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Quantum Monte Carlo calculations of nuclei with A<7
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We report quantum Monte Carlo calculations of ground and low-lying excited states for nucleAwith
using a realistic Hamiltonian containing the Argonng two-nucleon and Urbana IX three-nucleon potentials.
A detailed description of the Green’s-function Monte Carlo algorithm for systems with state-dependent poten-
tials is given and a number of tests of its convergence and accuracy are performed. We find that the Hamil-
tonian being used results in ground states of ifththand “Li that are stable against breakup into subclusters,
but somewhat underbound compared to experiment. We also have resufidfofHe, and their isobaric
analogs. The known excitation spectra of all these nuclei are reproduced reasonably well and we predict a
number of excited states ifiHe and "He. We also present spin-polarized one-body and several different
two-body density distributions. These are the first microscopic calculations that directly produce nuclear shell
structure from realistic interactions that RN scattering datd.S0556-28137)02810-0

PACS numbses): 21.10-k, 21.45:+v, 21.60.Ka, 27.20:n

I. INTRODUCTION Recently we reportef4] results for the ground states of
®He, °Li, and ®Be, and the first two excited states i,

A major goal in nuclear physics is to understand howcalculated with the Green’s-function Monte Caf@FMC)
nuclear binding, stability, and structure arise from the undermethod for a Hamiltonian containing the Argonngs NN
lying interactions between individual nucleons. A largeand Urbana IXNNN potentials. Here we present improved
amount of empirical information about the nucleon-nucleongnd extended calculations for tie=6 nuclei and the first
scattering problem has been accumulated over time, resultingetajled studies ofHe, ’Li, ’Be, and’B, including all the
in ever more sophisticatedN potential models. However, opserved low-lying excitations. In this work, it is possible to
for many years, it has been feasible to calculate exactly onlgee the full splendor of the nuclear shell structure emanating

three- and four-body nuclei with realistiN interactions. irectly from a microscopic interaction that filN scatter-
Thanks to the ongoing advances in computational resourceﬁ1g data

particularly the advent of massively parallel computers, it is The Argonnev;s model [5] is one of a class of new,

now possible to apply sophisticated quantum Monte Carl%. i .
N : : ighly accurateNN potentials that fit botlpp andnp scat-
methods to the study of lighg-shell nuclei, which have a far tering data up to 350 MeV with a2/datum near 1. This

richer spectrum to investigate. o . : ;
b g ecessarily involves the introduction of charge-independence

Thep shell has long been a testing ground for shell mode e g
methods[1]. Shell-model studies oA=4—7 nuclei have reaking in the strong force; a complete electromagnetic in-

recently progressed to the stage of large-basis, “no-core'ter?Ction is also included as an integral part of the model.
calculations usingG matrices derived from the latest This makes the model useful for studying charge dependence
NN-interaction modelg2]. Alternatively, there have been @nd charge-symmetry breaking in nuclei. TR&l potential
extensive studies of these light nuclei with cluster-clusters supplemented by a three-nucleon interaction from the Ur-
models, using combinations ™N and N potentials[3].  bana series dINN potential§ 6], including both long-range
Our goal here is to calculate properties, in particular groundtwo-pion exchange and a short-range phenomenological
state energies, of the light-shell nuclei directly from bare component. The Urbana model IX is adjusted to reproduce
NN and NNN interactions, without any intermediate effec- the binding energy ofH and give a reasonable saturation
tive interaction. density in nuclear matter when used with Argonng. De-
tails of the Hamiltonian are given in Sec. Il.
The first step in our calculation is the construction of suit-
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trial functions are adjusted to minimize the energy expectamore peaked than the input VMC densities, but overall they

tion value, evaluated with Monte Carlo integration, subjectare very similar. Unfortunately, both VMC and GFMC cal-

to the constraint that rms radii are close to the experimentatulations are not very sensitive to the very long-range prop-

values for®Li and “Li. Unfortunately, the best trial functions erties of the wave functions. Therefore it is not yet possible

we have been able to build do not gigeshell nuclei stable t0 accurately calculate the quadrupole moments and

against breakup into subclusters. Nevertheless, these trigymptotic D/S ratios with these methods. Finally, we

functions provide a good starting point for the GFMC calcu-Present our conclusions in Sec. IX.

lation. The variational wave functions and a brief description

of the variational Monte Carl/MC) calculations are given Il. HAMILTONIAN

in Sec. lll. e R .
The GEMC method projects out the exact lowest energy Qur Hamiltonian includes a nonrelativistic qne-body ki-

state, ¥, for a given set of quantum numbers, from a suit-netic energy, the Argonne, s two-nucleon potential5] and

able trial function, ¥;, using ¥o=Ilim__ . .exd—(H the Urbana IX three-nucleon potentfd]

—Eg) 7] P +. The method has been used with great success in

a variety of condensed-matter problems, ang-shell nuclei H=2 K+ vij+ > Vik- (2.0

with realistic interactions[8]. Our first calculations for i i<j i<j<k

p-shell nuclei[4] were made with a short-time approxima-

tion for the propagation in imaginary time, carried out to

7=0.06 MeV ! and extrapolated ta=c=. In the present

work we have improved the algorithm by adopting an exac

two-body propagator which allows bigger time steps, saving 2

The kinetic energy operator has charge-indepen@@intand
charge-symmetry-breakin@SB) components, the latter due
fo the difference in proton and neutron masses,

significantly on the computational cost. We also have started Ki=KE'+KESB=— — i + i 2

our calculations with better trial functions, which allows 4\m, m,

more reliable results to be obtained from GFMC propaga- 521 1

tions that are limited to smaft. A detailed discussion of the - —(— - —) V2. (2.2
method as applied to realistic nuclear forces is given in Sec. 4\mp  my

V. The Argonnevqg potential can be written as a sum of

The VMC aqd GFMC calculations fgs-shell nuclei are electromagnetic and one-pion-exchange terms and a shorter-
very computer intensive, and would not have been poss'bl?ange phenomenological part

without the recent advances in computational power due to
the advent of massively parallel machines. Section V de- .Y, 7m, R

. . . ; : vij =it tug. (2.3
scribes the implementation of the GFMC algorithm in a par-

allel enVironment, including issues of communication be'The e|ectr0magnetic terms include one- and two_photon_
tween processors and load balancing. We have alsgychange Coulomb interaction, vacuum polarization,
performed a number of tests of the GFMC me’[hOd, |nclud|ngjarwin-|:0|dy’ and magnetic moment termsi with appropri-
comparisons to other exact calculations feshell nuclei,  ate proton and neutron form factors:

studies of extrapolation im, and sensitivity to the quality of
the input trial function. These tests are described in Sec. VI.  v¥(pp)=Vc1(pPp) +Veo+Vyp+ Vor+Vum(PP).

Results of our GFMC calculations are presented in Sec. (2.9
VII. We have obtained energies for five states of unique
(J™T) in the A=6 nuclei, and another five states An=7 v”(np)=Vci(np)+Vyu(np), (2.9
nuclei, not counting isobaric analog states. In general we find
the nuclei are slightly underbound with the present Hamil- v”(nn)=Vyu(nn). (2.6

tonian, butLi (’Li) is stable against breakup int@+d

(a+t). The low-lying excited states are correctly orderedThe Vium contain spin-spin, tensor, and spin-orbit compo-

with reasonable excitation energies. The VMC energies arBents. Detailed expressions for these terms, including the

found to lie~3 (4.5) MeV above the GFMC results iA=6 form factors, are given in Ref5]. These terms should be

(7) nuclei, but with very similar excitation energies. We haveincluded in calculations aiming for better than 99% accuracy.

also used the VMC wave functions to perform small-basig=0r example, the contribution af”(np) to the binding en-

diagonalizations of states with the same quantum number@'9y of the deuteron is- 0.02 MeV, i.e., 1% of the total.

but different symmetries. These calculations optimize the ad- The one-pion-exchange part of the potential includes the

mixtures of different-symmetry contributions to the groundcharge-depende€D) terms due to the difference in neutral

state, and also provide estimates for higher-lying excitednd charged pion masses. It can be written in an operator

states with the sameJ{;T) quantum numbers. We verify format as

that these states, not all of which have been observed, do

indeed lie at moderately higher excitations. The VMC spec- qufz(ﬂ

tra are also discussed in Sec. VII. " mg
One- and two-body density distributions from both VMC

and GFMC calculations are presented in Sec. VIII. ThesavhereT;;=37,7,;— 7, 7; is the isotensor operator and

include the densities of spin-up/down nucleons in polarized L w0 .

SLi and “Li. In general, the GFMC densities are slightly Xij = 3(Xjj + 2Xjj), (2.8

2
) s 7 7+ X T, @7
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.. :%(Xﬂ —Xﬁ), (2.9 den_sity (_)f nuglear matter and the bindi_ng energy>bff in
conjunction with the Argonne g interaction. These values
X{}‘z[Y(mr)oi-oj+T(mr)Sj]. (2.10 are only slightly different from the model VIII values,

A,.=—0.028 MeV andJ,=0.005 MeV, that were adjusted
HereY(mr) and T(mr) are the normal Yukawa and tensor for use with the older Argonne, interaction. In principle,
functions with a cutoff specified in Ref5], andX** are  the Vﬁk can have other termd 2], however we need addi-
calculated withm=m_+ andm . tional data to obtain their strengths; presumably a part of it is

The one-pion-exchange and the remaining phenomengaiue to relativistic effect§13—-15.

logical part of the potential can be written as a sum of 18 Direct GFMC calculations with the full interactiofin
operators, particular spin-dependent terms which involve the square of
the momentum operatphave very large statistical errors,
for reasons that will be discussed in Sec. IV. Also the CIB

T R_
vij FUij ‘pg}m”p(rii)oﬁ : (219 terms inH are fairly weak and therefore can be treated con-
veniently as a first-order perturbation. Further, using a wave
The first 14 are charge independent, function of good isospin significantly reduces the cost of the
114 - ) calculations. Hence we construct the GFMC propagator with
Of "*=[1(0i-0)),S;j ,(L-9),L*L(0i-7)),(L-9)?] a simpler isoscalar Hamiltonian,
®[1!(Ti'7-j)]! (212)

and the last four, i i< i<j<k

!

Of *"%=[1(0i-09).5;18Tjj (1 7,)), (213  Wherevjj is defined as

break charge independence. We will refer to the potential " / ,
from thep=15—17 terms as P and from thep=18 term Vi~ p;g 0p(rij) Off +oc(riy)- (218
asv°SB. We note that in the context of isospin symmetry the
Cl, CSB, and CD terms are respectively isoscalar, isovectoiThe interactionui’j has only eight operator terms, with op-
and isotensor. eratory 1,(oi- 09),S,(L-§) ]®[1,(7;- 77) ], chosen such that
The potential was fit directly to the Nijmeg@N scatter- it equals the isoscalar part of the full interaction in @lhnd
ing data basg9,10] containing 1787 p and 2514np datain P waves as well as in thD; wave and its coupling to the
the range 6-350 MeV, with ay? per datum of 1.09. It was 3S,. The strong interaction terms are related to thedylby
also fit to thenn scattering length measured di{=", y)nn
experiments and the deuteron binding energy. There could, ~ v1=vi+5vet+fvigt F011t JU1oH FU 15T 3014,
in principle, be more charge-independence-breaKiatB)
terms such ak - ST; or §;;(7,+ 7,;) but the scattering data V=Vt Ut U0t JV11— U2t FV13T GV 14,
are not sufficiently precise to identify them at present.
The Urbana series of three-nucleon potentials is written as v3=v3t Vet fUi0t FU1 FUIT TVt V1,
a sum of two-pion-exchange and shorter-range phenomeno-
logical terms, V4=Ua+ 109~ 1V10— sV 11T 3V 12+ 3V 13+ 15V 14,

_\/27 R
Viik= Vijk + Vijk - (2.14 VE=Us— 15V13~ 16014,

The two-pion-exchange term can be expressed simply as ' 5 5
UVg=Ue ™ 28V13~ 28V 14

2T __ T T r_ 1 3 1 3 9 15
Vijk_c%c Ao AKX i Ty T T V7=U7— 309t 30107 3011t 3010~ gV 13t TV 14,

_ 1 3 1 3 5 19
+Con[ X XTIl 7 7,7y 7], (2.15 vg=vg+ 09— 3V10t 3V11~ 2012+ 5V13~ B V14
(2.19

where X7 is constructed with an average pion mass,

_1 2 Th : d The isoscalar part 0¥ ,(pp) is also included irH'. We
My =35Mzot 5My=. The anchmmutator and commutator yeorive it by writing the projector for a pair of protons in

terms are denoted by andV{j, , respectively, and for the terms of isoscalar, isovector, and isotensor operators:
Urbana modelsC,,.=3A,,, as in the original Fujita-

Miyazawa mode[11]. The shorter-range phenomenological ~ #(1+ 72)(1+ 7)) = 3(1+ 37 )+ 7+ 75+ 5 Tyj),
term is given by (2.20

o(ri)= AZT +1i2 i T |V , 2.2
Vﬁk:cyE(:IicUOTz(mwri])Tz(mwrjk)' (2.16 velriy) =lecl ronnlVelep), (@20

1
= - _ 1p_1
The parameters for model IX aws, .= —0.0293 MeV and ac(AZ,T)= A(A—1) [2(2=D)+3A=3T(T+ D).
U,=0.0048 MeV. They have been determined by fitting the (2.22
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The sum over all pairs ofic(A,Z,T)+ ﬁTi 7 is just the TABLE I. Values of shape parameters used in generation of trial
number ofpp pairs in the given nucleus. functions. All units in fm. Notation is same as RE1L7].

Thevj; is a little more attractive than;; ; for example,

e L : ag 0.35 Co 1.1 Ro 0.75
He is overbound by~2 MeV with vj;. The expectation a, 0.4 ) 3.0 R, 238

value of the differencév;; —v/;) scales likgV;j,), presum- a, 0.4 d 20 R, 3.7

ably because three-body and higher-order clusters give iméb 0.24 R, 0.4

portant contributions to it. Note that i*H and “He the two-
body cluster gives zero contribution {o;; —vi’j) since they
are identical in low partial waves. We compensate for thisstrow wave function¥ ;, depends on the nuclear state under
tendency towards overbinding by using\/é}k in which the investigation. For the-shell nuclei we use the simple form
repulsive U, term of Eg. (2.16 has been increased by

{H fe(rij)

i<j

~30% in theH'. This ensure$H’)~(H) so that the GFMC W)=

propagation does not produce excessively large densities due J

to overbinding. The contribution ofH—H") is calculated

perturbatively. Here f(ry;) andficjk are central two- and three-body corre-
lation functions and

|[PA(IMTT,)). (3.4

I1 ff
ook K

Ill. VARIATIONAL MONTE CARLO

- . _ [®3(3332))=AlpTpint), (3.5
The variational method can be used to obtain approximate
solutions to the many-body Schiiager equation, |P,(0000))=A|pTpInTnl). (3.6)
HW¥=EW, for a wide range of nuclear systems, including
few-body nuclei, light closed shell nuclei, nuclear matter, The two-body correlation operatds;; is a sum of spin,
and neutron starfl6]. A suitably parametrized wave func- isospin, and tensor terms:
tion, ¥y, is used to calculate an upper bound to the exact
ground-state energy, Ui= S
ij

p=2,6[ up(rij)Off, (3.7

kl;[j R (P Tjk)
_(Wy[H[Py) '

V—WBEO. (31)

while the two-body spin-orbit correlation operator is given
by
The parameters i\, are varied to minimizeE,,, and the
lowest value is taken as the approximate ground-state en-
ergy.

Upper bounds to excited states are also obtainable, either
from standard VMC calculations if they have different quan-with
tum numbers from the ground state, or from small-basis di- 18
agonalizations if they have the same quantum numbers. The Of "*=[10i-0y,S;.(L-9;I®[1r-7]. (3.9
correspondingV,, can then be used to calculate other prop- Ls ) _
erties, such as particle density or electromagnetic momentd "€ Ui andU;;” correlations are induced by the two-nucleon
or it can be used as the starting point for a Green’s-functionteraction. The equations used to generate the functions
Monte Carlo calculation. In this section we first describe ourfc(fij) andup(ri;) are given in Ref[17]; they contain a
ansatzfor W, for the light p-shell nuclei and then briefly number of variational parameters to be determined by mini-

review how the expectation value, B8.1), is evaluated and mizing the energy. The shape parameters listed in Table |
the parameters o, are fixed. seem to have negligibla dependence. Their values are de-

termined by minimizing thé'H energy, and are then used for
all subsequerA=4 calculations. There are also a number of

parameters that describe the long-range behavior of the cor-
Our best variational wave function for the nuclei studiedrelation functions which do vary with, as well as with the

UiS= 2 up(ri))Of, (3.9
p=7.8

A. Wave function

here has the forri7] Hamiltonian. Our best values for these parameters are given
in Table 1.
C P - _ H in-
|W)=|1+ E (Uit UW'HZ UiLjS |Wp), The fij, fii, and_u,,k are three-nucleon corr.elatlons in
i<j<k i<] duced byv;;. The first two have an operator-independent
32  form:
where the pair wave functionV/p, is given by ficjk=1+Q§(rij"fik)(fji'rjk)(fki'rkj)eXp(—quijk),
1 (3.10
i<] ! fhe=1—0af(1—ricrj)exp —abRi), (3.11

The U;;, US®, Ui, andU" are noncommuting two- and  whereR;j =r; +ry+r . TheUj; involve additional spin-
three-nucleon correlation operators, and $his a symmetri-  isospin operators and are somewhat more complicated; they
zation operator. The form of the totally antisymmetric Ja-are discussed in Ref7]. The Ui} are three-body correla-
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TABLE II. Values of asymptotic parameters used in generation TABLE IV. Energy obtained with different trial functions for

of trial functions. Notation is same as RE1L7]. 6Li in MeV, and relative cost to compute.

3H A=4 Wave function Ey SE  Cost
Eoo (MeV) 3.2 17.0 |Wp) —25.47(30) 1.00
Eo1 (MeV) 6.0 16.0 R —27.00(13) —153 1.19
E1o (MeV) 13.0 23.5 [1+2.<,<kU.,k SRS —-27.11(12) —1.64 1.59
Ey; (MeV) 6.4 16.5 [1+3URSHS U We)y  —27.89(12) —242 223
hoo 0.85 1.04 [Ty —28.14(11) —2.67 2.66
ho1 1.70 1.71
hy 1.74 1.54
hy 4 1.72 1.68 ~TNI

' + . .

e 0026 0.035 Tr)=|1 E Uuk |Wp) (3.13
m —0.007 -0.015 ~TNI : :
I3 0.0003 0.0003 Here Uj; is a truncated TNI correlation from which the

@ 0.92 0.86 commutator termch”k, has been omitted:

U= €AV + erViy - (3.14

tions induced by the three-nucleon interaction, which w

take in the form suggested by perturbation theory: ®rhe strength of the anticommutator term is increased to com-

pensate, withe ,~1.5¢5. From Table IV we see that this
simplification gets 90% of the gain of adding the fulf}y’,
U= V(T T T, (3.12  at3 the cost. The computer time is reduced so significantly
X becausg X{j ,Xji} can be written as a generalized tensor op-
erator involving the spins of only nucleohsandk; thus the
with T =yr, y a scaling parameter, ang a strength param- time scales as the number of pairs rather than the number of
eter. Herex=A, C, andR refers to the different parts of the triples. As discussed below is in fact the most economi-
NNN potential. With the present Hamiltonian we use thecal starting point for the GFMC calculations.
three-body parameters given in Table Il for all nuclei stud- The Jastrow wave function fgk=6 nuclei is more com-
ied here. plicated, as two nucleons must be placed in phehell. We
The relative importance and cost of computing differentuseLS coupling to obtain the desirediM value of a given
elements of the full variational wave functioh, are shown state, as suggested in shell-model studiep-shell nuclei
in Table 1V for the case ofLi. The pair wave functionV [1]. Different possibleLS combinations lead to multiple
is the least expensive to compute but gives a rather poaromponents in the Jastrow wave function. We also allow for
energy. The successive addltlonL(b”k , Uhs, andUj;, cor-  the possibility that the central correlatiofig(r;;) and ffjk
relations to make up the full’\, lowers the energy by-2.7  could depend upon the shells ¢r p) occupied by the par-
MeV, but requires~2.7 times more computation thahp. ticles and on thé.S coupling. The Jastrow wave function is
However, about 60% of the energy gain can be obtained fotaken as
only a 20% increase in computation by using the trial func-

tion ¥ defined by |‘1’J>=AH 11 ?jil]nl fims fnié’H fn56}

i<j<ks4

TABLE lll. Values of three-nucleon correlation parameters. No-

tation is same as Reff7]. X <H . fss(rij)kl_[4 fsp(Mks) Fsp(rie)
I J$ =

€a —0.00025
€c —0.0004 x> (ﬂLsfbg(rse)@e(LSJMTT3)1234:58)}}-
€ —0.0005 LS
y 0.72 (3.15

c -6
qg (fmfl) 0.20 The operatord indicates an antisymmetric sum over all pos-
qg (fm =) 0.85 sible partitions of the six particles into fosrshell and two
q’1) . 0.16 p-shell ones. For the two-body correlations we use
az (fm ) 0.05 fo{(r)="f.(r) from the *He wave function, while
q;° (fm~2) -0.12
qgs (fm~32) 0.12 fsp(r):[asp+ bspW(r)]fc(r)+Csp(1_exp[_(r/dsp)2]),
a3° (fm ~2) 0.85 (3.16

T -1 —
g; gmf% ggig fES(r) =[app+ b W(r) 1 o(r) + (1 —exd — (r/dyp)2]).
gz (fm) 1.2 (319
qQ; 0.35 Here we have supplemented thgr) with a long-range tail

and allowed for a short-range modification with a Woods-
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TABLE V. Values of variational parameters prshell nuclei.

A=6 A=7

1392] L3p[2] L3p[11] 2P[3] 2F[3] [21] & [11]]
asp 0.0 0.0 0.0 1.0 1.0 1.0
bsp 1.0 1.0 1.0 0.0 0.0 0.0
Csp 0.9 0.9 0.9 0.85 0.85 0.85
ds,, (fim) 3.2 3.2 3.2 3.2 3.2 3.2
app 1.0 1.0 1.0 1.0 1.0 1.0
byp 0.0 0.0 0.0 0.0 0.0 0.0
Cpp 0.1 0.1 0.4 0.1 0.1 0.4
dpp (fim) 3.2 3.2 3.2 3.2 3.2 3.2
R; (fm) 4.0 4.0 4.0 4.0 4.0 4.0
a; (fm) 1.0 1.0 1.0 1.0 1.0 1.0
V, (MeV) —20.0 —-18.0 —-18.0 —-20.0 —-18.0 —-18.0
R, (fm) 4.0 4.0 4.0 4.0 4.0 4.0
a, (fm) 15 15 15 15 15 15

Saxon factor, W(r)={1+exd (r—R)/as]} ' The a;,,  excited state is above the threshold for decayrton+n
bsp. etc., are variational parameters, whose values are givetnd has a width of=110 keV; we treat it here as a stable
in Table V. For the three-body correlations, our best presergtate with zero width. In the shell model, the
trial function has f53=f% as in Eq. (3.10, and (J";T)=(0";1) ground state of°He is predominantly a

SSP=f3PP=1. 25t1 [n]=19[2] state, where we use spectroscopic notation
The LS components of the single-particle wave function {0 denote the totdl andS of the state and the Young pattern
are given by [n] to indicate the spatial symmetry. The (2) first ex-

cited state is predominantly 8D[2] state. We allow for a
possible®P[11] admixture in both states, using amplitudes
| Po(LSIMTT)1230:59 =|P4(0000) 123465 (Rus) ¢ °(Reg)  Boo @nd Buy in the ground state, anyo and By, in the
excited state. After other parameters in the trial function have
been optimized, we make a series of calculations in which
the B s may be different in the left- and right-hand-side
wave functions to obtain the diagonal and off-diagonal ma-
trix elements of the Hamiltonian and the corresponding nor-
malizations and overlaps. We diagonalize the resulting22
energy matrices to find th@ s eigenvectors. The shell-
X[vs(3ts) v6(%t§)]TT3). (3.1 model wave functions are orthonormal, but the correlated
V¥, are not. Hence the diagonalizations use generalized ei-
genvalue routines including overlap matrices. We also calcu-
The #LS(R,,) are p-wave solutions of a particle of reduced late the position of the three complementd®[ 11] states,
Lo : , , with (3™ T)=(2%;1), (1*;1), and (0";1); only one of
massz my in an effectivea-N potential. They are functions ' AT A )
of the distance between the center of mass of dgheore these has been tentatively identified experimen{dl}. The
(which contains particles 1-4 in this partitioand nucleon
k, and again may be different for differebS components.
We use a Woods-Saxon potential well:

X{[Y1m(Qas)Yim: (Qas)Iim,

X [Xs(%ms)Xe(%mé)]SMS M

-24

1.67 251
=26 5.65 10 1

r—R.\1-1 537 751 —_—

__\/LS p —— D2 3 !
VaN(r)—Vp l+ex% a )} , (319) o | 1.80 251 2] TR Di2] ]

P é "o Y i TTTop

1,
? v St "

g -30 - 218 30 © .

wherevr';s, Ry, anda, are variational parameters and we ]
allow the depth of the well to vary with theS composition. He ortd
The values of these parameters are also given in Table V
The wave function is translationally invariant, hence there is
no spurious center-of-mass motion.
The experimental spectra fér=6 nuclei[18] are shown

in Fig. 1. The ground state diHe is strong stable, but de-
cays byB~ emission with a mean life of 807 ms. The first FIG. 1. The experimental spectrum fAr=6 nuclei.
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TABLE VI. B,s, components inPA=6 states, in order of in-
creasing excitation fof =0 andT=1.
(W7 '§2] °92] 'D[2] °D[2] ‘'P[11] °P[11]
(1%,0) 0.987 0.117 0.111
(3*:0) 1
(2*:0) 1
(1,0 —0.074 0.949 —-0.306
(17,0 —0.153 0.300 0.942
(0";1) 0.967 —0.253
(2%;1) 0.880 0.476
(2%;1) —0.476 0.878
(1*:1) 1
(0*:1) 0.262 0.965

normalizedpB, s for these different states are given in Table

VI.

The spectrum fofLi contains a (1;0) ground state that
is predominantly®S[2] in character and a triplet ofD[2]
excited states with (3;0), (2;0), and (1";0) compo-
nents. In addition, there are {01) and (2;1) excited
states that are the isobaric analogs of firte ground and

excited states. ThéLi ground state is stable, while the
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tion makes the ground state a resonance, with a width of 92
keV. Again, we neglect the resonance character of these
states in constructing the trial function. Most of the numeri-
cal results calculated here for the CIB terms of the Hamil-
tonian are obtained by interchanging neutrons and protons in
the wave function. This does not allow for the changes ex-
pected in®Be compared t§He due to the Coulomb force, so
we have also made some calculations adding a Coulomb
termVCN(r) folded over nuclear form factors, to the,\(r)
used to generate the single-partigdg(R ) functions:

4
_yzl[l—y‘z]‘2

4
]

(3.20

c e’ 1
VaN(r)=ZT 1—§exp(—xa)

1
— Eexp( —Xp)| 2+ X+

Herex,=12r/r,, x,=\12/r,, andy=r,/r,, with the
charge radiir ,=1.65 fm andr,=0.81 fm. This additional
potential term can be used with strengtk-0, 1, or 2 for
He, SLi, or ®Be, respectively, corresponding to the average

(3";0) first excited state is above the threshold for breakug=oulomb interaction between the core and ap-shell

into @+ d, but is narrow with a width of 24 keV. The (Q1)

nucleon.

second excited state is even narrower, being unable to decay The full A=6 wave function is constructed by acting on

to a+d without isospin violation, and thus has a width of the |‘I’J> Eqg. (3.19, with the sameU;;,

Ui, Uijc. and

only 8 eV. The higher excitations have widths of 0.5 to 1. 7U ik ' correlations used ifHe. The one exception is that the
MeV, but we will treat them here as well-defined states. Fonoptlmal strength of théJ;;, correlations is reduced slightly

the (1*;0) ground and excited states we n@y;, 8,;, and
B0 amplitudes by diagonalizing a>X383 energy matrix. The
latter amplitude corresponds to an unobser¥Bfi11] state,

asA increases. In principle, thg;; could be generalized to
be different according to whether particieandj are in the
s or p shell, but this would require a larger sum over the

which we also obtain in this diagonalization. However, onlydifferent partitions and would increase the computational

the 8,, amplitude contributes to the {30) and (27;0) ex-
cited states. Again, Table VI gives a summary of e
amplitudes.

cost by an order of magnitude.
The Jastrow wave function fok=7 nuclei is a straight-
forward extension of E¢3.15), with the added specification

The ground and first excited states4Be have the same of the spatial symmetryn] of the angular momentum cou-
character as those ifHe, except that the Coulomb interac- pling of threep-shell nucleons:

[P 5)= AH IT s I1 fisprsses .iﬁ?H fSRof SBPf SBPf "}
<j<k=4 I<m=4
X| T fsdrip IT fop(ris) fsp(Tie) fsp(Fir) 2 (ﬁLsm f;§<r|m>|d>7<LS[n]JMTT3>1234;56>)}].
i<j<4 k<4 LS[n] 5<I<m

(3.21

The single-particle wave function is then

|D7(LSNTIMTT3)1234:569 = | P4(0000) 123085 (Ros) 5 (Rae) b5 (Ra7)

X{[Ylm,(QaS)Y1m|/(Qae)Ylml”(Qw)]LML[n][Xs(%ms)Xe(%mé)X7(%mg)]SMs M

X[ vs(5t3) ve(3t5) v7(5 t)]TT3>- (3.22



Energy (MeV)

There is an implicit complementary symmefmy’ ] for the
spin-isospin part of the wave function, to preserve the overal
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1 FIG. 2. The experimental spectrum fér=7

) and 3~,3) pieces. The lower state is mixed with a
D[21] component, while the upper state h&®[21],

antisymmetry, which we do not show here explicitly; for a 4p[21], and 2D[21] contributions. Again we have per-
detailed discussion of the symmetry considerations see Afformed diagonalizations in the, g,y amplitudes to project

pendix 1C of Ref[20]. The full wave function is again built
up using Eq.(3.2) with the added definition of the central
p-shell three-body correlatioff;g"=
The experimental spectra fér=7 nuclei[18] are shown
in Fig. 2. In the shell model, the lowest states for e 3

nuclei “Li and "Be have a predominantlyP[3] character,

split into (3™;T)=(37,%) ground and {~,3) first excited

SSs
ijk -

out the lowest £ ~,3) and ¢, 3) states.
The diagonalizations confirm that the ground and first ex-

cited states are almost puf®[3] and the second and third

excited states are almost puf&[3]. We have also calcu-
lated the next excited state of eatlas given by our projec-
tions to confirm that they lie above these first four states. The
normalized amplitudes of the lowest two states of ehelne

states. These states are all strong stable, the first excitgtiven in Table VII. These higher excitations include a triplet

states having mean lives 100—-200 fs, while the ground of predominantly 4P[21] states: éii)!
state of'Be decays weakly with a mean life of 53 days. Each( 1- 1
ground state can also have contributions with a mixed spatiaIL
symmetry, including?P[21], *P[21], “D[21], and ?D[21]

components, while the first excited state has admixtures of
2p[21], “P[21], “D[21], and ?Y111] amplitudes. We

2 ]
he

-1, and

), and a & ,3) state that is predominantlD[21].
experimental spectrum shows a similar ordering of

tates, except that the;(,3) comes in the midst of the
4P[21] states, and no second {,3) state has been identi-

have diagonalized 85 matrices for these states. Higher in fied in this range of energy excitation.

the spectrum is a predominantifF[ 3] state that splits into

The spectrum foll = 2 states inA= 7 nuclei is also shown

TABLE VII. B,s,components ilA=7 states, in order of increasing excitation o= 3 and T=3.

37T 2pP[3] 2F[3] 2p[21] 4p[21] 2D[21] ‘D[21] 29[111] 49117
) 0.998 0.001 0.050 —0.041 0.012
) 0.994 —-0.087 0.001 -0.068 —0.010
) 0.998 0.059
) 0.995 0.073 —0.060 0.036
) —0.059 0.969 0.168 —0.171
) —0.052 0.999
) —0.041 —-0.022 0.998 0.039 -0.015
) 0.035 0.412 0.909 -0.014 —-0.057
) 0.864 0.480 —0.153
GH 1
Ct)) 1
—0.448 0.841 0.303

3—- 3
(37,32

12
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in Fig. 2. The € ;2) ground state for'He is 0.44 MeV
above the threshold for breakup intble+n with a width of
160 keV. The isobaric analogs have widths of 260, 320, and
1200 keV for’Li, "Be, and’B, respectively. This state can
have contributions fronfP[21], °D[21], and *§[111] am-
plitudes, and we again diagonalize & 3 matrix to evaluate

the Busin CF)mponents, as shown |T11Ta§)Ie2VII. We also cal- SHe, SLi, "He, and’Li, respectively. The spin, isospin, and
culate the first three excited states:za (3) “P[21] state, &  apgor operatorﬁ)i‘}:z'e contained in the two-body correla-
5—-.3

27;3) 2D[21] state, and the second mixed (;%) state. tion operatolJ;; , and in the Hamiltonian are sparse matrices
None of these excited states have been experimentally idein this basis. For forces that are largely charge independent,

V(R)=2, ¢,(R)|a), (3.27

where they,(R) are the coefficients of each stdie) with
specific third components of spin and isospin. This gives
arrays with 96, 960, 1280, 2688, and 4480 elementd ftw,

tified. as is the case here, we can replace this charge-conserving
basis with an isospin-conserving basis that has
B. Energy evaluation N(A,T)=22XI1(A,T) components, where
The energy expectation value of E.1) is evaluated
using Monte Carlo integration. A detailed technical descrip- AT) 2T+1 A (3.29
tion of the methods used here can be found in Refs. ' _%A+T+1 IA+T) .

[17,21,23. Monte Carlo sampling is done both in configura-
tion space and in the order of operators in the symmetrized
product of Eq.(3.3) by following a Metropolis random walk. This reduces the number of array elements to 32, 576, 320,

The expectation value for an operatoris given by 1792, and 1792 for the cases given above—a significant sav-
ings. In practice, ther;- 7; operator is more expensive to
t evaluate in this basis, but the overall savings in computation
% de\pr(R)O\Ifq(R) are still large.
(0)= : (3.23 Expectation values of the kinetic energy and spin-orbit
2 J’ dR\If;g(R)\Ifq(R) potential require the computation of first derivatives and di-
P.q

agonal second derivatives of the wave function. These are
obtained by evaluating the wave function af &lightly
shifted positions of the coordinatés and taking finite dif-
ferences, as discussed in Rgf7]. Potential terms quadratic
in L require mixed second derivatives, which can be ob-
tained by additional wave function evaluations and finite dif-
ferences. A rotation trick can be used to reduce the number
of additional locations at which the wave function must be
> f dR[¥ [(R)OW ((R)/Wpg(R) IWpq(R) evaluated23].
P.d _ As a check on the correctness of our Monte Carlo inte-
+ gration, we have evaluated the energy expectation e
% f AR[W(R)W 4(R)/Wipg(R) [ Wpg(R) for the deuteron using the exact wave function as input, and
(3.249 match the energy to better than 1 keV. We have made similar
calculations for the triton using a Faddeev wave function, as
This probability distribution is taken to be discussed in Ref17], and obtained agreement with indepen-
" dent Faddeev calculations at the 10—-20 keV level. For the
Wpo(R)=[Re(Wp o(R)¥p 4(R)), (329 much more complicated\=6,7 wave functions, we also
L ) : evaluate the expectation valu and(J,) to verify that
which is constructed from the pair wave functiobp, but they truly have the specifieﬁlantufm >numbers. A third

with only one operator order of the symmetrized product..,ack is' made on the antisymmetry of the Jastrow wave
This probability distribution is much less expensive to com-¢ 1 ~tion by evaluating, at an initial randomized position
pute than the full wave function of E¢3.2) with its spin- ’ ’
orbit and operator-dependent three-body correlations, but it

typically has a norm within 1-2 % of the full wave function. ‘I’}[1+ Pixj PiPI1V,

Expectation values have a statistical error which can be wiv, ' 329

estimated by the standard deviation

The subscriptg andq specify the order of operators in the
left- and right-hand side wave functions, while the integra-
tion runs over the particle coordinat€s=(rq,ro, ... ra).
This multidimensional integration is facilitated by introduc-
ing a probability distributionW,4(R), such that

(O)=

<02>—<O>2 1/2

N—1

where Pixj"” are the space, spin, and isospin exchange op-
' (3.26 erators. This value should be exactly zero for an antisymmet-
ric wave function, and it is in fact less than 10for each
whereN is the number of statistically independent samplespair of particles in each nuclear state that we study.
Block averaging schemes can be used to estimate the auto- A major problem arises in minimizing the variational en-
correlation times and determine the statistical error. ergy forp-shell nuclei using the above wave functions: there
The wave functiortV' can be represented by an array of is no variational minimum that gives reasonable rms radii.
2A% (’2) complex numbers, For example, the variational energy fbki is slightly more
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bound than for*He, but is not more bound than for separatedthere is a gain of 0.75 MeV, probably because there are two
“He and?H nuclei, so the wave function is not stable againststates of identical symmetry that only differ by 1lin
breakup intor+ d subclusters. Consequently, the energy can The diagonalizations have the additional benefit that we
be lowered toward the sum éHe and?H energies by mak- can predict where the next higher excited state of each
ing the wave function more and more diffuse. Such a d|ffuséJﬁ,T) IieS. ThlS a”OWS us to Conﬁrm that the Hamiltonian iS
wave function would not be useful for computing other NOt predicting any unusually low excitations that are not ob-
nuclear properties, or as a starting point for the GFMC cal-served experimentally; e.g., the secorld (3) and G ;%)
culation(see Sec. VI beloyy so we constrain our search for states in7Li do not appear below the firstZ(;%) and
optimal variational parameters by requiring the resulting,s—.

) ) : 57.3) states.
point proton rms radius;,, to be close to the experimental
values for 5Li and Li ground states. For’He and 'Be
ground states, and all the excited or resonant states, there are
no experimental measurements of the charge radii. To avoid The aim of the GFMC method is to project out the exact
introducing too many additional parameter values, we contowest energy state¥,, associated with a chosen set of
struct these wave functions by making minimal changes tguantum numbers, from an approximatig to that state.
the SLi and “Li wave functions, with the added requirement The method used here is essentially identical to that used
that the excited states should not have smaller radii than thereviously to calculate nuclei with &6 [4], with the excep-
ground states. tion that we have now incorporated the exact two-body

For A=6 nuclei, we begin by selecting parameters toPropagator in the imaginary-time propagation. In this section
minimize the energy of théLi 3S[2] componentthe domi-  We describe the algorithm in some detalil, in particular relat-

nant part of the ground statsubject to the constraint that N9 it to algorithms commonly used for scalar interactions.
fy~2.4—2.5 fm. For the other components, only the depthFor simplicity of notation we will not make the distinction

; ; LS ; betweenH’ and H (and their respective componenthat
OISthe smgle-partlcle. wellVp ’.Of Eq. (3'19)’ and the tail, was introduced with Eq(2.17); thepreader will ?Nant to re-
Cop of the p-shell pa|r—correlat|on function of Eq3.17) are member that we in fact use the simpler in our GFMC
varied, as shown in Table V. The well depth for tAB[2] propagator.
states is decreased to get the rms radius of thfe_(l)} ex- GFMC projects out the lowest energy ground state using
cited stat_e larger than the ground state. The tail is mcreasagoz|imT_>wqu_(H_EO)T]q;T. The eigenvalueg, is cal-
for the mixed-symmetry'P[11] state for the same reason. cylated exactly while other expectation values are generally
For °He we use the same parameters a$linfor the cor-  calculated neglecting terms of orde¥,—¥+|2 and higher.
responding'S[ 2], 'D[2], and®P[11] states. The only other |n contrast, the error in the variational enerdsy, is of
difference betweerfLi and ®He wave functions is that we order |¥,—W¥+|2, and other expectation values calculated
may turn on then-N Coulomb potential of Eq(3.20 when  with ¥ have errors of ordeWV ,—W].

IV. GREEN’'S FUNCTION MONTE CARLO

generating the single-particle radial functiogs . Finally, We use theW of Eq. (3.13 as our initial trial function
the diagonalizations are made to determine #e mixing  and define the propagated wave functigiir) as
coefficients of Table VI. U(r)=e H-Eory_: (4.1)

A similar procedure is followed for thA=7 nuclei. Pa-
rameters are selected for the domindf{3] state in’Li ~ obviouslyW(7=0)=W¥ andW¥(r—w=)="W,. Introducing a
subject to the constraint theg~2.2—2.3 fm. The well depth ~ Small time stepAr, 7=nA7, gives
is reduced for the’F[3] states, and the tail is increased for V(r)=[e H-Edrny (4.2
all the mixed-symmetry states. Afterwards {Bgs diagonal- _ ) )
ization is carried out. SincéBe is a mirror nucleus, it has TheW(7) is represented by a vector functionRfusing Eq.
the same wave function d&i, aside from changing the-N  (3.27), and the Green's functionG,4(R,R’) is a matrix
Coulomb potential. ThéHe and ’B ground states are iso- function of R andR’ in spin-isospin space, defined as
baric analogs to mixed symmetry states’id, so they use Gap(R,R)=(R,ale” " EJA7R" B). 4.3
corresponding parameters.

Shell-model lore tells us that the lowest state of any giverit is calculated with leading errors of orden ¢)° as dis-
(J™;T) will be the state with maximal spatial symmetry and cussed in Sec. IV B. The errors in the full calculation are
smallestL that can be formed from the allowed couplings, determined by the difference between taetificial) Hamil-
e.g., the®S[2] ground state irfLi or the ?P[3] ground state tonian for which the propagator is exact add This differ-
in ’Li. For the purposes of obtaining a variational upperence is of order4 7)2, andA 7 is chosen to be small enough
bound and a GFMC starting point, we could settle foba  that this total error is negligible. Omitting spin-isospin indi-
constructed using only thatS n] component. However, by ces for brevity,¥ (R, ,7) is given by
using all the allowed components, we can gain a significant
amount of energy in some cases and, as is discussed below, ¥ (R, ,T):f G(R,,R,_1)- - -G(R;,Ry)¥1(Ry)
this gain persists in our GFMC propagations. For &6
nuclei, the diagonalizations for the (1), (1%;0), and X dR,_;- - - RydRy. (4.4)
(2%;1) states improve the lower state by 0.25 to 0.5 MeV. In
the first four ‘Li T=3 states, the mixing is much less, and  The mixed expectation value of an operaf@iis defined
improvements are at most 0.15 MeV. However, fode, as
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+
<O> _ :<‘I’T|O|‘I’(7—)> _ f dinT(Rn)OG(Rn,Rn_l). . 'G(RlvRO)\PT(Ro)
Mixed <\PT|‘I’(T)> f ’

(4.5
dP, W H(R)G(Ry,Ry-1)- - - G(Ry,Ro) ¥ (Ro)

whereP,=Rg,Rq,- - -,R,, denotes the “path,” and A. The short-time propagator

The short-time propagator should allow as large a time
stepAr as possible, since the total computational time for
propagation is proportional to Af. Earlier calculations

I_n GFMC, the integral over the paths is. carried out stochas[4,26,a used the propagator obtained from the Feynman for-
tically. Generally, the required expectation values are calcuz |55 Ignoring three-nucleon interaction termsHn it is
lated approximately from the variationd#t; and mixed ex-

dP,=dRydR; - - -dR,,. (4.6

3 given by
pectation values. Let
\I’(T)=\If +5\P(T) (4 7) e—HAT: 5].—.[ e—uijAT/Z e—KAT S]._.[ e—uijAT/Z}_i_O(AT(%).
T : ' i<j i<]
4.1
Retaining only the terms of ord&t¥ (), we obtain 412
Note that it is useful to symmetrize the productesii® ™2
o (W(n)|O|¥(7)) when[v;; v ]#0, in order to reduce the error per iteration.
(O(7)= (U(7)|¥(7)) The nucleaw;; has a repulsive core of order GeV. The main

error in the above propagator comes from termseif4”
~(O(T)mixeat [{O(M)miea=(O)7], (4.8 having multiplev;; , like v;;Kv (A7) for example, which
can become large when particlesandj are very close. In
where order to make them negligible a rather smallr~0.1
GeV1is used with the above propagator. The matrix ele-

(V4O ments of the propagator are given by
(VW)
Y — ' —vji(rjj)A7/2
More accurate evaluations 9O(7)) are possible[24] es- Gap(RR)=Go(RR')4f 811;[,- e
sentially by measuring the observable at the midpoint of the
path. However, such estimates require a propagation twice as —vij(r])A T2
long as the mixed estimate. Since we are limited in the % Siﬂj e 1), .13

present calculations to a total propagation time of 0.06
MeV ~1, we use the approximatiof@.8). Go(R,R")=(R|e K47|R")
3A F{—(R—R’)z
ex

An important exception to the above is the energy,
given by(H(7—=)). The(H(7))uixeq CaN be reexpressed as [ m
2wh?AT 2h%A7/m
<\I,T|ef(H7EO)T/2H e*(H*EO)T/2|\I,T> (414)

(Ref.[25)) =
—(H- 7124—(H— 712 !
(Ve MR e~ (H=Fo2 y) However, it is well known from the studies of bulk he-
(4.10 lium atoms[27] that including the exact two-body propaga-
tor allows much larger time steps. This short-time propagator

<H ( 7')>Mixed:

since the propagator ekp(H—Ey)7] commutes with the
Hamiltonian. Thus(H(7))uixea @pproache€, in the limit

r—o0, and fur_the_zrmore,_be_ing an expectation valueHofit gi (rii o)
obeys the variational principle Gaﬁ(R,R')IGo(R,R’)(aI SH AT o 1'3%
<1 9o (rij ,Tij)
<H(7')>Mixed> Eo. (4.1 (4.19

If a simplerH’ is being used to construct the GFMC propa- WNeregj; is the exact two-body propagator,

ator, then these equations apply k' (7)), and((H—H’ , Ho ATl
?nust be evaluatedqusing E(z[J‘.F?BI)).}< (). andi( ) gij (rij Fi)) =(rijle” "2 rf), (4.18

Given these expressions, two basic elements are required

for any GFMC calculation. The first element is the choice of Hoiz— - §24y. 4.17)
short-time propagator ekpg (H—Eg)A7] and the second is a " m e ’
method for sampling the paths. We discuss each of these
elements in turn. andgy;; is the free two-body propagator,



ojij (rij i) =

(4.18

3
N
27hA T

exp —————
202A 7l

whereu=m/2 is the reduced mass. All terms containing any
number of the same;; and K are treated exactly in this
propagator, as we have included the imaginary-time equiva-
lent of the full two-body scattering amplitude. It still has
errors of order A7)3, however they are from commutators
of terms Iikeviijik(AT)3 which become large only when
both pairsij andik are close. Since this is a rare occurrence,
a five times larger time step7~0.5 GeV ! can be used for
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To calculateg;;, we use the techniques developed by
Schmidt and Le¢28] for scalar interactions. The basic idea
is to use the convolution equation, E¢.22), to write g;; as
a product ovelN steps:

N

gij(varO;AT):iI:[l gij(ri,ri—1;e), (4.24

with e=A7/N and an implied integration over intermediate
points. If we use a symmetric expression for the short-time
propagatom;;(e) such as

gij(r,r’;e)=e7”ii“>dzgo,ij(r,r’;e)ef”ii(”f’z, (423

the present studies of light nuclei. In the case of bound statege errors forgg(AT) contain only even powers of M4/

of helium atoms a-30 times larger time step can be usedstarting with 1N

with the propagatof4.15 than with Eq.(4.12 presumably

[28]. By evaluatingg;;(r,r’;A ) for sev-
eral values of N(and consequently) and extrapolating to

because the interatomic potentials have a relatively hardes_. g theg;; can be calculated with high~( 10 digit) accu-

core, and they commute with each other.
Finally, including the three-body forces and tBgin Eq.
(4.3), the complete propagator is given by

GaB(R,R')=eEoAfGO(R,R')exp[ -> [Vi(R)

R AT
+Vi(R )]7

(all3(R)]y)

i (Fij.ri)

><<v S[T 2T 5><6l|3<R'>|ﬁ>,
i<j Qo;j(rij yrij)

(4.19
ATt o

Is(R)=|1- =2 Vii(R)|. (4.20

The exponential of/izj’kT is expanded to first order it 7 thus,
there are additional error terms of the foVﬁEVf,T,k,(A )2,

racy.

Evaluation ofg;; can be carried out in various ways. We
have chosen to expand the propagator in partial waves de-
noted byJM, TT,, S, andL, thus replacing the three-
dimensional integral in Eq.(4.22 with many one-
dimensional integrals. The two-nucleon interactignhas a

simple form,v'j#'s(r), in these partial waves. The interaction
is diagonal L=L") in S=0 and 1 waves with. =J, and it
couples thes=1, L, L' '=J*1 waves.

Theg;j(r,r’;A7) is written as a sum over partial waves,

gi(rr A =2 3 X XT,TZygALS(F)

JM TTZ SLL

LL’ ’.
9rsM AT g~ 4
X—yJL’S(r,)XT,TZ’

!

rr

(4.26

where XTT, denote isospin states, aﬂd"LS(F) are standard

However, they have negligible effect sinb&y has a mag-  spin-angle functions that depend upon spins and the direc-

nitude of only a few MeV. It was verified that the results for ionsr andr’. In uncoupled channels the partial wave propa-
“He do not show any change, outside of statistical error

whenA 7 is decreased from 0.5 GeV Sgatorsgﬁ%;(r,r’;Ar) are scalar functions of the magnitudes

r andr’, while for coupled channels they are<x2 matrix
_ functions withL,L’'=J*=1. The partial wave propagators
B. Calculation of g; obey the one-dimensional convolution equation

The pair propagatog;; is a matrix in the two-body spin-

r n E n
isospin space, and obeys the equation gSks(r,r T+ e)zf dr”exp{—vﬁ#s(r)z 9o (r.1"5€)
J ’. _ €
E_‘i‘Hij gij(r,r ,7')—0. (42]) Xex[{_v.liTLS r/!)E g‘IiTIS_ (r”,l’,;'T),

(4.27

Whereg('ii j is the free propagator in partial waves with angu-
lar momenturL,

As the Hamiltonian naturally decomposes into eigenstates of
the two-body spin and isospin, so does the propagatorin
addition, it obeys the convolution equation

. "N ’ ”. "oer. 1 X
gij(r,r'sr+7 )—J d3r gij(r,r";m)g;(r,r'; 7', chn,ij: ,||_(X), (4.28
(4.22 VIt
with
with the initial condition ,
rr'u
X= . (4.29
gij(r,r';7=0)=46(r,r"). (4.23 2h27
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These expressions are used to obg’gi%fg(r,r’;r)_ forseveral o yse them have generally led to large statistical errors. For
values ofe, extrapolating toe—0 until a specific error tol-  this reason the propagator uses the approximgtiterac-
erance has been reached. It is important to obtain thesgn operator.

“channel” propagators very accurately, because they must Calculating this propagator is computationally intensive.
be summed to reproduce a Gaussian falloff in the angularherefore, prior to the GFMC calculation, we sum the propa-
variables that is present in the full propagator. Fast-Fouriegator over partial waves and store the full sum on a grid.
transforms are used to switch between momentum and COOEtoring thegﬁ#’s(r r':A7) is impractical, both because of

dinate space, where the kinetic and potential terms, respegiemory requirements and the fact that summing over waves
tively, are diagonal and can be trivially exponentiated. for eachr andr’ would be computationally expensive. For a
We then sum over partial waves to obtain the full two- spin-independent interaction, the propagagqr would de-
body propagator. If we were to include only thghysical  pend only upon the two magnitudesandr’ and the angle
antisymmetric two-body cha_nnels, thg complete two—bodycos(e)zf'p between them. Here, though, there is also a
propagator would also be antisymmetric, and hence for smaflependence upon the spin quantization axis. Rotational sym-
7 the propagator would have two peaks, one near the originghetry allows one to calculate the spin-isospin components of
point and anothefwith a minus sign in symmetric spin- g (r,r") for anyr andr’ by simple SU3 spin rotations and
isospin statgs near the point corresponding to the inter- vajues ofg;; on a grid of initial pointsr=(0,02) and final
change of the particles. In principle we could use this propapointsr’ = (x’,0,z'). The x—z plane is chosen because the
gator by sampling paths with an arbitrary permutation aty!! . are real there. In addition, the fact that the propagator is
each step, and perhaps cancel some noise arising from Upermitian allows us to store only the values ¥z’ . In the
physical symmetric states. However the propagation distancgdirection we take an evenly spaced grid of 0.02 fm extend-
is governed by the Gaussian behavioiGy, which is much  ing up to 6 fm. Beyond 6 fm the;; is weak and it is suffi-
shorter-ranged than the average pair separation. Hence, aojent to use Eq(4.15 to calculateg;; . The propagator falls
cancellation would be very small. Instead, we simply use theff approximately as a Gaussian, E¢.18), with range pa-
Argonneu} potential in unphysical states, and include themrameter % \/A7/m~0.3 fm for A7 = 0.5 GeV 1. Thus the
in the propagator. In essence this corresponds to treating thé andz—2z' grids have maximum values e£0.9 fm and
particles as Boltzmann particles for purposes of the propagaare nonuniform.
tor. Since one always computes overlaps with completely
antisymmetric states, this is perfectly acceptable. C. Sampling of the paths

~ One also has complete freedom to choose an arbitrary e remaining task in a GFMC calculation is to sample a
interaction in the unphysical channels, but the present choicget of paths; in order to maintain a reasonable statistical error
retains the property of a positive definite Green’s function inwe sum explicitly over all spin-isospin states of the system
spin-singlet channels. The propagatoiS# 0 states is posi-  for each path. To choose the paths we follow as closely as
tive definite, since it is for smak and the convolution form  possible the standard practice for scalar interactions, as we
of Eq. (4.22 preserves this property. The choice of the Bolt-have done in previous worf4,8,26,29. In this section we
zmann propagator allows us to simply sample Gaussiansompare the standard method with that used for nuclear sys-
centered on the identity permutation when choosing théems.
paths. The integrals in Eq(4.5) for (O(7))uixed are carried out

It is also important to include many partial waves in the stochastically using a relative probability functi®(P) to
calculation. The starting;;(r,r’;€) is a narrow Gaussian of sample the paths. Each path consists of a seh steps,
width \(4%%e/m) which is <0.1 fm for e<0.1 GeV'!.  where each step contains a sample &f Barticle coordi-
Hence a large number of partial waves are required to repraiates, as well as sets of operator orders used to sample the
duce it accurately. The propagator in &#55 states is cal- Symmetrization operatoxS for the pair operators in the trial
culated from Eq(4.27); beyond this we use simple approxi- wave function, Eq.(3.13, and the propagator, E¢4.19.
mations including the analytically known propagators for The ensemble of the sampled paths is denotedR}y and
free particles. Keeping a much smaller set of partial wavegontainsN, paths. For each path we define
would yield the same answer in an exact quadrature, how- N .
ever it can dramatically increase the statistical error in a NP=Y1(Rn)OG(Ry,Rn-1)- - G(Ry,Ro) W(Ro)/P(P),
Monte Carlo calculation. For example, the positive definite (4.30
property described above is recovered numerically only for ot
large numbers of partial waves. Dp=T1(R)G(Rn Rn-1)- - G(R1,Ro) Wr(Ro)/P(P),

The terms havind.? and (L - S)? operators are not pres- q (4.30)
ently included in the propagator. These terms, like others that"
depend quadratically on the relative momentum between the N o
interacting particles, represent changes in the mass of the (O(7))wived % Ne {Ep} De), (432

particles due to interactions. They can, in principle, be in-

cluded by using appropriate effective masses in the kinetigvith a statistical error determined by the correlated variance
energy propagatayo; [29]. Unfortunately, there is a strong of Np andDp and proportional to J\/N_p The relative prob-
spin-isospin dependence in thé and (L-S)? interactions, ability function P(P), should be chosen to minimize this
which then makes thg,;; spin-isospin dependent. Attempts statistical error.
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Different schemes for sampling the paths with probabilityand theNp for (H(7) )wixeq Will have a small variance. Many
P(P) are possible. In finite-temperature simulations, oneproperties of Bose liquid and solitHe and its drops have
typically retains the entire history of the path and uses &een studied with GFM{27,30,3] using this probability
Metropolis scheme to sample therf27]. For zero- density.
temperature simulations, however, it is generally more effi- In contrast, the wave functions of simple Fermi systems
cient to sample the paths through a branching random wallkhave domains of positive and negative signs separated by
Points along the path are generated iteratively through anodal surfaces. The importance functiogiven in Eq.(4.34)
importance-sampling procedure. Only the amplitudes of thenust be increased slightly near the nodal surfaces to allow
propagated wave function and the accumulated weight of thdiffusion between the domains. When the p&tltrosses a
path need be retained for each configuration. We discuss thedal surface itdDp and Np change sign. At smalr, few
algorithm used for nuclear spin-isospin-dependent interacpaths are long enough to cross nodal surfaces and the vari-
tions after first describing the algorithm for spin-independentance is small. Asr increases, many paths cross nodal sur-
interactions. faces, the variance increases and the average vall®s of

For scalar interactions and real Hamiltonians, the particleglecreases. This problem is called “the Fermion sign prob-
can be assigned specific spin stateshin(R) which never lem,” and it limits the maximum value of up to which the
change during propagatio®(R,R") is a real, positive func- state can be propagat¢d2,33. Generally the calculations
tion with finite norm, and¥ -, and consequentl¥(7), can  are continued until the statistical error increases beyond an
be chosen as a real scalar function. ) is commonly  “acceptable” point; we iterate untilr=0.06 MeV * for
taken as most nuclei studied here.

For local spin-isospin independent interactiofld, *He,
1 and “*He nuclei would be completely spatially symmetric and
P(P)=I] [1(R)G(R, ,Ri—l)m 1(Ro)[Wr(Ro)|. no sign problem would exist. For more realistic local inter-
'=tn 1 (4.33 actions, the dominant spatially symmetric component of the
' wave function and the relatively large excitation energies
. . . . . imply that the sign problem is not very significant for three-
The Importance funct|c')h.(R).|s' used in sampling and hence'and four-body nucleji34]. However, it does limit the propa-
should be positive definite, it is often taken to be the magni-__. ; ;
tude of the trial wave function, gation o_f states WI’FIA>4 which must have nodal s_urface_s
as required by antisymmetry, and also all calculations with
nonlocal interactions.

I(R)=|¥+(R)|. (4.34 Implementing the algorithm to sample the paths is
straightforward. Choosing(R) =| ¥ (R)/|, the initial (r=0)
The initial configurations are sampled frdrtRo) | W +(Ro)|-  configurationR, for each path is obtained, as in VMC, by
_The quantity in brackets in Ec(.4.3_3 is referred to as the sampling®2(R) using the Metropolis method. The subse-
importance-sampled Green'’s functi@, quent configuration®R;, at r=iAr, are obtained sequen-

tially from R;_4, by iterating with the importance-sampled
Green'’s functionG, ,

Gi(Ri,Ri-1)=[I(R)G(R;,Ri-1)75——| (4.39
I(Ri-1)
The probability of the path (P) depends implicitly upon all |(Ri)‘I’(Ri)=f Gi(Ri,\Ri-DI(Ri-)W(Ri-1)dR; ;.
of the steps in the path, but is decomposed into an initial (4.39
weight I (Rg)| ¥ 1(Ro)|, times a product of weights for each
step. . o . . —
Using this P(P) in our expressions foNp and Dp we ThlS_ equation Is the importance-sampling generalization of
arrive at the iterative form of Eq(4.4),
NP:«IIT(Rn)O ¥1(Ro) , (4.36 \Ir(Ri)=fG(Ri,Ri_l)\lf(Ri_l)dRi_l. (4.40
(R [¥r(Ro)]
TR, Yr(Ry) Equation (4.39 describes the evolution of the density

(4.37  I(R)|¥(R))| with 7=iA 7, hence the configuratiorR; are
distributed with this density. The propagation is entirely in

i ) N terms of distinguishable “Boltzmann” particles; the Fermi

In the ideal case of a Bose ground statey(R) is positive  or Bose character of the system is retained only at the two

for all R; choosingl (R)="¥(R) yields Dp=1 with zero  ends of the walk through the statistics of the initial and final
variance and the variance bf; is acceptable for many in- trial wave functions.

P IRy ¥Ry

teresting operators. In particular, ¥(R) is close to the Up to this point, we have assumed that we can sample
ground state oH, then points along the path directly froi®, , but typically this is

not possible. One must sample from an approximate

V(R)H Gi(R;,R;_;) and then use the weighting and branching tech-

V+(R) ~Eo, (4.39 niques discussed below to create paths with probability pro-
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portional to the product of tDG,(Ri ,Ri_1). If points are TR R 1 Gls(Rj, R_-1]G /(R R )
sampled from an approximatg, , it is convenient to define iRi-1)= . , :
2 weight PP ! U Msami = SRam Go(R} JRi-1) |GR(RIRi-1)
(4.49
MR R _Gi(Ri,Ri_y) 4.4 Only the variance, and therefore the statistical sampling
(Ri. i—l)_él(Ri R 44D orror in the calculation depends @Q,m, Whenngm=1,

R;=R; and the vectoR;—R;_; can be in any direction

~ H ! 2 H
as the ratio of the fullG, to the approximates,. Simply S|n§eGOEepends only ur.)onF(1.— R.i._l) - In this case, the
choosing paths  with P(P):Hizl,n6|(Ri Ri_)I(Ry) WelghtsW=G|_/Go can differ significantly fr(_)m unity and
|¥(Ry)| would modify expressions for the the numerator add to the variance. Indeed the growth estimate of the en-

and denominator, Eq$4.36 and (4.37, by multiplying the ~ €9y, obtained from the difference between unity and the
contribution of each path by the product of tié ratio of new to old weights, will have an infinite variance in

the limit A7—0. In the present calculations, we consider

N only two pointsR’ and R,=2R;_;—R’ symmetric about
¥r(RyO W(Ro) M he leading. oradior contribution 2k

Np=W(P , 4.4 R;_1. The leading gradient contribution alof®f — R;_4, in
P=W(P) I(Ry)  |P+(Ro)| (.42 the expansion:
V1(R,) Vr(Ro) G|(R/,Ri_1) G(R/,Ri_;)
_ jonNi-1) , I N1
DP W(P) I(Rn) |"‘PT(R0)|' (443) ,——1+(R _Ri*l)'VR’ ,—
Go(R],Ri_1) Go(Rj,Ri-1)
where +... (4.46
W(P) = WR R ). 4.4 is thus cancelled up to ordér+ and the variations iW(P)
(F) ig,n (Ri-Ri-y) (448 e reduced significantly.

Nevertheless, the weights of different paths used in com-
As a trivial example, one could sample the free-particleputing expectation values, Eqgt.42 and (4.43 will even-
propagator G, = Gy), and the weight&V would be the ratio tually diverge. This divergence yields an increasing statisti-
of final to initial importance functions times the ratio of in- €@l €rror, as the contribution of only a few paths will
teracting to free-particle propagators. Such a scheme, hovflominate the others. Consequently, branching techniques are
ever, is woefully inefficient. As the path length increases, sgequired to control the fluctuations in the relative contribu-
do the fluctuations in th&/(P), and the branching techniques tions of different paths. In branching, the configurations are
discussed below must eventually be used to control them. redistributed every few time steps by keepirjgunit weight

For an efficient and unbiased calculation, it can be verycopies of each configuration where

important to choose & to minimize fluctuations in the
weightsW introduced at each step. For scalar problems, one

typically samples a shifted Gaussian, where the shift is rez_ is a random number between 0 and 1, and int denotes the
lated to the logarithmic derivative of the trial wave function. (yruncated integer part. Tha/(P) of the resulting configu-

This can be used to perform importance sampling accurate {@ytions are then set to one in order to account for the branch-
second order i\ 7 (for a review, see Ref35]), and hence jng process. This branching technique, in effect, forces the

essentially seG, =G, . _ ~ paths to be sampled from the product®f rather tharG, .

In the nuclear case, though, the wave function consists of o average, the expectation value of any path is repro-
many spin-isospin amplitudes, and a more complex samplingyced correctly using this technique. However, the computa-
scheme is required. For illustrative purposes, we describe thgyy is much more efficient as configurations with small
scalar equivalent of our sampling method, although for scalajeights are more likely be discarded while configurations
interactions it is not as efficient as sampling a shifted Gaussyith large weights are replicated. In this way, statistical
ian. The free propagatorGo(R’,R;-1), can be easily nojse is reduced by keeping an adequate population of con-
sampled. A number of point&; , j = 1,nsampare obtained by  tributing configurations.
samplingGo(R; ,R; ). These points should be chosen in a  The algorithm used for nuclear GFMC, in which there is a
correlated manner to reduce fluctuations. Anticipating restrong spin-isospin dependence to the interaction, is a gener-
quirements for the nonscalar case, we define an approximatgization of the procedure described above. Here wave func-
scalar importance-sampled Green’s funct'@ﬁ(Ri JRi—1). tions must be regarded as vectors in spin-isospin space and
The primary requirements are trﬁf is fast to compute, that theG(R,R") as a matrix, however, the relative probability of
it is positive, and that it approximat€; ; for the scalar case the pathsP(P) must remain a scalar. Following Refs.
one could simply choosG,S=G|. [26,8,29, we define an importance-sampled Green’s func-

For each of theng,m, points, we calculatéS,S(R’,Ri,l). tion G, as well as an approximaf®, . Just as in the scalar
The R; is picked from the seR; with probability propor-  case, the approximat, is used for sampling points in the
tional to GX(R; Ri—1)/Go(R},Ri-1). This procedure im- path, while the ratioss, /G, define weightsW which are
plicitly defines aG,, and requires a weight used in branching.

nk=intf W(P) + Zr], (4.47)
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In order to introduce importance sampling, we first define \P;r'(Rn)HizlnG(Ri \Ri_1)¥o(Ryp)
a scalar functionl of the trial and GFMC, Eq(4.4), wave Dp= v (]R ¥ (R (4.53
functions: TN

For scalar interactions, settireg=0 in the definition ofl, Eq.
_ N (4.48), we recover Egsi4.36 and (4.37).
I (Ri), Wi(Py) = Za V1 o(R)Wio(P) Again, though, we cannot sample fro@, directly. We
must sample from &, and introduce weights and branching
+ to correctly get paths sampled from the product&ef The
+ 6; [T (RDF (P, procedure is exactly as described previously, although here it
is important to introduce an approximaﬁ:ﬁs. The G,S is a
(4.48 spin-independent function, and hence is much easier to com-
) ) ) ) o . pute thanG,, which involves all the spin-isospin states of
the GFMC wave function, which depends implicitly upon the gnly a single full propagator per iteration, and the full trial
pathP;, anda denotes the spin-isospin components. wave function only after several iterations.

This definition of the importance function differs slightly ~ The scalar importance functiQGIS(R’,Ri_l) is again
from the scalar case, which only involved the trial function ;saq 1o implicitly define G,, and construct weights

¥. The first term simply measures the magnitude of thEW,(Ri |Ri_,). It contains scalar approximations to the domi-

overlfip of the wave functions, While.t.he seclorjd,.with asmalham physics present in the propagator and the trial wave
coefficiente (=~ 0.01) ensures a positive definite importance function

function to allow diffusion across nodal surfaces. In this
definition of | as well as the remaining discussion, we sup- 1
press the sampling of the pair orders in the wave function GX(R,R)=|¥,(R)|GYRR)———, (459
and the propagator. [W5(R")]

The importance-sampled Green’s functi@pcan then be  \yhere GS(R,R’) is obtained from an approximate spin-
defined as the ratio of the importance functions after ongsospin independent interaction:
iteration of the full propagatoG(R; ,R;i_1),

1
US(rij):E[Uc(lsO-rij)+Uc(Sslrrij)] (4.59

G,(Ri,R_1)= IV r(R),Vi(Ri)] (4.49
(R, Rj—1 V(R Vi_1(Ri_)]’ and the Feynman approximation

where

GS(R,R'):exp( -> vs(ri,-)m/z)
i<j
Vi(R)=G(Ri,Ri_1)¥i_1(Rj_1). (4.50

For scalar interactions, this definition & is equivalent to
Eq. (4.39. Here, the importance function is defined from all

XGo(R,R,)eXF< _E Us(ri,j)AT/z) .
i<

the amplitudes of the trial and GFMC wave functions, and (4.56
the effects of the propagator are included in the importanc&his propagator uses the average of the central potentials in
function. the importantS waves, and, like the tru&(R,R’), is small

To perform a calculation, the initial configurations are at smallr;; , preventing the configurations from having small
sampled from I(Py), which is defined by inserting interparticle distances inside the repulsive core range. Simi-
¥, _o="1in Eq. (4.48 above. For speed, the VMC calcu- larly, the approximate importance sampling(ﬁ‘]S is gov-
lations use the simple importance functif,4(R) defined erned by the function;|, Eq.(3.4), which can be used as a
in Eq. (3.25. Hence we introduce the ratio of the two im- simple approximation t¢¥{|.
portance functions as an initial weight and perform a branch- With these definitions, a step in the propagation is the
ing step immediately. This procedure results in a populatiorsame as in the scalar case. It begins with samptigg,,

drawn froml(Py). correlated pointﬁj’ from the free-particle propagator. Then
Sampling steps fronG, gives us GlS is evaluated for each possible step, and we chd®se
from them. The weighWV is then computed as the ratio of
I[V+(R;), ¥i(R)] importance functions divided by the sampling probability
P(P)= I[Y1(Rp), V(R .
=11 i m W ym, 7 TV RIVIRO) o' Equ 445,
(4.51) Since we typically do not compute observables after each
step, and fluctuations in the weights are not significant after a
—1[¥(R,), ¥ (R,)] (4.52 single step, it is not necessary to compute the importance
n/s n n 1 .

function| (and hence the trial wave functipat every step.
We perform branching after every second step, with the
weights computed from the product of intermedigie This
T _ sy product involves only th&? and overlaps of the wave func-
NP:\PT(R”)OHFL”G(R' ’R"l)‘PO(RO), tions at the final and initial steps. Hence, for intermediate
I[¥1(Rn), ¥n(Rp)] steps we must compute the f@l acting on the GFMC wave

and hence estimates of observables as the Ntib where
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function, but not necessarily the full trial wave function. In our implementation, the initial configurations are gen-
Again, after branching, the weight of each path is set toerated and written to disk in a random walk that uses only
W(P)=1. two processors. Typically 50 000 configurations are gener-
At this point we can reconstruct the estimates of any obated. These are then used in one or more subsequent GFMC
servables. After branching, thé> andDp obtained with this  calculations. At the start of the GFMC calculation, the mas-
P(P) are given by Eq(4.53. Ignoringe, the variance oDp  ter processor reads the configurations and distributes them to
is mostly due to the fermion sign problem, while that\¥  the slave processors. It is then responsible for collecting and
is tolerable, particularly whe@=H and¥ is close to the averaging energy expectation values, and determining load-
desired eigenfunction dfl. For an exact¥, we regain the balancing distributions. Each of the slave processors is re-

exact ground-state energy with zero variance. sponsible for a block of configurations. The slaves perform
propagation and branching for this block of configurations.
V. COMPUTATIONAL METHODS At selected values of (typically every 20 stepsthey save

) ) . the configurations in local lists for subsequent energy calcu-
The complicated nature of the nuclear interaction and thegtigns. During load balancingvhich typically is done every
computat.ional complexity of the cglculations presented herg g steps each slave reports its current load to the master,
require high performance computing. In the past, vector sty hjch then instructs each overloaded slave to send its excess
percomputers were used for the firtle and °He GFMC configurations to underloaded slaves. In this way, all slaves
?l?rif:ltjil:r:lo\r/];tﬁf W?vaE;VZ;tztr?gngglorev’vit&e tsrlze of tht? Wa\;eh'ave, within tolerances, the same number of configurations.
9 P y € Number Of o master must receive load information from all the slaves

nucleons and the number of matrix operations grows with th . ; o
: . : efore it can determine the redistribution. In order that slaves
number of pairs. In making the step from four- to six-body C : . S
ot remain idle while waiting for the redistribution informa-

calculations at least an order of magnitude increase in con? . . . .
putational performance was required. The clear means otfr!’ they c_ompute energies for the configurations stored in
achieving this performance goal was parallel computation. heir local lists. When a slave completes a block of energy
A frequent method of achieving performance gains incalculations for a particular time step, they are sent back to
Monte Carlo calculations is to distribute the configurationst® master. After all of the energy results for a time step are
over several processors and let each processor carry out fieceived by the master, they are averaged. This program
own independent Monte Carlo calculation. Such an “embarStructure scales well with the number of processors since
rassingly parallel” implementation is sufficient for simple there are no major communication bottlenecks in the course
calculations in which each processor can handle a calculatioff the calculation and load balancing keeps the slaves some-
with a minimum acceptable number of configurations in awhat synchronized. Calculations with up to_ 50 processors on
reasonable amount of time. For the seven-body systems coffl® Argonne IBM SP show no degradation in efficiency;
sidered here this is not the case. typically the slaves are idle less than 5% of the time and
The heart of the VMC calculation is the Metropolis algo- most of this idle time occurs at the end of the calculation.
rithm which is an inherently serial algorithm. Since the bulk 1 he current version of our GFMC program is written us-
of the work in our variational calculations lies in the energy N9 FORTRAN 90and makes use of the MPI messag(()a-passmg
expectation value, the straightforward division of labor is tollerary. On IBM SP1 Processars, we achieve 4088%) of
have one master processor perform the Metropolis walkhe theoretical speed 'f'—'( Li) calculations. On IBM SP2
while several slave processors calculate the energy and oth&{de nodes we get 45% for both cases. The better efficiency
expectation values for the configurations that the master ger§@n be ascribed to the larger cache on the wide nodes. Table
erates. The number of slave processors that can be efficien%”I shows the performance of our GFMC program on the
used is the ratio of the CPU time needed for expectatiof\'gonne IBM SP(using SP1 nodgsand the Cornell IBM
values to that needed to walk from one configuration to the>P2 USing wide nodes. The table gives the CPU times for a
next. We find that typically 50 processors can be used effiSingle propagation step and a single energy evaluation and
ciently in a ’Li VMC calculation the total time required for 50 000 configurations propagated
: ; _ 1 _
Implementing the GFMC algorithm on a parallel architec- Or 1_210 time steps 47=0.0005 MeV ", 7jq=0.06
ture provides some special challenges. There is no clear di/€V ) with load balancing every 10 time steps and energy
vision of labor as in the VMC calculation and the number of €valuations every 20 steps; this time includes slave idle time
configurations can change throughout the calculation. Afnd average effects of configuration number growth. It is
embarrassingly parallel implementation could work i based on results using 20—40 slaves. However, this total time
since one processor on current machines is capable of haf9€s not include the master time. As one can see, the time
dling enough®Li configurations(several thousangidor an ~ 9rows by roughly a factor of 10 frprf‘lHe to’Lito ‘Li. The
independent GFMC calculation. F3Li, on the other hand, total computational effc_)rt ap_prommately icales as the prod-
only hundreds of configurations could be propagated on eackCt of the wave function siz&d(A,T)=2"X1(A,T) [Eq.
processor to achieve an acceptable turnaround time for ai3.28] and the number of pair®=32A(A—1). This rapid
independent calculation. With such a small configuration seincrease in computation time will be a serious obstacle to
on each node, the population fluctuations on each processextending these calculations beyond eight-body nuclei on
would leave some processors with few configurations angbresently available computers.
others with too many. To avoid such an inefficient use of Our earlier six-body calculatiorig] were about 30 times
resources, periodic load balancing between processors is relower than those we now make. The increased speed is ap-
quired. proximately attributable to(1) using the exact two-body
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TABLE VIIl. GFMC program performance on IBM SP1 and SP2 Wide Nod®, T) is the number of
spin-isospin states in the wave function aRds the number of pairs. The columns give the times for one
propagation step and one energy evaluation and the total time needed for a 50 000 configuration calculation;
see the text for a more complete description.

Propagation Energy calculation Total
msec sec node hours
N(A,T) P SP1 SP2 SP1 SP2 SP1 SP2
“He 32 6 6.6 34 0.025 0.01 13 7
A=6;T=0 320 15 63 26 0.84 0.31 220 80
A=6;T=1 576 15 100 40 1.66 0.56 290 125
A=7T=132 1792 21 460 170 10.6 3.4 2230 725

propagator(factor of 3, (2) dropping the'scvﬁk term in the  with 7. This is the well-known fermion sign problem; the
¥ (factor 2, (3) improvements in the calculation of the s-shell nuclei suffer much less from this problé¢Bd]. This
wave functiongfactor 3, and(4) reduction of processor idle exponential error growth places an effective limit of

time (factor 1.4. Tina=0.06 MeV~! on our calculations forA=7 nuclei,
which means that admixtures of states of excitation energy
VI. ACCURACY OF GEMC less than~12 MeV in ¥, will be damped by less than
50%.

In this section we consider several aspects of our calcula- This led us in Ref[4] to attempt to extrapolate the com-
tions that could introduce systematic errors in the GFMCputedE(7) to r=o by fitting them with

results, and attempt to place limits on these errors. There are
two major sources of error: due to the fermion sign problem,

2% *
the GFMC propagation cannot be extended to arbitrary large EI aiEfexp(—Ei7)
imaginary time and thus admixtures of low-energy excita- E(r)=Ey+ , (6.
tions in the trial wave function will not be fully removed, 1+Z aizexp(—Ei*r)

I

and the GFMC propagation must be done with a different

Hamiltonian from the desired one. We also investigate the .
effects of the time step size. where E is the extrapolated energy, and the strengths of

Figure 3 shows the statistical errors as a function ofcontaminating states i are approximated with a few?
imaginary time for calculations ofH) for various nuclei at excitation energieg; . Figure 4 shows such fits made for
using 50 000 initial configurations. The errors grow dramati- *He. Becausé'He calculations are so inexpensive, we were
cally with increasingA due to the increasingly poorer quality able to make precise calculationsifr) for many values of
of the ;. In these calculationgW|H|¥ (7)) is evaluated 7 and thus determine the short-time behavioig¢f) using
by havingH act entirely to the left, therefore W+ is an 200 000 to 740 000 configurations. The solid curve is a fit
eigenfunction oH, the sampling errors will be nil as per Eq. with Eq=—28.335 MeV, excitation energids'=20.2, 341,
(4.5). For thep-shell nuclei, the errors increase exponentiallyand 1477 MeV, and correspondiag = 0.0062, 0.0018, and

1.00 [
3
Sow0l | FIG. 3. Statistical erroréMeV) in GFMC cal-
'55 ’ culations with 50 000 initial configurations as a
pd function of imaginary time.
A A’H
A
. a A a4 A * = ‘He
N A ——-He
44 — L
------------ He
A —-—Li
0'01 1 1 1 1 I J 1 1 L 1 1
0.00 0.02 0.04 0.06 0.08 0.10
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] FIG. 5. 5Li GFMC energy as a function of imaginary time. The
fits are described in the text.
-28.1 |
with 200000 initial configurations, those for
7=0,0.01...,0.06 MeV ! have 280000 configurations,
o -282 while those for the other smatl have only 50 000 configu-
< rations. The energy at very smallis influenced by admix-
o tures of very high-energy states ;. These have little
-28.3 + effect on theE(7>0.1 MeV 1), therefore we make fits to
E(7) only for 7>0.01. The dashed curve is a fit to t&¢r)
g4l for 0.01=< 7=0.06, which is the range that is available for the
) other p-shell nuclear states in this paper. The extrapolated
energy isE,=—31.56 025 MeV, where the indicated errors
285 L n . correspond to¢? increasing by 1. This fit was made using a

0.00 0.02 004 006 0.08 0.10 single excitation energyg; =36 MeV. The first 1* excited
T(MeV ) state ofbLi is at 5.65 MeV. A single-energy fit constrained
to this energy gives largg?. Two-energy fits with one en-
ergy constrained to 5.65 MeV have a very fig(E,) from
which useful values ofE, cannot be extracted. The solid

0.000 46. The lowest 0 excitation of “He is at 20.2 Mey  Curve shows a single-energy fit made to #¢r) up to 0.1

and this energy was not varied in the fit. Theof the fitis M€V ~* available for this state; it giveEo=—31.387515.

19 for 31E(r) (25 degrees of freedomso theE(r) are not We see that including data up to 0.1 MeV reduces the
statistically independent. We have not attempted to estimat@/Tor in Eq by about a factor of 2. Finally the solid line with
the correlations between the energies at different times. Thghort dashed error bars is the average ofthe0.04, 0.05,

x?2 increases by 1 whef, is changed by+0.02 or—0.03. and 0.06 values, denoted Hy,,. Its value, —31.2511)

The dashed curve shows a fit without the 20.2 MeV excitaMeV, is formally an upper bound foE, and is above the
tion; it givesy?= 23 andE,= — 28.28 MeV. For most of the €Xtrapolateds, by only one standard deviation. _
other GFMC calculations reported in this paper, we did not Because of the difficulties in making useful extrapolations
computeE(7) at the manyr<0.1 MeV~! used in these fits. N 7, it is important to understand contaminations iy,
Therefore we made several fits to tBér) for 7=0.1. A fit  particularly from low-excitation-energy states which will not
using EX=20.2 MeV and one adjustableE" gives be fully filtered out byr=0.06 MeV 1. We have made sev-
Eo= —28.33(3) with y2=14.6 (11 degrees of freedom eral calculations pf the ground state %fi to_study the ef-
while a fit with just oneE’ results in Eo= —28.33' 3%, fects of changes mPT on the GFMCE(7). Figure 6 show;
E*=30, and y?=16.0. Finally, the heavy solid line with f[he effects of removing some of the nonce_ntral _correlatlons
sﬁort dashed error bars shows the average ofEtfw for in W, the solid circles are frpm a calculation ywth the full
0.04<7=<0.1:—28.300(15). It appears that in this most fa- ¥y and are the Same as In Fig. 5. The open d|§1monds were
vorable case, with high statistics, high first excited state, anﬁjomputed by USTg the simpldrp of Eq. (3.3). This makes

e energy atr=0 worse by ~1.7 MeV. However by

large maximumr, we can see that including the first excited =~ ;
state improves the extrapolation marginally. However, the[;;?ég]}té:h?hgi'\.ﬂfg rggiegunggo'rriftesctja?srt'gls ﬁegfcét%?]i
extrapolatedE, is not significantly lower than a simple av- ! Ju ISt uctuations.

erage of theE(r) for 0.04<7<0.1. Hence removindJ i} from ¥ enhances the admixtures of

Figure 5 shows thé&(7) and fits made for the ground excitations>250 MeV. Calculations without th@ﬂf' would

state ofbLi. The values forr>0.06 MeV ! were computed be about 20% faster than full calculations, but the poorer

FIG. 4. *He GFMC energy as a function of imaginary time. The
fits are described in the text.
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FIG. 6. 5Li GFMC energy as a function of imaginary time for

' - FIG. 7. ®He GFMC energy as a function of imaginary time for
various truncations of the noncentral partsiof.

¥+ with various one-bodyb.

: : NI -

quality of ¥4 without Ujjx increases j[he statistical errorsl at nant 2P[21] component. A subsequent calculation using the
large 7 by about 20%, and thus requires 40% more configuinree components listed in Table VII lowered all &gr) by
rations to get the same error. Therefore it is not economical_ 0.8 MeV: the first ~ excited state is at only 2 MeV so we

to drop theUEﬁ“ from W, would have to propagate 10 times further for the GFMC to
The open squares in Fig. 6 come from a much more drassubstantially correct this error.
tic approximation of¥;. Here both theUﬁt“ and tensor It is important that thel’ have the correct admixtures of

componentsU;; have been omitted, resulting in a four- different symmetry, and other low-lying states. Otherwise
operator wave function. In such a wave function, the domithe GFMC results will only be upper bounds to the exact
nant tensor components of the two-body potential have zergigenenergies. For this reason tiig used in this work are
expectation value and the energy7at0 is +41 MeV. Itis  obtained by diagonalizing the Hamiltonian in the small bases
completely corrected by=0.03; again the rate of correction Of low-energy shell-model states as discussed in Sec. IV.
indicates excitation energies250 MeV. The statistical er- Such diagonalizations can be used to ascertain if an im-
rors from such a ba®’ ; are much larger. proved \I’-/r will influence the GFMC results obtained with

These two tests indicate that defects in the noncentra¥ . The Hamiltonian should be diagonalized betwekh
parts of the correlation, which have been the subject of mucland ¥, taking into account their nonorthogonality. If the
optimization in VMC studies, are easily corrected by thedifference in the eigenvalues is large compared tq,1/the
GFMC. Deficiencies in the one-body part @f; present results will not be influenced; if it is small, the superposition
more of a problem. As is discussed in Sec. lIl, thdor °He  corresponding to the lowest eigenvalue must be used. As
has two symmetry componentf2] and [11]; the optimal examples of this, we made such diagonalizations for the
amplitudes for thes¢see Table V) are 0.967 and-0.253, cases studied above, in whidhs or just a four-operatoW p
respectively. The solid circles in Fig. 7 show GFMC energiesnvere used. These gave excitation energies~af00 and
from a W using these components. The open squares show 300 MeV, respectively, which are in good agreement with
results computed using ¥ with just the[11] component; the observedE (7). Our best¥,, containsUhS andUj, cor-
the E(7=0) obtained with such a wave function is 4.5 MeV relations omitted from theP; due to computational costs.
higher than that obtained with the bekt ; this corresponds Diagonalizing the Hamiltonian withinl’,, and ¥ shows
to the 5 MeV excitation energy of the dominanflyl] state.  that these correlations admix states with excitation energies
However, because this error is entirely due to a low-energyf ~1000 and 300 MeV, respectively. Thus they can be
excitation, the GFMC makes very little improvement by safely left out of the¥ ;.
7=0.05 MeV 1. A less radical case is shown by the open As is discussed in Sec. Ill, the VMC calculations for
diamonds which correspond to ¥t with amplitudes of p-shell nuclei do not have a local variational minimum for
+1/\2, — 1/42 for the two states. ThE(7) starts out 1.6 reasonable rms radii. Therefore the variational searches were
MeV above that of the besk ;; the GFMC reduces this to constrained to have radii close to the experimental values, if
~1.3 MeV atr=0.06 MeV 1. The solid curve is a single- such values are known. To study the sensitivity of the GFMC
energy fit to these results; the fitted excitation energy is 3@esults to this assumption, we have made a number of GFMC
MeV and the extrapolatedE,=—26.7 is well above the calculations of the’Li ground state usingV' that have dif-
E.=—27.64(14) from the bes¥';. Fits with two excita- ferent rms radii. Thes& were made by changing the depth
tions, one constrained to 5.0 MeV, give an essentiallyyfat (V,) and radius R;,) of the Woods-Saxon well used to make
and are not useful to extract tlg). the p-wave orbitalgsee Eq.(3.19]; thus the*He core was

A similar situation arose in our first GFMC calculation for not directly modified. Figure 8 shows the evolution of the
the ground state ofHe. This was made with just the domi- rms radius with+ for these calculations; the solid circles
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3.0 \ ‘ \ , : : point, it is difficult to extract the’Li rms radius. Given this,
¢ ¥ s b + % it is not possible at present to reliably study the radifef 7
? nuclei.
2w 5 4 b ; 1 The GFMC propagator used in these calculations has
p L two possible sources of error. The first is that the time
step, A7=0.0005 MeV !, might be too large. We have
26 s A A ) checked this by two calculations. F8H we made calcula-
] A 4 } tions to=0.06 MeV ! using bothA 7=0.0005 and 0.000 25
¢ MeV ~1; these were different by 0.00B4) MeV. For “He
< . IR XX d . ] ] . - -1 .
sal Teete X we made calculations tor=0.01 MeV™ " using both
s 4 B 4 g y A7=0.0005 and 0.0001 MeV*; these were different by
o o ® ¢ & b 0.026) MeV. The statistical errors in our GFMC energies for
221 © 1 p-shell nuclei are alt>0.1 MeV; thus these time-step effects
. . are negligible.
Li The second possible source is that we cannot use a propa-
20 o o o o - oo o gator for the full HamiltonianH, that we are interested in.
' ‘ ' v ‘ ‘ Rather we must use thel’ of Eq. (2.17 and compute

(H—H") perturbatively. Kamada and Gikle [36] have es-
FIG. 8. 5Li rms radii as a function of imaginary time for GFMC timated for 3H that evaluatianij> in wave functions ap-
calculations with¥'; of varying rms radii. propriate forv; underestimates the binding energy £20
keV; scaling this by the total two-body potential energy

correspond to tha¥; used in the rest of this paper. We see gives<50 keV in *He and<90 keV in "Li. We constructed
that the GFMC basically makes no change to the radii, evea *He Wy, that is optimized forv{;+ Vi and used it to
though they span a range of almost 3Q%ere may be some compute(uv;;); this gives 6015) keV less binding than our
indication that the smallest radii are increased at smpll  best *He variational wave function in agreement with the
This is probably because completely separating the deuteraabove estimates.
from the “He core corresponds to only a 1.5 MeV excitation. Using a propagator for akl’ that gives more binding
Figure 9 shows the GFMC energies from these calculationthan H can introduce small errors in the determination of
as a function of the GFMC radiboth are averages of the densities and radii. The more tightly bound eigenstatkl bf
0.04<7=<0.06 MeV ! values, and the correspondin®; s likely to have a smaller radius. The radii 8He can be
expectation values. The variational energies obtained witlcalculated more accurately, and we have studied their sensi-
V¥, decrease monotonically with increasing rms radius, butivity to various propagators. The rms radius b opti-
the GFMC energies show a weak minimum; the very largemized forH is 1.4823) fm. A GFMC calculation using an
radii yield higher GFMC energies and thus can be variationH’ with no v¢(rj;) and V{j =Vjj [see Eq.(2.17] gives
ally ruled out. The curve is a parabolic fit to the five GFMC (H—H’)=2.40(3) MeV and an rms radius of 1.428
energies with smallest rms radii; the minimum is at 2.44 fm.However using thev(r;) and 1.8), in Vjj results in
However the curve is very flat and the uncertainty in the(H—H’)=0.03(2) MeV and an rmeadius of 1.4463) fm.
location of the minimum is at least 0.1 fm. Thus even whenpresumably the later value is more correct, while the former
50 000 to 280 000 initial configurations are used for eachs too small due to the overbinding.

As is discussed in Sec. IV, the GFMC directly computes
mixed estimategO(7))mixed- EXCept forH’ and operators

. that commute with it, these must be corrected to obtain the
260 ¢ 1 desired(O(7)); we use EQq.(4.8) to achieve this. Conse-
o st . quently, the expectation values of the individual energy com-
3 . Li ponents, such a&®', v, andVjj, which have errors of the
@ 270 | . 1 order |W,—¥|2, do not sum to the correct total energy.
. Indeed, there must be a collective error in these individual
St . . terms equal to the total difference between the GFMC
(HYwmixea @and the VMC(H'). This is illustrated in Table
IX for the case of SLi, where the difference
305 | 1 (H" Ymixea—{H')7 is —4.4 MeV, and the sum of the indi-
£ + vidual (O) is an additional—4.4 MeV lower than(H'). In
s Jof 1 this case, the individual corrections are comparable in mag-
st nitude to the collective error, but small compared to the total
expectation values.
Aside from our own work in Ref[4], there are no pub-

22 213 214 215 216 217 218 2‘.9 3.0 . . . . e e
@™ ) lished calculations op-shell nuclei using realistic interac-

tions such as those used here, to our knowledge. However
FIG. 9. 5Li VMC (abové and GFMC(below) energies versus We can compare to previous values for thshell nuclei.
the rms radii from calculations witd’; of varying rms radii. There are accurate Faddeev and projected hyperspherical
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TABLE IX. Contributions to the GFMGO( 7)) of Eq. (4.8) for TABLE X. Experimental and quantum Monte Carlo energies of
5Li. All quantities are in MeV. A=2-7 nuclei in MeV.
(O)r (O)mixed  {O)mixed=(O)r (O) AZ(ImT)  VMC (¥7) VMC(¥,) GFMC Expt.
K¢ 143.84) 147.35) 3.57) 150.810) 2H(1%:0)  —2.2248(5) —2.2246
vg —168.7(4) —175.7(6) —7.0(8) —182.6(11)  3y(i+:l)y —815(1)  -832(1) —847(1) -—848
ve 1.50) 1.50) 0.00) 1.50) “He(07;0) —26.93(2) —27.78(3) —28.30(2) —28.30
Vi -35(1) —4.4(1) —-0.9(1) —5.4(1) SHe(0*;1) —23.77(6) —24.87(7) —27.64(14) —29.27
Sum  —26.9(1) —31.3(1) —4.4(1) —35.7(1) bHe(2";1) —22.05(6) —23.01(7) —25.84(11) —27.47
H' —26.9(1) —31.3(1) —31.3(1) BLi(1*;0) —27.04(3) —28.09(7) —31.25(11) —31.99

6Li(3*;0) —23.98(7) —25.16(7) —28.53(32) —29.80
Li(0*;1) —23.18(6) —24.25(7) —27.31(15) —28.43
harmonics(PHH) calculations of*H for the Argonnevy, — SLi(2%;0) —22.58(10) —23.86(8) —26.82(35) —27.68
with no V. For this Hamiltonian we find a GFMC energy °Be(0";1) —21.73(6) —22.79(7) —25.52(11) —26.92
of —7.670(8) IMerWhiCh is (in ggod\‘ggr[ee]r;'lent with the THe(@—:3) —19.02(8) —20.43(12) —25.16(16) —28.82

revious results of—7.670 (Faddee 37]), —7.680 e _ _ _ _
?Faddee\xb [38]), and— 7.683(PHH[39]). A PHH result for Li(37;3) T3159(8)  —32.78(11) —37.44(28) —39.24
Argonne v, with Urbana IX has recently been computed "Li(3;3) —31.13(8)  —32.45(11) —36.68(30) —38.76
[40]: —8.475. It is in good agreement with our values of 7Lj(3~;3) —25.77(6) —27.30(11) —31.72(30) —34.61
—b8.455(§) Ol:;]tzined WithATZ(l').S GeV ! and —8.471(12) LS 1) —2491(7) —26.14(11) —30.88(35) —32.56
obtained withA 7=0.25 GeV -.

There are also several other calculations'de with Ar- L33 18210 19.73(12) —24.79(18) —28.00

gonneu 1, without V;;, . Figure 10 shows the GFME(7)
for this case. Because there is Yig, , we multiplied theui’j

in H" by 0.994 and included the isoscalag. so that
(H—H')~0. The average, shown by the line and dotted
error range, of the last few(7) is —24.227(31) MeV. A

circle. The down-pointing triangle shows our best VMC up-
per bound for this case; it is 2 % higher than the exaé,.

In the following sections we will give the calculated val-
: . f . , 7 , ues of the average energk ) for r= 0.04, 0.05, and 0.06
calculation using the fulbj; , without isoscalawc, in H', 1o\ =1 for variousA=6 and 7 states. These provide upper

gives —24.230(31), even though in this calé —H')=15 ), n4s to the eigenenergies of the nuclear Hamiltoiian
MeV. These results are in excellent agreement with the older

; i~ ; , &ised in this work. The studies of the accuracy of GFMC
GFMC calculation of Ref[41] (up-pointing trianglé which
was made with a completely independent program that us
the short-time propagator of E@4.12. They are also in
excellent agreement with the correlated hyperspherical ha

monic (CHH) value of —24.17:0.05 MeV[42] shown by A=6 states. For théLi ground state the additional binding

the open diamond. The error bar on the CHH value repre-, . - : ) . :
sents the expected truncation error in that calculation. Howf)btalned by single-energy extrapolations is on9.13(15)

MeV. This extrapolation was made using a factor 5 more
ever these results are below the Coulomb-corrected Faddee P 9

é’émples than we have for the other states studied, thus no
Yakubovsky value of-24.01 MeV[38], shown by the open useful extrapolation estimates can be made for the other

states. We also estimate that the perturbative treatment of
H—H' increasesk,, by less than 0.1 MeV. As will be

discussed above suggest that, assuming that the low-energy
&xcitations in the¥; have been successfully removed by
diagonalizing the Hamiltonian matrix in the-shell states,
liheseEa\, are at most-0.3 MeV above the eigenenergies for

34 4 1 shown in the next section, the largebehavior ofE(7) for
all the A=6,7 states is very similar. Thus we expect that the
6 | ‘He ] errors estimated fofLi are reasonable approximations to

those for other nuclei. By scaling the above two errors ac-

cording toE(7=0)—E,, and(v;;) we estimate that thg,,
238

s g( | for the A=7 states is no more thawy 0.5 MeV above the
2 eigenenergies.
. -24.0 o
+ + | $ VIl. ENERGY RESULTS
242 + o | JL
+ + ! + 1 A. Ground states
iy ] The primary results of this paper are the GFMC energies,
R, E,,, of the ten different J™;T) states inA=6,7 nuclei
0.0 002 004 005 008 o0 shown in Table X and in Fig. 11, along with three isobaric

MeV™) .
i analog states and the ground state#\ef2—4 nuclei. The

FIG. 10. “He GFMC energy as a function of imaginary time for Present results fofHe and®Li ground states and th@*;0)
the Argonnevy, potential withoutV;; . Also shown are several excited state inLi are all slightly lower, but within error
previous calculations identified in the text. bars, of ther-averaged results reported in Ref]. The slight
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0 ground state, our earlier result 6f32.4(9) MeV was not
I ] inconsistent with the experimental binding ©131.99 MeV.
- Argonne iy ] However, from the various extrapolation tests discussed
Sr + Urbana IX . above, and the propagation to=0.1 MeV ™!, we are now
I ] confident that the binding energy with the present Hamil-
I 12r ] tonian is not more than-31.6 MeV.
-0 3H ] Table X also gives the VMC energies from the simple
starting trial function ¥, and from the more sophisticated
¥y . In A=3,4 nuclei,¥, picks up about 60% of the energy
difference betweenV; and the final GFMC results. How-
ever, for theA=6,7 nuclei there is a much bigger gap be-
tween VMC calculations with?; and the GFMC energies,
and theW,, results recover only 20—25% of this energy dif-
ference. Clearly there is some important aspecp+shell
variational wave functions that is missing from the current
ansatz

The Argonnev.g + Urbana IX Hamiltonian was con-
structed to reproduce the experimental binding energies of
2H, 3H, and the equilibrium density of nuclear matter. From
Table X and Fig. 11 we see that with this Hamiltonian all the
A=6 and 7 states studied here are underbound. The discrep-
ancy in ®Li and “Li states is relatively small<2% and
<5% respectively, and the calculated ground states are stable
against breakup intae+d anda+t. On the other hand, the
discrepancy in®He and "He states is larger~5% and
~13%, respectively, and the calculatédle ground state is

FIG. 11. Spectrum foA=2-7 nuclei from experiment, and in unstable againsk+n+n breakup.
GFMC and VMC calculations. A breakdown of the GFMC energies into kinetic and po-

tential contributions is given in Table XI. The kinetic and

improvement may be due to the improvad;, while we  potential energies grow rapidly as the number of nucleons
have obtained much better Monte Carlo statistics than previncreases, but for a given nucleus, they decrease slightly as
ously, both by access to increased computer resources and B¢ excitation energy increases and the nucleus gets more
more efficient program implementation. Theextrapolated ~diffuse. The V. contribution remains small compared to
results of Ref[4] were significantly below the present re- vij, never exceeding 5%, but because of the large cancella-
sults, but also had a large uncertainty associated with théon betweerK andv; , it is typically 25% of the total bind-
extrapolation; taking that uncertainty into account, the twoing energy. The electromagnetig} is dominated by the
calculations are consistent. In the particular case offtie  Coulomb interaction between protonée;(pp), but about

& o
[} W

B —
1

Energy (MeV)

Ny
U
—

3sp —//[MC

Exp GFMC

0L

TABLE XI. Kinetic and potential energy contributions to GFMC energies in MeV.

AZ(JW;T) K Vjj Vijk Uﬁ Uiqu VﬁqkT

2H(1+;0) 19.81 —22.05 0.0 0.018 —21.28 0.0

3H(%*;%) 50.008) —57.6(8) —1.20(7) 0.04 —43.8(2) —-2.2(1)
4He(OJr;O) 112.18) —136.4(8) —6.5(1) 0.861) —99.4(2) —11.8(1)
6He(OJr;l) 140.315) —165.9(15) —-7.2(2) 0.871) —109.0(4) —13.6(2)
6He(2*;1) 131.914) —155.7(13) —7.0(1) 0.861) —106.2(5) —13.1(2)
6Li(1+;0) 150.810) —180.9(10) —-7.2(1) 1.711) —128.9(5) —13.7(3)
6Li(3+;0) 146.729) —174.4(31) —-7.1(2) 1.712) —119.9(5) —13.9(4)
5Li(0*:1) 135.416)  —161.4(16) —6.9(2) 1651)  —108.5(4) —12.9(2)
6Li(2+;0) 139.632) —166.0(34) —6.7(3) 1.663) —119.2(5) —12.4(4)
6B(E‘(O_*';l) 134.816) —160.5(16) —6.8(2) 2.972) —108.0(4) —12.8(2)
7He(§’;%) 146.q17) —171.2(17) —7.4(2) 0.861) —109.9(6) —-14.1(2)
L2 h 186.428)  —222.6(30)  —8.9(2) 1.782)  -1525(7)  —17.1(4)
7Li(§_;%) 183.(0032 —219.1(35) —8.2(3) 1.762) —151.5(7) —16.1(4)
7Li(%7;%) 178.4298) —209.6(30) —8.5(3) 1.782) —142.2(7) —16.1(4)
7Li(g_;%) 169.131) —200.2(33) —-7.1(3) 1.732) —143.2(7) —14.2(4)

UNERE) 147.815) —173.8(15)  —7.2(2) 1.681) -109.4(6)  —13.9(2)
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17% (8%) of its total contribution comes from the magnetic nuclei which is missing from our trial wave functions; this
moment and other terms in EgR.4)—(2.6) in He (Li) iso-  feature does not seem to depend onltheZ, J7, or T of the
topes. The one-pion-exchange term of the potential dominucleus.

natesv;; , providing ~70% of the interaction energy, while

the ViijkT is smaller tharv{j by one order of magnitude. B. Excited states

Figure 12 shows the(7) —E(7=0) from the GFMC cal- A second result of the present paper is the prediction of an
culations of ground states of nuclei with<A\<7. The  aqditional dozen higher excited states obtained in the VMC
GFMC correction to the VMC ¥'7) results has a stron§  calculations as shown in Table XII, and in Fig. 14. We have
dependence but no significaNt-Z dependence. Figure 13 calculated VMC and GFMC excitation energies for eight
shows[E(7) —E(0)]/|Ea—E(0)|. The results for the two states, and they agree with each other within error bars in all
s-shell nuclei have the same dependencerpas do those cases. Therefore, we may expect that the VMC excitation
for the four p-shell nuclei. However the-shell E(7) ap-  energies for the other states shown are close to the correct
proach their asymptotic values less rapidly; a fit to i results for this Hamiltonian. Most of these higher states are
E(7) for 7<0.03 MeV ! requires excitation energies of  obtained by the diagonalizations within correlatpeshell
700 and 90 MeV instead of the 1500 and 350 MeV used states discussed in Sec. Ill.
in the fit for “He shown in Fig. 4. This is another indication  In Fig. 11 we see that the difference between the calcu-

that there is a qualitatively new feature necessarypfshell  lated and experimental energies increase# asd |[N—Z|
0wl @ i
* o’H
-02 | e .
f o He
g 041 % o °Li ]
A .
U-‘F # O He
S o6l | ¢ + L | FIG. 13. E(7)—E(0)/|E,—E(0)| for the
2 ground states oA=3—-7 nuclei.
c tove0
08 | **i % s e } + |
t
Wyl $b
-1.0 i + + ;‘( r ]

0.00 0.01 0.02 0.03 0.04 0.05 0.06
T(MeV')
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TABLE XII. Experimental, VMC, and GFMC excitation ener- 15

gies (adjusted to their respective ground statesMeV. Argonne v,
AZ(I™T) Expt. VMC GFMC s + Urbana IX
SHe(2%;1) 1.80 1.8610) 1.80(18)
fHe(2":1) 5.6 3.6110)
®He(1%;1) 3.4610) e
®He(0";1) 5.2411) 101 -
1+_
6Li(3*;0) 2.19 2.9810) 2.7236)
BLi(0*;1) 3.56 3.8410) 3.9423) = .
8Li(2*;0) 4.31 4.2811) 4.4339) 2 o
BLi(2*;1) 5.37 5.6410) 8 | ]
6Li(1*:0) 5.65 5.6811) 8 | " g T j‘\—
bLi(1*;0) 8.9611) 5 — W - 7
"He(z;3) 09018 . 1_
THe(3~;3 1.6916) rf yre—
"He(3:3) 2.0a16) 7 =
| =
=" N
Li(37:d 0.48 0.3316) 0.7641) oF o ™ 3y £y .
LYy 4.63 5.4816) 5.7241) | SHe T=1 SLi T=0 ™He T=3/2  'Li T=1/2
(3L 6.68 6.6416) 6.5645)
7L 5-. l) 7.46 9.9016) o . .
2 12 FIG. 14. Excitation spectrum foA=6,7 nuclei from experi-
Li(£7:3) 9.67 11.6816) ment, and in GFMC and VMC calculations.
7L %7; %) 9.90 10.1416)
7Li(§_'%) 10.7916) E T.)= (n)
' = a T,T,). 7.0
) 11.24 13.0616) 12.6533) at(T2) nSEZT ATQn(T.T2) (

The Q,(T,T,) are orthogonal functions for projecting out

. N . isovector, isotensor, and higher-order terpds]; the first
increase. However, as seen in Fig. 14, the excitation spectra L2 o
rms areQqy=1, Q;=T,, andQ,=3(3T;—T%). The coef-

are in good overall agreement with experiment. The stateg_e_ " ,

generally occur in the correct order, and with reasonable erficientsa™ are then obtained from

ergies. The agreement with tf&i and low-lying “Li spec-

tra is very good. In particular, the first excited(;D) state a<Afj>T:E Qn(TrTz)EA,T(Tz)/E Qﬁ(T,Tz)- (7.2)
in SLi, and the first excited ;%) state in’Li, i.e., the first Tz Tz

excited states with quantum numbers identical to the ground | first-order perturbation theory, the electromagnetic in-
states, are very close to the observed excitations. In the Cag&raction contributes to tha™ for n=1 and 2. the nuclear

6 7 H
of "He and"He, we predict a number of states that have noicgpg potential and kinetic energy contributerte 1, and the

been observed experimentally, but which could be geamh%clear CD potential contributes to=2. Thea™ for higher
for. A first observation of the second (21) state inHe " 410 760 in first order with our Hamiltonian, and there is

was rec_:entl_y reported 9, th‘? experimenters tr?ed to fit their little experimental evidence fon=3 terms in nuclei44].
data with single states of differend{;T) but did not geta yyo oy made VMC calculations of ta'2 in first order

very good fit for any one value. Our results suggest there arSy using a Cl wave function of good isospif, and simply

several states close together in this region, which could 'm\'/arying T, to compute theE, (T,). Table XIII contains

prove the chances of fitting the data satisfactorily. The Stateﬁ?sults for theT=1 isovector i=1) coefficients inA=3

. 7 . .
in “He might also be amenable to experimental measureme hdA=7, theT=1 isovector and isotenson&2) coeffi-

\<,)vr|1tr|]irt12e new radioactive beam facilities that are now COMING 0 ts inA= 6, and theT =2 isovector and isotensor coeffi-

cients inA=7. The energy differences are broken down into

v”, v°P, v°SB and KCSB contributions, with thepp Cou-

lomb, [vc1(pp)], other Coulomb ¢cg), and magnetic mo-
Energy differences of isobaric analog states are sensitivnent (vy) components ob” also given.

probes of the charge-independence-breaking parts of the The CIB parts of the Hamiltonian induce CD changes in

Hamiltonian. To study these it is useful to express the enerthe nuclear wave function, leading to higher-order perturba-

gies in an isobaric multiplet, characterized Byand T, in  tive corrections to the splittings of the isospin multiplets. We

terms of the isospin multipole operators of oraer have estimated some of these changes in VMC by repeating

C. Isobaric analog states



56 QUANTUM MONTE CARLO CALCULATIONS OF NUCLEI ... 1745

TABLE XIII. Breakdown of VMC isovector and isotensor energy coefficiea;]ﬁ§r (in MeV) obtained
with CI wave functions. Total coefficients are given for VMC with Cl and CD wave functions, and for
GFMC CD wave functions ilA=6 nuclei.

AT.n 331 6,1,1 6,1,2 A1 731 732
(v?) 0.68Q1) 1.0482) 0.1861) 1.50%3) 1.1094) 0.1191)
[{vci(pp))] [0.651] (1.030 [0.167 [1.458 [1.099 [0.114
[(ver.. )] [0.011 [0.014 [0.00] [0.021] [0.017 [0.001
[{(vum)] [0.018 [0.004 [0.018 [0.023 [-0.002 [0.004
(KCSB 0.014 0.014 0 0.025 0.011 0
(v°%B 0.066 0.0381) 0 0.08Q1) 0.0212) 0

(v°P) 0 0 0.10112) 0 0 0.0204)
al’s (VMC: CI) 0.76Q1) 1.0973) 0.28712) 1.6054) 1.1415) 0.1394)
al’} (vMC: CD) 0.76Q1) 1.0823) 0.27712) 1.5974) 1.1255) 0.1324)
al’} (GFMC: CD) 0.7561) 1.12Q9) 0.25611)

all’ (Expt) 0.764 1.173 0.223 1.644 1.373 0.175

the calculations using wave functions that have a varying The results tabulated in Table Xl indicate that the
Coulomb term,V$, of Eq. (3.20, added to the single- present Hamiltonian underestimates the observed isovector
particle potential well that is used to generate fﬂfté(Rak) coefficients and gives mixed results for the isotensors. It
components of¥y. This results in a slightly more diffuse Should be remembered, however, that whife is well de-

wave function asZ increases, and slightly smaller energy fte_rminedhi? the//zl?kpartial_\;a_vi by(tjhﬁ_xll\rl]scatterir;g data,
coefficients than those obtained with Cl wave functions. In't IS much less well known i =1 and higher partial waves,

: ; while the only experimental input for“SB is the nn-pp
the GFMC calculations, the isoscalar Coulomb tew,, X . X X
orovides an additional source of CIB through the pg)%agatscatterlng length difference, which has a 20% experimental

! L , uncertainty. TheA=3 case would be corrected by-al0%
ing Hamiltonian of Eq(2.17), which depends off,. How- i creaqe inyCSB pyt this would not explain much of the

ever, within the limited propagation time @f-0.06 MeV™*, discrepancy in the larger nuclei. The significant underbind-
the main effect of using GFMC wave functions seems to bgng of the A=6,7 nuclei with the present Hamiltonian may
the slightly sharper two-body densiti¢giscussed below mean that our wave functions for these nuclei are more dif-
around 1 fm, and consequent changes in the CIB potentig|;se than they should be. By far the worst discrepancy is for
expectation values. All our GFMC calculations have beenhe A, T=73 case, where the underbinding of the ground
made with CD wave functions, but a complete set of isobarigtates is also the largest. If the Hamiltonian were altered,
analog states was calculated only for=6, results for which  e.g., by increasing the net attraction from the three-nucleon
are shown on the penultimate line of Table XlIl. There mayinteraction, to obtain the correct binding, the contribution of
also be higher-order contributions to the isomultiplet split-the CIB forces to the isovector coefficients should be in-
tings from changes to the Cl expectation values, but we havereased, both in the dominaptp Coulomb term, and the
no reliable way of extracting these from under the sizeableshort-rangey ©B. It is more difficult to predict the effect of
Monte Carlo errors. such changes on the isotensor energy coefficients.

TABLE XIV. VMC values for proton rms radi{in fm), for quadrupole momenign fm?), and magnetic
moments(in wy) all in impulse approximation.

(rp*? 2 Q

VMC Expt. VMC Expt. VMC Expt.
2H(1%;0) 1.967 1.953 0.847 0.857 0.270 0.286
3yy(l+.1 1.591) 1.60 2.5821) 2.979

H( 2 12

IHe(L*:L 1.741) 1.77 —1.770(1) —2.128
“He(0";0) 1.471) 1.47
fHe(0";1) 1.951)
BLi(17;0) 2.462) 2.43 0.8281) 0.822 —0.33(18) —0.083
5Be(0%;1) 2.964)
TLi(d-;d 2.261) 2.27 2.9242) 3.256 —3.31(29) —4.06
Be@ 1) 2.421) —1.110(2) —5.64(45)
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VIIl. ONE- AND TWO-NUCLEON DISTRIBUTIONS modify the rms radius of th@-shell nuclei. Thus they are

The one- and two-nucleon distributions of lightshell det_erm_med aIm(_)st entirely by the input ‘T'a' wave function,
which is constrained to be near the experimental value wher-

nuclei are interesting in a variety of experimental settings.

For example, théHe nucleus has been a popular candidateEVe" known. However GFMC does make significant changes

for study as a “halo” nucleus whose last two neutrons arel0 densities at small. A number of the one-body densities

weakly bound. In addition, the polarization densities®af @€ increased near the origin, as are the peaks of many of the
and “Li are important because of possible applications intWO-body densities. _ _ .
polarized targets. In order to extract information on the spin- The proton rms radii and static electromagnetic properties
dependent nucleon properties from experiments on such ta@'e® given in Table XIV. These are calculated frainy using
gets one must, at a minimum, understand the nucleon polaimpulse approximation. In general, we know that there are
ization in the polarized nucleus. In this section we providesignificant corrections to the electromagnetic moments from
our results for a variety of nucleon distributions, including two-body charge and current contributiof®5,4€6. For the
spin-polarized and averaged single-nucleon densities, spimagnetic moments, these corrections are onlyl—2% in
dependent and spin-independent two-body densities, thisoscalar nuclei like’H, but are~ 15—-20% in the isovector
proton-proton distributions, and the rms radii, magnetic mo-T= 3 nuclei ®H and He. Therefore it is not surprising that
ments, and quadrupole moments. we see very little discrepancy for the magnetic moment in
As was discussed in Sec. VI, we do not propagate to largéLi, but a sizeable error forLi; presumably, a calculation
enough imaginary time to allow the GFMC to significantly including meson-exchange contributions would come much
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closer to the experimental values in the latter case. The quagiderably because of the relatively weak binding of the
rupole moment is a more difficult problem, particularly in p-shell neutrons. In addition, the central neutron and proton
SLi, where there is a delicate cancellation between the condensities decrease rather dramatically. This effect does not
tributions from the deuteron quadrupole moment and thenecessarily require any changes to thgarticle core, but
D-wave part of thex-d relative wave function. Many cluster can be understood at least partially from the fact thatdhe
models for®Li fail to obtain the observed negative sign; we particle no longer sits at the center of mass of the entire
have trouble getting an accurate measure of the magnitudeystem. The motion relative to the center of mass spreads out
for reasons discussed above. In the casélLafwhere there the mass distribution relative to that 6He.

is no such delicate cancellation, the value is orlyL5—-20% We also find that the small depression obtained in the
too low in magnitude. Again, some of this discrepancy mightcentral density of'He gradually disappears as more nucleons
be made up by meson-exchange corrections. are added. While the depression is clear indghgarticle, it is

In Fig. 15, we present the neutron and proton densities fonearly within our statistical errors ifHe and seems to have
the helium isotopes, calculated with GFMC. Previously wedisappeared completely iAHe. This can again be under-
have found that théHe charge form factor is in good agree- stood by taking into account the fluctuations in the center of
ment with experimental data in realistic calculatidds], mass of the core nucleons about the center of mass of the
and hence this distribution should be quite accurate. As morentire system. Figure 16 shows the GFMC neutron and pro-
neutrons are added, the tails of the distributions broaden conten densities for the lithium isotopes. These densities are

0.10 .
0.08 |- } "Li ]
O e G0 on
vo8

6 8%, anl =198
0.06 7 i o |

e ° vnl =202

hd o
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X + v . o apl=194 and proton densities iALi.
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very smooth functions of the distance from the center of 0%

mass. * bort
The polarization densities fdiLi and ’Li, computed with ool I
VMC are presented in Figs. 17 and 18, respectively. The s ¢*
spin-up proton density distribution is defined by o - OQQ
* o®
o®
1 1+ o0,(i) 1+ 7,(i) o o®
pm(r)_4ﬂ'r2<q}(‘],MJ_J)’§i: 2 2 ‘i:‘-‘)ﬁo' ) 22. fzr;c
040 | ¢ e
xa(r_“i_RcmD \P(‘JVMJZ‘J)>1 (81) :O oco).
-0.50 ‘2°i * S5
with similar definitions for spin-down protons, spin-up neu- *
trons, etc. The integral of these distributions is the total num-

ber of spin-up(down) protons(neutrong in a fully polarized 0 ! o 2 3
state. The integrated quantities can be important in high- *
energy experiments designed to probe the spin-dependenceFIG. 19. The two-nucleor§; ;- 7; density of °Li computed
of the neutron or proton structure functions, while their ra-from ¥ and by GFMC.
dial dependence may be partially accessible in experiments
at lower energies. Experimentalists are considering usingf °Li, the polarization of the neutrons is determined by the
dense, solid polarizedLiD targets, as an alternative to the D-state probability in the deuteron and tbestate probabil-
deuterated ammonia targets currently being used to probéy in the «—d wave function. In three-body models, recent
neutron properties. calculations[47] have found that the valence neutron had
Polarization densities have been studied previously iP(n1)=0.931). Since in such a model the two core neu-
cluster models, with a fixe€linpolarized o core plus inter- trons are unpolarized, this corresponds to a total projection
acting valence nucleons. Our calculations include the possP(nT) of 1.93, or a polarization of 29%.
bility of the spins in the the core particle being polarized As expected, the up spins dominate the down spins in the
by the valence nucleon’s spin and orbital angular momenM =1 state of°Li at large distances from the center of mass.
tum, and hence it is interesting to examine the results foAt very large separations, the ratio will be determined solely
both the distributions and the integrated quantities. by the asymptoti®/S state normalization of the-deuteron
In the spin projectionM =1 state of the deuteron, the wave function and th®-state probability in the deuteron. At
polarization of the neutron differs from unity because thesmall r, we find that the spin-down density exceeds the
tensor interaction induces B state in the wave function. spin-up density, presumably because the spins of the outer
Integrating pn;(r) over r yields a probability for up-spin nucleons prefer to try to pair with the core nucleons to a
neutrons of spin-zero state. Even though we find this effect to be signifi-
cant, the integrated spin densities agree reasonably well with
P(nT)=Pg+3:Pp=1—3Pp, (8.2 the cluster model calculations. The integrated neutron densi-
ties in SLi are found to be 1.93 for spin up and 1.07 for spin
wherePs andPp, are theS- andD-wave probabilities of the down, respectively, yielding the same net polarization of
deuteron. In the simplest two-body (plus deuteronmodel  29%.

0.025 . .
0.020 | o".. o He ]
oale .
; . *#:o. = He
P $§$i§$¢x‘. *'He ]
0015 | & o $§§' o'Li i
T [ ]
T‘ﬁ ¢¢ 550 o Li ]
% ] 8§ FIG. 20. The proton-proton densities fide,
& o010 - * Sgo 1 He, "He, SLi, and “Li nuclei.
| : Vg
12}
: Teats,
0.005 - gg * "B
] o
]
¢ ‘e
0.000 g L 1
0 1 2 3

1, (fm)



56 QUANTUM MONTE CARLO CALCULATIONS OF NUCLEI ... 1749

The P(p1) in ‘Li is found to be 1.94 instead of 2 as can write plausible variational wave functions with the
predicted by the independent-particle shell model. The neusroper quantum numbers for the given state of interest, but
trons carry about half this remaining spin, as the spin-up anthey do not give sufficient binding to provide stability
spin-down neutron integrated densities are 1.98 and 2.02. against breakup into subclusters. However, the GFMC

We have also computed a variety of two-nucleon distri-method rapidly damps out the small amount of highly ex-
bution functions. These are defined by cited states contained in the VMC wave functions, producing

ground states that are stable in the caséléfand ’Li. The
pap(r)= %ME Oﬁ 5(r—|ri—rj|)‘\1’>, (8.3 current major limitation i; the smgll value qfthat can be
r i< reached in most calculations. This makes it important that
the starting VMC wave functions have a proper mix of the
where the operator®; are given in Eq(3.9). While typi- appropriate spatial symmetries, and negligible contamination
cally these two-body correlations cannot be directly meafgm low-energy excited states.
sured, they provide the expectation values of two-body op- The energies obtained for the ground and low-lying ex-
erators and can be important ingredients in interpreting thejieq states are close to, but somewhat above, the experimen-
results of experiments. Transition matrix elements of thiy) nymbers. We believe the discrepancy is probably the fault
type are needeo_l for e>_<trac_t|ng_the effect|_ve weﬂkN_ COU- " 5f the Hamiltonian, most likely the phenomenological short-
pling constant in parlty—wolatmg experiments. F|gurg 19range part of the three-nucleon interaction, rather than a
shows VMC and GFMC calculations of ti 7;- 7; NN pair shortcoming of the calculation. We note that the difference
distribution function. This correlation is strongly dominated between experimental and theoretical energies is much less
by pion exchange, and is responsible for the toroidal shape?1 ) d miaht b ified b . d three-
which characterize the coupling of spin to space in thet at {Vij), and might be rectified by an improved three

nucleud48]. We see that the structure is somewhat enhanceﬂUCIeon potential. Despite the discrepancies in the ground-
by the GFMC. state energies, the excitation spectra are reproduced very

Finally, we present the proton-proton distributidssaled ~ Well- We believe this is a demonstration that the shell struc-
to have normalization integrals @ 1) for “He, ®He, "He,  ture of light nuclei can be obtained directly from bare two-

SLi, and “Li in Fig. 20. These distributions are directly re- nucleon interactions that fiiN scattering data.
lated to the Coulomb sum measured in inclusive longitudinal The QMC methods developed here can be extended to
electron scattering; such measurements’ite have been e€ight-body nuclei with the present generation of computers.
used[49] to put constraints on the,(r;;), and realistic We already have calculations in progress for the ground and
calculations agree with the experimental res(ifi§]. The low-lying excited states of=8 nuclei. The next major task
behavior ofp,(r) at short distances is largely determined will be to refine our model for the three-nucleon interaction,
by the repulsive core of theN potential and is nearly inde- perhaps including those relativistic corrections which first
pendent of the nucleus, but at larger distances it is detemppear at the three-nucleon ley&h,15, with the intention
mined by the size of the nucleus. of fitting the energies oA=3-8 nuclear states with 1% ac-
We show results forpp, in ®He and "He in order to  curacy. Now that accurate QMC calculations of these states
directly compare ther particle proton-proton distribution to are possible, there are a host of interesting problems that
that in thea-particle cores ofHe and’He. Unlike the one- become accessible, including the responsélafand ’Li to
body densities, these distributions are not sensitive to centeelectron scattering, and many low-energy electroweak cap-
of-mass effects. We find that the proton-proton distributionture reactions of astrophysical interest, suctids(d, y)°Li
spreads out slightly with neutron number in the helium iso-and "Be(p, y)®B. There also remains the problem of adapt-
topes, with an increase of the pair rms radius of approxiing the GFMC methods here to the study of larger systems,
mately 4% in going fronfHe to ®He, and 7% to’He. While  perhaps through methods similar to the cluster expansion
this could be interpreted as a swelling of theore, it might  used in VMC calculations of®0 [51].
also be due to the charge-exchangg- t;) correlations
which can transfer the charge from the core to the valence

nucleons. Since these correlations are rather long-ranged, ACKNOWLEDGMENTS
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