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Deep inelastic scattering on the deuteron in the Bethe-Salpeter formalism.
II. Realistic NN interaction
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We present a systematic study of the leading twist structure functions of the deuteron,F2
D , b1,2

D , andg1
D in

a fully relativistic approach. Our study is based on a realistic Bethe-Salpeter amplitude for the deuteron, which
is obtained as a solution to the homogeneous Bethe-Salpeter equation with a realisticNN kernel. Particular
effort is made to connect the structure functions to the densities of the appropriate charges and currents. This
allows for a systematic comparison between relativistic and nonrelativistic calculations by analyzing the same
densities in both approaches. Thus, the sources of the relativistic effects in the structure functions are under-
stood and clearly distinguished from variations caused by the differences in the model parameters. We present
both the formalism and extensive numerical calculations for all steps of our analysis. We find that the nonrel-
ativistic and relativistic calculations are qualitatively very much alike. However, three main features system-
atically distinguish a consistent relativistic approach from the nonrelativistic one:~i! the binding effects are
larger,~ii ! the effect of Fermi motion at highx is stronger, and~iii ! the relativistic description of the structure
functions b1,2

D is fully consistent, unlike the nonrelativistic approach, which is internally inconsistent and
violates the fundamental sum rules.@S0556-2813~97!02310-8#

PACS number~s!: 25.30.2c, 13.60.Hb, 13.40.2f
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I. INTRODUCTION

This paper is the second of two papers devoted to a s
of deep inelastic lepton scattering~inclusive electroproduc-
tion! on the deuteron within the Bethe-Salpeter~BS! formal-
ism. The first paper@1#, presented a formal approach to de
inelastic scattering within the BS formalism. The empha
of this work was on the self-consistency of the method, a
the development of all aspects of the formalism such tha
could be applied to a study of realistic cases of reactions
basic analysis was performed utilizing the operator prod
expansion method in the leading twist approximation w
the results given in the space of the moments of the struc
functions. In principle, the structure functions~SF! can be
recovered from the known moments by applying the inve
Mellin transform. Analysis of the lower moments of the de
teron structure function allowed us to establish a formal c
sistency in the approach and to prove important sum ru
However, only simple illustrative numerical estimates we
performed in the ‘‘scalar deuteron’’ model, which itself
rather far from reality. It was stated that in order to compl
the study the following tasks had to be done. First, expl
formulas for the deuteron spin-averaged and spin-depen
structure functions needed to be derived and, second,
structure functions had to be computed in a realistic mes
nucleon theory. The present paper deals with both th
tasks.

*On leave from INFN, Sezione di Perugia and Department
Physics, University of Perugia, via A. Pascoli, Perugia, I-061
Italy.
560556-2813/97/56~4!/1700~20!/$10.00
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Some of the preliminary results, including the solution
the BS equation with realisticNN interactions, have been
discussed briefly@2–4#. Our calculations within the BS for-
malism for the deuteron are presented systematically an
detail for the first time in this paper. No calculations by oth
authors have ever been performed within the BS formal
with realistic amplitudes.

This paper does not contain a simple collection of resu
reported elsewhere, nor is it based solely on the direct ap
cation of the formalism developed in Ref.@1#, but rather it
presents a better understanding of the formal and phys
aspects of the process. Indeed, any calculation of real
structure functions depends on a realistic BS amplitu
which we have computed numerically using a Wick rotati
@1,2#. The formalism of Ref.@1# then allows us to calculate
the physical moments of the structure functions using
deuteron amplitude. However, thenumerical transformfrom
the moments to the structure functions~the inverse Mellin
transform! is not a well-defined operation@2,3# and a new
method had to be developed. In this context, we found
beneficial to use the formalism developed in Refs.@5–7# in
the late 1970’s~see also@8#!. This formalism is more conve
nient if we deal with structure functions, rather than the m
ments of structure functions~although of course, it is math
ematically equivalent!. The new formalism allows for a
numerical treatment of the ‘‘inverse Wick rotation’’ of th
BS amplitude when applied to the calculation of the struct
functions. Incorporation of this formalism into the calcul
tion of the deuteron structure functions is another goal of
present paper.

In recent years a number of studies of deep inelastic s
tering of leptons from the deuteron have been undertake
which various manifestations of the relativistic features

f
,
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56 1701DEEP INELASTIC SCATTERING ON . . . . II. . . .
the deuteron have been investigated@9–14#. These results
certainly influenced our subsequent analysis since the
publication @1#, and the corresponding development of t
formalism is considered in this paper as well.

Another new and distinguishing feature of the present
per is the special accent on the systematic comparison o
relativistic and nonrelativistic approaches. To do this,
consider the connection of the structure functions to the d
sities of appropriate charges and currents, and then ana
these densities in both relativistic and nonrelativistic a
proaches. In this way, we are able to trace the origin of
relativistic effects and to demonstrate inconsistencies in
nonrelativistic approximations. The paper contains a num
of illustrations at every step of our analysis.

Finally, results for the structure functions published p
viously @2,3# have been recalculated using the new meth
resulting in some corrections, albeit small, to the SF.

The paper is organized as follows. In Sec. II, we defi
the densities of the currents which are used later in the an
sis of the deep inelastic scattering. For this purpose, the
alistic BS amplitude of the deuteron is presented, and
relativistic and nonrelativistic expressions for densities
defined and calculated within realistic models. In Sec. III
relativistic formalism of our approach to the deep inelas
scattering on the deuteron is developed which includes
plicit relativistic and nonrelativistic formulas for the stru
ture functions, and the sum rules for the structure functi
are analyzed. Section IV contains results of both relativis
and nonrelativistic calculations of the structure functio
F2

D , b1,2
D , andg1

D in realistic models. In Sec. V the summa
of results of the paper is presented. Two Appendixes con
important technical details.

II. ANATOMY OF THE DEUTERON

A. Realistic NN interaction and Bethe-Salpeter amplitude

The basis of our approach to the relativistic description
deep inelastic scattering from the deuteron is a nucle
nucleon BS amplitude. The general self-consistency of s
an approach has been analyzed in our previous paper@1#.
The way to construct relevant matrix elements has been
sented and important sum rules have been proved, both w
out reference to any particular model for the BS amplitu
A naive numerical estimate has been completed within
scalar deuteronmodel which is found to be in qualitativ
agreement with the nonrelativistic theory of deep inelas
scattering@15–17#.

Yet, for realistic calculations of the deuteron structu
functions we need arealistic BS amplitude, which provides
us with a good description of the bulk of the deuteron pro
erties. This is the same ideology as is used in construc
the realistic wave function of the deuteron@18–22#. The
most consistent way to obtain a realistic BS amplitude is
solve the dynamical problem with arealistic modelof the
NN interaction. However, the realisticNN interaction still
cannot be derived explicitly from the underlying fundame
tal theory, QCD, nor from nonrelativistic approximation
such as chiral perturbation theory, although some prog
has been achieved in recent years@23,24#. Alternatively, the
parameters of theNN interaction can be fixed in the trad
tional manner from the available experimental data
st
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nucleon-nucleon scattering~phase shifts analysis!, if the gen-
eral form of interaction is somehow determine
@18,19,22,25#. Unfortunately, the parametrization of theNN
interaction is dependent on the choice of a dynamical eq
tion. In spite of a definite similarity of the sets of paramete
in all realistic models there is no universal form for all no
relativistic and relativistic potentials.

The only one parametrization of theNN interaction avail-
able for the BS equation, is that of Fleischer and Tjon@25#. It
probably needs revision@26#, by incorporating new data on
the nucleon-nucleon phase shift analysis@27#. However, this
parametrization has been used as the basis for our re
calculation of the BS amplitude of the deuteron@2#. The
meson parameters~masses, coupling constants, cutoff p
rameters! have been taken to be the same as in Refs.@25,21#,
except for the coupling constant of the scalars meson,
which has been adjusted to provide a numerical solution
the homogeneous BS equation, and a few other minor ad
ments, in view of the following considerations. First, w
used a simplified form of the propagator of the vector m
sons, omitting thekmkn /mB

2 term. Second, a different nu
merical procedure to solve the eigenvalue problem for
BS equation can also affect the value of parameters.

The detailed formalism preceding the numerical solut
of the BS equation for the deuteron is presented in Ref.@1#.
The Fredholm system of ‘‘Wick rotated’’ equations with a
meson exchanges is solved by an iteration procedure
two-dimensional Gaussian integration~see, e.g., Ref.@28#!.
The following eight components of the BS amplitude of t
deuteron:

cp1 ,ca1
0 ,cv1 ,ca0 ,ca2 ,c t1

0 ,c t0 ,c t2 , ~2.1!

have been computed as scalar functions of two variablesp0
and upu, components of the momentum four-vector. An an
lytic parametrization of these components is now availa
@29#.

Since the one-boson exchange potential@21,25# was used
only with a minor adjustment, our present solution does
contain any new or different physics. This also strongly su
gests that the BS amplitudes are indeed realistic, and pro
a good description ofNN scattering, static properties, an
form factors of the deuteron@21,22,25,30–33#. All param-
eters are presented in Table I. The set of parameters incl
the nucleon massm, the deuteron binding energy«D , and,
therefore, the deuteron massMD52m1«D . The coupling
constants are given in accordance with our definition of
meson-nucleon form factors

FB~k!5
L22mB

2

L22k2
, ~2.2!

whereL is a cutoff parameter~see Table I!.

B. Static properties and densities

In order to compare different models of the deuteron a
define to what degree each of the models isrealistic, it is
natural to calculate various observables within these mo
and compare them with each other and with the experime
data. The canonical way to do this is to calculate the nucl
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1702 56A. YU. UMNIKOV, F. C. KHANNA, AND L. P. KAPTARI
contributions to static observables, for example, the m
square radius, magnetic, and quadrupole moments@18–
22,30#. The mesonic corrections are quite small and dep
upon additional model assumptions. Most of the modern
alistic models give a quite good description of the sta
properties or provide a plausible explanation in the case
minor discrepancy. The reaction observables such as f
factors and structure functions, are more model depend
These differences are often used as a tool for discrimina
between models or various calculational techniques using
models.

A direct comparison of the wave functions and amplitud
usually seems to be less meaningful. Still, in many ca
particular properties of the wave functions and amplitud
directly indicate what will happen when observables are c
culated. A prime example is theD-wave admixture, which
directly affects values of the magnetic and quadrupole m
ments, the tensor analyzing powerT20, and the spin-
dependent structure functions of the deuterong1

D and b2
D .

Another example, the high momentum ‘‘tail’’ of the wav
function ~amplitude! dominates in the observables for som
kinematic conditions with a high momentum transfer. Ho
ever, the interpretation and properties of BS amplitudes
very different from those of the wave functions; a dire
comparison between them is impossible.

Recently, it has been argued that new intuition can
developed in working with the BS amplitude@30,29# by con-
sidering the charge and current densities and compa
them to similar calculations using the nonrelativistic a
proach with wave functions. The charge and current dens
are more directly linked to the observables than wave fu
tions and amplitudes. Following this idea, we calculate
charge and current densities which are related to the var
structure functions in deep inelastic scattering.

In many important cases the nucleon contribution to
deuteron observablêO& is defined by the triangle diagram
~see Fig. 1!

TABLE I. The set of parameters of the kernel of BS equati
used in this work.

meson coupling constants mass cutoff isosp
B gB

2/(4p);@gv /gt# mB , GeV L,GeV

s 12.2 0.571 1.29 0

d 1.6 0.961 1.29 1

p 14.5 0.139 1.29 1

h 4.5 0.549 1.29 0

v 27.0; @0# 0.783 1.29 0

r 1.0; @6# 0.764 1.29 1

m50.939 GeV,«D522.225 MeV
n
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^O&M5 i E d4p

~2p!4
Tr$C̄M~p0 ,p!Ô~p1 ,q,k!CM

3~p01k0 ,p1k!~ p̂22m!%, ~2.3!

where p1,25PD/26p5(MD/26p0 ,6p), PD5(MD ,0) is
the deuteron momentum in the rest frame,p5(p0 ,p) is the
relative momentum of the nucleons,Ô(p1 ,q,k) is an appro-
priate operator, andCM(p0 ,p) is the BS amplitude for the
deuteron withM being the deuteron’s total angular mome
tum projection„see Ref.@1# for definition and conventions
for CM(p0 ,p)…. The operatorÔ(p1 ,q,k) is written in a gen-
eral form, which depends on nucleon momentum,p1 and two
external momentaq and k. q does not appear in the lowe
part of the diagram andk adds to the nucleon momentum. I
the present paper we consider only the case withk50.

The explicit form of the operators and the structure of t
deuteron matrix elements relevant to deep inelastic scatte
have been studied previously by several authors@16,17,9–
11,1#. One such method of finding a form of the operator f
deep inelastic scattering is that of Wilson’s operator prod
expansion@34# applied within an effective meson nucleo
theory@16,17,35,1#. Another possible approach is based on
parametrization of the operators in the most general fo
with phenomenological analysis or interpretation with
models for quark-nucleon amplitudes@9–11,8,36#. Both ap-
proaches lead to the same results in the ‘‘convolution
proximation’’ which assumes that the deformation of t
nucleon operator off-mass-shell can be neglected. In
present paper we do not concentrate on the differences
tween these two approaches; that is, our analysis does no
beyond the convolution approximation.

The vectorgm , and the axial vectorg5gm operators are
relevant here. The matrix elements of the selected com
nents of these operators are given by

5
^g0&M

^g3&M

^g5g0&M

^g5g3&M

6 5
i

2MD
E d4p

~2p!4
Tr5 C̄M~p0 ,p!5

g0

g3

g5g0

g5g3

6
3CM~p0 ,p!~ p̂22m!6 . ~2.4!

Three main combinations of these matrix elements are

FIG. 1. Triangle graph for nucleon contribution to the deuter

matrix element of operatorÔ.
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56 1703DEEP INELASTIC SCATTERING ON . . . . II. . . .
portant for deep inelastic scattering. They are presented
low along with the corresponding deuteron structure fu
tions:

F2
D→

1

3(M $^g0&M1^g3&M%, ~2.5!

b2
D→$^g0&M511^g3&M51%2$^g0&M501^g3&M50%,

~2.6!

g1
D→$^g5g0&M511^g5g3&M51%, ~2.7!

where→ means ‘‘corresponding to’’ and does not have
direct mathematical interpretation. Explicit connection
these matrix elements to the structure functions will be d
cussed in Sec. III. These matrix elements represent cha
and currents, vector and axial vector, calculated for deute
states with different combinations of total angular mome
tum projectionM . Properties of these matrix elements, i
cluding rigorous sum rules for the charges, are later use
discuss the structure functions.

Let us start from the matrix elements involved in E
~2.5!. The first term^g0&M is the charge of the conserve
vector current and, since it is independent ofM , the follow-
ing sum rules can be immediately written down~see, e.g.,
@16,1#!:

1

3(M ^g0&M5^g0&M51. ~2.8!

Obviously this sum rule is also valid in the nonrelativis
approaches since it is just a normalization condition for b
the wave functions and BS amplitudes. To make more me
ingful use of this matrix element and compare our appro
to other realistic approaches, we define the charge densi
the BS formalism as~see Appendix A for the explicit form!

^g0&
BS~p!5

i

12p2MD
(
M

E dp0

2p

3Tr$C̄M~p0 ,p!g0CM~p0 ,p!~ p̂22m!%,

~2.9!

1

4pE dp^g0&
BS~p!51. ~2.10!

In the nonrelativistic limit this corresponds to the momentu
density@17,1,12#

^g0&
NR~p!5

1

6p2(M uCM~p!u25@u2~ upu!1w2~ upu!#,

~2.11!

1

4pE dp^g0&
NR~p!51, ~2.12!
e-
-

f
-
es
n
-

to

.

h
n-
h
in

whereCM(p) is a nonrelativistic wave function of the deu
teron with u and w being itsS- and D-wave components
The densitieŝ g0&(p), calculated in three realistic mode
@18,19,2#, are shown in Fig. 2. Certain model differences
upu.0.5 GeV are present, however there is no distinguish
feature of the relativistic density.

Similarly, we consider other components of the vec
and axial matrix elements. The relativistic densiti
^g3&

BS(p), ^g5g0&
BS(p), are defined by replacingg0 with

g3, g5g0, and taking appropriate combination of the matr
elements with differentM in Eq. ~2.9!. The explicit expres-
sions for all densities in terms of the components of the
amplitude are presented in the Appendix A.

The nonrelativistic densities are calculated from a non
ativistic reduction@17,1,12#. Here we present the most inte
esting densities of them. A remarkable feature of the non
ativistic densities is that they have the same angu
dependences as the corresponding relativistic densities.

The third spatial component of the vector current in t
nonrelativistic limit is

^g3&
NR~p!5

p3

6p2m
(
M

uCM~p!u21OS upu3

m3 D
.

upucosq

m
@u2~ upu!1w2~ upu!#, ~2.13!

whereq is polar angle of vectorp. Note that this density has
a suppression factor of;upu/m, due to a mixing of the uppe
and lower components of the Dirac spinors by nondiago
matrix g3. Since the angular dependence of the explicit fo
of the relativistic densitŷ g3&

BS(p) is also absorbed in the
factor cosq ~see Appendix A!, the integrals of both the rela
tivistic and nonrelativistic densitieŝg3& over dp are zero:

FIG. 2. The charge density in the deuteron, Eqs.~2.9! and
~2.11!, calculated in different models, nonrelativistic and relativ
tic, the Bethe-Salpeter amplitude~solid!, the Bonn wave function
~dashed!, and the Paris wave function~dotted!.
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1704 56A. YU. UMNIKOV, F. C. KHANNA, AND L. P. KAPTARI
E dp^g3&
BS~p!5E dp^g3&

NR~p!

5^g3&}E
21

1

d~cosq!cosq50.

~2.14!

These densities for realistic models are shown in Fig
with u50. Basically, they just reflect the behavior of th
charge densities from Fig. 2 in accordance with the nonr
tivistic formula ~2.13!. For illustration, the curve represen
ing the BS density from Fig. 2 multiplied by the factorupu/m
is also shown~dash-dotted!. Surprisingly enough, it can
barely be distinguished from the exact^g3&

BS(p) ~solid line!
even at momenta higher thanm.

Two examples of spin-dependent densities are

^g0&M51
NR ~p!2^g0&M50

NR ~p!.2
3

2
P2~cosq!w~ upu!

3@2A2u~ upu!1w~ upu!#,

~2.15!

^g5g3&M51
NR ~p!.u2~ upu!2

1

2
w2~ upu!1P2~cosq!w~ upu!

3@w~ upu!2A2u~ upu!#, ~2.16!

whereP2(x) is the Legendre polynomial. We also can eas
write down sum rules for the spin-dependent densities~2.15!
and ~2.16!

E dp$^g0&M51
NR ~p!2^g0&M50

NR ~p!%}E
21

1

d~cosq!P2~cosq!

50, ~2.17!

FIG. 3. The^g3&(p) in the deuteron calculated in different mod
els: BS amplitude~solid!, the Bonn wave function~dashed!, and the
Paris wave function~dotted!.
3

a-

1

4pE dp^g5g3&
NR~p!512

3

2
wD , ~2.18!

wherewD is the weight of theD wave in the deuteron. The
relativistic analog of the sum rule~2.18! can be used for an
estimate of the ‘‘admixture’’ of theD wave in the relativistic
formalism, which otherwise does not allow for probabilist
interpretation. Numerically we have

1

4pE dp^g5g3&
BS~p!.0.9215, ~2.19!

which gives us an estimate ofwD'5%.1

The realistic model densities~2.15! and ~2.16! are pre-
sented in Figs. 4 and 5, respectively. These two exam
confirm the conclusions of the previous illustrations:~i! re-
alistic models are in a reasonable agreement with one
other, providing a good description of the charge and curr
densities of the deuteron, and~ii ! in spite of some mode
variations at high momentum, there is no distinguishing f
ture of the densities obtained in a relativistic BS formalis
Therefore, we cannot expect relativistic effects due to
form of the densities to be significant. However, this conc
sion does not preclude the possibility of observable effe
generated by the differences in the relativistic and nonre
tivistic description of the deep inelastic reaction.

1There can be corrections,O(upu2/m2), to the density
^g5g3&M51

NR (p), see Refs.@35,12#. However, their estimated contri
bution to integral~2.18! is small,&1%.

FIG. 4. The ‘‘tensor density’’ of the deuteron
^g0&M51

NR (p)2^g0&M50
NR (p), calculated in different models. To ex

clude the angular dependence the densities are divided byP2(cosu):
BS amplitude~solid!, the Bonn wave function~dashed!, and the
Paris wave function~dotted!.
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III. RELATIVISTIC THEORY OF DEEP INELASTIC
SCATTERING ON THE DEUTERON

A. Definitions and kinematics

We start with the general form of the hadronic tensor
the deuteron with the total angular momentum projectionM ,
keeping only the leading twist structure functions

Wmn
D ~q,PD ,M !

5S 2gmn1
qmqn

q2 D F1
D~xD ,Q2,M !1S PDm2qm

PDq

q2 D
3S PDn2qn

PDq

q2 D F2
D~xD ,Q2,M !

PDq

1
iM D

PDq
emnabqaSD

b ~M !g1
D~xD ,Q2!, ~3.1!

where q5(n,0,0,2An21Q2) is the momentum transfer
Q252q2, xD5Q2/(2PDq) @in the rest frame of the deu
teron xD5Q2/(2MDn)#, SD(M ) is the deuteron spin~see
Appendix B!, andF1,2

D and g1
D are deuteron structure func

tions ~SF’s!. Averaged overM , this expression leads to th
well-known form of the spin-independent hadronic tens
which is valid for hadrons with any spin:

Wmn
D ~q,PD!5

1

3(M Wmn
D ~q,PD ,M ! ~3.2!

FIG. 5. The spin densitŷg5g3&M51(p) in the deuteron calcu-
lated in different models~see Sec. II B for definitions!. To exclude
the angular dependence for the present figure, densities are
grated over all angles: BS amplitude~solid!, the Bonn wave func-
tion ~dashed!, and the Paris wave function~dotted!.
f

r

5S 2gmn1
qmqn

q2 D F1
D~xD ,Q2!

1S PDm2qm

PDq

q2 D S PDn2qn

PDq

q2 D
3

F2
D~xD ,Q2!

PDq
, ~3.3!

where F1,2
D (xD ,Q2) are the result of averaging

F1,2
D (xD ,Q2,M ). Other structure functions can be obtain

from other combinations ofWmn
D (q,PD ,M ) with different

M :

Wmn
D ~q,PD ,M51!2Wmn

D ~q,PD ,M521!}g1
D~xD ,Q2!,

~3.4!

Wmn
D ~q,PD ,M51!2Wmn

D ~q,PD ,M50!}b1,2
D ~xD ,Q2!.

~3.5!

The Eqs.~3.2!, ~3.4!, and ~3.5! are the basis for the exper
mental measurements of the deuteron SF’s. However,
theoretical studies of the hadronic tensor and SF’s, the p
jection technique is more convenient. All relevant formul
for the projection technique are presented in Appendix
while background information on the SFb1,2

D can be found in
Refs.@37–40#.

To calculate the hadronic tensor of the deuteron we
low the general formalism of our approach

Wmn
D ~q,PD ,M !5 i E d4p

~2p!4
Tr$C̄M~p0 ,p!

3Ŵmn
N ~p1 ,q!CM~p0 ,p!~ p̂22m!%.

~3.6!

The nucleon tensor operatorŴmn
N (q,p) has been studied

extensively in recent years@16,35,1,9,10,12,8# and we use a
well-established form of the operator, leading to the con
lution formula @41#

Ŵmn
N ~q,p!5Ŵ$mn%~q,p!1Ŵ[mn]~q,p!, ~3.7!

Ŵ$mn%~q,p!5
q̂

2pq
Wmn

N ~q,p!, ~3.8!

Ŵ[mn]~q,p!5
i

2pq
emnabqagbg5g1

N~q,p!, ~3.9!

where$•••% and@•••# denote symmetrization and antisym
metrization of indices, andg1

N(q,p)5g1
N(x,Q2) is the spin-

dependent nucleon SF. The hadronic tensor of the nuc
Wmn(p,q)N is defined as

te-
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Wmn
N ~q,p!5S 2gmn1

qmqn

q2 D F1
N~x,Q2!1S pm2qm

pq

q2 D
3S pn2qn

pq

q2 D F2
N~x,Q2!

pq
, ~3.10!

where x5Q2/(2pq) and F1,2
N are the nucleon SF’s. Th
small effects of the off-mass-shell deformation of t
nucleon tensor@9,12,42# are not considered here, since the
effects do not affect sum rules for the SF and do not noti
ably change the absolute values of the SF’s. It is for t
reason that the SF’sF1,2

N in Eq. ~3.10! do not depend onp2,
but only onq2 andpq.

Using the projectors~see Appendix B!, we extract SF’s
from the hadronic tensor of the deuteron:
e
t

and
rties
an argue
mplitude
he bound

gle
F1
D~xN ,Q2,M !5 i E d4p

~2p!4
F1

NS xNm

p101p13
,Q2DTr$C̄M~p0 ,p!~g01g3!CM~p0 ,p!~ p̂22m!%

2~p101p13!
, ~3.11!

F2
D~xN ,Q2,M !5 i E d4p

~2p!4
F2

NS xNm

p101p13
,Q2DTr$C̄M~p0 ,p!~g01g3!CM~p0 ,p!~ p̂22m!%

2MD
, ~3.12!

g1
D~xN ,Q2!5 i E d4p

~2p!4
g1

NS xNm

p101p13
,Q2DTr$C̄M~p0 ,p!~g01g3!g5CM~p0 ,p!~ p̂22m!%uM51

2~p101p13!
, ~3.13!

wherexN5Q2/(2mn) is the Bjorken scaling variable,2 i.e., this isx for the on-mass-shell nucleon at rest,p10 andp13 are the
time and third components of the struck nucleon momentum. Formulas~3.11! and ~3.12! have not been averaged over th
projection M , since the present form helps in understanding the SFb1,2

D . For instance Eq.~3.12! gives two independen
‘‘SF’s,’’ with M561 andM50, which are related to the usual spin-independent SFF2

D and a new SFb2
D :

F2
D~xN ,Q2!5

1

3 (
M50,61

F2
D~xN ,Q2,M !, ~3.14!

b2~xN ,Q2!5F2
D~x,Q2,M511!2F2

D~x,Q2,M50!, ~3.15!

F2
D~xN ,Q2,M511!5F2

D~xN ,Q2,M521!. ~3.16!

Note, the SFF2
D(x,Q2,M ) is independent of the lepton polarization, therefore both SF’sF2

D andb2
D can be measured in

experiments with an unpolarized lepton beam and polarized deuteron target. In view of Eq.~3.16!, only one of the SF’s
@F2

D(x,Q2,M )# is needed, in addition to the spin-independentF2
D(x,Q2), in order to obtainb2(x,Q2). The other SFb1

D is
related to the deuteron SFF1

D the same way thatb2
D is related toF2

D , viz. via Eq.~3.14! andb2
D52xb1

D .

B. Singularities of the triangle diagram and calculation of structure functions

It has been shown previously@5–8# how the singular structure of the triangle graph~Fig. 1! rules the behavior of the
spin-independent SFF2

D . In particular, it is found that the relativistic impulse approximation satisfies unitarity conditions
provides the correct kinematical region of the variablexN . However, for the exact covariant amplitude both these prope
are violated in practical calculations when nonrelativistic wave functions of the deuteron are used. In this case one c
that this introduces small deviations, which are not important for phenomenology. On the other hand, a realistic BS a
of the deuteron serves ideally for a consistent phenomenological application of the covariant theory of processes on t
nucleons.

In order to calculate the SF’s, given by Eqs.~3.12!–~3.15! and analyze the sum rules, the singularities of the trian
diagram should be explicitly taken into account. To do that, Eq.~3.12! is rewritten as

F2
D~xN ,Q2,M !5

i

2MD
E d4p

~2p!4
F2

NS xNm

p101p13
,Q2D 1

~p1
22m21 i e!2~p2

22m21 i e!

3Tr$f̄M~p0 ,p!~ p̂11m!~g01g3!~ p̂11m!fM~p0 ,p!~ p̂21m!%, ~3.17!

wherefM(p0 ,p)5( p̂12m)CM(p0 ,p)( p̂22m) is the BS vertex function of the deuteron.

2Note that the ‘‘native’’ deuteron variable isxD5(m/MD)xN , however,xN is used more often.
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Analysis of singularities in the complexp plane allows for one analytical integration in Eq.~3.17! @7#. After translation into
variables which are used in the present paper, this integration is equivalent to picking the residue of the second nucl
p205v5Am21p2 or p05MD/22v, in the complexp0 plane when both of the following conditions are satisfied:

0,v2p3,MD . ~3.18!

The contribution to the integral~3.17!, of the region ofp beyond Eq.~3.18!, is zero, i.e., different poles cancel each oth
Note, thatp105MD2v in the required pole. Calculating the residue in Eq.~3.17!, one gets

F2
D~xN ,Q2,M !5

1

2MD
E d3p

~2p!3
F2

NS xNm

MD2v1p3
,Q2DQ~MD2v1p3!

1

2vMD
2 ~MD22v!2

3Tr$f̄M~p0 ,p!~ p̂11m!~g01g3!~ p̂11m!fM~p0 ,p!~ p̂21m!%p05MD/22v , ~3.19!

where theQ function guarantees the upper inequality condition~3.18! is satisfied, while the lower condition is always satisfie
It is instructive to note that the initial expression~3.6! contained both the spectator nucleon singularity and the singularitie
the propagators of the struck nucleon. However, an accurate calculation of the integral shows that the physical S
deuteron has a correct kinematic limits inx, 0<x<MD /m, and is defined only by the spectator’s polep05MD/22v. This is
an explicit illustration of the ‘‘support’’ property~see discussion in@41,8#!.

It is useful to rewrite~3.19! in the convolution form

F2
D~xN ,Q2,M !5E

xN

MD /m

dyF2
NS xN

y
,Q2D f M

N/D~y!, ~3.20!

where ‘‘the effective distribution’’ of nucleons in the deuteron is defined by

f M
N/D~y!5

1

2MD
E d3p

~2p!3
dS y2

MD2w1p3

m DQ~y!
1

2vMD
2 ~MD22v!2

3Tr$f̄M~p0 ,p!~ p̂11m!~g01g3!~ p̂11m!fM~p0 ,p!~ p̂21m!%p05MD/22v . ~3.21!

The SF’sF1,2
D andb1,2

D are now calculated from

H F1
D~xN ,Q2!

b1
D~xN ,Q2!

J 5E
xN

MD /mdy

y H f N/D~y!

D f N/D~y!
J F1

NS xN

y
,Q2D , ~3.22!

H F2
D~xN ,Q2!

b2
D~xN ,Q2!

J 5E
xN

MD /m

dyH f N/D~y!

D f N/D~y!
J F2

NS xN

y
,Q2D , ~3.23!

where the distributionsf N/D andD f N/D are given by

f N/D~y!5
1

3(M f M
N/D~y!, ~3.24!

D f N/D~y!5 f 1
N/D~y!2 f 0

N/D~y!. ~3.25!

Similarly, for the SFg1
D we get

g1
D~xN ,Q2!5E

xN

MD /mdy

y
g1

NS xN

y
,Q2D fWN/D~y!, ~3.26!

where the effective polarized distribution of nucleons in the deuteron is defined by

fWN/D~y!5
1

2MD
E d3p

~2p!3
dS y2

MD2w1p3

m DQ~y!
1

2vMD
2 ~MD22v!2

3Tr$f̄M51~p0 ,p!~ p̂11m!~g01g3!g5~ p̂11m!fM51~p0 ,p!~ p̂21m!%p05MD/22v . ~3.27!
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C. Sum rules for the deuteron structure functions

Two sum rules can be written for the effective distributi
f M

N/D(y):

E
0

MD /m

f M
N/D~y!dy5

1

4pE dp^g0&M~p!5^g0&M51,

~3.28!

E
0

MD /m

y fM
N/D~y!dy5^Du~QN!m

muD&M512dN ,

~3.29!

where (QN)m
m} i c̄ (x)gm]mc(x) is the trace of the energy

momentum tensor. Equation~3.28! represents the vecto
charge conservation generalized for the deuteron states
different M @see Eqs.~2.9! and ~2.10!#. In spite of a clear
physical interpretation, it was recently a subject of some c
troversy@5–7#. Indeed, the derivation of sum rule~3.28! con-
tains some subtle points and equivalence between it and
expression for the charge~2.8! is nontrivial particularly be-
cause of the presence of theQ function in Eq.~3.21!. ThisQ
function provides the correct kinematics in the variablexN
but cuts out part of the integration domain ind3p. This cut-
ting of the integration interval in the polar angleu leads to a
nonzero contribution of the matrix element containingg3,
which is proportional to cosu. However, the validity of this
sum rule has been firmly established@5–7#. The sum rule
~3.29! for the first moment off M

N/D is of a different nature; it
represents the nucleon contribution to the total momentum
the deuteron@16,43,17,1# where dN is a part of the total
momentum carried by the non-nucleon component~mesons!.
The constantdN cannot be fixed in a model-independe
fashion, rather it is calculated within a particular model. Se
consistency of the theory requires that meson exchange
rent contribution to the deuteron SFF2

D exactly compensate
the loss of energy by nucleons in~3.29!. An importantprop-
erty of sum rules~3.28! and ~3.29! is that their right-hand
side~RHS! does not depend on the deuteron spin orientat

The sum rules forf N/D(y) andD f N/D(y) follow from the
sum rules forf M

N/D(y) and the definitions~3.24! and ~3.25!:

E
0

MD /m

f N/D~y!dy5
1

3(M ^g0&M5^g0&51, ~3.30!

E
0

MD /m

y fN/D~y!dy5
1

3(M ^Du~QN!m
muD&M512dN ,

~3.31!

E
0

MD /m

D f N/D~y!dy5^g0&M512^g0&M5050,

~3.32!

E
0

MD /m

yD f N/D~y!dy5^Du~QN!m
muD&M51

2^Du~QN!m
muD&M5050.

~3.33!
ith

-

he

of

-
ur-

n.

The sum rules for the deuteron SF’sb1
D and b2

D are the
immediate result of combining Eqs.~3.32! and ~3.33! and
~3.22! and ~3.23!:

E
0

1

dxDb1
D~xD!50, ~3.34!

E
0

1

dxDb2
D~xD!50, ~3.35!

in agreement with the sum rules suggested by Efremov
Teryaev@37#.

The sum rule for the spin-dependent distribution rela
the integral of the spin-dependent distribution of nucleons
the third component of the axial current~2.19! is

E
0

MD /m

fWN/D~y!dy5^g5g3&M51
BS . ~3.36!

An explicit expression for the distribution functio
f M

N/D(y) @and therefore forf N/D(y) and D f N/D(y)# in terms
of the components of the BS amplitude can be directly
tablished from Eqs.~3.21! and ~3.27! and the formulas for
the corresponding densities which are given in Appendix

D. Calculation of distributions: Inverse Wick rotation

To calculate numerically the effective distribution fun
tions ~3.21!, ~3.24!, ~3.25!, and~3.27!, we need to know the
matrix elements over the BS vertex functions as functions
p and p05MD/22Am21p2 along the realp0 axis. The
reader is reminded that the components of the BS amplit
have already been computed numerically along the ima
nary axis in thep0 plane~Wick rotation! @2,29#.

In Refs.@1,3#, it has been pointed out that themomentsof
the deuteron SF can be calculated in terms of the Wick
tated BS amplitude of the deuteron, since there are no e
singularities in the matrix elements describing the nucle
contribution to deep inelastic scattering other than the sin
larities of the amplitude itself. In principle, this implies th
the SF’s can be found by applying the inverse Mellin tran
form to the moments. In practice, however, the moments
only be calculated numerically, since the BS amplitude
known numerically. As a result, it is impossible to perfor
an exact inverse Mellin transform, which requires not on
knowledge of an infinite number of moments but also t
analytical continuation in the imaginary plane of the m
ments as a function of ordern. These obstacles make th
exact calculation of the deuteron SF impossible. Instead,
uses interpolating formulas@2,3# for the moments, which are
obtained as an expansion of the exact expression for the
ments in a series inp0 /m around p050. This is a well-
defined approximation for the moments, since in the phy
cally interesting region,p0 /m!1, and we can control the
accuracy of the results by comparing calculations with a d
ferent number of terms. However, it is unclear how to es
mate properly the accuracy of the SF, obtained by this te
nique of the inverse Mellin transform of interpolatin
formulas. We find that the deuteron SF at medium and la
x, is slightly underestimated.
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Now we explain the procedure for calculating the ‘‘in
verse Wick rotated’’ matrix element directly for the SF, u
ing the formalism developed in Sec. III B. We consider on
the example off N/D(y); other distributions are calculated i
the same way. First, let us rewrite Eq.~3.21! in the form

f N/D~y!5
1

2MD
E d3p

~2p!3
dS y2

MD2w1p3

m DQ~y!

3@^g0&pole
BS ~p1^g3&pole

BS ~p!#, ~3.37!

where^g0&pole
BS (p) and^g3&pole

BS (p) are densities defined sim
larly to Eq. ~2.9!, but where the full integral is replaced b
the contribution of the second nucleon pole, ‘‘the nucle
pole contribution.’’ Explicit forms of ^g0&pole

BS (p) and
^g3&pole

BS (p) are clear from Eqs.~3.21! and ~3.37!. Equation
~3.37! is theexactform of the Eq.~3.21!. Second, we notice
that this density does not have any singularities in the co
plex plane ofp0. Nor does the matrix element

Tr$f̄M~p0,p!~ p̂11m!~g01g3!~ p̂11m!fM~p0 ,p!~ p̂21m!%

5~p1
22m2!2~p2

22m2!Tr$C̄M~p0 ,p!~g01g3!

3CM~p0 ,p!~ p̂22m!%. ~3.38!

Thus to calculate the nucleon pole contribution to the d
sity, the matrix element~3.38! can be safely expanded into
Taylor series in the variablep0 around the pointp050.
Third, the coefficients of the Taylor expansion can be cal
lated using the known RHS of Eq.~3.38! for imaginaryp0.
Finally a numerical convergence of the expansion can
checked by comparing results of calculations up to differ
order inp0. Note that Eq.~3.38! and similar expressions fo
all other distributions are even functions ofp0; therefore, the
Taylor expansion really should be done inp0

2. In addition,
the point p050 should be a good point to expand abo
since, in the most physically interesting region ofupu/m!1
we haveup0 /mu'u«D /(2m)2upu2/(2m2)u!1. The critical
point for any expansion in nuclear physics is usua
upu/m51. However, even at this pointup0 /mu is still a good
choice for the Taylor expansionup0 /mu'u«D /(2m)
2(A221)u;0.4. For upu/m;1.5 the parameterup0 /mu ap-
proaches 1, and we can estimate how this limit onupu is
translated into a limit onx in the SF. To do this we perform
two analytical integrations over the azimuthal and po
anglesf and q in formula ~3.37!. The first integration is
trivial since the integrand does not depend uponf. The sec-
ond integration can be done using thed function. As a result
only the integration overupu is left, with the lower limit
imposed by the integration overq with the d function

pmin5absS ~MD2ym!22m2

2~MD2ym! D , ~3.39!

which is just a consequence of the condition 1>cosq>21.
Since the densities under the integral in Eq.~3.37! are very
sharp functions ofupu ~see, e.g., Figs. 2, 3, 6!, we expect that
the most important contribution to the integral comes fro
the region nearupu5pmin . Therefore, we estimate that th
expansion in a series inp0 /m fails at the pointpmin /m'1.5,
n

-

-

-

e
t

t

r

which corresponds toy'1.6 in Eq.~3.39!. Finally, in accor-
dance with the convolution formula~3.23! and taking into
account thatf N/D(y) is also a sharp function, we conclud
that the method allows us to calculate the deuteron SF u
the pointx'1.6. It should be remembered that this limitatio
is related to the restriction of the formulas by the conditi
upu/m;1.5, which is perhaps already close to the bound
of the validity domain of therelativistic nucleon model of
the deuteron.

The results of calculations of the nucleon pole contrib
tion to the charge densitŷg0&pole(p) are presented in Fig. 6
where we compare curves for calculations up to;p0

0, ;p0
2,

and ;p0
4. As we expected, the procedure is nicely conv

gent up toupu;1 GeV and with reasonable accuracy can
used up toupu;1.5 GeV. Similar results for the pole contr
bution to the axial densitŷg5g3&pole(p) are shown in Fig. 7.

Note that the numerical approximations made in this s
tion, such as limiting number of terms in the Taylor expa
sion, can potentially lead to a numerical violation of the e
act sum rules.

E. Nonrelativistic formulas for structure functions

The nonrelativistic expressions forf N/D(y), D f N/D(y),
and fWN/D(y) can be obtained by using an analogy of t
charge densities calculated within the BS formalism and
corresponding densities calculated with wave functions@e.g.,
Eqs. ~2.11!, ~2.13!, ~2.15!, and ~2.16!#. Actually, the distri-
butions in the BS formalism are expressed in terms
nucleon pole contributions to the densities in the nucle
pole approximation~3.21!, ~3.25!, and ~3.27!, and not the
exact densities as in Eq.~2.9!. However, in order to obtain
the nonrelativistic approximation to the relativistic formula
one can use the fact that the nucleon pole contribution g
the main contribution to the density, at least in the nonre

FIG. 6. The one-pole contribution to the charge density of
deuteron̂ g0&pole

BS (p), calculated with the BS amplitude: the leadin
term in the Taylor expansion~dotted!, first two terms up to}p0

2

~dashed!, and first three terms up to}p0
4 ~solid!.
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tivistic region. Such an assumption is very common
nuclear physics~see, e.g.,@20,22,44,10,11#!. For instance,
the well-known result for the spin-independent distribution
immediately reproduced~see, e.g.,@17,8,16#!:

f NR
N/D~y!5E d3p

~2p!3
dS y2

MD2w1p3

m D
3Q~y!$^g0&

NR~p!1^g3&
NR~p!%

5E d3p

~2p!3
dS y2

MD2w1p3

m D
3Q~y!S 11

upucosu

m D $u2~ upu!1w2~ upu!%.

~3.40!

The presence of theQ function on the RHS of Eq.~3.40!
slightly violates the sum rule~3.30!. However, this is not
noticeable phenomenologically, since only the region
large momentaupu.0.7 GeV is affected by theQ function
and it does not contribute much to the norm of the deute
wave function. We can accept this slight effect of theQ
functions, since a nonrelativistic approximation is based
the belief that high momenta are not important.

For distributionD f N/D(y), we get

D f NR
N/D~y!52E d3p

~2p!3
dS y2

MD2w1p3

m DQ~y!

3S 11
upucosu

m D P2~cosu!
3

2
w~ upu!

3$2A2u~ upu!1w~ upu!%. ~3.41!

FIG. 7. The one-pole contribution to the spin density, of t
deuteron̂ g5g3&pole

BS (p) calculated with the BS amplitude: the lea
ing term in the Taylor expansion~dotted!, first two term, up to
}p0

2 ~dashed!, and first three term, up to}p0
4 ~solid!.
f

n

n

Again, the sum rule~3.32! is broken by the presence of th
Q function in Eq.~3.41!. Neglecting it, one obtains

E
0

1

dxDb1
D~xD!}E

0

MD /m

D f NR
N/D~y!dy

}E
21

1

d~cosu!S 11
upucosu

m D P2~cosu!50,

~3.42!

where the orthogonality property of the Legendre polynom
als is used.

A deviation from zero caused by theQ functions is not
large compared to 1. One canartificially adjust formula
~3.41! to satisfy this sum rule. For instance,smallcorrections
to the normalization of both terms withM51 andM50 can
be made to satisfy the sum rule in the form~3.32!. However,
the situation with the second sum rule~3.35! is more difficult
and cannot be fixed by any simple adjustments of the n
malizations or by ignoring theQ functions. As for Eq.
~3.42!, one can write~neglecting theQ function!

E
0

1

dxDb2
D~xD!}E

0

MD /m

yD f NR
N/D~y!dy

}E
21

1

d~cosu!~MD2w1upucosu!

3S 11
upucosu

m D P2~cosu!Þ0. ~3.43!

There is no reason for this sum rule to be satisfied with
nonrelativistic distribution function~3.41!. Therefore the
nonrelativistic formulas, in principle, violate the sum rul
for the SF’sb1,2

D .
The nonrelativistic formulas for the other spin-depend

distribution fWN/D are also a straightforward result of usin
densities~2.16! instead of the relativistic densities in Eq
~3.27! @see also footnote to the formula~2.19!#:

fWNR
N/D~y!5E d3p

~2p!3
dS y2

MD2w1p3

m D
3Q~y!H u2~ upu!2

1

2
w2~ upu!

1P2~cosq!w~ upu!@w~ upu!2A2u~ upu!#J .

~3.44!

The sum rule that follows from Eq.~2.18! is

E
0

MD /m

fWNR
N/D~y!dy512

3

2
wD . ~3.45!

F. Calculation of distributions: Relativistic vs nonrelativistic

In order to understand if the relativistic distribution fun
tions ~3.21!, ~3.25!, and ~3.27! are significantly different
from the nonrelativistic distributions~3.40!, ~3.41!, and
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~3.27!, we have to understand fully the effect of the one p
approximation on the densities in the BS formalism. Inde
the discussion of Sec. II B suggested that we cannot ex
significant physical effects from the form of the densitie
since both relativistic and nonrelativisticrealistic models
lead to similar results and we do not find any special beh
ior in the relativistic model.

In Figs. 8 and 9 we compare the full densities and
nucleon pole contributions to the densities, for the two m

FIG. 8. Different ‘‘versions’’ of the charge density of the de
teron calculated with the BS amplitude: exact^g0&

BS(p) ~dotted!, in
the pole approximation̂g0&pole

BS (p) ~solid!. The dashed curve pre
sents the effective density for deep inelastic scattering which is
density in the pole approximation including theQ function cutoff at
high momenta.

FIG. 9. The same as in Fig. 8, but for the spin-dens
^g5g3&

BS(p).
e
,
ct
,

v-

e
t

important caseŝg0& and ^g5g3& and find that the one pole
approximation leads to a significant change in the dens
The nucleon pole contribution to the densities~solid curves!
have a much harder tail compared to the exact densities~dot-
ted curves!, starting atupu;0.5m, and this leads to an orde
of magnitude larger effect atupu;1.5m. This can be qualita-
tively understood by considering an example of the cha
density^g0&. Indeed, selecting only the nucleon pole cont
bution in the full integral corresponds to neglecting the an
nucleon ~negative! contribution to the total charge densit
which is concentrated at high momentaupu. The presence of
Q functions in the expressions for the distribution functi
f N/D and fWN/D cuts off a part of the high momentum regio
but this is a minor effect. The ‘‘softening’’ caused by theQ
functions is also illustrated in Figs. 8 and 9~dashed lines!.
These curves are the BS densities obtained in the pole
proximation~solid lines! multiplied by Q(MD2v1p3) and
integrated over cosu.

The results presented in Figs. 8 and 9 imply that the re
tivistic densities appearing in the formulas for the effecti
distribution functions are enhanced at medium and high m
menta. Comparing these results with those in Figs. 2 an
we find that the effect is much larger than any model diff
ences. Still, since the effect is concentrated at high mome
it is not clear if it leads to observable effects in deep inelas
scattering. To clarify this, in Fig. 10 we present the effecti
distribution functionf N/D(y). For completeness we compa
distribution functions calculated using three different cha
densities:~i! the nonrelativistic density of the Bonn potenti
~dotted line!, ~ii ! the nucleon pole contribution to the relativ
istic BS density~solid curve!, and~iii ! the full density within
the BS approach~dashed curve!. The last curve is intended to
illustrate differences in the description of themechanismof
the reaction in nonrelativistic and relativistic approaches.
this case the charge density of the nonrelativistic mode

e

FIG. 10. The effective distribution for the nucleon contributio
in the deuteron structure functionF2

D , f N/D(y): fully relativistic BS
~solid!, nonrelativistic Bonn~dotted!, and nonrelativistic calculation
using the BS charge density~dashed!.
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assumed exactly the same as that of the BS approach
find that a consistent relativistic description gives an eff
tive distribution which is systematically harder at high valu
of the momentum fractiony. This is a result of the harder ta
contribution of the nucleon pole term. It is interesting to no
that the relativistic distribution is also enhanced aty→0.
This effectively corresponds to the larger ‘‘binding effects
in the BS approach which was observed in Ref.@2#. Very
similar effects can be observed in the other effective dis
bution functionsfWN/D and D f N/D. However, in these case
the effects are not as evident because of the oscillating na
of the distribution functions.~See, e.g., discussion abo
D f N/D below.!

IV. NUMERICAL CALCULATION
OF STRUCTURE FUNCTIONS

A. Unpolarized deuteron F 2
D

The spin-independent SF of the deuteronF2
D is calculated

using the effective distribution functions presented in Fig.
~see discussion at the end of the Sec. III F!. The results are
shown in Fig. 11 in the form of ratio of the corresponding S
of the deuteron and the nucleon. The nucleon SFF2

N is taken
from Ref.@45# at Q2510 GeV2 ~the group of curves A!. We
find that the BS approach gives a behavior of the deute
SF qualitatively similar to the results of the nonrelativis
calculations and those in which the nonrelativistic cha
density is used in this BS approximation. However, there
two delicate, but essential differences.

First, the ratioF2
D/F2

N in the BS approach is less than
the other calculations at smallx, x,0.5. This effect can be
easily understood from the form of the distributionf N/D(y)
in Fig. 10 and formula~3.23!. Indeed, atx50 the SFF2

D is

F2
D~0!5F2

N~0!E
0

MD /m

f N/D~y!dy. ~4.1!

ThereforeF2
D(0)/F2

N(0)51 since

FIG. 11. The ratio of the deuteron and nucleon structure fu
tions F2

D/F2
N calculated in different models. The curves correspo

to the three effective distributions from Fig. 10: fully relativistic B
~solid!, nonrelativistic Bonn~dotted!, and nonrelativistic calculation
using the BS charge density~dashed!. The two groups of curves
correspond to different parametrizations of the nucleon
F2

N;(12x)g: g'3.2 from Ref.@45# A; g52.7, see Refs.@2,17# B.
e
-

s

i-

re

0

n

e
e

E
0

MD /m

f N/D~y!dy51

is a normalization from Eq.~3.30!. When we move from
x50 to largerx, we ‘‘lose’’ part of the normalization, since
the lower limit of the integral in Eq.~3.23! is x. Since the
relativistic f N/D is larger at smallx than in the nonrelativistic
case, it leads to a faster decrease of the relativistic SF w
increasingx. The fact that the ratioF2

D/F2
N is less than 1 at

small and intermediatex is known to be a result of the
‘‘binding of nucleons’’ ~see, e.g.,@15–17,1# and references
therein!.

Second, the relativistic SF displays a sharper rise at hig
x, x.0.5 than in the nonrelativistic case. Again, this can
understood from the form of the distribution as seen in F
10, and the convolution formula~3.23!. With increasingx
the role of the high momentum tail of the effective distrib
tion gains more importance in the integration in Eq.~3.23!
and atx.1.0 the tail is completely dominant. The deuter
SF atx.1 is presented in Fig. 12.

It has been shown recently that relativistic calculatio
lead to larger binding effects than in nonrelativistic calcu
tions @13,2#. However, the result of Ref.@13#, which indi-
cates effects two to three times larger than ours is still neit
explained nor physically understood. In Ref.@2# the size of
the effect was not so very large, but the method of numer
calculations was essentially based on thenumerical inverse
Mellin transform of a nonanalytical function. Approxima
tions with limited validity at high momentum were mad
This led to special efforts to verify the quantitative size
the effect. It is worthwhile to remember that we have alrea

-
d

F

FIG. 12. The deuteron structure functionF2
D(x) at largex cal-

culated in different models. Curves correspond to three effec
distributions from Fig. 10: fully relativistic BS~solid!, nonrelativ-
istic Bonn ~dotted!, and nonrelativistic calculation using the B
charge density~dashed!. Dash-dotted curve presents the fre
nucleon structure functionF2

N .
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pointed out a tiny effect of;122 % in the ratioF2
D/F2

N .
We can also measure the binding effect using the ene
momentum sum rule~3.29!. The quantitydN is a natural
parameter controlling the binding in any calculation. For e
ample, the nonrelativistic formulas allow for an analytic
estimate ofdN which essentially gives us the size of th
effect @16,17,2#

dN5
«D

m
2

^T&
6m

. ~4.2!

Here^T& is the nonrelativistic mean kinetic energy of nucl
ons in the deuteron. For the realistic models typica
^T&'15 MeV, which givesdN'531023. Calculating with
the BS effective distribution of the present paper we fi
dN'0.731023. Note that in Ref. @2# the quantity
dN'131022 has been reported. We attribute this small d
crepancy to the poorer numerical approximation which w
made in@2#. This approximation underestimates a high m
mentum behavior off N/D, however, phenomenologically th
effect is not significant~cf. Ref. @2#!.

To illustrate the dependence of ratioF2
D/F2

N on the param-
etrization of the ‘‘elementary’’ nucleon SF, we also prese
the results of the calculation atx.0.5, utilizing the different
parametrization ofF2

N ~see Refs.@2,17#! shown in Fig. 11
~the group of curves B!. A noticeable difference from earlie
calculations~group of curves A! is the shift of the point
F2

D(x)/F2
N(x)51 from x* '0.6 to x* '0.7. This difference

is caused by the difference in the asymptotic behavior of
two parametrizations in the form

F2
N~x!;C~12x!g, ~4.3!

with g'3.2 for case A andg'2.7 for case B. To understan
this ‘‘instability,’’ we evaluateF2

D(x), Eq. ~3.23!, by ex-
pandingF2

N(x/y), Eq. ~4.3!, in a Taylor series around̂y&,
the point of the sharp maximum of the effective distributi
f N/D(y)

^y&5E
0

MD /m

y fN/D~y!dy. ~4.4!

It is sufficient to keep terms up to the second derivatives
F2

N , and the result in this case contains only the first a
second moments off N/D(y). The nonrelativistic estimate fo
the moments off N/D(y) @1,17# gives

^yn&[E
0

MD /m

ynf N/D~y!dy

.11
1

6
n2 ^T&

m
1

2

3
n

^T&
m

1n
^V&
m

, ~4.5!

where ^T& is the mean kinetic energy of nucleons in t
deuteron, and̂ V&5«D2^T& is the mean potential in the
deuteron. Finally, the crossover pointx* is defined as

x* 5
3~^T&12^V&!

~42g!^T&16^V&
. ~4.6!
y-

-
l

-
e
-

t

e

f
d

Using typical values of̂T&'15 MeV and«D'22.2 MeV,
we find that varyingg from 2.7 to 3.2 leads to changingx*
from '0.7 to'0.63. Therefore this estimate is in reasona
agreement with the exact results in Fig. 11. Thus, we fi
that the position of the crossover pointx* depends both on
nuclear effects, througĥT& and^V&, and on the form of the
nucleon SF, throughg. Therefore, the exact position ofx* is
not a feature attributed to a particular model of the deuter
Still, an explicit interplay of the nuclear and nucleon effec
in Eq. ~4.6! shows that aconsistentanalysis is required in
order to extract accurate information about the nucleon
from the deuteron data@45#.

B. Polarized deuteronb1
D and b2

D

The SF’s of the deuteronb1,2
D (x) are calculated within

both the relativistic and nonrelativistic approaches. The re
tivistic calculations are based on formulas~3.21!, ~3.22!–
~3.25!. The nonrelativistic calculations, Eq.~3.41!, use the
realistic wave function of the deuteron obtained from t
Bonn potential@19#. The nucleon SF’sF1,2

N (x,Q2), is again
taken from Ref.@45# at Q2510 GeV2. The results are nei-
ther very sensitive to the particular choice of the parame
zation of the nucleon SF’s nor to theirQ2 dependence.

The distribution functionsD f N/D(y) are calculated and
the results are presented in Fig. 13. Similar behavior of
distribution function is obtained in both the relativistic~solid
line! and nonrelativistic~dotted line! calculations. Indeed, it
is difficult to distinguish between them, let alone make a
definite conclusions. The third line in the Fig. 13 is given f
illustration as it presentsyD f N/D(y) for the relativistic cal-
culations. The calculation of the sum rules is more repres
tative. To understand the scale of effects, which are d
cussed below, it is customary to define the auxiliary quan

E
0

MD /m

abs@D f N/D~y!#dy.E
0

MD /m

abs@yD f N/D~y!#dy

.0.14. ~4.7!

The BS and nonrelativistic Bonn calculations give the sa
result in Eq.~4.7!, within ;5%. Thus, the effective distri-
bution functionsD f N/D are an order of magnitude smalle

FIG. 13. The effective distribution functions for the deuter
structure functionsb1,2

D and D f N/D(y) calculated in different mod-
els: fully relativistic BS~solid! and nonrelativistic Bonn~dotted!.
The dashed curve presentsyD f N/D(y).
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than the usual spin-independent distributionsf N/D which is
normalized to 1. This is not very important, but it decrea
the accuracy in the numerical calculations, sinceD f N/D is a
difference of two functions each normalized to 1 (M51 and
M50). Numerically the sum rule~3.34! @see also Eq.~3.42!#
is satisfied both in relativistic and nonrelativistic calculatio
with good accuracy despite the approximate numerical ‘
verse Wick rotation.’’ The corresponding integrals a
;531024 and;331025 and they should be compared
the estimate~4.7!. The sum rule~3.28! may be used to im-
prove distributionsD f N/D by making integrals forf 1

N/D and
f 0

N/D exactlythe same. However, this does not lead to a s
nificant variation of results for SF’s except forx→0 for
b1

D(x).
The behavior ofb1

D(x) at x→0 deserves to be considere
more closely, especially for numerical calculations, since
nucleon functionF1

N(x) can be divergent at smallx. Unfor-
tunately it is impossible to calculateb1

D(0) exactly for the
realistic SFF1

N . However, a contribution of the singularit
can be evaluated. Indeed, let us assume a singular beh
of F1

N;C/x, then for smallx, Eq. ~3.22! leads to

b1
D~x→0!;

C

x Ex

MD /m

D f N/D~y!dy

5
C

x H E
0

MD /m

2E
0

xJ D f N/D~y!dy

;
CZ

x
2CD f N/D~0!, ~4.8!

whereZ50 in the exact relativistic formula. It can still be
small number in numerical calculations or in the nonrelat
istic case. Thus, the limit of the deuteron SFb1

D(x) asx→0
is a constant, but one has to exercise great care in perform
numerical computations since any error leads to a diverg
behavior at smallx. In this context, an adjustment of th
norms of the two terms in formulas~3.25! and~3.41! means
the subtraction of the numerical error fromb1

D at smallx.
The situation with the second sum rule~3.35! is quite

different. Numerically it is violated more significantly tha
in the previous case. The corresponding integrals
;131023 and;331023 for relativistic and nonrelativistic
calculations, respectively, i.e., about 0.7 and 2 % compa
to Eq. ~4.7!. Therefore, numerical approximations advers
affect the relativistic formula also. This is attributed to t
numerical rotation in the Minkowski space. An adjustment
the normalization, as it has been discussed, slightly impro
the accuracy~to 0.5%). On the other hand, the result for t
nonrelativistic approach is stable with respect to any adj
ments since it is defined by the formulas~3.43!.

The SF’sb1
D and b2

D are calculated within the two ap
proaches. The results are shown in Figs. 14~a! and 14~b!. The
behavior of the functions in Fig. 14~a! suggests the validity
of the sum rule~3.34!. At the same time, the nonrelativisti
calculation forb2

D in Fig. 14~b! ~dotted line! obviously does
not satisfy the sum rule~3.35!. The main difference of the
relativistic and nonrelativistic calculations is at smallx,
where these approaches give different signs for the SF’s
illustrate the effect of the presence of theQ function under
the integral in the nonrelativistic formula~3.41!, the calcula-
s
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tions have also been performed with a restricted interva
integration overupu. The conditionupu,0.7 GeV corresponds
to a ‘‘softer’’ deuteron wave function, but makes the su
rule ~3.43! exact. Corresponding SF’s are shown in Fig
14~a! and 14~b! ~dashed line!. The result of this ‘‘experi-
ment’’ is that the effect of theQ function is not quantita-
tively significant. It also does not affect the principle concl
sion about the second sum rule~3.35!, but makes the defec
a little smaller. This is understandable since the sum r
breaking term in Eq.~3.43! is }upucosu.

C. Polarized deuterong1
D

The spin-dependent SF of the deuterong1
D is calculated

using the same three models as the spin-independent SFF2:
the fully relativistic BS approach~solid line!, the nonrelativ-
istic approach based on the Bonn wave function~dotted
line!, and the nonrelativistic approach which uses the ex
density of the BS approach~dashed line!. The nucleon SFg1

N

is taken from Ref.@46#. The results of calculations are pre
sented in Fig. 15.

For illustration we also present in Fig. 15 the quant
^g5g3&M51

BS which corresponds to a ‘‘model’’ for the deu
teron SF~dot-dashed straight line!:

g1
D~x,Q2!5

1

4p
^g5g3&M51

BS g1
N~x,Q2!. ~4.9!

If we replacê g5g3&M51
BS by the factor (123/2wD) from Eq.

~2.18! we get the formula usually used by experimentalists
obtain the neutron SFg1

n from the combined proton and deu
teron data.

Figure 15 shows that this is different from the naive es
mate ~4.9!. However, within the present day experimen
errors it may bea reasonable approximation~see, e.g., Ref.
@4#!. Huge jumps of the ratio around the constant^g5g3&M51

BS

FIG. 14. The deuteron structure functionsb1
D ~a! and b2

D ~b!
calculated in different models: fully relativistic BS~solid!, and non-
relativistic Bonn~dashed!. The dotted curve presentsb1,2

D calculated
with the ‘‘soft’’ nucleon distribution, the Bonn distribution, bu
cutoff at upu.0.7 GeV .
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at x,0.7 are not too important. They correspond to zeros
the nucleon SF which are slightly shifted by the convoluti
formula. A systematic difference in the ratio exists betwe
the nonrelativistic calculation~dotted line! and the two cal-
culations based on the BS densities~solid and dashed
curves!. This arises from the difference between theD-wave
admixture in the Bonn potential (wD'4.3%) and in our so-
lution of the BS equation (wD'5%). Therise of the ratio, at
x greater than 0.7, is of the same nature as in the s
independent case in Fig. 11; it is caused by the Fermi m
tion.

V. SUMMARY

In this paper, we have presented a study of the deep
elastic electron scattering on the deuteron in the Be
Salpeter formalism in the realistic meson-nucleon model
particular:

~1! The connection of the structure functions to the de
sities of the appropriate charges and currents is analyzed
analyzing the same densities in the nonrelativistic approa
we have systematically compared the relativistic and non
ativistic calculations, and established sources of the rela
istic effects.

~2! Using our numerical solution of the Bethe-Salpe
equation amplitude with a realistic kernel, the leading-tw
structure functions of the deuteronF2

D , b1,2
D , and g1

D , are
calculated in a fully relativistic fashion.

~3! Our numerical calculations of the structure functio
emphasize a qualitative agreement with previous nonrela

FIG. 15. The ratio of the deuteron and nucleon spin-depend
structure functionsg1

D/g1
N calculated in different models. Curve

correspond to three effective distributions: fully relativistic B
~solid!, nonrelativistic Bonn~dotted!, and nonrelativistic, but using
the BS spin density~dashed!.
f

n

n-
o-

n-
e-
n

-
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h,
l-
v-

r
t

v-

istic results. However, we have found effects that system
cally distinguish a consistent relativistic approach from t
nonrelativistic one: in the relativistic formalism~i! the mag-
nitude of binding effects is larger,~ii ! the effect of Fermi
motion at highx is stronger, and~iii ! the nonrelativistic cal-
culations suffer unavoidable internal inconsistencies wh
lead to small effects in the structure functionsF2

D and g1
D ,

but seriously affect the structure functionb1,2
D and noticeably

violate sum rules for this function.
The present paper concludes our systematic study of

deep inelastic electron~muon! scattering on the deuteron i
the Bethe-Salpeter formalism. The results are collected in
two papers, Ref.@1# and the present paper, and in part ha
also been published previously in Refs.@2–4,30#. The main
lesson we have learned from this study is that the deutero
the deep inelastic reaction indeed behaves as a very slig
relativistic system. One has to look for special conditions
kinematics of the reaction to be able to find noticeable re
tivistic effects. We have found certain situations where
relativistic approach is absolutely essential and use of
nonrelativistic methods is not justified. Most representat
examples are the highx behavior of the structure function
and the spin-dependent structure functionsb1,2

D .
Apart from the phenomenological differences between

relativistic and nonrelativistic approaches, the most imp
tant merit of the covariant formalism is itsconsistency. Its
close connection to field theory guarantees that the ca
lated observables obey the sum rules and other general p
erties imposed by fundamental principles. In this sense
relativistic approach is definitely more advanced theor
cally than its nonrelativistic counterpart and provides a be
understanding of deep inelastic scattering on the deutero
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APPENDIX A: EXPLICIT FORMULAS FOR DENSITIES

In this appendix we present formulas which allow us to restore the explicit form of the various densities in t
formalism. For convenience, we define the auxiliary ‘‘densities’’

H f 0
N/D~p!

f 3
N/D~p!

J 5
1

3(M E
0

2p

dfTrH C̄M~p0 ,p!H g0

g3
J CM~p0 ,p!~ p̂22m!J , ~A1!

H D f 0
N/D~p!

D f 3
N/D~p!

J 5E
0

2p

dfTrH C̄M~p0 ,p!H g0

g3
J CM~p0 ,p!~ p̂22m!J

M51

2E
0

2p

dfTr$•••%M50 , ~A2!
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H fW0
N/D~p!

fW3
N/D~p!

J 5E
0

2p

dfTrH C̄M~p0 ,p!H g5g0

g5g3
J CM~p0 ,p!~ p̂22m!J

M51

, ~A3!

where integration overf leads to the trivial factor of 2p since none of the matrix elements on the RHS depends onf. To
obtain explicit expressions for the densities discussed in the paper we have to compare Eqs.~A1!–~A3! with definitions of the
corresponding densities.

Note that the formalism presented in Refs.@1,2# and in this paper can be easily adopted to analytical computer calculat
The following results have been obtained utilizing theMATHEMATICA package@47#:

f 0
N/D~p!5m@28ca0~p0 ,p!c t0~p0 ,p!28ca2~p0 ,p!c t2~p0 ,p!#1pS 28cp1~p0 ,p!c t0~p0 ,p!

A3
18A2

3
cp1~p0 ,p!c t2~p0 ,p!

14A2

3
ca0~p0 ,p!cv1~p0 ,p!1

4ca2~p0 ,p!cv1~p0 ,p!

A3
D 1S 1

2
Md2p0D @2ca1

0 ~p0 ,p!212ca0~p0 ,p!2

12ca2~p0 ,p!212cp1~p0 ,p!218c t0~p0 ,p!218c t2~p0 ,p!218c t1
0 ~p0 ,p!212cv1~p0 ,p!2#, ~A4!

f 3
N/D~p!5cos~u!H S 1

2
Md2p0D S 8cp1~p0 ,p!c t0~p0 ,p!

A3
28A2

3
cp1~p0 ,p!c t2~p0 ,p!24A2

3
ca0~p0 ,p!cv1~p0 ,p!

2
4ca2~p0 ,p!cv1~p0 ,p!

A3
D 1mS 24ca0~p0 ,p!cp1~p0 ,p!

A3
14A2

3
ca2~p0 ,p!cp1~p0 ,p!

18A2

3
c t0~p0 ,p!cv1~p0 ,p!1

8c t2~p0 ,p!cv1~p0 ,p!

A3 D 1pS 2ca1
0 ~p0 ,p!22

2ca0~p0 ,p!2

3

2
8A2ca0~p0 ,p!ca2~p0 ,p!

3
1

2ca2~p0 ,p!2

3
22cp1~p0 ,p!21

8c t0~p0 ,p!2

3
22cv1~p0 ,p!2

1
32A2c t0~p0 ,p!c t2~p0 ,p!

3
2

8c t2~p0 ,p!2

3
18c t1

0 ~p0 ,p!2D J , ~A5!

fW0
N/D~p!5H Md

2 S 1

2
Md2p0

2D @A6ca0~p0 ,p!cv1~p0 ,p!12A3ca2~p0 ,p!cv1~p0 ,p!#1m@24A6c t0~p0 ,p!cv1~p0 ,p!

24A3c t2~p0 ,p!cv1~p0 ,p!#1p@2ca0~p0 ,p!212A2ca0~p0 ,p!ca2~p0 ,p!1ca2~p0 ,p!228c t0~p0 ,p!2

28A2c t0~p0 ,p!c t2~p0 ,p!24c t2~p0 ,p!2212c t1
0 ~p0 ,p!213cv1~p0 ,p!2#J , ~A6!

fW3
N/D~p!5H pS 28cp1~p0 ,p!c t0~p0 ,p!

A3
24A2

3
cp1~p0 ,p!c t2~p0 ,p!22A2

3
ca0~p0 ,p!cv1~p0 ,p!

2
8ca2~p0 ,p!cv1~p0 ,p!

A3
D 1m@4A2ca2~p0 ,p!c t0~p0 ,p!14A2ca0~p0 ,p!c t2~p0 ,p!18ca2~p0 ,p!c t2~p0 ,p!

14A2ca1
0 ~p0 ,p!c t1

0 ~p0 ,p!22A2cp1~p0 ,p!cv1~p0 ,p!#1S 1

2
Md2p0D @22A2ca0~p0 ,p!ca2~p0 ,p!

22ca2~p0 ,p!228A2c t0~p0 ,p!c t2~p0 ,p!28c t2~p0 ,p!228c t1
0 ~p0 ,p!222cv1~p0 ,p!2#J P2@cos~u!#

1pS 8cp1~p0 ,p!c t0~p0 ,p!

A3
14A2

3
cp1~p0 ,p!c t2~p0 ,p!24A2

3
ca0~p0 ,p!cv1~p0 ,p!1

2ca2~p0 ,p!cv1~p0 ,p!

A3
D

1m@8ca0~p0 ,p!c t0~p0 ,p!24ca2~p0 ,p!c t2~p0 ,p!24A2ca1
0 ~p0 ,p!c t1

0 ~p0 ,p!12A2cp1~p0 ,p!cv1~p0 ,p!#
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2
Md2p0D @22ca0~p0 ,p!21ca2~p0 ,p!228c t0~p0 ,p!214c t2~p0 ,p!224c t1

0 ~p0 ,p!22cv1~p0 ,p!2#,

~A7!

D f 0
N/D~p!5P2@cos~u!#H m@212A2ca2~p0 ,p!c t0~p0 ,p!212A2ca0~p0 ,p!c t2~p0 ,p!112ca2~p0 ,p!c t2~p0 ,p!#

1p@8A3cp1~p0 ,p!c t0~p0 ,p!28A6cp1~p0 ,p!c t2~p0 ,p!12A6ca0~p0 ,p!cv1~p0 ,p!

12A3ca2~p0 ,p!cv1~p0 ,p!#1S 1

2
Md2p0D @26ca1

0 ~p0 ,p!216A2ca0~p0 ,p!ca2~p0 ,p!23ca2~p0 ,p!2

26cp1~p0 ,p!2124A2c t0~p0 ,p!c t2~p0 ,p!212c t2~p0 ,p!2112c t1
0 ~p0 ,p!213cv1~p0 ,p!2#J , ~A8!

D f 3
N/D~p!5cos~u!H p@24ca0~p0 ,p!212A2ca0~p0 ,p!ca2~p0 ,p!14ca2~p0 ,p!2116c t0~p0 ,p!228A2c t0~p0 ,p!c t2~p0 ,p!

216c t2~p0 ,p!2#1S 1

2
Md2p0D @28A3cp1~p0 ,p!c t0~p0 ,p!24A6cp1~p0 ,p!c t2~p0 ,p!

22A6ca0~p0 ,p!cv1~p0 ,p!14A3ca2~p0 ,p!cv1~p0 ,p!#1m@4A3ca0~p0 ,p!cp1~p0 ,p!

12A6ca2~p0 ,p!cp1~p0 ,p!14A6c t0~p0 ,p!cv1~p0 ,p!28A3c t2~p0 ,p!cv1~p0 ,p!#

1P2@cos~u!#F S 1

2
Md2p0D [12A6cp1~p0 ,p!c t2~p0 ,p!26A3ca2~p0 ,p!cv1~p0 ,p!G

1m[ 26A6ca2~p0 ,p!cp1~p0 ,p!

112A3c t2~p0 ,p!cv1~p0 ,p!G1p@26ca1
0 ~p0 ,p!229ca2~p0 ,p!216cp1~p0 ,p!2136c t2~p0 ,p!2112c t1

0 ~p0 ,p!2

23cv1~p0 ,p!2# ~A9!
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APPENDIX B: HADRONIC TENSOR
FOR THE DEUTERON PROJECTORS

The parametrization of the hadronic tensor for the d
teron utilized in the present paper is given by Eq.~3.1!. It has
both symmetric$•••%, and antisymmetric@•••# parts with
respect to permutation of its indices

Wmn
D 5W$mn%

D 1W[mn]
D . ~B1!

Three physical vectors are used in this parametrizat
~1! PD the deuteron momentum. In the rest frame of t
deuteronPD5(MD ,0), ~2! q the momentum transfer in dee
inelastic scattering. With proper choice of the orientation
the coordinate systemq5(n,0,0,2An21Q2). In the deep
inelastic limit, whenQ2/n2→0, pq5n(p01p3), and ~3!
SD(M ) is the total angular momentum of the deuteron, i
spin of the deuteron as an elementary particle:

SD
a ~M !52

i

MD
eabgdEb* ~M !Eg~M !PDd , ~B2!
-

n:
e

f

.,

E~M !55
1

A2
~0,21,2 i ,0!, M51,

~0,0,0,1!, M50,

1

A2
~0,1,2 i ,0!, M521.

~B3!

The symmetric part of the hadronic tensorW$mn%
D contains

terms proportional to two tensor structures:

Tmn
~1!52gmn1

qmqn

q2
, ~B4!

Tmn
~2!5S PDm2qm

PDq

q2 D S PDn2qn

PDq

q2 D 1

PDq
. ~B5!

Because of the conservation of the electromagnetic curr
the contraction of the hadronic tensor withqm with any index
is zero. For this reason onlyPDmPDn andgmn are available
to construct the projection operators to extract the struc
functionsF1

D andF2
D from the hadronic tensor. We introduc

the coefficients
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C1[gmnTmn
~1! , C2[gmnTmn

~2! ,

C3[
PD

m PD
n

PD
2

Tmn
~1! , C4[

PD
m PD

n

PD
2

Tmn
~2! , ~B6!

DC[C1C42C2C3 , ~B7!

A1[gmnWmn
D , A2[

PD
m PD

n

PD
2

Wmn
D . ~B8!

Then the structure functions are recovered by

F1
D5

A1C42A2C2

DC
, ~B9!

F2
D5

A2C12A1C3

DC
. ~B10!

In the general case the antisymmetric part of the hadro
tensor of the deuteronW[mn]

D has the form
a,

J.

.
nc
a,

a
na
ea
e

ys

s.

s.

B

s.
ic

W[mn]
D 5

iM D

PDq
emnabqaH SD

b ~M !@g1
D~xD ,Q2!1g2

D~xD ,Q2!#

2PD
b ~SD~M !q!

PDq
g2

D~xD ,Q2!J , ~B11!

where the second structure functiong2
D vanishes in the deep

inelastic limitn→`, Q2→`, Q2/n→ const. We do not dis-
cuss this structure function in the present paper. To ob
the spin-dependent structure functiong1

D we construct anti-
symmetric projectors. The two following projectors a
equivalent for our purpose:

Rmn
~1![ i emnabqaSD

b ~M !, ~B12!

Rmn
~2![

i @SD~M !q#

PDq
emnabqaPD

b . ~B13!

So it is interesting that in the limitQ2/n2→0

g1
D5

R~1!mnWmn
D

2n
5

R~2!mnWmn
D

2n
. ~B14!
s.

.

da,

6,
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