

aC~A,Z,T!5
1

A~A21!
@Z~Z21!1 1

4 A2 1
3 T~T11!#.

~2.22!
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The sum over all pairs ofaC(A,Z,T)1 1
12t i•t j is just the

number ofpp pairs in the given nucleus.
The v i j8 is a little more attractive thanv i j ; for example,

4He is overbound by;2 MeV with v i j8 . The expectation
value of the differencêv i j 2v i j8 & scales likê Vi jk&, presum-
ably because three-body and higher-order clusters give
portant contributions to it. Note that in3H and 4He the two-
body cluster gives zero contribution to^v i j 2v i j8 & since they
are identical in low partial waves. We compensate for t
tendency towards overbinding by using aVi jk8 in which the
repulsive U0 term of Eq. ~2.16! has been increased b
;30% in theH8. This ensureŝH8&'^H& so that the GFMC
propagation does not produce excessively large densities
to overbinding. The contribution of (H2H8) is calculated
perturbatively.

III. VARIATIONAL MONTE CARLO

The variational method can be used to obtain approxim
solutions to the many-body Schro¨dinger equation,
HC5EC, for a wide range of nuclear systems, includi
few-body nuclei, light closed shell nuclei, nuclear matt
and neutron stars@16#. A suitably parametrized wave func
tion, CV , is used to calculate an upper bound to the ex
ground-state energy,

EV5
^CVuHuCV&

^CVuCV&
>E0 . ~3.1!

The parameters inCV are varied to minimizeEV , and the
lowest value is taken as the approximate ground-state
ergy.

Upper bounds to excited states are also obtainable, e
from standard VMC calculations if they have different qua
tum numbers from the ground state, or from small-basis
agonalizations if they have the same quantum numbers.
correspondingCV can then be used to calculate other pro
erties, such as particle density or electromagnetic mome
or it can be used as the starting point for a Green’s-func
Monte Carlo calculation. In this section we first describe o
ansatzfor CV for the light p-shell nuclei and then briefly
review how the expectation value, Eq.~3.1!, is evaluated and
the parameters ofCV are fixed.

A. Wave function

Our best variational wave function for the nuclei studi
here has the form@7#

uCV&5F11 (
i , j ,k

~Ui jk1Ui jk
TNI!1(

i , j
Ui j

LSG uCP&,

~3.2!

where the pair wave function,CP , is given by

uCP&5FS)
i , j

~11Ui j !G uCJ&. ~3.3!

The Ui j , Ui j
LS , Ui jk , andUi jk

TNI are noncommuting two- and
three-nucleon correlation operators, and theS is a symmetri-
zation operator. The form of the totally antisymmetric J
-

s

ue

te

,

ct

n-

er
-
i-
he
-
ts,
n
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-

strow wave function,CJ , depends on the nuclear state und
investigation. For thes-shell nuclei we use the simple form

uCJ&5F )
i , j ,k

f i jk
c GF)

i , j
f c~r i j !G uFA~JMTT3!&. ~3.4!

Here f c(r i j ) and f i jk
c are central two- and three-body corr

lation functions and

uF3~ 1
2

1
2

1
2

1
2 !&5Aup↑p↓n↑&, ~3.5!

uF4~0000!&5Aup↑p↓n↑n↓&. ~3.6!

The two-body correlation operatorUi j is a sum of spin,
isospin, and tensor terms:

Ui j 5 (
p52,6

F )
kÞ i , j

f i jk
p ~r ik ,r jk!Gup~r i j !Oi j

p , ~3.7!

while the two-body spin-orbit correlation operator is give
by

Ui j
LS5 (

p57,8
up~r i j !Oi j

p , ~3.8!

with

Oi j
p51,85@1,s i•s j ,Si j ,~L•S! i j # ^ @1,t i•t j #. ~3.9!

TheUi j andUi j
LS correlations are induced by the two-nucleo

interaction. The equations used to generate the funct
f c(r i j ) and up(r i j ) are given in Ref.@17#; they contain a
number of variational parameters to be determined by m
mizing the energy. The shape parameters listed in Tab
seem to have negligibleA dependence. Their values are d
termined by minimizing the3H energy, and are then used fo
all subsequentA>4 calculations. There are also a number
parameters that describe the long-range behavior of the
relation functions which do vary withA, as well as with the
Hamiltonian. Our best values for these parameters are g
in Table II.

The f i jk
c , f i jk

p , andUi jk are three-nucleon correlations in
duced byv i j . The first two have an operator-independe
form:

f i jk
c 511q1

c~r i j •r ik!~r j i •r jk!~r ki•r k j!exp~2q2
cRi jk !,

~3.10!

f i jk
p 512q1

p~12 r̂ ik• r̂ jk!exp~2q2
pRi jk !, ~3.11!

whereRi jk5r i j 1r ik1r jk . TheUi jk involve additional spin-
isospin operators and are somewhat more complicated;
are discussed in Ref.@7#. The Ui jk

TNI are three-body correla

TABLE I. Values of shape parameters used in generation of t
functions. All units in fm. Notation is same as Ref.@17#.

a0 0.35 c0 1.1 R0 0.75
a1 0.4 c1 3.0 R1 2.8
at 0.4 d 2.0 Rt 3.7
ab 0.24 Rb 0.4
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tions induced by the three-nucleon interaction, which
take in the form suggested by perturbation theory:

Ui jk
TNI5(

x
exVi jk

x ~ r̃ i j , r̃ jk , r̃ ki!, ~3.12!

with r̃ 5yr, y a scaling parameter, andex a strength param
eter. Herex5A, C, andR refers to the different parts of th
NNN potential. With the present Hamiltonian we use t
three-body parameters given in Table III for all nuclei stu
ied here.

The relative importance and cost of computing differe
elements of the full variational wave functionCV are shown
in Table IV for the case of6Li. The pair wave functionCP
is the least expensive to compute, but gives a rather p
energy. The successive addition ofUi jk

TNI , Ui j
LS , andUi jk cor-

relations to make up the fullCV lowers the energy by;2.7
MeV, but requires;2.7 times more computation thanCP .
However, about 60% of the energy gain can be obtained
only a 20% increase in computation by using the trial fun
tion CT defined by

TABLE II. Values of asymptotic parameters used in generat
of trial functions. Notation is same as Ref.@17#.

3H A>4

E0,0 ~MeV! 3.2 17.0
E0,1 ~MeV! 6.0 16.0
E1,0 ~MeV! 13.0 23.5
E1,1 ~MeV! 6.4 16.5
h0,0 0.85 1.04
h0,1 1.70 1.71
h1,0 1.74 1.54
h1,1 1.72 1.68
h0 0.026 0.035
h1 20.007 20.015
z1 0.0003 0.0003
a t 0.92 0.86

TABLE III. Values of three-nucleon correlation parameters. N
tation is same as Ref.@7#.

ea 20.00025
ec 20.0004
eu 20.0005
y 0.72
q1

c ~fm26) 0.20
q2

c ~fm21) 0.85
q1

p 0.16
q2

p ~fm21) 0.05
q1

l s ~fm22) 20.12
q2

l s ~fm22) 0.12
q3

l s ~fm22) 0.85
q1

t ~fm21) 20.012
q2

t ~fm22) 0.015
q3

t ~fm! 1.2
q4

t 0.35
e

-

t

or

or
-

uCT&5F11 (
i , j ,k

Ũ i jk
TNIG uCP&. ~3.13!

Here Ũ i jk
TNI is a truncated TNI correlation from which th

commutator term,eCVi jk
C , has been omitted:

Ũ i jk
TNI5 ẽ AVi jk

A 1eRVi jk
R . ~3.14!

The strength of the anticommutator term is increased to c
pensate, withẽ A;1.5eA . From Table IV we see that this
simplification gets 90% of the gain of adding the fullUi jk

TNI ,
at 1

3 the cost. The computer time is reduced so significan
because$Xi j

p ,Xjk
p % can be written as a generalized tensor o

erator involving the spins of only nucleonsi andk; thus the
time scales as the number of pairs rather than the numbe
triples. As discussed below,CT is in fact the most economi
cal starting point for the GFMC calculations.

The Jastrow wave function forA56 nuclei is more com-
plicated, as two nucleons must be placed in thep shell. We
useLS coupling to obtain the desiredJM value of a given
state, as suggested in shell-model studies ofp-shell nuclei
@1#. Different possibleLS combinations lead to multiple
components in the Jastrow wave function. We also allow
the possibility that the central correlationsf c(r i j ) and f i jk

c

could depend upon the shells (s or p) occupied by the par-
ticles and on theLS coupling. The Jastrow wave function i
taken as

uCJ&5AH F )
i , j ,k<4

f i jk
sss )

l ,m<4
f lm5

sspf lm6
ssp)

n<4
f n56

sppG
3F )

i , j <4
f ss~r i j !)

k<4
f sp~r k5! f sp~r k6!

3(
LS

„bLSf pp
LS~r 56!uF6~LSJMTT3!1234:56&…G J .

~3.15!

The operatorA indicates an antisymmetric sum over all po
sible partitions of the six particles into fours-shell and two
p-shell ones. For the two-body correlations we u
f ss(r )5 f c(r ) from the 4He wave function, while

f sp~r !5@asp1bspW~r !# f c~r !1csp„12exp@2~r /dsp!
2#…,

~3.16!

f pp
LS~r !5@app1bppW~r !# f c~r !1cpp

LS
„12exp@2~r /dpp!

2#….

~3.17!

Here we have supplemented thef c(r ) with a long-range tail
and allowed for a short-range modification with a Wood

n

-

TABLE IV. Energy obtained with different trial functions fo
6Li in MeV, and relative cost to compute.

Wave function EV dE Cost

uCP& 225.47(30) 1.00
uCT& 227.00(13) 21.53 1.19
@11( i , j ,kUi jk

TNI#uCP& 227.11(12) 21.64 1.59
@11( i , jUi j

LS1( i , j ,kUi jk
TNI#uCP& 227.89(12) 22.42 2.23

uCV& 228.14(11) 22.67 2.66
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TABLE V. Values of variational parameters inp-shell nuclei.

A56 A57
1,3S@2# 1,3D@2# 1,3P@11# 2P@3# 2F@3# @21# & @111#

asp 0.0 0.0 0.0 1.0 1.0 1.0
bsp 1.0 1.0 1.0 0.0 0.0 0.0
csp 0.9 0.9 0.9 0.85 0.85 0.85
dsp ~fm! 3.2 3.2 3.2 3.2 3.2 3.2
app 1.0 1.0 1.0 1.0 1.0 1.0
bpp 0.0 0.0 0.0 0.0 0.0 0.0
cpp 0.1 0.1 0.4 0.1 0.1 0.4
dpp ~fm! 3.2 3.2 3.2 3.2 3.2 3.2
Rf ~fm! 4.0 4.0 4.0 4.0 4.0 4.0
af ~fm! 1.0 1.0 1.0 1.0 1.0 1.0
Vp ~MeV! 220.0 218.0 218.0 220.0 218.0 218.0
Rp ~fm! 4.0 4.0 4.0 4.0 4.0 4.0
ap ~fm! 1.5 1.5 1.5 1.5 1.5 1.5
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Saxon factor,W(r )5$11exp@(r 2Rf)/af #%
21. The asp ,

bsp , etc., are variational parameters, whose values are g
in Table V. For the three-body correlations, our best pres
trial function has f i jk

sss5 f i jk
c as in Eq. ~3.10!, and

f i jk
ssp5 f i jk

spp51.
The LS components of the single-particle wave functi

are given by

uF6~LSJMTT3!1234:56&5uF4~0000!1234fp
LS~Ra5!fp

LS~Ra6!

3$@Y1ml
~Va5!Y1ml8

~Va6!#LML

3@x5~ 1
2 ms!x6~ 1

2 ms8!#SMS
%JM

3@n5~ 1
2 t3!n6~ 1

2 t38!#TT3
&. ~3.18!

The fp
LS(Rak) arep-wave solutions of a particle of reduce

mass4
5 mN in an effectivea-N potential. They are functions

of the distance between the center of mass of thea core
~which contains particles 1–4 in this partition! and nucleon
k, and again may be different for differentLS components.
We use a Woods-Saxon potential well:

VaN~r !5Vp
LSF11expS r 2Rp

ap
D G21

, ~3.19!

whereVp
LS , Rp , and ap are variational parameters and w

allow the depth of the well to vary with theLS composition.
The values of these parameters are also given in Table
The wave function is translationally invariant, hence there
no spurious center-of-mass motion.

The experimental spectra forA56 nuclei@18# are shown
in Fig. 1. The ground state of6He is strong stable, but de
cays byb2 emission with a mean life of 807 ms. The fir
en
nt

V.
s

excited state is above the threshold for decay toa1n1n
and has a width of'110 keV; we treat it here as a stab
state with zero width. In the shell model, th
(Jp;T)5(01;1) ground state of6He is predominantly a
2S11L@n#51S@2# state, where we use spectroscopic notat
to denote the totalL andS of the state and the Young patter
@n# to indicate the spatial symmetry. The (21;1) first ex-
cited state is predominantly a1D@2# state. We allow for a
possible3P@11# admixture in both states, using amplitud
b00 and b11 in the ground state, andb20 and b11 in the
excited state. After other parameters in the trial function ha
been optimized, we make a series of calculations in wh
the bLS may be different in the left- and right-hand-sid
wave functions to obtain the diagonal and off-diagonal m
trix elements of the Hamiltonian and the corresponding n
malizations and overlaps. We diagonalize the resulting 232
energy matrices to find thebLS eigenvectors. The shell
model wave functions are orthonormal, but the correla
CV are not. Hence the diagonalizations use generalized
genvalue routines including overlap matrices. We also ca
late the position of the three complementary3P@11# states,
with (Jp;T)5(21;1), (11;1), and (01;1); only one of
these has been tentatively identified experimentally@19#. The

FIG. 1. The experimental spectrum forA56 nuclei.
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1726 56B. S. PUDLINERet al.
normalizedbLS for these different states are given in Tab
VI.

The spectrum for6Li contains a (11;0) ground state tha
is predominantly3S@2# in character and a triplet of3D@2#
excited states with (31;0), (21;0), and (11;0) compo-
nents. In addition, there are (01;1) and (21;1) excited
states that are the isobaric analogs of the6He ground and
excited states. The6Li ground state is stable, while th
(31;0) first excited state is above the threshold for break
into a1d, but is narrow with a width of 24 keV. The (01;1)
second excited state is even narrower, being unable to d
to a1d without isospin violation, and thus has a width
only 8 eV. The higher excitations have widths of 0.5 to 1
MeV, but we will treat them here as well-defined states. F
the (11;0) ground and excited states we mixb01, b21, and
b10 amplitudes by diagonalizing a 333 energy matrix. The
latter amplitude corresponds to an unobserved1P@11# state,
which we also obtain in this diagonalization. However, on
the b21 amplitude contributes to the (31;0) and (21;0) ex-
cited states. Again, Table VI gives a summary of thebLS
amplitudes.

The ground and first excited states in6Be have the same
character as those in6He, except that the Coulomb intera

TABLE VI. bLSn components inA56 states, in order of in-
creasing excitation forT50 andT51.

(Jp;T) 1S@2# 3S@2# 1D@2# 3D@2# 1P@11# 3P@11#

(11,0) 0.987 0.117 0.111
(31;0) 1
(21;0) 1
(11,0) 20.074 0.949 20.306
(11,0) 20.153 0.300 0.942

(01;1) 0.967 20.253
(21;1) 0.880 0.476
(21;1) 20.476 0.878
(11;1) 1
(01;1) 0.262 0.965
p

ay

r

tion makes the ground state a resonance, with a width o
keV. Again, we neglect the resonance character of th
states in constructing the trial function. Most of the nume
cal results calculated here for the CIB terms of the Ham
tonian are obtained by interchanging neutrons and proton
the wave function. This does not allow for the changes
pected in6Be compared to6He due to the Coulomb force, s
we have also made some calculations adding a Coulo
termVaN

C (r ), folded over nuclear form factors, to theVaN(r )
used to generate the single-particlefp(Rak) functions:

VaN
C ~r !5Z

e2

r H 12
1

2
exp~2xa!F21xa1

4

12y2G @12y22#22

2
1

2
exp~2xp!F21xp1

4

12y22G @12y2#22J .

~3.20!

Here xa5A12r /r a , xp5A12r /r p , and y5r a /r p , with the
charge radiir a51.65 fm andr p50.81 fm. This additional
potential term can be used with strengthZ50, 1, or 2 for
6He, 6Li, or 6Be, respectively, corresponding to the avera
Coulomb interaction between thea core and ap-shell
nucleon.

The full A56 wave function is constructed by acting o
the uCJ&, Eq. ~3.15!, with the sameUi j , Ui j

LS , Ui jk , and
Ui jk

TNI correlations used in4He. The one exception is that th
optimal strength of theUi jk correlations is reduced slightly
asA increases. In principle, theUi j could be generalized to
be different according to whether particlesi and j are in the
s or p shell, but this would require a larger sum over t
different partitions and would increase the computatio
cost by an order of magnitude.

The Jastrow wave function forA57 nuclei is a straight-
forward extension of Eq.~3.15!, with the added specification
of the spatial symmetry@n# of the angular momentum cou
pling of threep-shell nucleons:
uCJ&5AH F )
i , j ,k<4

f i jk
sss )

l ,m<4
f lm5

sspf lm6
sspf lm7

ssp)
n<4

f n56
sppf n57

sppf n67
sppf 567

pppG
3F )

i , j <4
f ss~r i j !)

k<4
f sp~r k5! f sp~r k6! f sp~r k7! (

LS[n]
XbLS[n] )

5< l ,m
f pp

LS~r lm!uF7~LS@n#JMTT3!1234:567&CG J .

~3.21!

The single-particle wave function is then

uF7~LS@n#JMTT3!1234:567&5uF4~0000!1234fp
LS~Ra5!fp

LS~Ra6!fp
LS~Ra7!

3$@Y1ml
~Va5!Y1ml8

~Va6!Y1m
l9
~Va7!#LML[n]@x5~ 1

2 ms!x6~ 1
2 ms8!x7~ 1

2 ms9!#SMS
%JM

3@n5~ 1
2 t3!n6~ 1

2 t38!n7~ 1
2 t39!#TT3

&. ~3.22!
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FIG. 2. The experimental spectrum forA57
nuclei.
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There is an implicit complementary symmetry@n8# for the
spin-isospin part of the wave function, to preserve the ove
antisymmetry, which we do not show here explicitly; for
detailed discussion of the symmetry considerations see
pendix 1C of Ref.@20#. The full wave function is again buil
up using Eq.~3.2! with the added definition of the centra
p-shell three-body correlationf i jk

ppp5 f i jk
sss.

The experimental spectra forA57 nuclei@18# are shown
in Fig. 2. In the shell model, the lowest states for theT5 1

2

nuclei 7Li and 7Be have a predominantly2P@3# character,

split into (Jp;T)5( 3
2

2, 1
2 ) ground and (12

2, 1
2 ) first excited

states. These states are all strong stable, the first ex
states having mean lives'1002200 fs, while the ground
state of7Be decays weakly with a mean life of 53 days. Ea
ground state can also have contributions with a mixed spa
symmetry, including2P@21#, 4P@21#, 4D@21#, and 2D@21#
components, while the first excited state has admixture
2P@21#, 4P@21#, 4D@21#, and 2S@111# amplitudes. We
have diagonalized 535 matrices for these states. Higher
the spectrum is a predominantly2F@3# state that splits into
ll

p-

ed

al

of

( 7
2

2, 1
2 ) and (5

2
2, 1

2 ) pieces. The lower state is mixed with
4D@21# component, while the upper state has4P@21#,
4D@21#, and 2D@21# contributions. Again we have per
formed diagonalizations in thebLS[n] amplitudes to project
out the lowest (72

2, 1
2 ) and (5

2
2, 1

2 ) states.
The diagonalizations confirm that the ground and first

cited states are almost pure2P@3# and the second and thir
excited states are almost pure2F@3#. We have also calcu-
lated the next excited state of eachJ as given by our projec-
tions to confirm that they lie above these first four states. T
normalized amplitudes of the lowest two states of eachJ are
given in Table VII. These higher excitations include a trip

of predominantly 4P@21# states: (52
2, 1

2 ), ( 3
2

2, 1
2 ), and

( 1
2

2, 1
2 ), and a (72

2, 1
2 ) state that is predominantly4D@21#.

The experimental spectrum shows a similar ordering

states, except that the (7
2

2, 1
2 ) comes in the midst of the

4P@21# states, and no second (1
2

2, 1
2 ) state has been identi

fied in this range of energy excitation.
The spectrum forT5 3

2 states inA57 nuclei is also shown
TABLE VII. bLSn components inA57 states, in order of increasing excitation forT5
1
2 andT5

3
2 .

(Jp;T) 2P@3# 2F@3# 2P@21# 4P@21# 2D@21# 4D@21# 2S@111# 4S@111#

( 3
2

2, 1
2 ) 0.998 0.001 0.050 20.041 0.012

( 1
2

2, 1
2 ) 0.994 20.087 0.001 20.068 20.010

( 7
2

2, 1
2 ) 0.998 0.059

( 5
2

2, 1
2 ) 0.995 0.073 20.060 0.036

( 5
2

2, 1
2 ) 20.059 0.969 0.168 20.171

( 7
2

2, 1
2 ) 20.052 0.999

( 3
2

2, 1
2 ) 20.041 20.022 0.998 0.039 20.015

( 1
2

2, 1
2 ) 0.035 0.412 0.909 20.014 20.057

( 3
2

2, 3
2 ) 0.864 0.480 20.153

( 1
2

2, 3
2 ) 1

( 5
2

2, 3
2 ) 1

( 3
2

2, 3
2 ) 20.448 0.841 0.303
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in Fig. 2. The (32
2; 3

2 ) ground state for7He is 0.44 MeV
above the threshold for breakup into6He1n with a width of
160 keV. The isobaric analogs have widths of 260, 320,
1200 keV for 7Li, 7Be, and7B, respectively. This state ca
have contributions from2P@21#, 2D@21#, and 4S@111# am-
plitudes, and we again diagonalize a 333 matrix to evaluate
the bLS[n] components, as shown in Table VII. We also c

culate the first three excited states: a (1
2

2; 3
2 ) 2P@21# state, a

( 5
2

2; 3
2 ) 2D@21# state, and the second mixed (3

2
2; 3

2 ) state.
None of these excited states have been experimentally i
tified.

B. Energy evaluation

The energy expectation value of Eq.~3.1! is evaluated
using Monte Carlo integration. A detailed technical descr
tion of the methods used here can be found in Re
@17,21,22#. Monte Carlo sampling is done both in configur
tion space and in the order of operators in the symmetri
product of Eq.~3.3! by following a Metropolis random walk
The expectation value for an operatorO is given by

^O&5

(
p,q

E dRCp
†~R!OCq~R!

(
p,q

E dRCp
†~R!Cq~R!

. ~3.23!

The subscriptsp andq specify the order of operators in th
left- and right-hand side wave functions, while the integ
tion runs over the particle coordinatesR5(r1 ,r2 , . . . ,rA).
This multidimensional integration is facilitated by introdu
ing a probability distribution,Wpq(R), such that

^O&5

(
p,q

E dR@Cp
†~R!OCq~R!/Wpq~R!#Wpq~R!

(
p,q

E dR@Cp
†~R!Cq~R!/Wpq~R!#Wpq~R!

.

~3.24!

This probability distribution is taken to be

Wpq~R!5uRe„^CP,p
† ~R!CP,q~R!&…u, ~3.25!

which is constructed from the pair wave function,CP , but
with only one operator order of the symmetrized produ
This probability distribution is much less expensive to co
pute than the full wave function of Eq.~3.2! with its spin-
orbit and operator-dependent three-body correlations, b
typically has a norm within 1–2 % of the full wave function

Expectation values have a statistical error which can
estimated by the standard deviations:

s5F ^O2&2^O&2

N21 G1/2

, ~3.26!

whereN is the number of statistically independent sampl
Block averaging schemes can be used to estimate the a
correlation times and determine the statistical error.

The wave functionC can be represented by an array
2A3(Z

A) complex numbers,
d

-

n-

-
s.

d

-

t.
-

it

e

.
to-

C~R!5(
a

ca~R!ua&, ~3.27!

where theca(R) are the coefficients of each stateua& with
specific third components of spin and isospin. This giv
arrays with 96, 960, 1280, 2688, and 4480 elements for4He,
6He, 6Li, 7He, and7Li, respectively. The spin, isospin, an
tensor operatorsOi j

p52,6 contained in the two-body correla
tion operatorUi j , and in the Hamiltonian are sparse matric
in this basis. For forces that are largely charge independ
as is the case here, we can replace this charge-conse
basis with an isospin-conserving basis that h
N(A,T)52A3I (A,T) components, where

I ~A,T!5
2T11

1
2 A1T11

S A

1
2 A1T

D . ~3.28!

This reduces the number of array elements to 32, 576, 3
1792, and 1792 for the cases given above—a significant
ings. In practice, thet i•t j operator is more expensive t
evaluate in this basis, but the overall savings in computa
are still large.

Expectation values of the kinetic energy and spin-or
potential require the computation of first derivatives and
agonal second derivatives of the wave function. These
obtained by evaluating the wave function at 6A slightly
shifted positions of the coordinatesR and taking finite dif-
ferences, as discussed in Ref.@17#. Potential terms quadratic
in L require mixed second derivatives, which can be o
tained by additional wave function evaluations and finite d
ferences. A rotation trick can be used to reduce the num
of additional locations at which the wave function must
evaluated@23#.

As a check on the correctness of our Monte Carlo in
gration, we have evaluated the energy expectation value^H&
for the deuteron using the exact wave function as input,
match the energy to better than 1 keV. We have made sim
calculations for the triton using a Faddeev wave function,
discussed in Ref.@17#, and obtained agreement with indepe
dent Faddeev calculations at the 10–20 keV level. For
much more complicatedA56,7 wave functions, we also
evaluate the expectation values^J2& and ^Jz& to verify that
they truly have the specified quantum numbers. A th
check is made on the antisymmetry of the Jastrow w
function by evaluating, at an initial randomized position,

CJ
†@11Pi j

x Pi j
s Pi j

t #CJ

CJ
†CJ

, ~3.29!

wherePi j
x,s,t are the space, spin, and isospin exchange

erators. This value should be exactly zero for an antisymm
ric wave function, and it is in fact less than 1029 for each
pair of particles in each nuclear state that we study.

A major problem arises in minimizing the variational e
ergy forp-shell nuclei using the above wave functions: the
is no variational minimum that gives reasonable rms ra
For example, the variational energy for6Li is slightly more
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bound than for4He, but is not more bound than for separat
4He and2H nuclei, so the wave function is not stable again
breakup intoa1d subclusters. Consequently, the energy c
be lowered toward the sum of4He and2H energies by mak-
ing the wave function more and more diffuse. Such a diffu
wave function would not be useful for computing oth
nuclear properties, or as a starting point for the GFMC c
culation~see Sec. VI below!, so we constrain our search fo
optimal variational parameters by requiring the result
point proton rms radius,r p , to be close to the experimenta
values for 6Li and 7Li ground states. For6He and 7Be
ground states, and all the excited or resonant states, ther
no experimental measurements of the charge radii. To a
introducing too many additional parameter values, we c
struct these wave functions by making minimal changes
the 6Li and 7Li wave functions, with the added requireme
that the excited states should not have smaller radii than
ground states.

For A56 nuclei, we begin by selecting parameters
minimize the energy of the6Li 3S@2# component~the domi-
nant part of the ground state! subject to the constraint tha
r p;2.422.5 fm. For the other components, only the dep
of the single-particle well,Vp

LS , of Eq. ~3.19!, and the tail,
cpp

LS , of thep-shell pair-correlation function of Eq.~3.17! are
varied, as shown in Table V. The well depth for the3D@2#
states is decreased to get the rms radius of the (31;0) ex-
cited state larger than the ground state. The tail is increa
for the mixed-symmetry1P@11# state for the same reaso
For 6He we use the same parameters as in6Li for the cor-
responding1S@2#, 1D@2#, and 3P@11# states. The only othe
difference between6Li and 6He wave functions is that we
may turn on thea-N Coulomb potential of Eq.~3.20! when
generating the single-particle radial functionsfp . Finally,
the diagonalizations are made to determine thebLS mixing
coefficients of Table VI.

A similar procedure is followed for theA57 nuclei. Pa-
rameters are selected for the dominant2P@3# state in 7Li
subject to the constraint thatr p;2.222.3 fm. The well depth
is reduced for the2F@3# states, and the tail is increased f
all the mixed-symmetry states. Afterwards thebLS diagonal-
ization is carried out. Since7Be is a mirror nucleus, it has
the same wave function as7Li, aside from changing thea-N
Coulomb potential. The7He and 7B ground states are iso
baric analogs to mixed symmetry states in7Li, so they use
corresponding parameters.

Shell-model lore tells us that the lowest state of any giv
(Jp;T) will be the state with maximal spatial symmetry an
smallestL that can be formed from the allowed coupling
e.g., the3S@2# ground state in6Li or the 2P@3# ground state
in 7Li. For the purposes of obtaining a variational upp
bound and a GFMC starting point, we could settle for aCV
constructed using only thatLS@n# component. However, by
using all the allowed components, we can gain a signific
amount of energy in some cases and, as is discussed b
this gain persists in our GFMC propagations. For theA56
nuclei, the diagonalizations for the (01;1), (11;0), and
(21;1) states improve the lower state by 0.25 to 0.5 MeV.
the first four 7Li T5 1

2 states, the mixing is much less, an
improvements are at most 0.15 MeV. However, for7He,
t
n

e

l-

are
id
-
o

he

ed

n

,

r

nt
w,

there is a gain of 0.75 MeV, probably because there are
states of identical symmetry that only differ by 1 inL.

The diagonalizations have the additional benefit that
can predict where the next higher excited state of e
(Jp;T) lies. This allows us to confirm that the Hamiltonian
not predicting any unusually low excitations that are not o

served experimentally; e.g., the second (3
2

2; 1
2 ) and (1

2
2; 1

2 )

states in 7Li do not appear below the first (7
2

2; 1
2 ) and

( 5
2

2; 1
2 ) states.

IV. GREEN’S FUNCTION MONTE CARLO

The aim of the GFMC method is to project out the exa
lowest energy state,C0, associated with a chosen set
quantum numbers, from an approximationCT to that state.
The method used here is essentially identical to that u
previously to calculate nuclei with A<6 @4#, with the excep-
tion that we have now incorporated the exact two-bo
propagator in the imaginary-time propagation. In this sect
we describe the algorithm in some detail, in particular rel
ing it to algorithms commonly used for scalar interaction
For simplicity of notation we will not make the distinctio
betweenH8 and H ~and their respective components! that
was introduced with Eq.~2.17!; the reader will want to re-
member that we in fact use the simplerH8 in our GFMC
propagator.

GFMC projects out the lowest energy ground state us
C05 limt→`exp@2(H2E0)t#CT . The eigenvalueE0 is cal-
culated exactly while other expectation values are gener
calculated neglecting terms of orderuC02CTu2 and higher.
In contrast, the error in the variational energy,EV , is of
order uC02CTu2, and other expectation values calculat
with CT have errors of orderuC02CTu.

We use theCT of Eq. ~3.13! as our initial trial function
and define the propagated wave functionC(t) as

C~t!5e2~H2E0!tCT ; ~4.1!

obviouslyC(t50)5CT andC(t→`)5C0. Introducing a
small time step,Dt, t5nDt, gives

C~t!5@e2~H2E0!Dt#nCT . ~4.2!

TheC(t) is represented by a vector function ofR using Eq.
~3.27!, and the Green’s function,Gab(R,R8) is a matrix
function of R andR8 in spin-isospin space, defined as

Gab~R,R8!5^R,aue2~H2E0!DtuR8,b&. ~4.3!

It is calculated with leading errors of order (Dt)3 as dis-
cussed in Sec. IV B. The errors in the full calculation a
determined by the difference between the~artificial! Hamil-
tonian for which the propagator is exact andH. This differ-
ence is of order (Dt)2, andDt is chosen to be small enoug
that this total error is negligible. Omitting spin-isospin ind
ces for brevity,C(Rn ,t) is given by

C~Rn ,t!5E G~Rn ,Rn21!•••G~R1 ,R0!CT~R0!

3dRn21•••R1dR0 . ~4.4!

The mixed expectation value of an operatorO is defined
as
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^O&Mixed5
^CTuOuC~t!&

^CTuC~t!&
5

E dPnCT
†~Rn!OG~Rn ,Rn21!•••G~R1 ,R0!CT~R0!

E dPnCT
†~Rn!G~Rn ,Rn21!•••G~R1 ,R0!CT~R0!

, ~4.5!
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wherePn5R0 ,R1 ,•••,Rn denotes the ‘‘path,’’ and

dPn5dR0dR1•••dRn . ~4.6!

In GFMC, the integral over the paths is carried out stoch
tically. Generally, the required expectation values are ca
lated approximately from the variationalCT and mixed ex-
pectation values. Let

C~t!5CT1dC~t!. ~4.7!

Retaining only the terms of orderdC(t), we obtain

^O~t!&5
^C~t!uOuC~t!&

^C~t!uC~t!&

'^O~t!&Mixed1@^O~t!&Mixed2^O&T#, ~4.8!

where

^O&T5
^CTuOuCT&

^CTuCT&
. ~4.9!

More accurate evaluations of^O(t)& are possible,@24# es-
sentially by measuring the observable at the midpoint of
path. However, such estimates require a propagation twic
long as the mixed estimate. Since we are limited in
present calculations to a total propagation time of 0
MeV 21, we use the approximation~4.8!.

An important exception to the above is the energy,E0
given by^H(t→`)&. The^H(t)&Mixed can be reexpressed a
~Ref. @25#!

^H~t!&Mixed5
^CTue2~H2E0!t/2He2~H2E0!t/2uCT&

^CTue2~H2E0!t/2e2~H2E0!t/2uCT&
,

~4.10!

since the propagator exp@2(H2E0)t# commutes with the
Hamiltonian. Thuŝ H(t)&Mixed approachesE0 in the limit
t→`, and furthermore, being an expectation value ofH, it
obeys the variational principle

^H~t!&Mixed>E0 . ~4.11!

If a simplerH8 is being used to construct the GFMC prop
gator, then these equations apply to^H8(t)&, and^(H2H8)&
must be evaluated using Eq.~4.8!.

Given these expressions, two basic elements are requ
for any GFMC calculation. The first element is the choice
short-time propagator exp@2(H2E0)Dt# and the second is a
method for sampling the paths. We discuss each of th
elements in turn.
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A. The short-time propagator

The short-time propagator should allow as large a ti
stepDt as possible, since the total computational time
propagation is proportional to 1/Dt. Earlier calculations
@4,26,8# used the propagator obtained from the Feynman
mulas. Ignoring three-nucleon interaction terms inH, it is
given by

e2HDt5FS)
i , j

e2v i j Dt/2Ge2KDtFS)
i , j

e2v i j Dt/2G1O~Dt3!.

~4.12!

Note that it is useful to symmetrize the product ofe2v i j Dt/2

when@v i j ,v jk#Þ0, in order to reduce the error per iteratio
The nuclearv i j has a repulsive core of order GeV. The ma
error in the above propagator comes from terms ine2HDt

having multiplev i j , like v i j Kv i j (Dt)3 for example, which
can become large when particlesi and j are very close. In
order to make them negligible a rather smallDt;0.1
GeV21 is used with the above propagator. The matrix e
ments of the propagator are given by

Gab~R,R8!5G0~R,R8!^auFS)
i , j

e2v i j ~r i j !Dt/2G
3FS)

i , j
e2v i j ~r i j8 !Dt/2G ub&, ~4.13!

G0~R,R8!5^Rue2KDtuR8&

5FA m

2p\2Dt
G 3A

expF2~R2R8!2

2\2Dt/m
G .

~4.14!

However, it is well known from the studies of bulk he
lium atoms@27# that including the exact two-body propag
tor allows much larger time steps. This short-time propaga
is

Gab~R,R8!5G0~R,R8!^auFS)
i , j

gi j ~r i j ,r i j8 !

g0,i j ~r i j ,r i j8 !
G ub&,

~4.15!

wheregi j is the exact two-body propagator,

gi j ~r i j ,r i j8 !5^r i j ue2Hi j Dtur i j8 &, ~4.16!

Hi j 52
\2

m
¹ i j

2 1v i j , ~4.17!

andg0,i j is the free two-body propagator,
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g0,i j ~r i j ,r i j8 !5FA m

2p\2Dt
G 3

expF2
~r i j 2r i j8 !2

2\2Dt/m
G ,

~4.18!

wherem5m/2 is the reduced mass. All terms containing a
number of the samev i j and K are treated exactly in this
propagator, as we have included the imaginary-time equ
lent of the full two-body scattering amplitude. It still ha
errors of order (Dt)3, however they are from commutato
of terms likev i j Tv ik(Dt)3 which become large only whe
both pairsi j andik are close. Since this is a rare occurren
a five times larger time stepDt;0.5 GeV21 can be used for
the present studies of light nuclei. In the case of bound st
of helium atoms a;30 times larger time step can be us
with the propagator~4.15! than with Eq.~4.12! presumably
because the interatomic potentials have a relatively ha
core, and they commute with each other.

Finally, including the three-body forces and theE0 in Eq.
~4.3!, the complete propagator is given by

Gab~R,R8!5eE0DtG0~R,R8!expF2( @Vi jk
R ~R!

1Vi jk
R ~R8!#

Dt

2 G^auI 3~R!ug&

3K gUFS)
i , j

gi j ~r i j ,r i j8 !

g0,i j ~r i j ,r i j8 !
GUdL ^duI 3~R8!ub&,

~4.19!

I 3~R!5F12
Dt

2 ( Vi jk
2p~R!G . ~4.20!

The exponential ofVi jk
2p is expanded to first order inDt thus,

there are additional error terms of the formVi jk
2pVi 8 j 8k8

2p (Dt)2.
However, they have negligible effect sinceVi jk

2p has a mag-
nitude of only a few MeV. It was verified that the results f
4He do not show any change, outside of statistical err
whenDt is decreased from 0.5 GeV21.

B. Calculation of gij

The pair propagatorgi j is a matrix in the two-body spin
isospin space, and obeys the equation

F ]

]t
1Hi j Ggi j ~r ,r 8;t!50. ~4.21!

As the Hamiltonian naturally decomposes into eigenstate
the two-body spin and isospin, so does the propagatorgi j . In
addition, it obeys the convolution equation

gi j ~r ,r 8;t1t8!5E d3r 8gi j ~r ,r 9;t!gi j ~r 9,r 8;t8!,

~4.22!

with the initial condition

gi j ~r ,r 8;t50!5d~r ,r 8!. ~4.23!
a-
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To calculategi j , we use the techniques developed
Schmidt and Lee@28# for scalar interactions. The basic ide
is to use the convolution equation, Eq.~4.22!, to write gi j as
a product overN steps:

gi j ~rN ,r0 ;Dt!5)
i 51

N

gi j ~r i ,r i 21 ;e!, ~4.24!

with e5Dt/N and an implied integration over intermedia
points. If we use a symmetric expression for the short-ti
propagatorgi j (e) such as

gi j ~r ,r 8;e!5e2v i j ~r !e/2g0,i j ~r ,r 8;e!e2v i j ~r8!e/2, ~4.25!

the errors forgi j (Dt) contain only even powers of 1/N,
starting with 1/N2 @28#. By evaluatinggi j (r ,r 8;Dt) for sev-
eral values of N~and consequentlye) and extrapolating to
e→0 thegi j can be calculated with high (; 10 digit! accu-
racy.

Evaluation ofgi j can be carried out in various ways. W
have chosen to expand the propagator in partial waves
noted by JM, TTz , S, and L, thus replacing the three
dimensional integral in Eq.~4.22! with many one-
dimensional integrals. The two-nucleon interactionv i j has a

simple form,vJTS
LL8(r ), in these partial waves. The interactio

is diagonal (L5L8) in S50 and 1 waves withL5J, and it
couples theS51, L, L85J61 waves.

The gi j (r ,r 8;Dt) is written as a sum over partial waves

gi j ~r ,r 8;Dt!5(
JM

(
TTz

(
SLL8

xT,Tz
YJLS

M ~ r̂ !

3
gJTS

LL8~r ,r 8;Dt!

rr 8
YJL8S

†M
~ r̂ 8!xT,Tz

† ,

~4.26!

wherexT,Tz
denote isospin states, andYJLS

M ( r̂ ) are standard
spin-angle functions that depend upon spins and the di
tions r̂ andr̂ 8. In uncoupled channels the partial wave prop

gatorsgJTS
LL8(r ,r 8;Dt) are scalar functions of the magnitude

r and r 8, while for coupled channels they are 232 matrix
functions with L,L85J61. The partial wave propagator
obey the one-dimensional convolution equation

gJTS
LL8~r ,r 8;t1e!5E dr9expF2vJTS

LL9~r !
e

2Gg0,i j
L9 ~r ,r 9;e!

3expF2vJTS
L9L-~r 9!

e

2GgJTS
L-L8~r 9,r 8;t!,

~4.27!

whereg0,i j
L is the free propagator in partial waves with ang

lar momentumL,

g0,i j
L 5

x

Arr 8
I L~x!, ~4.28!

with

x[
rr 8m

2\2t
. ~4.29!
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These expressions are used to obtaingJTS
LL8(r ,r 8;t) for several

values ofe, extrapolating toe→0 until a specific error tol-
erance has been reached. It is important to obtain th
‘‘channel’’ propagators very accurately, because they m
be summed to reproduce a Gaussian falloff in the ang
variables that is present in the full propagator. Fast-Fou
transforms are used to switch between momentum and c
dinate space, where the kinetic and potential terms, res
tively, are diagonal and can be trivially exponentiated.

We then sum over partial waves to obtain the full tw
body propagator. If we were to include only the~physical!
antisymmetric two-body channels, the complete two-bo
propagator would also be antisymmetric, and hence for sm
t the propagator would have two peaks, one near the orig
point and another~with a minus sign in symmetric spin
isospin states!, near the point corresponding to the inte
change of the particles. In principle we could use this pro
gator by sampling paths with an arbitrary permutation
each step, and perhaps cancel some noise arising from
physical symmetric states. However the propagation dista
is governed by the Gaussian behavior ofG0, which is much
shorter-ranged than the average pair separation. Hence
cancellation would be very small. Instead, we simply use
Argonnev88 potential in unphysical states, and include the
in the propagator. In essence this corresponds to treating
particles as Boltzmann particles for purposes of the propa
tor. Since one always computes overlaps with comple
antisymmetric states, this is perfectly acceptable.

One also has complete freedom to choose an arbit
interaction in the unphysical channels, but the present ch
retains the property of a positive definite Green’s function
spin-singlet channels. The propagator inS50 states is posi-
tive definite, since it is for smalle and the convolution form
of Eq. ~4.22! preserves this property. The choice of the Bo
zmann propagator allows us to simply sample Gauss
centered on the identity permutation when choosing
paths.

It is also important to include many partial waves in t
calculation. The startinggi j (r ,r 8;e) is a narrow Gaussian o
width A(4\2e/m) which is ,0.1 fm for e,0.1 GeV21.
Hence a large number of partial waves are required to re
duce it accurately. The propagator in allJ<55 states is cal-
culated from Eq.~4.27!; beyond this we use simple approx
mations including the analytically known propagators
free particles. Keeping a much smaller set of partial wa
would yield the same answer in an exact quadrature, h
ever it can dramatically increase the statistical error in
Monte Carlo calculation. For example, the positive defin
property described above is recovered numerically only
large numbers of partial waves.

The terms havingL2 and (L•S)2 operators are not pres
ently included in the propagator. These terms, like others
depend quadratically on the relative momentum between
interacting particles, represent changes in the mass of
particles due to interactions. They can, in principle, be
cluded by using appropriate effective masses in the kin
energy propagatorg0,i j @29#. Unfortunately, there is a stron
spin-isospin dependence in theL2 and (L•S)2 interactions,
which then makes theg0,i j spin-isospin dependent. Attemp
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to use them have generally led to large statistical errors.
this reason the propagator uses the approximatev88 interac-
tion operator.

Calculating this propagator is computationally intensiv
Therefore, prior to the GFMC calculation, we sum the prop
gator over partial waves and store the full sum on a g

Storing thegJTS
LL8(r ,r 8;Dt) is impractical, both because o

memory requirements and the fact that summing over wa
for eachr andr 8 would be computationally expensive. For
spin-independent interaction, the propagatorgi j would de-
pend only upon the two magnitudesr and r 8 and the angle
cos(u)5 r̂• r̂ 8 between them. Here, though, there is also
dependence upon the spin quantization axis. Rotational s
metry allows one to calculate the spin-isospin component
gi j (r ,r 8) for any r and r 8 by simple SU3 spin rotations an
values ofgi j on a grid of initial pointsr5(0,0,z) and final
points r 85(x8,0,z8). The x2z plane is chosen because th
YJLS

M are real there. In addition, the fact that the propagato
Hermitian allows us to store only the values forz.z8. In the
z direction we take an evenly spaced grid of 0.02 fm exte
ing up to 6 fm. Beyond 6 fm thev i j is weak and it is suffi-
cient to use Eq.~4.15! to calculategi j . The propagator falls
off approximately as a Gaussian, Eq.~4.18!, with range pa-
rameter 2\ADt/m;0.3 fm for Dt 5 0.5 GeV21. Thus the
x8 and z2z8 grids have maximum values of;0.9 fm and
are nonuniform.

C. Sampling of the paths

The remaining task in a GFMC calculation is to sample
set of paths; in order to maintain a reasonable statistical e
we sum explicitly over all spin-isospin states of the syst
for each path. To choose the paths we follow as closely
possible the standard practice for scalar interactions, as
have done in previous work@4,8,26,29#. In this section we
compare the standard method with that used for nuclear
tems.

The integrals in Eq.~4.5! for ^Ô(t)&Mixed are carried out
stochastically using a relative probability functionP(P) to
sample the paths. Each path consists of a set ofn steps,
where each step contains a sample of 3A particle coordi-
nates, as well as sets of operator orders used to sampl
symmetrization operatorsS for the pair operators in the tria
wave function, Eq.~3.13!, and the propagator, Eq.~4.19!.
The ensemble of the sampled paths is denoted by$P%; and
containsNp paths. For each pathP we define

NP5CT
†~Rn!ÔG~Rn ,Rn21!•••G~R1 ,R0!CT~R0!/P~P!,

~4.30!

DP5CT
†~Rn!G~Rn ,Rn21!•••G~R1 ,R0!CT~R0!/P~P!,

~4.31!
and

^Ô~t!&Mixed5S (
$P%

NPD Y S (
$P%

DPD , ~4.32!

with a statistical error determined by the correlated varia
of NP andDP and proportional to 1/ANp. The relative prob-
ability function P(P), should be chosen to minimize thi
statistical error.
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Different schemes for sampling the paths with probabi
P(P) are possible. In finite-temperature simulations, o
typically retains the entire history of the path and use
Metropolis scheme to sample them@27#. For zero-
temperature simulations, however, it is generally more e
cient to sample the paths through a branching random w
Points along the path are generated iteratively through
importance-sampling procedure. Only the amplitudes of
propagated wave function and the accumulated weight of
path need be retained for each configuration. We discuss
algorithm used for nuclear spin-isospin-dependent inte
tions after first describing the algorithm for spin-independ
interactions.

For scalar interactions and real Hamiltonians, the partic
can be assigned specific spin states inCT(R) which never
change during propagation,G(R,R8) is a real, positive func-
tion with finite norm, andCT , and consequentlyC(t), can
be chosen as a real scalar function. TheP(P) is commonly
taken as

P~P!5 )
i 51,n

F I ~Ri !G~Ri ,Ri 21!
1

I ~Ri 21!G I ~R0!uCT~R0!u.

~4.33!

The importance functionI (R) is used in sampling and henc
should be positive definite, it is often taken to be the mag
tude of the trial wave function,

I ~R!5uCT~R!u. ~4.34!

The initial configurations are sampled fromI (R0)uCT(R0)u.
The quantity in brackets in Eq.~4.33! is referred to as the
importance-sampled Green’s functionGI ,

GI~Ri ,Ri 21!5F I ~Ri !G~Ri ,Ri 21!
1

I ~Ri 21!G . ~4.35!

The probability of the path P~P! depends implicitly upon all
of the steps in the path, but is decomposed into an in
weight I (R0)uCT(R0)u, times a product of weights for eac
step.

Using this P(P… in our expressions forNP and DP we
arrive at

NP5
CT~Rn!Ô

I ~Rn!

CT~R0!

uCT~R0!u
, ~4.36!

DP5
CT~Rn!

I ~Rn!

CT~R0!

uCT~R0!u
. ~4.37!

In the ideal case of a Bose ground state,CT(R) is positive
for all R; choosingI (R)5CT(R) yields DP51 with zero
variance and the variance ofNP is acceptable for many in
teresting operators. In particular, ifCT(R) is close to the
ground state ofH, then

CT~R!H

CT~R!
;E0 , ~4.38!
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and theNP for ^H(t)&Mixed will have a small variance. Many
properties of Bose liquid and solid4He and its drops have
been studied with GFMC@27,30,31# using this probability
density.

In contrast, the wave functions of simple Fermi syste
have domains of positive and negative signs separated
nodal surfaces. The importance functionI given in Eq.~4.34!
must be increased slightly near the nodal surfaces to a
diffusion between the domains. When the pathP crosses a
nodal surface itsDP and NP change sign. At smallt, few
paths are long enough to cross nodal surfaces and the
ance is small. Ast increases, many paths cross nodal s
faces, the variance increases and the average value oDP
decreases. This problem is called ‘‘the Fermion sign pr
lem,’’ and it limits the maximum value oft up to which the
state can be propagated@32,33#. Generally the calculations
are continued until the statistical error increases beyond
‘‘acceptable’’ point; we iterate untilt50.06 MeV21 for
most nuclei studied here.

For local spin-isospin independent interactions,3H, 3He,
and 4He nuclei would be completely spatially symmetric a
no sign problem would exist. For more realistic local inte
actions, the dominant spatially symmetric component of
wave function and the relatively large excitation energ
imply that the sign problem is not very significant for thre
and four-body nuclei@34#. However, it does limit the propa
gation of states withA.4 which must have nodal surface
as required by antisymmetry, and also all calculations w
nonlocal interactions.

Implementing the algorithm to sample the paths
straightforward. ChoosingI (R)5uCT(R)u, the initial (t50)
configurationR0 for each path is obtained, as in VMC, b
samplingCT

2(R) using the Metropolis method. The subs
quent configurationsRi , at t5 iDt, are obtained sequen
tially from Ri 21, by iterating with the importance-sample
Green’s functionGI ,

I ~Ri !C~Ri !5E GI~Ri ,Ri 21!I ~Ri 21!C~Ri 21!dRi 21 .

~4.39!

This equation is the importance-sampling generalization
the iterative form of Eq.~4.4!,

C~Ri !5E G~Ri ,Ri 21!C~Ri 21!dRi 21 . ~4.40!

Equation ~4.39! describes the evolution of the densi
I (Ri)uC(Ri)u with t5 iDt, hence the configurationsRi are
distributed with this density. The propagation is entirely
terms of distinguishable ‘‘Boltzmann’’ particles; the Ferm
or Bose character of the system is retained only at the
ends of the walk through the statistics of the initial and fin
trial wave functions.

Up to this point, we have assumed that we can sam
points along the path directly fromGI , but typically this is
not possible. One must sample from an approxim
G̃I(Ri ,Ri 21) and then use the weighting and branching te
niques discussed below to create paths with probability p
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portional to the product of theGI(Ri ,Ri 21). If points are
sampled from an approximateG̃I , it is convenient to define
a weight

W̃~Ri ,Ri 21!5
GI~Ri ,Ri 21!

G̃I~Ri ,Ri 21!
~4.41!

as the ratio of the fullGI to the approximateG̃I . Simply
choosing paths with P(P)5) i 51,nG̃I(Ri ,Ri 21!I (R0)
uCT(R0)u would modify expressions for the the numerat
and denominator, Eqs.~4.36! and ~4.37!, by multiplying the
contribution of each path by the product of theW̃:

NP5W~P!
CT~Rn!Ô

I ~Rn!

CT~R0!

uCT~R0!u
, ~4.42!

DP5W~P!
CT~Rn!

I ~Rn!

CT~R0!

uCT~R0!u
, ~4.43!

where

W~P!5 )
i 51,n

W̃~Ri ,Ri 21!. ~4.44!

As a trivial example, one could sample the free-parti
propagator (G̃I5G0), and the weightsW̃ would be the ratio
of final to initial importance functions times the ratio of in
teracting to free-particle propagators. Such a scheme, h
ever, is woefully inefficient. As the path length increases,
do the fluctuations in theW~P!, and the branching technique
discussed below must eventually be used to control them

For an efficient and unbiased calculation, it can be v
important to choose aG̃ to minimize fluctuations in the
weightsW̃ introduced at each step. For scalar problems,
typically samples a shifted Gaussian, where the shift is
lated to the logarithmic derivative of the trial wave functio
This can be used to perform importance sampling accura
second order inDt ~for a review, see Ref.@35#!, and hence
essentially setG̃I5GI .

In the nuclear case, though, the wave function consist
many spin-isospin amplitudes, and a more complex samp
scheme is required. For illustrative purposes, we describe
scalar equivalent of our sampling method, although for sc
interactions it is not as efficient as sampling a shifted Gau
ian. The free propagator,G0(R8,Ri 21), can be easily
sampled. A number of points,Rj8 , j 51,nsampare obtained by
samplingG0(Rj8 ,Ri 21). These points should be chosen in
correlated manner to reduce fluctuations. Anticipating
quirements for the nonscalar case, we define an approxim
scalar importance-sampled Green’s functionGI

S(Ri ,Ri 21).
The primary requirements are thatGI

S is fast to compute, tha
it is positive, and that it approximatesGI ; for the scalar case
one could simply chooseGI

S5GI .
For each of thensamp points, we calculateGI

S(R8,Ri 21).
The Ri is picked from the setRj8 with probability propor-
tional to GI

S(Rj8 ,Ri 21)/G0(Rj8 ,Ri 21). This procedure im-

plicitly defines aG̃I , and requires a weight
e
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-
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W̃~Ri ,Ri 21!5F 1

nsamp
(

j 51,nsamp

GI
S~Rj8 ,Ri 21!

G0~Rj8 ,Ri 21!
G GI~Ri ,Ri 21!

GI
S~Ri ,Ri 21!

.

~4.45!

Only the variance, and therefore the statistical sampl
error in the calculation depends onnsamp. When nsamp51,
Ri5R18 and the vectorRi2Ri 21 can be in any direction
sinceG0 depends only upon (R182Ri 21)2. In this case, the

weightsW̃5GI /G0 can differ significantly from unity and
add to the variance. Indeed the growth estimate of the
ergy, obtained from the difference between unity and
ratio of new to old weights, will have an infinite variance
the limit Dt→0. In the present calculations, we consid
only two pointsR18 and R2852Ri 212R18 symmetric about
Ri 21. The leading gradient contribution alongR182Ri 21, in
the expansion:

GI~Rj8 ,Ri 21!

G0~Rj8 ,Ri 21!
511~R82Ri 21!•¹R8S GI~Rj8 ,Ri 21!

G0~Rj8 ,Ri 21!
D

1••• ~4.46!

is thus cancelled up to orderDt and the variations inW(P)
are reduced significantly.

Nevertheless, the weights of different paths used in co
puting expectation values, Eqs.~4.42! and ~4.43! will even-
tually diverge. This divergence yields an increasing stati
cal error, as the contribution of only a few paths w
dominate the others. Consequently, branching techniques
required to control the fluctuations in the relative contrib
tions of different paths. In branching, the configurations
redistributed every few time steps by keepingnR

i unit weight
copies of each configuration where

nR
i 5 int@W~P!1zR#, ~4.47!

zR is a random number between 0 and 1, and int denotes
~truncated! integer part. TheW(P) of the resulting configu-
rations are then set to one in order to account for the bran
ing process. This branching technique, in effect, forces
paths to be sampled from the product ofGI rather thanG̃I .

On average, the expectation value of any path is rep
duced correctly using this technique. However, the compu
tion is much more efficient as configurations with sm
weights are more likely be discarded while configuratio
with large weights are replicated. In this way, statistic
noise is reduced by keeping an adequate population of c
tributing configurations.

The algorithm used for nuclear GFMC, in which there is
strong spin-isospin dependence to the interaction, is a ge
alization of the procedure described above. Here wave fu
tions must be regarded as vectors in spin-isospin space
theG(R,R8) as a matrix, however, the relative probability
the paths P(P) must remain a scalar. Following Ref
@26,8,29#, we define an importance-sampled Green’s fun
tion GI as well as an approximateG̃I . Just as in the scala
case, the approximateG̃I is used for sampling points in th
path, while the ratiosGI /G̃I define weightsW̃ which are
used in branching.
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In order to introduce importance sampling, we first defi
a scalar functionI of the trial and GFMC, Eq.~4.4!, wave
functions:

I @CT~Ri !,C i~Pi !#5U(
a

CT,a
† ~Ri !C i ,a~Pi !U

1e(
a

uCT,a
† ~Ri !C i ,a~Pi !u,

~4.48!

whereCT is the trial wave function,C i is thei th iteration of
the GFMC wave function, which depends implicitly upon t
pathPi , anda denotes the spin-isospin components.

This definition of the importance function differs slight
from the scalar case, which only involved the trial functi
CT . The first term simply measures the magnitude of
overlap of the wave functions, while the second, with a sm
coefficiente (' 0.01! ensures a positive definite importan
function to allow diffusion across nodal surfaces. In th
definition of I as well as the remaining discussion, we su
press the sampling of the pair orders in the wave funct
and the propagator.

The importance-sampled Green’s functionGI can then be
defined as the ratio of the importance functions after o
iteration of the full propagatorG(Ri ,Ri 21),

GI~Ri ,Ri 21!5
I @CT~Ri !,C i~Ri !#

I @CT~Ri 21!,C i 21~Ri 21!#
, ~4.49!

where

C i~Ri !5G~Ri ,Ri 21!C i 21~Ri 21!. ~4.50!

For scalar interactions, this definition ofGI is equivalent to
Eq. ~4.35!. Here, the importance function is defined from
the amplitudes of the trial and GFMC wave functions, a
the effects of the propagator are included in the importa
function.

To perform a calculation, the initial configurations a
sampled from I (P0), which is defined by inserting
C i 505CT in Eq. ~4.48! above. For speed, the VMC calcu
lations use the simple importance functionWpq(R) defined
in Eq. ~3.25!. Hence we introduce the ratio of the two im
portance functions as an initial weight and perform a bran
ing step immediately. This procedure results in a populat
drawn fromI (P0).

Sampling steps fromGI gives us

P~P!5 )
i 51,n

I @CT~Ri!,C i~Ri !#

I @CT~Ri21!,C i 21~Ri 21!#
I @CT~R0!,C i~R0!#

~4.51!

5I @CT~Rn!,Cn~Rn!#, ~4.52!

and hence estimates of observables as the ratioN/D where

NP5
CT

†~Rn!OP i 51,nG~Ri ,Ri 21!C0~R0!

I @CT~Rn!,Cn~Rn!#
,

e

e
ll

-
n

e

d
e

-
n

DP5
CT

†~Rn!P i 51,nG~Ri ,Ri 21!C0~R0!

I @CT~Rn!,Cn~Rn!#
. ~4.53!

For scalar interactions, settinge50 in the definition ofI , Eq.
~4.48!, we recover Eqs.~4.36! and ~4.37!.

Again, though, we cannot sample fromGI directly. We
must sample from aG̃I and introduce weights and branchin
to correctly get paths sampled from the products ofGI . The
procedure is exactly as described previously, although he
is important to introduce an approximateGI

S . The GI
S is a

spin-independent function, and hence is much easier to c
pute thanGI , which involves all the spin-isospin states
the system. The present algorithm requires us to comp
only a single full propagator per iteration, and the full tri
wave function only after several iterations.

The scalar importance functionGI
S(R8,Ri 21) is again

used to implicitly define G̃I , and construct weights
W̃I(Ri ,Ri 21). It contains scalar approximations to the dom
nant physics present in the propagator and the trial w
function,

GI
S~R,R8!5uCJ~R!uGS~R,R8!

1

uCJ~R8!u
, ~4.54!

where GS(R,R8) is obtained from an approximate spin
isospin independent interaction:

vS~r i j !5
1

2
@vc~

1S0 ,r i j !1vc~
3S1 ,r i j !# ~4.55!

and the Feynman approximation

GS~R,R8!5expS 2(
i , j

vS~r i j !Dt/2D
3G0~R,R8!expS 2(

i , j
vS~r i j8 !Dt/2D .

~4.56!

This propagator uses the average of the central potentia
the importantS waves, and, like the trueG(R,R8), is small
at smallr i j , preventing the configurations from having sma
interparticle distances inside the repulsive core range. S
larly, the approximate importance sampling inGI

S is gov-
erned by the functionuCJu, Eq. ~3.4!, which can be used as
simple approximation touCTu.

With these definitions, a step in the propagation is
same as in the scalar case. It begins with samplingnsamp
correlated pointsRj8 from the free-particle propagator. The
GI

S is evaluated for each possible step, and we chooseRi

from them. The weightW̃ is then computed as the ratio o
importance functions divided by the sampling probabilityG̃
as in Eq.~4.45!.

Since we typically do not compute observables after e
step, and fluctuations in the weights are not significant aft
single step, it is not necessary to compute the importa
function I ~and hence the trial wave function! at every step.
We perform branching after every second step, with
weights computed from the product of intermediateW̃. This
product involves only theGI

S and overlaps of the wave func
tions at the final and initial steps. Hence, for intermedi
steps we must compute the fullG acting on the GFMC wave
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function, but not necessarily the full trial wave functio
Again, after branching, the weight of each path is set
W(P)51.

At this point we can reconstruct the estimates of any
servables. After branching, theNP andDP obtained with this
P(P) are given by Eq.~4.53!. Ignoringe, the variance ofDP
is mostly due to the fermion sign problem, while that ofNP

is tolerable, particularly whenÔ5H andCT is close to the
desired eigenfunction ofH. For an exactCT , we regain the
exact ground-state energy with zero variance.

V. COMPUTATIONAL METHODS

The complicated nature of the nuclear interaction and
computational complexity of the calculations presented h
require high performance computing. In the past, vector
percomputers were used for the first4He and 5He GFMC
calculations. As we have stated before, the size of the wa
function vector grows exponentially with the number
nucleons and the number of matrix operations grows with
number of pairs. In making the step from four- to six-bo
calculations at least an order of magnitude increase in c
putational performance was required. The clear means
achieving this performance goal was parallel computatio

A frequent method of achieving performance gains
Monte Carlo calculations is to distribute the configuratio
over several processors and let each processor carry o
own independent Monte Carlo calculation. Such an ‘‘emb
rassingly parallel’’ implementation is sufficient for simp
calculations in which each processor can handle a calcula
with a minimum acceptable number of configurations in
reasonable amount of time. For the seven-body systems
sidered here this is not the case.

The heart of the VMC calculation is the Metropolis alg
rithm which is an inherently serial algorithm. Since the bu
of the work in our variational calculations lies in the ener
expectation value, the straightforward division of labor is
have one master processor perform the Metropolis w
while several slave processors calculate the energy and o
expectation values for the configurations that the master g
erates. The number of slave processors that can be efficie
used is the ratio of the CPU time needed for expecta
values to that needed to walk from one configuration to
next. We find that typically 50 processors can be used e
ciently in a 7Li VMC calculation.

Implementing the GFMC algorithm on a parallel archite
ture provides some special challenges. There is no clea
vision of labor as in the VMC calculation and the number
configurations can change throughout the calculation.
embarrassingly parallel implementation could work for6Li,
since one processor on current machines is capable of
dling enough6Li configurations~several thousands! for an
independent GFMC calculation. For7Li, on the other hand,
only hundreds of configurations could be propagated on e
processor to achieve an acceptable turnaround time fo
independent calculation. With such a small configuration
on each node, the population fluctuations on each proce
would leave some processors with few configurations
others with too many. To avoid such an inefficient use
resources, periodic load balancing between processors i
quired.
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In our implementation, the initial configurations are ge
erated and written to disk in a random walk that uses o
two processors. Typically 50 000 configurations are gen
ated. These are then used in one or more subsequent G
calculations. At the start of the GFMC calculation, the ma
ter processor reads the configurations and distributes the
the slave processors. It is then responsible for collecting
averaging energy expectation values, and determining lo
balancing distributions. Each of the slave processors is
sponsible for a block of configurations. The slaves perfo
propagation and branching for this block of configuration
At selected values oft ~typically every 20 steps! they save
the configurations in local lists for subsequent energy ca
lations. During load balancing~which typically is done every
10 steps! each slave reports its current load to the mas
which then instructs each overloaded slave to send its ex
configurations to underloaded slaves. In this way, all sla
have, within tolerances, the same number of configuratio
The master must receive load information from all the sla
before it can determine the redistribution. In order that sla
not remain idle while waiting for the redistribution informa
tion, they compute energies for the configurations stored
their local lists. When a slave completes a block of ene
calculations for a particular time step, they are sent back
the master. After all of the energy results for a time step
received by the master, they are averaged. This prog
structure scales well with the number of processors si
there are no major communication bottlenecks in the cou
of the calculation and load balancing keeps the slaves so
what synchronized. Calculations with up to 50 processors
the Argonne IBM SP show no degradation in efficienc
typically the slaves are idle less than 5% of the time a
most of this idle time occurs at the end of the calculation

The current version of our GFMC program is written u
ing FORTRAN 90and makes use of the MPI message-pass
library. On IBM SP1 processors, we achieve 40%~33%! of
the theoretical speed in6Li ( 7Li ! calculations. On IBM SP2
wide nodes we get 45% for both cases. The better efficie
can be ascribed to the larger cache on the wide nodes. T
VIII shows the performance of our GFMC program on t
Argonne IBM SP~using SP1 nodes! and the Cornell IBM
SP2 using wide nodes. The table gives the CPU times fo
single propagation step and a single energy evaluation
the total time required for 50 000 configurations propaga
for 120 time steps (Dt50.0005 MeV21, tfinal50.06
MeV 21) with load balancing every 10 time steps and ene
evaluations every 20 steps; this time includes slave idle t
and average effects of configuration number growth. It
based on results using 20–40 slaves. However, this total
does not include the master time. As one can see, the
grows by roughly a factor of 10 from4He to 6Li to 7Li. The
total computational effort approximately scales as the pr
uct of the wave function sizeN(A,T)52A3I (A,T) @Eq.

~3.28!# and the number of pairsP5 1
2 A(A21). This rapid

increase in computation time will be a serious obstacle
extending these calculations beyond eight-body nuclei
presently available computers.

Our earlier six-body calculations@4# were about 30 times
slower than those we now make. The increased speed is
proximately attributable to~1! using the exact two-body
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TABLE VIII. GFMC program performance on IBM SP1 and SP2 Wide Nodes.N(A,T) is the number of
spin-isospin states in the wave function andP is the number of pairs. The columns give the times for o
propagation step and one energy evaluation and the total time needed for a 50 000 configuration calc
see the text for a more complete description.

Propagation Energy calculation Total
msec sec node hours

N(A,T) P SP1 SP2 SP1 SP2 SP1 SP2

4He 32 6 6.6 3.4 0.025 0.01 13 7
A56;T50 320 15 63 26 0.84 0.31 220 80
A56;T51 576 15 100 40 1.66 0.56 290 125

A57;T5
1
2 , 3

2
1792 21 460 170 10.6 3.4 2230 725
e

ul
C
a
m
rg
ta
,

en
th

o

ti
y

.
lly

e

of

rgy

-

of

r
re

fit
propagator~factor of 3!, ~2! dropping theeCVi jk
C term in the

CT ~factor 2!, ~3! improvements in the calculation of th
wave functions~factor 3!, and~4! reduction of processor idle
time ~factor 1.4!.

VI. ACCURACY OF GFMC

In this section we consider several aspects of our calc
tions that could introduce systematic errors in the GFM
results, and attempt to place limits on these errors. There
two major sources of error: due to the fermion sign proble
the GFMC propagation cannot be extended to arbitrary la
imaginary time and thus admixtures of low-energy exci
tions in the trial wave function will not be fully removed
and the GFMC propagation must be done with a differ
Hamiltonian from the desired one. We also investigate
effects of the time step size.

Figure 3 shows the statistical errors as a function
imaginary time for calculations of̂H& for various nuclei
using 50 000 initial configurations. The errors grow drama
cally with increasingA due to the increasingly poorer qualit
of theCT . In these calculations,^CTuHuC(t)& is evaluated
by having H act entirely to the left, therefore ifCT is an
eigenfunction ofH, the sampling errors will be nil as per Eq
~4.5!. For thep-shell nuclei, the errors increase exponentia
a-

re
,
e
-

t
e

f

-

with t. This is the well-known fermion sign problem; th
s-shell nuclei suffer much less from this problem@34#. This
exponential error growth places an effective limit
tfinal50.06 MeV21 on our calculations forA57 nuclei,
which means that admixtures of states of excitation ene
less than;12 MeV in CT , will be damped by less than
50%.

This led us in Ref.@4# to attempt to extrapolate the com
putedE(t) to t5` by fitting them with

E~t!5E01

(
i

a i
2Ei

!exp~2Ei
!t!

11(
i

a i
2exp~2Ei

!t!

, ~6.1!

where E0 is the extrapolated energy, and the strengths
contaminating states inCT are approximated with a fewa i

2

at excitation energiesEi
! . Figure 4 shows such fits made fo

4He. Because4He calculations are so inexpensive, we we
able to make precise calculations ofE(t) for many values of
t and thus determine the short-time behavior ofE(t) using
200 000 to 740 000 configurations. The solid curve is a
with E05228.335 MeV, excitation energiesEi

!520.2, 341,
and 1477 MeV, and correspondinga i

250.0062, 0.0018, and
a

FIG. 3. Statistical errors~MeV! in GFMC cal-

culations with 50 000 initial configurations as
function of imaginary time.
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0.000 46. The lowest 01 excitation of 4He is at 20.2 MeV
and this energy was not varied in the fit. Thex2 of the fit is
19 for 31E(t) ~25 degrees of freedom!, so theE(t) are not
statistically independent. We have not attempted to estim
the correlations between the energies at different times.
x2 increases by 1 whenE0 is changed by10.02 or20.03.
The dashed curve shows a fit without the 20.2 MeV exc
tion; it givesx25 23 andE05228.28 MeV. For most of the
other GFMC calculations reported in this paper, we did
computeE(t) at the manyt,0.1 MeV21 used in these fits
Therefore we made several fits to theE(t) for t>0.1. A fit
using E1

!520.2 MeV and one adjustableEi
! gives

E05228.33(3) with x2514.6 ~11 degrees of freedom!,
while a fit with just oneEi

! results in E05228.3320.12
10.04,

E1
!530, andx2516.0. Finally, the heavy solid line with

short dashed error bars shows the average of theE(t) for
0.04<t<0.1:228.300(15). It appears that in this most f
vorable case, with high statistics, high first excited state,
large maximumt, we can see that including the first excite
state improves the extrapolation marginally. However,
extrapolatedE0 is not significantly lower than a simple av
erage of theE(t) for 0.04<t<0.1.

Figure 5 shows theE(t) and fits made for the groun
state of6Li. The values fort.0.06 MeV21 were computed

FIG. 4. 4He GFMC energy as a function of imaginary time. Th
fits are described in the text.
te
he

-

t

d

e

with 200 000 initial configurations, those fo
t50,0.01, . . . ,0.06 MeV21 have 280 000 configurations
while those for the other smallt have only 50 000 configu-
rations. The energy at very smallt is influenced by admix-
tures of very high-energy states inCT . These have little
effect on theE(t.0.1 MeV21), therefore we make fits to
E(t) only for t.0.01. The dashed curve is a fit to theE(t)
for 0.01<t<0.06, which is the range that is available for th
other p-shell nuclear states in this paper. The extrapola
energy isE05231.5620.50

10.24 MeV, where the indicated error
correspond tox2 increasing by 1. This fit was made using
single excitation energy,E1

!536 MeV. The first 11 excited
state of 6Li is at 5.65 MeV. A single-energy fit constraine
to this energy gives largex2. Two-energy fits with one en-
ergy constrained to 5.65 MeV have a very flatx2(E0) from
which useful values ofE0 cannot be extracted. The soli
curve shows a single-energy fit made to theE(t) up to 0.1
MeV 21 available for this state; it givesE05231.3820.18

10.12.
We see that including data up to 0.1 MeV21 reduces the
error inE0 by about a factor of 2. Finally the solid line with
short dashed error bars is the average of thet5 0.04, 0.05,
and 0.06 values, denoted byEav. Its value, 231.25~11!
MeV, is formally an upper bound forE0 and is above the
extrapolatedE0 by only one standard deviation.

Because of the difficulties in making useful extrapolatio
in t, it is important to understand contaminations inCT ,
particularly from low-excitation-energy states which will n
be fully filtered out byt50.06 MeV21. We have made sev
eral calculations of the ground state of6Li to study the ef-
fects of changes inCT on the GFMCE(t). Figure 6 shows
the effects of removing some of the noncentral correlatio
in CT ; the solid circles are from a calculation with the fu
CT and are the same as in Fig. 5. The open diamonds w
computed by using the simplerCP of Eq. ~3.3!. This makes
the energy att50 worse by ;1.7 MeV. However by
t50.01, the GFMC has fully corrected for this defect a
thereafter the differences are just statistical fluctuatio
Hence removingŨ i jk

TNI from CT enhances the admixtures o

excitations.250 MeV. Calculations without theŨ i jk
TNI would

be about 20% faster than full calculations, but the poo

FIG. 5. 6Li GFMC energy as a function of imaginary time. Th
fits are described in the text.
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quality of CT without Ũ i jk
TNI increases the statistical errors

larget by about 20%, and thus requires 40% more confi
rations to get the same error. Therefore it is not econom
to drop theŨ i jk

TNI from CT .
The open squares in Fig. 6 come from a much more d

tic approximation ofCT . Here both theŨ i jk
TNI and tensor

componentsUi j have been omitted, resulting in a fou
operator wave function. In such a wave function, the do
nant tensor components of the two-body potential have z
expectation value and the energy att50 is 141 MeV. It is
completely corrected byt50.03; again the rate of correctio
indicates excitation energies;250 MeV. The statistical er-
rors from such a badCT are much larger.

These two tests indicate that defects in the noncen
parts of the correlation, which have been the subject of m
optimization in VMC studies, are easily corrected by t
GFMC. Deficiencies in the one-body part ofCT present
more of a problem. As is discussed in Sec. III, theC for 6He
has two symmetry components:@2# and @11#; the optimal
amplitudes for these~see Table VI! are 0.967 and20.253,
respectively. The solid circles in Fig. 7 show GFMC energ
from a CT using these components. The open squares s
results computed using aCT with just the@11# component;
theE(t50) obtained with such a wave function is 4.5 Me
higher than that obtained with the bestCT ; this corresponds
to the 5 MeV excitation energy of the dominantly@11# state.
However, because this error is entirely due to a low-ene
excitation, the GFMC makes very little improvement b
t50.05 MeV21. A less radical case is shown by the op
diamonds which correspond to aCT with amplitudes of
11/A2 , 2 1/A2 for the two states. TheE(t) starts out 1.6
MeV above that of the bestCT ; the GFMC reduces this to
;1.3 MeV att50.06 MeV21. The solid curve is a single
energy fit to these results; the fitted excitation energy is
MeV and the extrapolatedE05226.7 is well above the
Eav5227.64(14) from the bestCT . Fits with two excita-
tions, one constrained to 5.0 MeV, give an essentially flatx2,
and are not useful to extract theE0.

A similar situation arose in our first GFMC calculation fo
the ground state of7He. This was made with just the dom

FIG. 6. 6Li GFMC energy as a function of imaginary time fo
various truncations of the noncentral parts ofCT .
-
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nant 2P@21# component. A subsequent calculation using t
three components listed in Table VII lowered all theE(t) by
;0.8 MeV; the first3

2
2 excited state is at only 2 MeV so w

would have to propagate 10 times further for the GFMC
substantially correct this error.

It is important that theCT have the correct admixtures o
different symmetry, and other low-lying states. Otherw
the GFMC results will only be upper bounds to the exa
eigenenergies. For this reason theCT used in this work are
obtained by diagonalizing the Hamiltonian in the small ba
of low-energy shell-model states as discussed in Sec.
Such diagonalizations can be used to ascertain if an
provedCT8 will influence the GFMC results obtained wit
CT . The Hamiltonian should be diagonalized betweenCT8
and CT , taking into account their nonorthogonality. If th
difference in the eigenvalues is large compared to 1/tfinal the
results will not be influenced; if it is small, the superpositio
corresponding to the lowest eigenvalue must be used.
examples of this, we made such diagonalizations for
cases studied above, in whichCP or just a four-operatorCP
were used. These gave excitation energies of;700 and
;300 MeV, respectively, which are in good agreement w
the observedE(t). Our bestCV containsUi j

LS andUi jk cor-
relations omitted from theCT due to computational costs
Diagonalizing the Hamiltonian withinCV and CT shows
that these correlations admix states with excitation ener
of ;1000 and 300 MeV, respectively. Thus they can
safely left out of theCT .

As is discussed in Sec. III, the VMC calculations f
p-shell nuclei do not have a local variational minimum f
reasonable rms radii. Therefore the variational searches w
constrained to have radii close to the experimental value
such values are known. To study the sensitivity of the GFM
results to this assumption, we have made a number of GF
calculations of the6Li ground state usingCT that have dif-
ferent rms radii. TheseCT were made by changing the dep
(Vp) and radius (Rp) of the Woods-Saxon well used to mak
the p-wave orbitals@see Eq.~3.19!#; thus the4He core was
not directly modified. Figure 8 shows the evolution of th
rms radius witht for these calculations; the solid circle

FIG. 7. 6He GFMC energy as a function of imaginary time fo
CT with various one-bodyF.
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correspond to theCT used in the rest of this paper. We se
that the GFMC basically makes no change to the radii, ev
though they span a range of almost 30%~there may be some
indication that the smallest radii are increased at smallt).
This is probably because completely separating the deute
from the 4He core corresponds to only a 1.5 MeV excitatio
Figure 9 shows the GFMC energies from these calculatio
as a function of the GFMC radii~both are averages of the
0.04<t<0.06 MeV21 values!, and the correspondingCT
expectation values. The variational energies obtained w
CT decrease monotonically with increasing rms radius, b
the GFMC energies show a weak minimum; the very lar
radii yield higher GFMC energies and thus can be variatio
ally ruled out. The curve is a parabolic fit to the five GFM
energies with smallest rms radii; the minimum is at 2.44 fm
However the curve is very flat and the uncertainty in th
location of the minimum is at least 0.1 fm. Thus even whe
50 000 to 280 000 initial configurations are used for ea

FIG. 8. 6Li rms radii as a function of imaginary time for GFMC
calculations withCT of varying rms radii.

FIG. 9. 6Li VMC ~above! and GFMC~below! energies versus
the rms radii from calculations withCT of varying rms radii.
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point, it is difficult to extract the6Li rms radius. Given this,
it is not possible at present to reliably study the radii ofA57
nuclei.

The GFMC propagator used in these calculations
two possible sources of error. The first is that the tim
step, Dt50.0005 MeV21, might be too large. We have
checked this by two calculations. For3H we made calcula-
tions tot50.06 MeV21 using bothDt50.0005 and 0.000 25
MeV 21; these were different by 0.016~14! MeV. For 4He
we made calculations tot50.01 MeV21 using both
Dt50.0005 and 0.0001 MeV21; these were different by
0.02~6! MeV. The statistical errors in our GFMC energies f
p-shell nuclei are all.0.1 MeV; thus these time-step effec
are negligible.

The second possible source is that we cannot use a pr
gator for the full Hamiltonian,H, that we are interested in
Rather we must use theH8 of Eq. ~2.17! and compute
^H2H8& perturbatively. Kamada and Glo¨ckle @36# have es-
timated for 3H that evaluatinĝ v i j & in wave functions ap-
propriate forv i j8 underestimates the binding energy by,20
keV; scaling this by the total two-body potential ener
gives,50 keV in 4He and,90 keV in 7Li. We constructed
a 4He CV that is optimized forv i j8 1Vi jk and used it to
compute^v i j &; this gives 60~15! keV less binding than our
best 4He variational wave function in agreement with th
above estimates.

Using a propagator for anH8 that gives more binding
than H can introduce small errors in the determination
densities and radii. The more tightly bound eigenstate ofH8
is likely to have a smaller radius. The radii of4He can be
calculated more accurately, and we have studied their se
tivity to various propagators. The rms radius forCT opti-
mized for H is 1.482~3! fm. A GFMC calculation using an
H8 with no vC8 (r i j ) and Vi jk8 5Vi jk @see Eq.~2.17!# gives
^H2H8&52.40(3) MeV and an rms radius of 1.418~4!.
However using thevC8 (r i j ) and 1.3U0 in Vi jk8 results in
^H2H8&50.03(2) MeV and an rmsradius of 1.446~3! fm.
Presumably the later value is more correct, while the form
is too small due to the overbinding.

As is discussed in Sec. IV, the GFMC directly comput
mixed estimateŝO(t)&Mixed . Except forH8 and operators
that commute with it, these must be corrected to obtain
desired^O(t)&; we use Eq.~4.8! to achieve this. Conse
quently, the expectation values of the individual energy co
ponents, such asKCI, v i j8 , andVi jk8 , which have errors of the
order uC02CTu2, do not sum to the correct total energ
Indeed, there must be a collective error in these individ
terms equal to the total difference between the GFM
^H8&Mixed and the VMC^H8&T . This is illustrated in Table
IX for the case of 6Li, where the difference
^H8&Mixed2^H8&T is 24.4 MeV, and the sum of the indi
vidual ^O& is an additional24.4 MeV lower than̂ H8&. In
this case, the individual corrections are comparable in m
nitude to the collective error, but small compared to the to
expectation values.

Aside from our own work in Ref.@4#, there are no pub-
lished calculations ofp-shell nuclei using realistic interac
tions such as those used here, to our knowledge. How
we can compare to previous values for thes-shell nuclei.
There are accurate Faddeev and projected hypersphe
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56 1741QUANTUM MONTE CARLO CALCULATIONS OF NUCLEI . . .
harmonics~PHH! calculations of 3H for the Argonnev14
with no Vi jk . For this Hamiltonian we find a GFMC energ
of 27.670(8) MeV which is in good agreement with th
previous results of27.670 ~Faddeev/R @37#!, 27.680
~Faddeev/Q @38#!, and27.683~PHH @39#!. A PHH result for
Argonne v18 with Urbana IX has recently been compute
@40#: 28.475. It is in good agreement with our values
28.455~8! obtained withDt50.5 GeV21 and 28.471(12)
obtained withDt50.25 GeV21.

There are also several other calculations of4He with Ar-
gonnev14 without Vi jk . Figure 10 shows the GFMCE(t)
for this case. Because there is noVi jk , we multiplied thev i j8
in H8 by 0.994 and included the isoscalarvC8 so that
^H2H8&;0. The average, shown by the line and dott
error range, of the last fewE(t) is 224.227(31) MeV. A
calculation using the fullv i j8 , without isoscalarvC8 , in H8,
gives224.230(31), even though in this case^H2H8&51.5
MeV. These results are in excellent agreement with the o
GFMC calculation of Ref.@41# ~up-pointing triangle! which
was made with a completely independent program that u
the short-time propagator of Eq.~4.12!. They are also in
excellent agreement with the correlated hyperspherical
monic ~CHH! value of224.1760.05 MeV @42# shown by
the open diamond. The error bar on the CHH value rep
sents the expected truncation error in that calculation. H
ever these results are below the Coulomb-corrected Fadd
Yakubovsky value of224.01 MeV@38#, shown by the open

TABLE IX. Contributions to the GFMĈO(t)& of Eq. ~4.8! for
6Li. All quantities are in MeV.

^O&T ^O&Mixed ^O&Mixed2^O&T ^O&

KCI 143.8~4! 147.3~5! 3.5~7! 150.8~10!

v88 2168.7(4) 2175.7(6) 27.0(8) 2182.6(11)
vC8 1.5~0! 1.5~0! 0.0~0! 1.5~0!

Vi jk8 23.5(1) 24.4(1) 20.9(1) 25.4(1)
Sum 226.9(1) 231.3(1) 24.4(1) 235.7(1)
H8 226.9(1) 231.3(1) 231.3(1)

FIG. 10. 4He GFMC energy as a function of imaginary time f
the Argonnev14 potential withoutVi jk . Also shown are severa
previous calculations identified in the text.
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circle. The down-pointing triangle shows our best VMC u
per bound for this case; it is;2 % higher than the exactE0.

In the following sections we will give the calculated va
ues of the average energy (Eav) for t5 0.04, 0.05, and 0.06
MeV 21 for variousA56 and 7 states. These provide upp
bounds to the eigenenergies of the nuclear HamiltonianH
used in this work. The studies of the accuracy of GFM
discussed above suggest that, assuming that the low-en
excitations in theCT have been successfully removed b
diagonalizing the Hamiltonian matrix in thep-shell states,
theseEav are at most;0.3 MeV above the eigenenergies fo
A56 states. For the6Li ground state the additional bindin
obtained by single-energy extrapolations is only;0.13(15)
MeV. This extrapolation was made using a factor 5 mo
samples than we have for the other states studied, thu
useful extrapolation estimates can be made for the o
states. We also estimate that the perturbative treatmen
H2H8 increasesEav by less than 0.1 MeV. As will be
shown in the next section, the larget behavior ofE(t) for
all theA56,7 states is very similar. Thus we expect that t
errors estimated for6Li are reasonable approximations
those for other nuclei. By scaling the above two errors
cording toE(t50)2Eav and ^v i j & we estimate that theEav
for the A57 states is no more than;0.5 MeV above the
eigenenergies.

VII. ENERGY RESULTS

A. Ground states

The primary results of this paper are the GFMC energ
Eav, of the ten different (Jp;T) states inA56,7 nuclei
shown in Table X and in Fig. 11, along with three isoba
analog states and the ground states ofA5224 nuclei. The
present results for6He and6Li ground states and the~31;0!
excited state in6Li are all slightly lower, but within error
bars, of thet-averaged results reported in Ref.@4#. The slight

TABLE X. Experimental and quantum Monte Carlo energies
A5227 nuclei in MeV.

AZ(Jp;T) VMC (CT) VMC (CV) GFMC Expt.

2H(11;0) 22.2248(5) 22.2246
3H( 1

2
1; 1

2 ) 28.15(1) 28.32(1) 28.47(1) 28.48
4He(01;0) 226.93(2) 227.78(3) 228.30(2) 228.30
6He(01;1) 223.77(6) 224.87(7) 227.64(14) 229.27
6He(21;1) 222.05(6) 223.01(7) 225.84(11) 227.47
6Li(1 1;0) 227.04(3) 228.09(7) 231.25(11) 231.99
6Li(3 1;0) 223.98(7) 225.16(7) 228.53(32) 229.80
6Li(0 1;1) 223.18(6) 224.25(7) 227.31(15) 228.43
6Li(2 1;0) 222.58(10) 223.86(8) 226.82(35) 227.68
6Be(01;1) 221.73(6) 222.79(7) 225.52(11) 226.92
7He(3

2
2; 3

2 ) 219.02(8) 220.43(12) 225.16(16) 228.82

7Li( 3
2

2; 1
2 ) 231.59(8) 232.78(11) 237.44(28) 239.24

7Li( 1
2

2; 1
2 ) 231.13(8) 232.45(11) 236.68(30) 238.76

7Li( 7
2

2; 1
2 ) 225.77(6) 227.30(11) 231.72(30) 234.61

7Li( 5
2

2; 1
2 ) 224.91(7) 226.14(11) 230.88(35) 232.56

7Li( 3
2

2; 3
2 ) 218.27(7) 219.73(12) 224.79(18) 228.00
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improvement may be due to the improvedCT , while we
have obtained much better Monte Carlo statistics than pr
ously, both by access to increased computer resources an
more efficient program implementation. Thet-extrapolated
results of Ref.@4# were significantly below the present re
sults, but also had a large uncertainty associated with
extrapolation; taking that uncertainty into account, the t
calculations are consistent. In the particular case of the6Li

FIG. 11. Spectrum forA52–7 nuclei from experiment, and in
GFMC and VMC calculations.
i-
by

e
o

ground state, our earlier result of232.4(9) MeV was not
inconsistent with the experimental binding of231.99 MeV.
However, from the various extrapolation tests discus
above, and the propagation tot50.1 MeV21, we are now
confident that the binding energy with the present Ham
tonian is not more than231.6 MeV.

Table X also gives the VMC energies from the simp
starting trial function,CT , and from the more sophisticate
CV . In A53,4 nuclei,CV picks up about 60% of the energ
difference betweenCT and the final GFMC results. How
ever, for theA56,7 nuclei there is a much bigger gap b
tween VMC calculations withCT and the GFMC energies
and theCV results recover only 20–25% of this energy d
ference. Clearly there is some important aspect top-shell
variational wave functions that is missing from the curre
ansatz.

The Argonnev18 1 Urbana IX Hamiltonian was con
structed to reproduce the experimental binding energies
2H, 3H, and the equilibrium density of nuclear matter. Fro
Table X and Fig. 11 we see that with this Hamiltonian all t
A56 and 7 states studied here are underbound. The disc
ancy in 6Li and 7Li states is relatively small,,2% and
,5% respectively, and the calculated ground states are st
against breakup intoa1d anda1t. On the other hand, the
discrepancy in6He and 7He states is larger,;5% and
;13%, respectively, and the calculated6He ground state is
unstable againsta1n1n breakup.

A breakdown of the GFMC energies into kinetic and p
tential contributions is given in Table XI. The kinetic an
potential energies grow rapidly as the number of nucle
increases, but for a given nucleus, they decrease slightl
the excitation energy increases and the nucleus gets m
diffuse. TheVi jk contribution remains small compared
v i j , never exceeding 5%, but because of the large canc
tion betweenK andv i j , it is typically 25% of the total bind-
ing energy. The electromagneticv i j

g is dominated by the
Coulomb interaction between protons,VC1(pp), but about
TABLE XI. Kinetic and potential energy contributions to GFMC energies in MeV.

AZ(Jp;T) K v i j Vi jk v i j
g v i j

p Vi jk
2p

2H(11;0) 19.81 222.05 0.0 0.018 221.28 0.0
3H( 1

2
1; 1

2 ) 50.0~8! 257.6(8) 21.20(7) 0.04 243.8(2) 22.2(1)
4He(01;0) 112.1~8! 2136.4(8) 26.5(1) 0.86~1! 299.4(2) 211.8(1)
6He(01;1) 140.3~15! 2165.9(15) 27.2(2) 0.87~1! 2109.0(4) 213.6(2)
6He(21;1) 131.9~14! 2155.7(13) 27.0(1) 0.86~1! 2106.2(5) 213.1(2)
6Li(1 1;0) 150.8~10! 2180.9(10) 27.2(1) 1.71~1! 2128.9(5) 213.7(3)
6Li(3 1;0) 146.7~29! 2174.4(31) 27.1(2) 1.71~2! 2119.9(5) 213.9(4)
6Li(0 1;1) 135.1~16! 2161.4(16) 26.9(2) 1.65~1! 2108.5(4) 212.9(2)
6Li(2 1;0) 139.6~32! 2166.0(34) 26.7(3) 1.66~3! 2119.2(5) 212.4(4)
6Be(01;1) 134.8~16! 2160.5(16) 26.8(2) 2.97~2! 2108.0(4) 212.8(2)
7He(3

2
2; 3

2 ) 146.0~17! 2171.2(17) 27.4(2) 0.86~1! 2109.9(6) 214.1(2)

7Li( 3
2

2; 1
2 ) 186.4~28! 2222.6(30) 28.9(2) 1.78~2! 2152.5(7) 217.1(4)

7Li( 1
2

2; 1
2 ) 183.0~32! 2219.1(35) 28.2(3) 1.76~2! 2151.5(7) 216.1(4)

7Li( 7
2

2; 1
2 ) 178.4~28! 2209.6(30) 28.5(3) 1.78~2! 2142.2(7) 216.1(4)

7Li( 5
2

2; 1
2 ) 169.1~31! 2200.2(33) 27.1(3) 1.73~2! 2143.2(7) 214.2(4)

7Li( 3
2

2; 3
2 ) 147.8~15! 2173.8(15) 27.2(2) 1.68~1! 2109.4(6) 213.9(2)
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FIG. 12. E(t)2E(t50) for the ground states
of A53–7 nuclei.
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17% ~8%! of its total contribution comes from the magnet
moment and other terms in Eqs.~2.4!–~2.6! in He ~Li ! iso-
topes. The one-pion-exchange term of the potential do
natesv i j , providing;70% of the interaction energy, whil
the Vi jk

2p is smaller thanv i j
p by one order of magnitude.

Figure 12 shows theE(t)2E(t50) from the GFMC cal-
culations of ground states of nuclei with 3<A<7. The
GFMC correction to the VMC (CT) results has a strongA
dependence but no significantN2Z dependence. Figure 1
shows@E(t)2E(0)#/uEav2E(0)u. The results for the two
s-shell nuclei have the same dependence ont, as do those
for the four p-shell nuclei. However thep-shell E(t) ap-
proach their asymptotic values less rapidly; a fit to the6Li
E(t) for t,0.03 MeV21 requires excitation energies of;
700 and 90 MeV instead of the; 1500 and 350 MeV used
in the fit for 4He shown in Fig. 4. This is another indicatio
that there is a qualitatively new feature necessary forp-shell
i-

nuclei which is missing from our trial wave functions; th
feature does not seem to depend on theN2Z, Jp, or T of the
nucleus.

B. Excited states

A second result of the present paper is the prediction o
additional dozen higher excited states obtained in the VM
calculations as shown in Table XII, and in Fig. 14. We ha
calculated VMC and GFMC excitation energies for eig
states, and they agree with each other within error bars in
cases. Therefore, we may expect that the VMC excitat
energies for the other states shown are close to the co
results for this Hamiltonian. Most of these higher states
obtained by the diagonalizations within correlatedp-shell
states discussed in Sec. III.

In Fig. 11 we see that the difference between the cal
lated and experimental energies increases asA and uN2Zu
FIG. 13. E(t)2E(0)/uEav2E(0)u for the
ground states ofA53–7 nuclei.
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1744 56B. S. PUDLINERet al.
increase. However, as seen in Fig. 14, the excitation spe
are in good overall agreement with experiment. The sta
generally occur in the correct order, and with reasonable
ergies. The agreement with the6Li and low-lying 7Li spec-
tra is very good. In particular, the first excited (11;0) state

in 6Li, and the first excited (32
2; 1

2 ) state in7Li, i.e., the first
excited states with quantum numbers identical to the gro
states, are very close to the observed excitations. In the
of 6He and7He, we predict a number of states that have
been observed experimentally, but which could be searc
for. A first observation of the second (21;1) state in 6He
was recently reported@19#; the experimenters tried to fit the
data with single states of different (Jp;T) but did not get a
very good fit for any one value. Our results suggest there
several states close together in this region, which could
prove the chances of fitting the data satisfactorily. The sta
in 7He might also be amenable to experimental measurem
with the new radioactive beam facilities that are now com
on line.

C. Isobaric analog states

Energy differences of isobaric analog states are sens
probes of the charge-independence-breaking parts of
Hamiltonian. To study these it is useful to express the en
gies in an isobaric multiplet, characterized byA and T, in
terms of the isospin multipole operators of ordern:

TABLE XII. Experimental, VMC, and GFMC excitation ener
gies ~adjusted to their respective ground states! in MeV.

AZ(Jp;T) Expt. VMC GFMC

6He(21;1) 1.80 1.86~10! 1.80~18!
6He(21;1) 5.6 3.61~10!
6He(11;1) 3.46~10!
6He(01;1) 5.24~11!

6Li(3 1;0) 2.19 2.93~10! 2.72~36!
6Li(0 1;1) 3.56 3.84~10! 3.94~23!
6Li(2 1;0) 4.31 4.23~11! 4.43~39!
6Li(2 1;1) 5.37 5.64~10!
6Li(1 1;0) 5.65 5.68~11!
6Li(1 1;0) 8.96~11!

7He(1
2

2; 3
2 ) 0.90~16!

7He(5
2

2; 3
2 ) 1.69~16!

7He(3
2

2; 3
2 ) 2.08~16!

7Li( 1
2

2; 1
2 ) 0.48 0.33~16! 0.76~41!

7Li( 7
2

2; 1
2 ) 4.63 5.48~16! 5.72~41!

7Li( 5
2

2; 1
2 ) 6.68 6.64~16! 6.56~45!

7Li( 5
2

2; 1
2 ) 7.46 9.90~16!

7Li( 7
2

2; 1
2 ) 9.67 11.63~16!

7Li( 3
2

2; 1
2 ) 9.90 10.14~16!

7Li( 1
2

2; 1
2 ) 10.79~16!

7Li( 3
2

2; 3
2 ) 11.24 13.05~16! 12.65~33!
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EA,T~Tz!5 (
n<2T

aA,T
~n! Qn~T,Tz!. ~7.1!

The Qn(T,Tz) are orthogonal functions for projecting ou
isovector, isotensor, and higher-order terms@43#; the first

terms areQ051, Q15Tz , andQ25 1
2 (3Tz

22T2). The coef-
ficientsa(n) are then obtained from

aA,T
~n! 5(

Tz

Qn~T,Tz!EA,T~Tz!/(
Tz

Qn
2~T,Tz!. ~7.2!

In first-order perturbation theory, the electromagnetic
teraction contributes to thea(n) for n51 and 2, the nuclear
CSB potential and kinetic energy contribute ton51, and the
nuclear CD potential contributes ton52. Thea(n) for higher
n are zero in first order with our Hamiltonian, and there
little experimental evidence forn>3 terms in nuclei@44#.
We have made VMC calculations of thea(1,2) in first order
by using a CI wave function of good isospin,T, and simply
varying Tz to compute theEA,T(Tz). Table XIII contains
results for theT5 1

2 isovector (n51) coefficients inA53
and A57, the T51 isovector and isotensor (n52) coeffi-
cients inA56, and theT5 3

2 isovector and isotensor coeffi
cients inA57. The energy differences are broken down in
vg, vCD, vCSB, and KCSB contributions, with thepp Cou-
lomb, @vC1(pp)#, other Coulomb (vCR), and magnetic mo-
ment (vMM) components ofvg also given.

The CIB parts of the Hamiltonian induce CD changes
the nuclear wave function, leading to higher-order pertur
tive corrections to the splittings of the isospin multiplets. W
have estimated some of these changes in VMC by repea

FIG. 14. Excitation spectrum forA56,7 nuclei from experi-
ment, and in GFMC and VMC calculations.
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TABLE XIII. Breakdown of VMC isovector and isotensor energy coefficientsaA,T
(n) ~in MeV! obtained

with CI wave functions. Total coefficients are given for VMC with CI and CD wave functions, and
GFMC CD wave functions inA56 nuclei.

A,T,n 3,1
2,1 6,1,1 6,1,2 7,12,1 7,32,1 7,32,2

^vg& 0.680~1! 1.048~2! 0.186~1! 1.501~3! 1.109~4! 0.119~1!

@^vC1(pp)&# @0.651# @1.030# @0.167# @1.458# @1.099# @0.114#

@^vCR . . . &# @0.011# @0.014# @0.001# @0.021# @0.012# @0.001#

@^vMM&# @0.018# @0.004# @0.018# @0.023# @–0.002# @0.004#

^KCSB& 0.014 0.014 0 0.025 0.011 0

^vCSB& 0.066 0.035~1! 0 0.080~1! 0.021~2! 0

^vCD& 0 0 0.101~12! 0 0 0.020~4!

aA,T
(n) ~VMC: CI! 0.760~1! 1.097~3! 0.287~12! 1.605~4! 1.141~5! 0.139~4!

aA,T
(n) ~VMC: CD! 0.760~1! 1.082~3! 0.277~12! 1.597~4! 1.125~5! 0.132~4!

aA,T
(n) ~GFMC: CD! 0.756~1! 1.120~9! 0.256~11!

aA,T
(n) ~Expt.! 0.764 1.173 0.223 1.644 1.373 0.175
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the calculations using wave functions that have a vary
Coulomb term,VaN

C of Eq. ~3.20!, added to the single
particle potential well that is used to generate thefp

LS(Rak)
components ofCV . This results in a slightly more diffuse
wave function asZ increases, and slightly smaller energ
coefficients than those obtained with CI wave functions.
the GFMC calculations, the isoscalar Coulomb term,vC8 ,
provides an additional source of CIB through the propag
ing Hamiltonian of Eq.~2.17!, which depends onTz . How-
ever, within the limited propagation time oft50.06 MeV21,
the main effect of using GFMC wave functions seems to
the slightly sharper two-body densities~discussed below!
around 1 fm, and consequent changes in the CIB poten
expectation values. All our GFMC calculations have be
made with CD wave functions, but a complete set of isoba
analog states was calculated only forA56, results for which
are shown on the penultimate line of Table XIII. There m
also be higher-order contributions to the isomultiplet sp
tings from changes to the CI expectation values, but we h
no reliable way of extracting these from under the sizea
Monte Carlo errors.
g

n

t-

e
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-
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The results tabulated in Table XIII indicate that th
present Hamiltonian underestimates the observed isove
coefficients and gives mixed results for the isotensors
should be remembered, however, that whilevCD is well de-
termined in thel 50 partial wave by theNN scattering data,
it is much less well known inl 51 and higher partial waves
while the only experimental input forvCSB is the nn-pp
scattering length difference, which has a 20% experime
uncertainty. TheA53 case would be corrected by a;10%
increase invCSB, but this would not explain much of the
discrepancy in the larger nuclei. The significant underbin
ing of the A56,7 nuclei with the present Hamiltonian ma
mean that our wave functions for these nuclei are more
fuse than they should be. By far the worst discrepancy is
the A,T57,3

2 case, where the underbinding of the grou
states is also the largest. If the Hamiltonian were alter
e.g., by increasing the net attraction from the three-nucl
interaction, to obtain the correct binding, the contribution
the CIB forces to the isovector coefficients should be
creased, both in the dominantpp Coulomb term, and the
short-rangevCSB. It is more difficult to predict the effect of
such changes on the isotensor energy coefficients.
TABLE XIV. VMC values for proton rms radii~in fm!, for quadrupole moments~in fm2), and magnetic
moments~in mN) all in impulse approximation.

^r p
2&1/2 m Q

VMC Expt. VMC Expt. VMC Expt.

2H(11;0) 1.967 1.953 0.847 0.857 0.270 0.286
3H( 1

2
1; 1

2 ) 1.59~1! 1.60 2.582~1! 2.979

3He(1
2

1; 1
2 ) 1.74~1! 1.77 21.770(1) 22.128

4He(01;0) 1.47~1! 1.47
6He(01;1) 1.95~1!
6Li(1 1;0) 2.46~2! 2.43 0.828~1! 0.822 20.33(18) 20.083
6Be(01;1) 2.96~4!
7Li( 3

2
2; 1

2 ) 2.26~1! 2.27 2.924~2! 3.256 23.31(29) 24.06

7Be(3
2

2; 1
2 ) 2.42~1! 21.110(2) 25.64(45)
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FIG. 15. The neutron and proton densities
4He, 6He, and7He.
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VIII. ONE- AND TWO-NUCLEON DISTRIBUTIONS

The one- and two-nucleon distributions of lightp-shell
nuclei are interesting in a variety of experimental settin
For example, the6He nucleus has been a popular candid
for study as a ‘‘halo’’ nucleus whose last two neutrons a
weakly bound. In addition, the polarization densities of6Li
and 7Li are important because of possible applications
polarized targets. In order to extract information on the sp
dependent nucleon properties from experiments on such
gets one must, at a minimum, understand the nucleon po
ization in the polarized nucleus. In this section we prov
our results for a variety of nucleon distributions, includin
spin-polarized and averaged single-nucleon densities, s
dependent and spin-independent two-body densities,
proton-proton distributions, and the rms radii, magnetic m
ments, and quadrupole moments.

As was discussed in Sec. VI, we do not propagate to la
enough imaginary time to allow the GFMC to significant
.
e
e

-
ar-
r-

e

in-
he
-

e

modify the rms radius of thep-shell nuclei. Thus they are
determined almost entirely by the input trial wave functio
which is constrained to be near the experimental value wh
ever known. However GFMC does make significant chan
to densities at smallr . A number of the one-body densitie
are increased near the origin, as are the peaks of many o
two-body densities.

The proton rms radii and static electromagnetic proper
are given in Table XIV. These are calculated fromCV using
impulse approximation. In general, we know that there
significant corrections to the electromagnetic moments fr
two-body charge and current contributions@45,46#. For the
magnetic moments, these corrections are only; 1–2% in
isoscalar nuclei like2H, but are; 15–20% in the isovector
T5 1

2 nuclei 3H and 3He. Therefore it is not surprising tha
we see very little discrepancy for the magnetic moment
6Li, but a sizeable error for7Li; presumably, a calculation
including meson-exchange contributions would come mu
in
FIG. 16. The neutron and proton densities
6Li and 7Li.
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FIG. 17. The spin-up and spin-down neutro
and proton densities in6Li.
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closer to the experimental values in the latter case. The q
rupole moment is a more difficult problem, particularly
6Li, where there is a delicate cancellation between the c
tributions from the deuteron quadrupole moment and
D-wave part of thea-d relative wave function. Many cluste
models for6Li fail to obtain the observed negative sign; w
have trouble getting an accurate measure of the magnit
for reasons discussed above. In the case of7Li, where there
is no such delicate cancellation, the value is only; 15–20%
too low in magnitude. Again, some of this discrepancy mig
be made up by meson-exchange corrections.

In Fig. 15, we present the neutron and proton densities
the helium isotopes, calculated with GFMC. Previously
have found that the4He charge form factor is in good agre
ment with experimental data in realistic calculations@46#,
and hence this distribution should be quite accurate. As m
neutrons are added, the tails of the distributions broaden
d-

n-
e

e,

t

r

re
n-

siderably because of the relatively weak binding of t
p-shell neutrons. In addition, the central neutron and pro
densities decrease rather dramatically. This effect does
necessarily require any changes to thea-particle core, but
can be understood at least partially from the fact that thea
particle no longer sits at the center of mass of the en
system. The motion relative to the center of mass spreads
the mass distribution relative to that of4He.

We also find that the small depression obtained in
central density of4He gradually disappears as more nucleo
are added. While the depression is clear in thea particle, it is
nearly within our statistical errors in6He and seems to hav
disappeared completely in7He. This can again be under
stood by taking into account the fluctuations in the center
mass of the core nucleons about the center of mass of
entire system. Figure 16 shows the GFMC neutron and p
ton densities for the lithium isotopes. These densities
n
FIG. 18. The spin-up and spin-down neutro
and proton densities in7Li.
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very smooth functions of the distance from the center
mass.

The polarization densities for6Li and 7Li, computed with
VMC are presented in Figs. 17 and 18, respectively. T
spin-up proton density distribution is defined by

rp↑~r !5
1

4pr 2 K C~J,MJ5J!U(
i

11sz~ i !

2

11tz~ i !

2

3d~r 2ur i2Rcmu!UC~J,MJ5J!L , ~8.1!

with similar definitions for spin-down protons, spin-up ne
trons, etc. The integral of these distributions is the total nu
ber of spin-up~down! protons~neutrons! in a fully polarized
state. The integrated quantities can be important in hi
energy experiments designed to probe the spin-depend
of the neutron or proton structure functions, while their
dial dependence may be partially accessible in experim
at lower energies. Experimentalists are considering us
dense, solid polarized6LiD targets, as an alternative to th
deuterated ammonia targets currently being used to p
neutron properties.

Polarization densities have been studied previously
cluster models, with a fixed~unpolarized! a core plus inter-
acting valence nucleons. Our calculations include the po
bility of the spins in the the corea particle being polarized
by the valence nucleon’s spin and orbital angular mom
tum, and hence it is interesting to examine the results
both the distributions and the integrated quantities.

In the spin projectionM51 state of the deuteron, th
polarization of the neutron differs from unity because t
tensor interaction induces aD state in the wave function
Integrating rn↑(r ) over r yields a probability for up-spin
neutrons of

P~n↑ !5PS1 1
4 PD512 3

4 PD , ~8.2!

wherePS andPD are theS- andD-wave probabilities of the
deuteron. In the simplest two-body (a plus deuteron! model
f

e

-

-
ce

-
ts
g

be

n

i-

-
r

of 6Li, the polarization of the neutrons is determined by t
D-state probability in the deuteron and theD-state probabil-
ity in the a2d wave function. In three-body models, rece
calculations@47# have found that the valence neutron h
P(n↑)50.93(1). Since in such a model the two core ne
trons are unpolarized, this corresponds to a total projec
P(n↑) of 1.93, or a polarization of 29%.

As expected, the up spins dominate the down spins in
M51 state of6Li at large distances from the center of mas
At very large separations, the ratio will be determined sol
by the asymptoticD/S state normalization of thea-deuteron
wave function and theD-state probability in the deuteron. A
small r , we find that the spin-down density exceeds t
spin-up density, presumably because the spins of the o
nucleons prefer to try to pair with the core nucleons to
spin-zero state. Even though we find this effect to be sign
cant, the integrated spin densities agree reasonably well
the cluster model calculations. The integrated neutron de
ties in 6Li are found to be 1.93 for spin up and 1.07 for sp
down, respectively, yielding the same net polarization
29%.

FIG. 19. The two-nucleonSi j t i•t j density of 6Li computed
from CT and by GFMC.
FIG. 20. The proton-proton densities in4He,
6He, 7He, 6Li, and 7Li nuclei.
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The P(p↑) in 7Li is found to be 1.94 instead of 2 a
predicted by the independent-particle shell model. The n
trons carry about half this remaining spin, as the spin-up
spin-down neutron integrated densities are 1.98 and 2.0

We have also computed a variety of two-nucleon dis
bution functions. These are defined by

r2,p~r !5
1

4pr 2 K CU(
i , j

Oi j
p d~r 2ur i2r j u!UCL , ~8.3!

where the operatorsOi j
k are given in Eq.~3.9!. While typi-

cally these two-body correlations cannot be directly m
sured, they provide the expectation values of two-body
erators and can be important ingredients in interpreting
results of experiments. Transition matrix elements of t
type are needed for extracting the effective weakpNN cou-
pling constant in parity-violating experiments. Figure
shows VMC and GFMC calculations of theSi j t i•t j NN pair
distribution function. This correlation is strongly dominate
by pion exchange, and is responsible for the toroidal sha
which characterize the coupling of spin to space in
nucleus@48#. We see that the structure is somewhat enhan
by the GFMC.

Finally, we present the proton-proton distributions~scaled
to have normalization integrals ofZ21) for 4He, 6He, 7He,
6Li, and 7Li in Fig. 20. These distributions are directly re
lated to the Coulomb sum measured in inclusive longitudi
electron scattering; such measurements in3He have been
used @49# to put constraints on therpp(r i j ), and realistic
calculations agree with the experimental results@50#. The
behavior ofrpp(r ) at short distances is largely determin
by the repulsive core of theNN potential and is nearly inde
pendent of the nucleus, but at larger distances it is de
mined by the size of the nucleus.

We show results forrpp in 6He and 7He in order to
directly compare thea particle proton-proton distribution to
that in thea-particle cores of6He and7He. Unlike the one-
body densities, these distributions are not sensitive to cen
of-mass effects. We find that the proton-proton distribut
spreads out slightly with neutron number in the helium is
topes, with an increase of the pair rms radius of appro
mately 4% in going from4He to 6He, and 7% to7He. While
this could be interpreted as a swelling of thea core, it might
also be due to the charge-exchange (t i•t j ) correlations
which can transfer the charge from the core to the vale
nucleons. Since these correlations are rather long-ran
they can have a significant effect on the proton-proton d
tribution.

Finally, we mention that calculations of the electroma
netic ground-state and transition form factors are underw
Complete results for these quantities, including excha
current effects, will appear in a separate paper.

IX. CONCLUSIONS

Quantum Monte Carlo~QMC! methods are now a power
ful tool for the study of lightp-shell nuclei. At present, we
u-
d

-

-
-
e
s

es
e
d

l

r-

r-
n
-
i-

e
d,
-

-
y.
e

can write plausible variational wave functions with th
proper quantum numbers for the given state of interest,
they do not give sufficient binding to provide stabilit
against breakup into subclusters. However, the GFM
method rapidly damps out the small amount of highly e
cited states contained in the VMC wave functions, produc
ground states that are stable in the case of6Li and 7Li. The
current major limitation is the small value oft that can be
reached in most calculations. This makes it important t
the starting VMC wave functions have a proper mix of t
appropriate spatial symmetries, and negligible contamina
from low-energy excited states.

The energies obtained for the ground and low-lying e
cited states are close to, but somewhat above, the experim
tal numbers. We believe the discrepancy is probably the f
of the Hamiltonian, most likely the phenomenological sho
range part of the three-nucleon interaction, rather tha
shortcoming of the calculation. We note that the differen
between experimental and theoretical energies is much
that ^Vi jk&, and might be rectified by an improved thre
nucleon potential. Despite the discrepancies in the grou
state energies, the excitation spectra are reproduced
well. We believe this is a demonstration that the shell str
ture of light nuclei can be obtained directly from bare tw
nucleon interactions that fitNN scattering data.

The QMC methods developed here can be extende
eight-body nuclei with the present generation of compute
We already have calculations in progress for the ground
low-lying excited states ofA58 nuclei. The next major task
will be to refine our model for the three-nucleon interactio
perhaps including those relativistic corrections which fi
appear at the three-nucleon level@14,15#, with the intention
of fitting the energies ofA53–8 nuclear states with 1% ac
curacy. Now that accurate QMC calculations of these sta
are possible, there are a host of interesting problems
become accessible, including the response of6Li and 7Li to
electron scattering, and many low-energy electroweak c
ture reactions of astrophysical interest, such as4He(d,g)6Li
and 7Be(p,g)8B. There also remains the problem of adap
ing the GFMC methods here to the study of larger syste
perhaps through methods similar to the cluster expans
used in VMC calculations of16O @51#.
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