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Deep inelastic scattering on the deuteron in the Bethe-Salpeter formalism.
II. Realistic NN interaction
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We present a systematic study of the leading twist structure functions of the delﬁgrpbfz, andg? in
a fully relativistic approach. Our study is based on a realistic Bethe-Salpeter amplitude for the deuteron, which
is obtained as a solution to the homogeneous Bethe-Salpeter equation with a rididternel. Particular
effort is made to connect the structure functions to the densities of the appropriate charges and currents. This
allows for a systematic comparison between relativistic and nonrelativistic calculations by analyzing the same
densities in both approaches. Thus, the sources of the relativistic effects in the structure functions are under-
stood and clearly distinguished from variations caused by the differences in the model parameters. We present
both the formalism and extensive humerical calculations for all steps of our analysis. We find that the nonrel-
ativistic and relativistic calculations are qualitatively very much alike. However, three main features system-
atically distinguish a consistent relativistic approach from the nonrelativistic @nthe binding effects are
larger, (i) the effect of Fermi motion at higk is stronger, andiii ) the relativistic description of the structure
functions b?z is fully consistent, unlike the nonrelativistic approach, which is internally inconsistent and
violates the fundamental sum rul¢§0556-28187)02310-9

PACS numbdps): 25.30—c, 13.60.Hb, 13.40-f

[. INTRODUCTION Some of the preliminary results, including the solution of
the BS equation with realistiblN interactions, have been
This paper is the second of two papers devoted to a studgiscussed briefly2—4]. Our calculations within the BS for-
of deep inelastic lepton scatteriimclusive electroproduc- malism for the deuteron are presented systematically and in
tion) on the deuteron within the Bethe-Salpet®6) formal- detail for the first time in this paper. No calculations by other
ism. The first papeﬁl], presented a formal approach to deepauthors have ever been performed within the BS formalism
inelastic scattering within the BS formalism. The emphasigVith realistic amplitudes. _ _
of this work was on the self-consistency of the method, and ThiS paper does not contain a simple collection of results
the development of all aspects of the formalism such that if€POrted elsewhere, nor is it based solely on the direct appli-
could be applied to a study of realistic cases of reactions. A&ation of the formalism developed in R¢fL], but rather it
basic analysis was performed utilizing the operator producpresents a better understanding of the forma] and phy;mgl
expansion method in the leading twist approximation with@SPects of the process. Indeed, any calculation of realistic

the results given in the space of the moments of the structursetructure functions depends on a realistic BS amplitude,

. . ) which we have computed numerically using a Wick rotation
functions. In principle, the structure functiofSF can be P y g

o f he k b ving the i 1,2]. The formalism of Ref[1] then allows us to calculate
recovered from the known moments by applying the inverse, physical moments of the structure functions using the

Mellin transform. Analysis of the lower moments of the deu- 4o teron amplitude. However, tnemerical transfornfrom
teron structure function allowed us to establish a formal conghe moments to the structure functioftbe inverse Mellin
sistency in the approach and to prove important sum rule§ransforn) is not a well-defined operatiof2,3] and a new
However, only simple illustrative numerical estimates weremethod had to be developed. In this context, we found it
performed in the “scalar deuteron” model, which itself is peneficial to use the formalism developed in R¢8s-7] in
rather far from reality. It was stated that in order to completethe late 1970'Ssee alsd8]). This formalism is more conve-
the study the following tasks had to be done. First, explicitnient if we deal with structure functions, rather than the mo-
formulas for the deuteron spin-averaged and spin-dependentents of structure function@lthough of course, it is math-
structure functions needed to be derived and, second, thematically equivalent The new formalism allows for a
structure functions had to be computed in a realistic mesomumerical treatment of the “inverse Wick rotation” of the
nucleon theory. The present paper deals with both thesBS amplitude when applied to the calculation of the structure
tasks. functions. Incorporation of this formalism into the calcula-
tion of the deuteron structure functions is another goal of the
present paper.
*On leave from INFN, Sezione di Perugia and Department of In recent years a number of studies of deep inelastic scat-
Physics, University of Perugia, via A. Pascoli, Perugia, 1-06100,tering of leptons from the deuteron have been undertaken in
Italy. which various manifestations of the relativistic features of
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56 DEEP INELASTIC SCATTERING ON ... . 1. ... 1701
the deuteron have been investigaf®d-14|. These results nucleon-nucleon scatteririghase shifts analysisif the gen-
certainly influenced our subsequent analysis since the firgral form of interaction is somehow determined
publication[1], and the corresponding development of the[18,19,22,2% Unfortunately, the parametrization of tiNN
formalism is considered in this paper as well. interaction is dependent on the choice of a dynamical equa-
Another new and distinguishing feature of the present pation. In spite of a definite similarity of the sets of parameters
per is the special accent on the systematic comparison of tha all realistic models there is no universal form for all non-
relativistic and nonrelativistic approaches. To do this, werelativistic and relativistic potentials.
consider the connection of the structure functions to the den- The only one parametrization of theN interaction avail-
sities of appropriate charges and currents, and then analyzble for the BS equation, is that of Fleischer and Tj2. It
these densities in both relativistic and nonrelativistic ap{robably needs revisiof26], by incorporating new data on
proaches. In this way, we are able to trace the origin of thehe nucleon-nucleon phase shift analy&g]. However, this
relativistic effects and to demonstrate inconsistencies in thparametrization has been used as the basis for our recent
nonrelativistic approximations. The paper contains a numbetalculation of the BS amplitude of the deuterfi]. The
of illustrations at every step of our analysis. meson parameter@nasses, coupling constants, cutoff pa-
Finally, results for the structure functions published pre-rametershave been taken to be the same as in Réfs21],
viously [2,3] have been recalculated using the new methodexcept for the coupling constant of the scatarmeson,
resulting in some corrections, albeit small, to the SF. which has been adjusted to provide a numerical solution of
The paper is organized as follows. In Sec. Il, we definethe homogeneous BS equation, and a few other minor adjust-
the densities of the currents which are used later in the analynents, in view of the following considerations. First, we
sis of the deep inelastic scattering. For this purpose, the raised a simplified form of the propagator of the vector me-
alistic BS amplitude of the deuteron is presented, and thgons, omitting thek,k,/u? term. Second, a different nu-
relativistic and nonrelativistic expressions for densities arenerical procedure to solve the eigenvalue problem for the
defined and calculated within realistic models. In Sec. Il theBS equation can also affect the value of parameters.
relativistic formalism of our approach to the deep inelastic The detailed formalism preceding the numerical solution
scattering on the deuteron is developed which includes exof the BS equation for the deuteron is presented in Réf.
plicit relativistic and nonrelativistic formulas for the struc- The Fredholm system of “Wick rotated” equations with all
ture functions, and the sum rules for the structure functiongneson exchanges is solved by an iteration procedure with
are analyzed. Section IV contains results of both relativistiawo-dimensional Gaussian integrati¢see, e.g., Ref28]).
and nonrelativistic calculations of the structure functionsThe following eight components of the BS amplitude of the
F3, b?,, andg? in realistic models. In Sec. V the summary deuteron:
of results of the paper is presented. Two Appendixes contain
important technical details. Y1, 031 W1, Wa0 Waz UL Yo Yz, 2.1

have been computed as scalar functions of two varighles
and|p|, components of the momentum four-vector. An ana-
A. Realistic NN interaction and Bethe-Salpeter amplitude lytic parametrization of these components is now available

Il. ANATOMY OF THE DEUTERON

. N - 29].
The basis of our approach to the relativistic description oI[ .
deep inelastic scattering from the deuteron is a nucleon- Since the one-boson exchange poterj@dl, 29 was used

nucleon BS amplitude. The general self-consistency of Sucﬁglr?/t;ivrlltgr?yT::anv?ro??iléfsetrrgﬁpghc;usriczre?ﬁigtaslggjtsl,(t)rrc])r?;ﬁssggt
an approach has been analyzed in our previous er . . o >
PP y P el gests that the BS amplitudes are indeed realistic, and provide

sented and important sum rules have been proved, both witift 9000 description oNN scattering, static properties, and
out reference to any particular model for the BS amplitude.Orm factors of the Qeuterom1,22,25,30—3]3 All param-

A naive numerical estimate has been completed within th&ters are presented in Table I. The _set_of parameters includes
scalar deuteronmodel which is found to be in qualitative (€ nucleon masm, the deuteron binding energy, , and,

agreement with the nonrelativistic theory of deep inelastidherefore, the deuteron madé,=2m-+ep. The coupling
scattering{15—17. constants are given in accordance with our definition of the

Yet, for realistic calculations of the deuteron structureMeSon-nucleon form factors

functions we need eealistic BS amplitude, which provides
us with a good description of the bulk of the deuteron prop- A= pg
erties. This is the same ideology as is used in constructing -
the realistic wave function of the deuter¢h8—27. The
most consistent way to obtain a realist_ic .BS amplitude is tQyhere A is a cutoff parametefsee Table)l
solve the dynamical problem with realistic modelof the
NN interaction. However, the realistidN interaction still
cannot be derived explicitly from the underlying fundamen-
tal theory, QCD, nor from nonrelativistic approximations, In order to compare different models of the deuteron and
such as chiral perturbation theory, although some progresiefine to what degree each of the modelsaalistic, it is

has been achieved in recent yeg?8,24. Alternatively, the natural to calculate various observables within these models
parameters of thé&IN interaction can be fixed in the tradi- and compare them with each other and with the experimental
tional manner from the available experimental data ondata. The canonical way to do this is to calculate the nucleon

(2.2

B. Static properties and densities
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TABLE I. The set of parameters of the kernel of BS equation

A
used in this work. O(p,, 9, k)
meson coupling constants mass cutoff isospin Py p1+k
B 08/(4m)i[9, /9] ps. GeV  A.GeV Po P, Pptk
@ mee—

o 12.2 0.571 1.29 0

FIG. 1. Triangle graph for nucleon contribution to the deuteron
) 1.6 0.961 1.29 1 matrix element of operataf.
T 145 0.139 1.29 1 d“p L R

(Oh=i [ = LT (p0.m 0P AT
n 4.5 0.549 1.29 0 (2m)
X P— :

® 27.0;[0] 0.783 1.29 0 (Po-+ko,p+K)(po—m)}, 23

where =Pp/2xp=(Mp/l2=py,=p), Pp=(Mp,0) is
p L1.0:[6] 0.764 129 1 the deupté'?on r?wome?ntu(m IiDn thep?esta)rarpeDc,(pfo,p?) is) the
relative momentum of the nucleon®(p;,q.k) is an appro-
priate operator, an® ,(po,p) is the BS amplitude for the
deuteron withM being the deuteron’s total angular momen-
tum projection(see Ref[1] for definition and conventions
for ¥ \(po,p)). The operato@(pl,q,k) is written in a gen-
contributions to static observables, for example, the meagral form, which depends on nucleon momentpmand two
square radius, magnetic, and quadrupole moméhg-  external momenta andk. g does not appear in the lower
22,30. The mesonic corrections are quite small and depen@art of the diagram anki adds to the nucleon momentum. In
upon additional model assumptions. Most of the modern rethe present paper we consider only the case Wi0.
alistic models give a quite good description of the static 1he explicit form of the operators and the structure of the
properties or provide a plausible explanation in the case of geuteron matrix glements relevant to deep inelastic scattering
minor discrepancy. The reaction observables such as forf2V€ been studied previously by several autfag17,9—
factors and structure functions, are more model depende .1’1]' _One Sl_JCh meth_od Qf finding af_orm of the operator for
These differences are often used as a tool for discriminatind P inelastic scattering Is that of Wilson's aperator product

between models or various calculational techniques using th xpansion|34] applied within an effective meson nucleon
models. theory[16,17,35,1 Another possible approach is based on a

A direct . fth funci d litud arametrization of the operators in the most general form
rect comparison ot the wave functions and amplitudes ;i phenomenological analysis or interpretation within

usuglly seems to be less meaningful. .StiII, in many Casefqqels for quark-nucleon amplitudg@—11,8,36. Both ap-
particular properties of the wave functions and amp“tUde%)roaches lead to the same results in the “convolution ap-
directly indicate what will happen when observables are Ca'proximation” which assumes that the deformation of the
culated. A prime example is thB-wave admixture, which  nycleon operator off-mass-shell can be neglected. In the
directly affects values of the magnetic and quadrupole mopresent paper we do not concentrate on the differences be-
ments, the tensor analyzing powdi,, and the spin- tween these two approaches; that is, our analysis does not go
dependent structure functions of the deuteg?n and b? . beyond the convolution approximation.

Another example, the high momentum *“tail” of the wave  The vectory,, and the axial vectoysy, operators are
function (amplitude dominates in the observables for somerelevant here. The matrix elements of the selected compo-
kinematic conditions with a high momentum transfer. How-nents of these operators are given by

ever, the interpretation and properties of BS amplitudes are

very different from those of the wave functions; a direct

m=0.939 GeV,ep=—2.225 MeV

comparison between them is impossible. (voIm Yo
Recently, it has been argued that new intuition can be (¥3)m i d*p _

developed in working with the BS amplitudig0,29 by con- :WJ —— 11 ¥m(po.p)

S ar " : (vsYoIm pJ (2m) Y570

sidering the charge and current densities and comparing

them to similar calculations using the nonrelativistic ap- (¥5Y3)m Y573

proach with wave functions. The charge and current densities
are more directly linked to the observables than wave func-
tions and amplitudes. Following this idea, we calculate the
charge and current densities which are related to the various XW(Po,P)(Pa—mM) ¢ . (2.9
structure functions in deep inelastic scattering.
In many important cases the nucleon contribution to the
deuteron observablg)) is defined by the triangle diagram
(see Fig. 1 Three main combinations of these matrix elements are im-
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portant for deep inelastic scattering. They are presented be-
low along with the corresponding deuteron structure func-
tions:

<y >

F?H%% {{yoom+{yadm} (2.9

by —{(voym—1+{¥ahm-1}—{( 70>M=o+<73>M=o}a(2

9y —{{(vsYoym=1+{¥s¥a)m—-1}. 2.7

where — means “corresponding to” and does not have a
direct mathematical interpretation. Explicit connection of
these matrix elements to the structure functions will be dis-
cussed in Sec. lll. These matrix elements represent charges
and currents, vector and axial vector, calculated for deuteron p [GeV]
states with different combinations of total angular momen-
tum projectionM. Properties of these matrix elements, in-
cluding rigorous sum rules for the charges, are later used
discuss the structure functions.

Let us start from the matrix elements involved in Eq.
(2.5). The first term(yo)y is the charge of the conserved

' tand. si it is ind dentbf the foll whereW ,(p) is a nonrelativistic wave function of the deu-
?/nec orr(r:]u:rtlen an n’ ;'n(i:r?]r'n'sdi'nt ?p?/\r/]rit(tann d \éeo OW= teron withu andw being itsS- and D-wave components.
[1% i’]l)] ules can be ediately €n doWsee, €.9.. e densities yo)(p), calculated in three realistic models

[18,19,3, are shown in Fig. 2. Certain model differences at
1 |p|>0.5 GeV are present, however there is no distinguishing
§2 (yoIm={vo)m=1. (2.9 featgrg of the relativis_tic density.
M Similarly, we consider other components of the vector
and axial matrix elements. The relativistic densities
Obviously this sum rule is also valid in the nonrelativistic <73>Bs(p), <7570>Bs(p), are defined by replacing, with
approaches since it is just a normalization condition for bothy, ., and taking appropriate combination of the matrix
the wave functions and BS amplitudes. To make more mearelements with differenM in Eq. (2.9). The explicit expres-

ingful use of this matrix element and compare our approacRjons for all densities in terms of the components of the BS
to other realistic approaches, we define the charge density @mplitude are presented in the Appendix A.

0 025 05 075 1 125 1.5

FIG. 2. The charge density in the deuteron, Es9 and
2.11), calculated in different models, nonrelativistic and relativis-
¢, the Bethe-Salpeter amplitudeolid), the Bonn wave function
(dashed, and the Paris wave functididotted.

the BS formalism agsee Appendix A for the explicit forin The nonrelativistic densities are calculated from a nonrel-
ativistic reductionf17,1,13. Here we present the most inter-
BS i dpg esting densities of them. A remarkable feature of the nonrel-
(vo)(P)= 2 f o ativistic densities is that they have the same angular
12m°Mp™m J 27 . T S
dependences as the corresponding relativistic densities.
XTHY 14(Po.P) Y0¥ m(Po.P) (Pa— M)}, The t.h|.rd_sp_at|_all component of the vector current in the
nonrelativistic limit is
(2.9
3
1 NR( () — P3 ¥ 2,0 ﬂ
EJ dp(y0)®(p) =1. (2.10 (v3)"(P) 6772m% [¥m(p)] me
o |p|cosd
In the nonrelativistic limit this corresponds to the momentum ~ [u2(|p|)+w2(|p|)], (2.13
density[17,1,17 m

1 whered is polar angle of vectop. Note that this density has
{vo)"R(p)= —22 [P (p)[2=[u?(|p) +wW3(|p|)], a suppression factor ef |p|/m, due to a mixing of the upper
6™ and lower components of the Dirac spinors by nondiagonal
(211 matrix y;. Since the angular dependence of the explicit form
of the relativistic density(y3)2S(p) is also absorbed in the
if dp(yo)R(p) =1 2.12 factor co) (see Appendix A the integrals of both the rela-
4z ) OPYOTIRI= L ' tivistic and nonrelativistic densitiesy;) overdp are zero:



1704 A. YU. UMNIKOV, F. C. KHANNA, AND L. P. KAPTARI 56

=0

o~ < Yo u

< Yo >u

0 0.25 05 075 1 1.25 1.5 0O 025 05 075 1 1095 15
p [GeV] p [GeV

FIG. 3. The(y3)(p) in the deuteron calculated in different mod- FIG. 4. The “tensor density” of the deuteron,
els: BS amplitudésolid), the Bonn wave functiofdasheg, and the ()M 1(p) — ( vo)M-.o(P), calculated in different models. To ex-
Paris wave functioridotted. clude the angular dependence the densities are dividéd (os)):
BS amplitude(solid), the Bonn wave functiordasheg, and the
Paris wave functiorfdotted.

[ dotra®sor= [ dntra o

1 3
:<73>“fjld(C0&9)CO&3=0. Ef dp(ysys)" (P =1~ Swp, (2.18

2.1
(@14 wherewp, is the weight of theD wave in the deuteron. The
These densities for realistic models are shown in Fig. Jelativistic analog of the sum rul@.18 can be used for an

with 6=0. Basically, they just reflect the behavior of the estimate of the “admixture” of th® wave in the relativistic
charge densities from Fig. 2 in accordance with the nonrelaformalism, which otherwise does not allow for probabilistic
tivistic formula (2.13. For illustration, the curve represent- interpretation. Numerically we have
ing the BS density from Fig. 2 multiplied by the facit/m
is also shown(dash-dotted Surprisinglyésenough, it can L
barely be distinguished from the exdat;)®>(p) (solid ling) B
even at momenta higher tham 9 Ef dp(y57s)°%(p)=0.9215, (219

Two examples of spin-dependent densities are

3 which gives us an estimate ofp~5% !
NR NR —_— D
(voIm=1(P) = (Yo)m=o(P)= 2P2(cos&)w(|p|) The realistic model densitie.15 and (2.16) are pre-
sented in Figs. 4 and 5, respectively. These two examples
x[2+2u(|p|) +w(|p))], confirm the conclusions of the previous illustratioig: re-

(2.15 alistic models are in a reasonable agreement with one an-
' other, providing a good description of the charge and current

1 densities of the deuteron, arid) in spite of some model
(ysya)m1(P)=u?(|p|)— §W2(|P|)+ P,(cosd)w(|p|) variations at high momentum, there is no distinguishing fea-
ture of the densities obtained in a relativistic BS formalism.
x[w(|p))— v2u(|p)]1, (2.16 Therefore, we cannot expect relativistic effects due to the

form of the densities to be significant. However, this conclu-
whereP,(x) is the Legendre polynomial. We also can easilysion does not preclude the possibility of observable effects
write down sum rules for the spin-dependent densife$5  generated by the differences in the relativistic and nonrela-
and(2.16 tivistic description of the deep inelastic reaction.

1
d NR (p)—(yo)NR f d(cosd)P,(cosd
f PLY0Im=1(P) = (Yolu=o(P)} —1( JPal ) There can be corrections@(|p|>/m?), to the density

(y573)NR 1(p), see Refs[35,12. However, their estimated contri-
=0, (2.1 bution to integral(2.18 is small,<1%.
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4.9
:( _g,uv+ ?) I:1D(XD 1Q2)

Ppq Ppq
{raca g roa

F?(XD Q%)
X—!
Ppq

< yeys >

(3.3

where F?z(xD,QZ) are the result of averaging
F?AXD ,Q2,M). Other structure functions can be obtained

from other combinations owgy(q,PD,M) with different
M:

\/] W2,(0,Pp,M=1)~ WP (q,Pp , M= —1)xg?(xp,Q?),
.l (3.9
0 0.25 05 075 1 1.25 1.5
p [GeV]

W7,(d,Pp,M=1)= W7 (q,Pp,M=0)xb? xp,Q?).
FIG. 5. The spin densityysys)w-1(p) in the deuteron calcu- 3.5
lated in different model¢see Sec. Il B for definitions To exclude
the angular dependence for the present figure, densities are intdéhe Eqs.(3.2), (3.4), and (3.5 are the basis for the experi-
grated over all angles: BS amplitudsolid), the Bonn wave func- mental measurements of the deuteron SF's. However, for
tion (dasheg, and the Paris wave functiduotted. theoretical studies of the hadronic tensor and SF’s, the pro-
jection technique is more convenient. All relevant formulas

IIl. RELATIVISTIC THEORY OF DEEP INELASTIC for the projection technique are presented in Appendix B
SCATTERING ON THE DEUTERON while background information on the $i'—f2 can be found in
Refs.[37-40.

A. Definitions and kinematics To calculate the hadronic tensor of the deuteron we fol-

We start with the general form of the hadronic tensor oflow the general formalism of our approach
the deuteron with the total angular momentum projechibn

keeping only the leading twist structure functions 4

p N
(277)4Tr{\PM(vap)

W2V<q,PD,M>=if

D - ~
W2,(9,Pp,M) XWEL(P1,0) ¥ m(Po,P) (P2~ M)}

, P 3.6
= — g+ 22 )FE’(XD Q2M)+ PDM—qM%q> ¢9
q The nucleon tensor operatﬁvﬁv(q,p) has been studied
Poa| Fo(xp,Q%M) extensively in recent yeafd6,35,1,9,10,128and we use a
X| Pp,—d,— = well-established form of the operator, leading to the convo-
a pd lution formula[41]
iM
+ g Curasd"SHM)GT (X0,Q°), (3.0

WH,(0,p) =W,,,(a,p) + Wi,,,5(a,P), 3.7

wgere q2=(v,0,0,; JZ+Q?) is the momentum transfer,
Q°=—0g°, xp=Q°/(2P [in the rest frame of the deu- ~ a9 N

teron xg=Qg/(2M[§v)],D%)D(M) is the deuteron spirisee Wiwn(9.p)= mww(q,p), 38
Appendix B, andF?, andg} are deuteron structure func-

tions (SF’'s). Averaged oveiM, this expression leads to the

well-known form of the spin-independent hadronic tensor . i

which is valid for hadrons with any spin: W[,w](q,D)=mfwaﬁqa7ﬁyng(q,p), (3.9

where{---} and[- - - ] denote symmetrization and antisym-
L metrization of indices, and})(q,p)=g}(x,Q?) is the spin-
WP (q.Pp)==3 WP (q,Pp .M 32 dependent nucleon SF. The hadronic tensor of the nucleon
w!(8Po) 3% w(@:Po.M) 32 W,,,(p,a)" is defined as
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small effects of the off-mass-shell deformation of the

W;'\L‘,,(q,p)=( gt q,U«Z]V) FN(x,Q2) + pﬂ—qﬂp—? nucleon tensof9,12,42 are not considered here, since these
q q effects do not affect sum rules for the SF and do not notice-
N ) ably change the absolute values of the SF's. It is for this
«| p—q @) F2(x,Q%) (310  reason that the SFE}, in Eg. (3.10 do not depend op?,
S T A o ¢ ' but only ong? andpg.

Using the projectorgsee Appendix B we extract SF's
where x=Q?%/(2pq) and FT,z are the nucleon SF’s. The from the hadronic tensor of the deuteron:

[ d% ( Xnm )Tr{%(po,p)(%*'Ys)q’M(poyp)(laz_m)}
D 2 My — N 2
Frl.Q%M) lf (2m)* "\ potpis’ 2(p1ot P13 ’ (319
[ d% ( Xnm )Tr{\ITM(pO,p)(yo+ ¥3) ¥ w(Po.p)(P2— M)}
D 2 My — N 2

F2 00, Q%M) IJ(ZW)“ 2\ p1ot P13’ 2Mp ’ (3.12

. d*p XNm )Tr{thA(DOvp)(70+73)75\IIM(p01p)(ﬁ2_m)}|M=l

D ' 2\ — N , 2 , 3.1

91 (. Q%) IJ(Zﬂ-)“gl P10t P13 2(p1otP1a) 13

wherexy=Q?/(2mv) is the Bjorken scaling variabfei.e., this isx for the on-mass-shell nucleon at rgsty andp,; are the
time and third components of the struck nucleon momentum. Forni8lag and(3.12 have not been averaged over the
projection M, since the present form helps in understanding theb%f. For instance Eq(3.12 gives two independent
“SF’s,” with M=+1 andM =0, which are related to the usual spin-independenFSFand a new S} :

1
FRon.QY) =3 2 FR0n.Q%M), (3.14
M=0,=1
bo(xn,Q%) =F5(x,Q>,M=+1)—F2(x,Q2,M=0), (3.15
FR(xn, Q%M =+1)=F2(xy,Q2,M=—1). (3.16

Note, the SFFZD(X,QZ,M) is independent of the lepton polarization, therefore both &H?sand sz can be measured in
experiments with an unpolarized lepton beam and polarized deuteron target. In view (8.5, only one of the SF's
[F5(x,Q?M)] is needed, in addition to the spin-independEf(x,Q?), in order to obtairb,(x,Q?). The other SF? is
related to the deuteron SF; the same way that5 is related toF5 , viz. via Eq.(3.14) andb? =2xb} .

B. Singularities of the triangle diagram and calculation of structure functions

It has been shown previous[¥s—8] how the singular structure of the triangle grafffig. 1) rules the behavior of the
spin-independent SF? . In particular, it is found that the relativistic impulse approximation satisfies unitarity conditions and
provides the correct kinematical region of the variakle However, for the exact covariant amplitude both these properties
are violated in practical calculations when nonrelativistic wave functions of the deuteron are used. In this case one can argue
that this introduces small deviations, which are not important for phenomenology. On the other hand, a realistic BS amplitude
of the deuteron serves ideally for a consistent phenomenological application of the covariant theory of processes on the bound
nucleons.

In order to calculate the SF's, given by Eq8.12—(3.15 and analyze the sum rules, the singularities of the triangle
diagram should be explicitly taken into account. To do that, (Bdl2) is rewritten as

i d*p Xym ) 1
FD 2 M)= N 2
20 Q% M) ZMDJ(ZW)A' 2\ P10t P13~ | (p2—m2+ie)?(p2—mi+ie)
X Tr{ dm(Po.P)(P1+ M) (Yo+ ¥3)(P1+ M) dp(Po,P)(Po+ M)}, (3.17

where ¢y (Po.p) = (P1— M) ¥ w(Po.p) (P2—m) is the BS vertex function of the deuteron.

°Note that the “native” deuteron variable ig,= (m/Mp)xy, howeverxy is used more often.
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Analysis of singularities in the complgxplane allows for one analytical integration in E8.17) [7]. After translation into
variables which are used in the present paper, this integration is equivalent to picking the residue of the second nucleon pole,
Pao= w=m?+p? or po=Mp/2— w, in the complexp, plane when both of the following conditions are satisfied:

0<w—p3<Mp. (3.18

The contribution to the integrdB.17), of the region ofp beyond Eq.(3.18), is zero, i.e., different poles cancel each other.
Note, thatp;o=Mp— w in the required pole. Calculating the residue in E317), one gets

1
20M3(Mp—2w)?

1 d3p Xym
D RV N 2 _
F>(xn,Q 'M)_ZMDJ(2w)3F2(MD—w+p3’Q >®(MD o+p3)

X Tr{ dw(Po.P)(P1+M)(Yo+ ¥3) (P1+ M) dp(Po.P) (P2 + M)} po=Mp/2—w (3.19

where the® function guarantees the upper inequality conditi®i18 is satisfied, while the lower condition is always satisfied.
It is instructive to note that the initial expressi®6) contained both the spectator nucleon singularity and the singularities of
the propagators of the struck nucleon. However, an accurate calculation of the integral shows that the physical SF of the
deuteron has a correct kinematic limitsxinO=x<Mp/m, and is defined only by the spectator’s pplg= Mp/2— w. This is
an explicit illustration of the “support” propertysee discussion if41,8)).
It is useful to rewrite(3.19 in the convolution form

Mp/m
F2 (XN, Q%4 M) = f dyFS‘();—N,QZ)fR‘/D(y), (3.20

XN

where “the effective distribution” of nucleons in the deuteron is defined by

d3p Mp—wW+p
( -0 *loy)

1
fN/D — j S
S ATV 2m3 Y -

XTr{¢n(Po,P) (P1+M) (7o + ¥3) (P1+ M) B(Po,P)(P2+ M)}y —mpr2-w- (3.29

20M3(Mp—2w)?

The SF'sF?, andb?, are now calculated from

FY (N, Q%) :fmoxmd_y[ fNP(y) }FN(X—N QZ) .22
b2(xn, Q%) Jxy Y [ATNP(y)) tly ) '
FzD(XNyQZ) =fMD/mdy[ fND(y) ]FN(X—N QZ) (3.23
b5 (xn, Q%) XN AfNP(y) |2y )
where the distribution$"'® and AfN'P are given by
N/D 1 N/D
oy =32 M), (3.24
AfNVP(y) =P (y) = 5" (y). (329
Similarly, for the SFg? we get
Mp/mdy X -
9?(XN,Q2)=f —9?<—N,Q2)fN/D(Y), (3.29
XN y y

where the effective polarized distribution of nucleons in the deuteron is defined by

. 1
fN/D —
(y) Mo ) (2m)

d3p 5 _ MD_W+p3
m

0
) (y)sz%(MD—Zw)Z

XTr{ du=1(Po,P) (P1+M) (Yo ¥3) Ys(P1t+ M) u=1(Po.P) (P2 + M)} po=Mp/2—w - (3.27
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C. Sum rules for the deuteron structure functions The sum rules for the deuteron SFBQ and sz are the
Two sum rules can be written for the effective distribution immediate result of combining Eq$3.32 and (3.33 and
FN/D (). (3.22 and (3.23:
Mo (Y):
Mo /™ wio 1 ! D
L fy (y)dy= EJ’ dp{yo)m(P) ={voym=1, o dxpb1(xp) =0, (3.39
(3.28
1
f dxpb2(xp)=0, (3.39
0

Mp/m N/D
|y ay=(ol @D =1- v,

(3.29 in agreement with the sum rules suggested by Efremov and
Teryaev[37].

where (@N)Zo‘iwx) y,0"(x) is the trace of the energy- T_he sum rule for _the spin—dependept djstribution relates
momentum’ tensor. Equatiof8.28 represents the vector the |nt.egral of the spm—dependentdlstrlbutlo_n of nucleons to
charge conservation generalized for the deuteron states witf€ third component of the axial curref#.19 is
different M [see Egs(2.9) and (2.10]. In spite of a clear M Im
physical interpretation, it was _recgntly a subject of some con- f fND(yydy=( 7573)58:1- (3.36
troversy[5—7]. Indeed, the derivation of sum ru{8.28 con- 0
tains some subtle points and equivalence between it and the
expression for the charg@.8) is nontrivial particularly be- An explicit expression for the distribution function
cause of the presence of tefunction in Eq.(3.20). This®  {NP(y) [and therefore fof'P(y) and AfVP(y)] in terms
function provides the correct kinematics in the variakle  of the components of the BS amplitude can be directly es-
but cuts out part of the integration domaindAp. This cut-  tablished from Eqgs(3.21) and (3.27 and the formulas for
ting of the integration interval in the polar angldeads to a  the corresponding densities which are given in Appendix A.
nonzero contribution of the matrix element containimg
which is proportional to cas However, the validity of this
sum rule has been firmly establishEg-7]. The sum rule ) ) o
(3.29 for the first moment OfklxllD is of a different nature: it To calculate numerically the effective distribution func-

represents the nucleon contribution to the total momentum dfons (3-21, (3.24), (3.25, and(3.27), we need to know the
the deuteror{16,43,17,1 where & is a part of the total matrix elements over the BS vertex functions as functions of
momentum carried by the non-nucleon compor(eresons P @nd po=Mp/2—ym“+p” along the realp, axis. The
The constantsy cannot be fixed in a model-independent reader is reminded that the components of the BS amplitude
fashion, rather it is calculated within a particular model. Self-nave already been computed numerically along the imagi-
consistency of the theory requires that meson exchange cuf@y axis in thepy plane(Wick rotation [2,29.

rent contribution to the deuteron $¥ exactly compensates N Refs.[1,3], it has been pointed out that theomentwof

the loss of energy by nucleons (8.29. An importantprop- the deuteron SF can be calculated in terms of the Wick ro-
erty of sum rules(3.28 and (3.29)' is -that their right-hand tated BS amplitude of the deuteron, since there are no extra

side(RHS) does not depend on the deuteron spin orientationsingularities in the matrix elements describing the nucleon
The sum rules fof V'P(y) and A fNO(y) follow from the contribution to deep inelastic scattering other than the singu-

N/D P~ ) larities of the amplitude itself. In principle, this implies that
sum rules forfy™(y) and the definitions3.24 and (3.25: the SF’s can be found by applying the inverse Mellin trans-
My /m 1 forlm tbo the Imolmegts. In pr_actlilce, howevr(]ar, g:g momlgn'és can
N/D = - - only be calculated numerically, since the amplitude is
Jo ydy 3% {rolu=(70)=1, (3.30 known numerically. As a result, it is impossible to perform
an exact inverse Mellin transform, which requires not only
Mp /m 1 knowledge of an infinite number of moments but also the
f ny’D(y)dy=§2 (D|(®N)ﬁ|D)M:1—5N, analytical continuation in the imaginary plane of the mo-
0 M ments as a function of order. These obstacles make the
(3.3 exact calculation of the deuteron SF impossible. Instead, one
uses interpolating formuld®,3] for the moments, which are
m obtained as an expansion of the exact expression for the mo-
fo ANP(Y)dy=(yodu-1=(r0)m=0=0, ments in a series ipy/m around p,=0. This is a well-
(3.3)  defined approximation for the moments, since in the physi-
cally interesting regionpy/m<1, and we can control the
Mp /m accuracy of the results by comparing calculations with a dif-
f yAfN/D(Y)dyz(D|(@N)Z|D>M=1 ferent number of terms. However, it is unclear how to esti-
0 mate properly the accuracy of the SF, obtained by this tech-
nigue of the inverse Mellin transform of interpolating
formulas. We find that the deuteron SF at medium and large
(3.33  x, is slightly underestimated.

D. Calculation of distributions: Inverse Wick rotation

—(D|(Oy)"|D)y—=0.
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Now we explain the procedure for calculating the “in-
verse Wick rotated” matrix element directly for the SF, us-
ing the formalism developed in Sec. Il B. We consider only
the example of V'P(y); other distributions are calculated in
the same way. First, let us rewrite E®.21) in the form

d3p ( Mp—w+ p3)
- @@= @

m
><[<’)’O>pole(p+<')/3>pole(p)] (3-37)

Where(yo)pole p) and<y3>po|e(p) are densities defined simi-
larly to Eq. (2.9, but where the full integral is replaced by
the contribution of the second nucleon pole “the nucleon
pole contribution.” Explicit forms of (yo>p0|e(p) and
<y3>po,e(p) are clear from Egs(3.21) and (3.37). Equation
(3.37 is theexactform of the Eq.(3.21). Second, we notice
that this density does not have any singularities in the com-
plex plane ofpy. Nor does the matrix element

< 70 >po|e

fN/D(y) —

0 025 05 075 1 1.25 15
p [GeV]

+ + + +
Tr{¢M(po,p)(p1 m(7o 73)( P1FM) bu(Po, p)(pz m} FIG. 6. The one-pole contribution to the charge density of the

=(p2—m?)2(p3— m2)Tr{\?M(p0,p)(yO+ v3) deuteror( yo)psdp), calculated with the BS amplitude: the Ieadlng
term in the Taylor expansiofdotted, first two terms up tox p0
XWy(Po,P)(Pa— m)}. (3.38 (dashey and first three terms up tepg (solid).

Thus to calculate the nucleon pole contribution to the denwhich corresponds tg~1.6 in Eq.(3.39. Finally, in accor-
sity, the matrix element3.38 can be safely expanded into a dance with the convolution formulés.23 and taking into
Taylor series in the variabl@, around the pointpo=0.  account thatf\'P(y) is also a sharp function, we conclude
Third, the coefficients of the Taylor expansion can be calcuthat the method allows us to calculate the deuteron SF up to
lated using the known RHS of E¢3.38 for imaginaryp,.  the pointx~1.6. It should be remembered that this limitation
Finally a numerical convergence of the expansion can bés related to the restriction of the formulas by the condition
checked by comparing results of calculations up to differentp|/m~ 1.5, which is perhaps already close to the boundary
order inp,. Note that Eq(3.38 and similar expressions for of the validity domain of theelativistic nucleon model of

all other distributions are even functionsmyf; therefore, the  the deuteron.

Taylor expansion really should be donepg. In addition, The results of calculations of the nucleon pole contribu-
the pointpy=0 should be a good point to expand abouttion to the charge densityy,) o) are presented in F|g 6,
since, in the most physically interesting region|pffm<1  where We compare curves for calculations up~{po, po,

we have|py/m|=~|ep/(2m)—|p|%/(2m?)|<1. The critical and ~p3. As we expected, the procedure is nicely conver-
point for any expansion in nuclear physics is usuallygent up tolp|~1 GeV and with reasonable accuracy can be
|pl/m=1. However, even at this poifip,/m| is still a good  used up tdp|~1.5 GeV. Similar results for the pole contri-
choice for the Taylor expansionpo/m|~[ep/(2m)  bution to the axial densityysys)poP) are shown in Fig. 7.
—(V2-1)|~0.4. For|p|/m~1.5 the parameteip,/m| ap- Note that the numerical approximations made in this sec-
proaches 1, and we can estimate how this limit|phis  tion, such as limiting number of terms in the Taylor expan-
translated into a limit oxx in the SF. To do this we perform sion, can potentially lead to a numerical violation of the ex-
two analytical integrations over the azimuthal and polaract sum rules.

angles¢ and 9 in formula (3.37). The first integration is
trivial since the integrand does not depend ugorThe sec-

- . . . E. Nonrelativistic formulas for structure functions
ond integration can be done using héunction. As a result

only the integration ovetp| is left, with the lower limit The nonrelativistic expressions fd(y), AfVP(y),
imposed by the integration over with the § function and fN'P(y) can be obtained by using an analogy of the
s charge densities calculated within the BS formalism and the

b (Mp—ym)“—m (3.39 corresponding densities calculated with wave functieng.,

Pmin=abs 2(Mp—ymy /)’ ' Egs.(2.11), (2.13, (2.19, and (2.16)]. Actually, the distri-

butions in the BS formalism are expressed in terms of
which is just a consequence of the conditiordos9=—1.  nucleon pole contributions to the densities in the nucleon
Since the densities under the integral in E837) are very pole approximation(3.21), (3.25, and (3.27), and not the
sharp functions ofp| (see, e.g., Figs. 2, 3) Bwve expect that exact densities as in Eq2.9). However, in order to obtain
the most important contribution to the integral comes fromthe nonrelativistic approximation to the relativistic formulas,
the region neatp|=pmin. Therefore, we estimate that the one can use the fact that the nucleon pole contribution gives
expansion in a series in,/m fails at the pointp,,,/m~1.5, the main contribution to the density, at least in the nonrela-
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2 Again, the sum rulg¢3.32 is broken by the presence of the
A O function in Eq.(3.41). Neglecting it, one obtains
?E 1 Mp/m
; | CaxobRo0)= | ariRay
V 0 0
1 |plcosy
ocf d(cosp)| 1+ P,(cosh) =0,
-1
(3.42
where the orthogonality property of the Legendre polynomi-

als is used.

A deviation from zero caused by tH@ functions is not
large compared to 1. One caartificially adjust formula
(3.4)) to satisfy this sum rule. For instancamall corrections
3 to the normalization of both terms witi =1 andM =0 can
10 "} . . be made to satisfy the sum rule in the fo(&32. However,

0 025 05 075 1 125 15 the situation Wlth_ the second sum rLdBESQ is more difficult
and cannot be fixed by any simple adjustments of the nor-
p [GeVl malizations or by ignoring the® functions. As for Eq.

FIG. 7. The one-pole contribution to the spin density, of the(3'42" one can writgneglecting the® functior)

deuteron ysys)pgdP) calculated with the BS amplitude: the lead-

. : . ) 1 Mp/m
ing term in the Taylor expansiofdotted, first two term, up to f dx bD(x )ocj yAfN’D(y)dy
«p3 (dasheg, and first three term, up te pj (solid). R I NR

1
tivistic region. Such an assumption is very common in ocf d(cosf)(Mp—w-+ |p|cosd)
nuclear physicqsee, e.g.[20,22,44,10,1)). For instance, -1
the well-known result for the spin-independent distribution is

immediately reproducetkee, e.g.[17,8,14): % ( 1+ |plcoss

) P,(cosh) #0. (3.43

d®p Mp—W-+ps _ _ - .
- There is no reason for this sum rule to be satisfied with the

fH’RD(y)=J 2’

m nonrelativistic distribution function(3.41). Therefore the
nonrelativistic formulas, in principle, violate the sum rules
X O (y){(70)"(P) + (75) " (p)} for the SFehD, prineip
d3p Mp—W+ pa The nonrelativistic formulas for the other spin-dependent
=f (2m)3 ( - m ) distribution f\'® are also a straightforward result of using

densities(2.16) instead of the relativistic densities in Eq.

|p|coss (3.27) [see also footnote to the formu(a.19]:
XO(y)| 1+ ){U2(|P|)+W2(|p|)}-
R dp Mp—W-+ 3
N/D —
(3.40 fNR (y)—f 23’ -

The presence of th® function on the RHS of Eq(3.40 1
slightly violates the sum rulg3.30. However, this is not x@(y)[u2(|p|)— §w2(|p|)
noticeable phenomenologically, since only the region of
large momentdp|>0.7 GeV is affected by th® function
and it does not contribute much to the norm of the deuteron +Py(cosh)w(|p)[w(|pl)— \/EU(|D|)]]-
wave function. We can accept this slight effect of e
functions, since a nonrelativistic approximation is based on (3.49

the belief that high momenta are not important.

For distributionA f"'®(y), we get The sum rule that follows from Eq2.18) is

Mp/m N/D 3
N/D d®p Mp—W+p3 fo fNR (Y)dyzl_EWD- (3.49
Af\Rr (y):_f (2m)° T m O(y)
|p| cosd 3 F. Calculation of distributions: Relativistic vs nonrelativistic
x| 1+ Pz(COSﬁ)EWUF’D In order to understand if the relativistic distribution func-

tions (3.21), (3.25, and (3.27 are significantly different
x{22u(|p)) +w(|pD?. (3.4  from the nonrelativistic distributiong3.40, (3.41), and
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<y >

0 025 05 075 1 125 1.5 ' _
p [GeV] y

FIG. 8. Different “versions” of the charge density of the deu-
teron calculated with the BS amplitude: exagp)®(p) (dotted, in in the deuteron structure functidt) , fNC(y): fully relativistic BS

. . BS .
the pole approglmatloré?/o)pme(p) (So_l'd)‘ The dashe_d Curve pre- (solid), nonrelativistic Bonr(dotted, and nonrelativistic calculation
sents the effective density for deep inelastic scattering which is thﬁsing the BS charge densitslashed

density in the pole approximation including tRefunction cutoff at
high momenta.

FIG. 10. The effective distribution for the nucleon contribution

important case$y,) and{ysys) and find that the one pole
approximation leads to a significant change in the density.
(3.27), we have to understand fully the effect of the one polethe nycleon pole contribution to the densitieslid curves
approximation on the densities in the BS formalism. Indeedpave a much harder tail compared to the exact dengiats
the discussion of Sec. Il B suggested that we cannot expegt curvey starting afp|~0.5m, and this leads to an order
significant physical effects from the form of the densities, ¢ magnitude larger effect 4p|~ 1.5m. This can be qualita-
since bo_th_ relativistic and nonrelativ_istitealistic m_odels tively understood by considering an example of the charge
lead to similar results and we do not find any special behavgensity( ). Indeed, selecting only the nucleon pole contri-
ior in the relativistic model. . bution in the full integral corresponds to neglecting the anti-
In Figs. 8 and 9 we compare the full densities and the, ,cleon (negative contribution to the total charge density
nucleon pole contributions to the densities, for the two mos{, hich is concentrated at high momengh. The presence of

O functions in the expressions for the distribution function

fND and fN'P cuts off a part of the high momentum region,
but this is a minor effect. The “softening” caused by tBe
functions is also illustrated in Figs. 8 and(@ashed lines
These curves are the BS densities obtained in the pole ap-
proximation(solid lineg multiplied by ® (Mp— o+ p3) and
integrated over cas

The results presented in Figs. 8 and 9 imply that the rela-
tivistic densities appearing in the formulas for the effective
distribution functions are enhanced at medium and high mo-
menta. Comparing these results with those in Figs. 2 and 5
we find that the effect is much larger than any model differ-
ences. Still, since the effect is concentrated at high momenta,
it is not clear if it leads to observable effects in deep inelastic
scattering. To clarify this, in Fig. 10 we present the effective
distribution functionf"'®(y). For completeness we compare
" distribution functions calculated using three different charge

_s densitiesy(i) the nonrelativistic density of the Bonn potential

10 . . . . R (dotted ling, (ii) the nucleon pole contribution to the relativ-
0 025 05 075 1 125 15 istic BS density(solid curve, and(iii ) the full density within

p [GeVl the BS approackdashed curve The last curve is intended to

illustrate differences in the description of theechanisnof
FIG. 9. The same as in Fig. 8, but for the spin-densitythe reaction in nonrelativistic and relativistic approaches. In
{v573)%(p). this case the charge density of the nonrelativistic model is
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FIG. 11. The ratio of the deuteron and nucleon structure func- 10
tions F5/F} calculated in different models. The curves correspond
to the three effective distributions from Fig. 10: fully relativistic BS
(solid), nonrelativistic Bonr(dotted, and nonrelativistic calculation
using the BS charge densitdashegl The two groups of curves
correspond to different parametrizations of the nucleon SF 10_9 L
F)~(1—x)”: y~3.2 from Ref[45] A; y=2.7, see Refd2,17| B.

assumed exactly the same as that of the BS approach. We )
find that a consistent relativistic description gives an effec- F!G- 12. The deuteron structure functiéif(x) at largex cal-
tive distribution which is systematically harder at high valuesculated in different models. Curves correspond to three effective
of the momentum fractioy. This is a result of the harder tail distributions from Fig. 10: fully relativistic BSsolid), nonrelativ-
contribution of the nucleon pole term. It is interesting to note'Stic Bonn (dc.’tted’ and nonrelativistic calculation using the BS
that the relativistic distribution is also enhancedyat:0. charge dens'ty(daSheq?l [ﬁ,aSh'dOtted curve presents the free
This effectively corresponds to the larger “binding effects” nucleon structure functiof; .
in the BS approach which was observed in Réf. Very
similar effects can be observed in the other effective distri- fMD/mfN/D(y)dyzl

0

bution functionsf™N'® and AfN'®. However, in these cases

the effects are not as evident because of the oscillating nature
of the distribution functions(See, e.g., discussion about is a normalization from Eq(3.30. When we move from
AfN'D below) x=0 to largerx, we “lose” part of the normalization, since

the lower limit of the integral in Eq(3.23 is x. Since the
relativistic f"'° is larger at smalk than in the nonrelativistic
case, it leads to a faster decrease of the relativistic SF with
_ o increasingx. The fact that the rati&5/F} is less than 1 at

A. Unpolarized deuteron F; small and intermediate is known to be a result of the

The spin-independent SF of the deuteFhis calculated  “binding of nucleons” (see, e.g.[15-17,] and references

using the effective distribution functions presented in Fig. 10therein).
(see discussion at the end of the Sec. )l Fhe results are Second, the relativistic SF displays a sharper rise at higher
shown in Fig. 11 in the form of ratio of the corresponding SFx, x>0.5 than in the nonrelativistic case. Again, this can be
of the deuteron and the nucleon. The nucleorF$s taken  understood from the form of the distribution as seen in Fig.
from Ref.[45] at Q®= 10 Ge\? (the group of curves AWe 10, and the convolution formulé8.23. With increasingx
find that the BS approach gives a behavior of the deuterothe role of the high momentum tail of the effective distribu-
SF qualitatively similar to the results of the nonrelativistic tion gains more importance in the integration in £§.23
calculations and those in which the nonrelativistic chargeand atx>1.0 the tail is completely dominant. The deuteron
density is used in this BS approximation. However, there ar&F atx>1 is presented in Fig. 12.
two delicate, but essential differences. It has been shown recently that relativistic calculations
First, the ratioF?/Fg‘ in the BS approach is less than in lead to larger binding effects than in nonrelativistic calcula-
the other calculations at smadl x<0.5. This effect can be tions[13,2. However, the result of Ref13], which indi-
easily understood from the form of the distributié¥°(y) cates_effects two to_three times larger than ours is s_t|II neither
in Fig. 10 and formulg3.23. Indeed, ax=0 the SFFY is explained nor physically understood. In REZ] the size of
the effect was not so very large, but the method of nhumerical
B,y N Mp/m b calculations was essentially based on thenericalinverse
Fz(o)—Fz(O)fo = (y)dy. (4. Mellin transform of a nonanalytical function. Approxima-
tions with limited validity at high momentum were made.
This led to special efforts to verify the quantitative size of
the effect. It is worthwhile to remember that we have already

IV. NUMERICAL CALCULATION
OF STRUCTURE FUNCTIONS

ThereforeF5(0)/F}(0)=1 since
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pointed out a tiny effect of~1—2 % in the ratioF5/F) .

We can also measure the binding effect using the energy-

momentum sum rulg3.29. The quantitydy is a natural
parameter controlling the binding in any calculation. For ex-
ample, the nonrelativistic formulas allow for an analytical
estimate oféy which essentially gives us the size of this
effect[16,17,2

(M)

m 6m’

€p

Sy= 4.2

Here(T) is the nonrelativistic mean kinetic energy of nucle-
ons in the deuteron. For the realistic models typically
(Ty~15 MeV, which givessy~5x10 3. Calculating with
the BS effective distribution of the present paper we find
5y=~0.7<10"3. Note that in Ref. [2] the quantity
Sy~1%10"2 has been reported. We attribute this small dis-
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FIG. 13. The effective distribution functions for the deuteron
structure functionsb'f2 and AfVP(y) calculated in different mod-

els: fully relativistic BS(solid) and nonrelativistic Bonridotted.
The dashed curve presenta fNP(y).

crepancy to the poorer numerical approximation which were

made in[2]. This approximation underestimates a high mo-
mentum behavior of VP, however, phenomenologically the
effect is not significantcf. Ref.[2]).

To illustrate the dependence of rafig/F} on the param-
etrization of the “elementary” nucleon SF, we also present,
the results of the calculation at>0.5, utilizing the different
parametrization OFS‘ (see Refs[2,17]) shown in Fig. 11
(the group of curves B A noticeable difference from earlier
calculations(group of curves A is the shift of the point
FO(x)/FY(x)=1 from x*~0.6 tox*~0.7. This difference

Using typical values of T)~15 MeV andep~—2.2 MeV,

we find that varyingy from 2.7 to 3.2 leads to changing
from =~0.7 to~0.63. Therefore this estimate is in reasonable
agreement with the exact results in Fig. 11. Thus, we find
that the position of the crossover poiit depends both on
nuclear effects, througfir’) and(V), and on the form of the
nucleon SF, througl. Therefore, the exact position gf is

not a feature attributed to a particular model of the deuteron.
Still, an explicit interplay of the nuclear and nucleon effects
in Eq. (4.6) shows that aconsistentanalysis is required in

is caused by the difference in the asymptotic behavior of therder to extract accurate information about the nucleon SF

two parametrizations in the form

FY(x)~C(1—x)?, 4.3
with y~3.2 for case A and/~2.7 for case B. To understand
this “instability,” we evaluateF>(x), Eq. (3.23, by ex-
pandingF}(x/y), Eq. (4.3, in a Taylor series arouny),
the point of the sharp maximum of the effective distribution
.I:N/D(y)

Mp/m
=" yre )y, @4

from the deuteron dat@5s].

B. Polarized deuteronb® and b2

The SF’s of the deuterob? (x) are calculated within
both the relativistic and nonrelativistic approaches. The rela-
tivistic calculations are based on formulé&.21), (3.22—
(3.25. The nonrelativistic calculations, E¢3.41), use the
realistic wave function of the deuteron obtained from the
Bonn potentia[19]. The nucleon SF'§) 4(x,Q?), is again
taken from Ref[45] at Q=10 Ge\?. The results are nei-
ther very sensitive to the particular choice of the parametri-
zation of the nucleon SF’s nor to thed? dependence.

The distribution functionsAfN'®(y) are calculated and

|t’\i‘5 sufficient to keep terms up to the second derivatives ofhe results are presented in Fig. 13. Similar behavior of the
F>, and the result in this case contains only the first andjistribution function is obtained in both the relativistalid

second moments df¥P(y). The nonrelativistic estimate for
the moments of V'P(y) [1,17] gives

n Mp /m ngN/D
(y >Efo y"fNMP(y)dy

1
6

n2<%>+gn<l>+n

\2

m

(4.9

where (T) is the mean kinetic energy of nucleons in the
deuteron, andV)=¢ep—(T) is the mean potential in the
deuteron. Finally, the crossover poiit is defined as

_ 3(M+2(V))
(A= y(T)+6(V)

(4.9

line) and nonrelativistiddotted ling calculations. Indeed, it

is difficult to distinguish between them, let alone make any
definite conclusions. The third line in the Fig. 13 is given for
illustration as it presentgAf\V'P(y) for the relativistic cal-
culations. The calculation of the sum rules is more represen-
tative. To understand the scale of effects, which are dis-
cussed below, it is customary to define the auxiliary quantity

Mp/m

Jo
(4.7

The BS and nonrelativistic Bonn calculations give the same
result in Eq.(4.7), within ~5%. Thus, the effective distri-
bution functionsAfN'® are an order of magnitude smaller

Mp/m

ab$AfN/D(Y)]dy:f abgyAfNP(y)]dy

0

=0.14.



1714 A. YU. UMNIKOV, F. C. KHANNA, AND L. P. KAPTARI 56

than the usual spin-independent distributidf&® which is
normalized to 1. This is not very important, but it decreases
the accuracy in the numerical calculations, sindé'’® is a
difference of two functions each normalized toNl € 1 and

M =0). Numerically the sum rulé3.34) [see also Eq.3.42)]
is satisfied both in relativistic and nonrelativistic calculations /
with good accuracy despite the approximate numerical “in- -1
verse Wick rotation.” The corresponding integrals are - - ; :
~5x10 % and~3x 10" ° and they should be compared to 0 025 05 075
the estimatg4.7). The sum rule(3.28 may be used to im- X
prove distributionsA fV'? by making integrals forf'° and
fg/D exactlythe same. However, this does not lead to a sig-
nificant variation of results for SF's except for—0 for
b2(x).

The behavior ob?(x) atx— 0 deserves to be considered
more closely, especially for numerical calculations, since the
nucleon functiorF?(x) can be divergent at small Unfor-
tunately it is impossible to calculaﬂaa?(O) exactly for the
realistic SFF)' . However, a contribution of the singularity X
can be evaluated. Indeed, let us assume a singular behavior
of F)'~C/x, then for smallx, Eq. (3.22 leads to

(x)

D
1
o
&)

10°b
o

(%)

D
2

10°b

FIG. 14. The deuteron structure functiob§ (a) and b5 (b)

calculated in different models: fully relativistic BSolid), and non-
C (Mp/m relativistic Bonn(dashegl The dotted curve preserh)g2 calculated

b?(x—>0)~—f AfNVP(y)dy with the “soft” nucleon distribution, the Bonn distribution, but
X Jx cutoff at|p|>0.7 GeV .

C Mp/m X . . . .
= _(f _f ]AfN/D(y)dy tions have also been performed with a restricted interval of
X|Jo 0 integration ovefp|. The conditior|p|<0.7 GeV corresponds
cz to a “softer” deuteron wave function, but makes the sum
~ =2 _cAfNR(0), (4.9 rule (3.43 exact. Corresponding SF’'s are shown in Figs.
X 14(a) and 14b) (dashed ling The result of this “experi-
A I . ment” is that the effect of thé function is not quantita-
whereZ=0 in the exact relafivistic formula. It can still be a tively significant. It also does not affect the principle conclu-
small number in numerical calculations or in the nonrelativ- . y Sig : P p
sion about the second sum ru@35, but makes the defect

!S“C case. Thus, the limit of the deyteron B?(X) ?‘SX*O . a little smaller. This is understandable since the sum rule
is a constant, but one has to exercise great care in perform|rt?(eaking term in Eq(3.43 is «|p|cosd
i . .

numerical computations since any error leads to a diverge
behavior at smalk. In this context, an adjustment of the
norms of the two terms in formulg8.25 and(3.41) means
the subtraction of the numerical error frdnﬁ at smallx. The spin-dependent SF of the deutelg% is calculated
The situation with the second sum rui®.35 is quite  using the same three models as the spin-independehrt, SF
different. Numerically it is violated more significantly than the fully relativistic BS approactsolid line), the nonrelativ-
in the previous case. The corresponding integrals aréstic approach based on the Bonn wave functigiotted
~1x10 3 and~3x 103 for relativistic and nonrelativistic line), and the nonrelativistic approach which uses the exact
calculations, respectively, i.e., about 0.7 and 2 % comparedensity of the BS approadlashed ling The nucleon S@T
to Eq. (4.7). Therefore, numerical approximations adverselyis taken from Ref[46]. The results of calculations are pre-
affect the relativistic formula also. This is attributed to the sented in Fig. 15.
numerical rotation in the Minkowski space. An adjustment of  For illustration we also present in Fig. 15 the quantity
the normalization, as it has been discussed, slightly improve,;syws)aszl which corresponds to a “model” for the deu-
the accuracyito 0.5%). On the other hand, the result for the teron SF(dot-dashed straight line
nonrelativistic approach is stable with respect to any adjust-
ments since it is defined by the formulég43). D a1 BS N 2
The SF'sb? and b5 are calculated within the two ap- 91 (x,Q%) = 7 -{¥s¥a)m=101 (X, Q). 4.9
proaches. The results are shown in Figgaldnd 14b). The
behavior of the functions in Fig. 14 suggests the validity If we replace(ysys)p1 by the factor (1-3/2wp) from Eq.
of the sum rulg(3.34). At the same time, the nonrelativistic (2.18 we get the formula usually used by experimentalists to
calculation forb in Fig. 14b) (dotted ling obviously does obtain the neutron S§; from the combined proton and deu-
not satisfy the sum rul¢3.35. The main difference of the teron data.
relativistic and nonrelativistic calculations is at small Figure 15 shows that this is different from the naive esti-
where these approaches give different signs for the SF’s. Tonate (4.9. However, within the present day experimental
illustrate the effect of the presence of tBefunction under  errors it may bea reasonable approximatiofsee, e.g., Ref.
the integral in the nonrelativistic formul®.41), the calcula- [4]). Huge jumps of the ratio around the const{a(yg%)ﬁ,lszl

C. Polarized deuterong?
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istic results. However, we have found effects that systemati-
cally distinguish a consistent relativistic approach from the
nonrelativistic one: in the relativistic formalis the mag-
nitude of binding effects is largeflji) the effect of Fermi
motion at highx is stronger, andiii ) the nonrelativistic cal-
' culations suffer unavoidable internal inconsistencies which
. lead to small effects in the structure functioR§ andg®,
but seriously affect the structure functibﬁ »and noticeably
violate sum rules for this function.

The present paper concludes our systematic study of the

. deep inelastic electrofmuon) scattering on the deuteron in

10 10 10 1 the Bethe-Salpeter formalism. The results are collected in the
X two papers, Refl1] and the present paper, and in part have
also been published previously in Ref8-4,30. The main

FIG. 15. The ratio of the deuteron and nucleon spin-dependenagson e have learned from this study is that the deuteron in
structure functiongg;/g; calculated in different models. Curves

d to th Htoctive distributions: full lativistic BS the deep inelastic reaction indeed behaves as a very slightly
g)élri?;pﬁgme; tivi;?i?: Beor?;(;\:)?te d's;'n; L%T]Sr'elal:i\%strii ab'l\ﬂsu';n relativistic system. One has to look for special conditions or
T ) ' ’ 9 kinematics of the reaction to be able to find noticeable rela-
the BS spin densitydashegl o L .
tivistic effects. We have found certain situations where the

atx<0.7 are not too important. They correspond to zeros O]relativist_ic_ a_pproach Is ngOIUFer. _essential and use of _the
the nuc;Ieon SE which are ingHtIy shifted by the convolutionnonrela“v's“c methods is not justified. Most representative
formula. A systematic difference in the ratio exists betweenexgr?r? les are dthe h(;gh ?e[]awtor O]; thet_i,)tllgucture functions
the nonrelativistic calculatiofdotted ling and the two cal- an € spin-cependent structuré tunctiofs.

culations based on the BS densitiésolid and dashed Apart from the phenomenological differences between the

curves. This arises from the difference between Mavave relativistic and nonrelativistic approaches, the most impor-
admixtijre in the Bonn potentiali,~4.3%) and in our So- tant merit of the covariant formalism is itonsistencylts

lution of the BS equationvip~5%). Therise of the ratio, at close connection to field theory guarantees that the calcu-

X greater than 0.7, is of the same nature as in the SpinIg;lted observables obey the sum rules and other general prop-

independent case in Fig. 11; it is caused by the Fermi mo(_arties imposed by fundamental principles. In this sense the

tion.

V(%)

(/9

o]
1

08 r

relativistic approach is definitely more advanced theoreti-
cally than its nonrelativistic counterpart and provides a better

understanding of deep inelastic scattering on the deuteron.
V. SUMMARY
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APPENDIX A: EXPLICIT FORMULAS FOR DENSITIES

In this appendix we present formulas which allow us to restore the explicit form of the various densities in the BS
formalism. For convenience, we define the auxiliary “densities”

f0'°(p) N vl .

30 (p) 3%/, doTry Wy(po,p) vs m(Po,P)(P2—m) (, (A1)
AfYP(p) 27 - Yo ) 27
ATYP(p) =, d¢Tr|‘I’M(poap)|yslwm(poyp)(pz_m))wl_l_ . déTr{--}v=o, (A2)
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f3'°(p)
f3°(p)

m"]%(po,p)(ﬁz—m)} , (A3)
Y573

M=1

2w I
]= d¢Tr[‘I’M(po,p)

0

where integration over leads to the trivial factor of 2 since none of the matrix elements on the RHS dependg.cho
obtain explicit expressions for the densities discussed in the paper we have to compafelEg#3) with definitions of the
corresponding densities.

Note that the formalism presented in Rdfs2] and in this paper can be easily adopted to analytical computer calculations.
The following results have been obtained utilizing theTHEMATICA packagd47]:

—8¢p1(Po.P) Yi0(Po.P)

2
fo'°(P) =ML~ 840(Po.P) Yr0(Po.P) —8¥az(Po.P) Yra(Po.P) 1+ P NG +8\[§¢p1(po,p>¢tz(po,p)
2 4122(Po,P) ¥y1(Po,P) 1
+4\[§wao<po.p>¢ul(po,p>+ —5 EMd—po)[2w21<po.p>2+2¢ao<po,p>2
+2¢/faz(po,p)2+2:,//p1(p0,p)2+81,//to(po,p)2+81,//t2(po,p)2+8',//?1(po,p)2+21,//U1(p0,p)2], (A4)
1 8¢p1(Po,P) ¥io(Po,P) 2 2
f?’D(p)=cos(0){(§Md—po)( B —8\[5¢p1(po.p)¢tz(po.p)—4\[gwao(po.p)%l(po,p)
4 a( 1 ) v( 1 ) _4 a( ’ ) ( ’ ) 2
_2¥axlPo p@"” 1{Po.P ) Yao po%wpl Po.P +4\[§z/faz(po,p)wp1(po,p)
2 812(PosP) ¥y1(Po,P) 24pa0(Po,P)?
+8\[§'l’to(pmp)%1(po,p)+ Vi2Po p\/glﬂ 1Po P +p 2¢/f21(po,p)2—¢0%
8\2ra0(Po.P) ¥a2(Po.P) | 2¢a2(Po,P)? 84o(Po.p)°
~ 8v2¢a0 po;) ¥a2(Po,P N 2 250 p 2yi(posp)2t t0 go p 20 1(Pop)?
32y2 , p) 8 ,p)?
L3202 '/’tO(DOSp)'//tZ(pO p) dftz(go i df?l(po,p)z)}, 8

. Myl 1
fy/D(p):[7d<§M d— poz)[\/gl/lao(po,p)‘//ul(po,p)+2\/§‘//a2(p0:p)l//ul(po1p)]+m[_4\/61/fto(p01p) #,1(Po,P)

— 4312(Po,P) ¥1(PosP) 1+ PL2a0( Po, P) 2+ 22 1a0(Po P) az(Po s P) + $az(Po,P) 2 — 8iio( Po,P)?

—82¢10(Po.P) #12(Po,P) — 42 Po,P) >~ 1242 (Po,P) 2+ 34,1 (Po. )21 |, (AB)

- -8 P) P) 2 2
f?’D<p>=[p( w’”(p‘)g%(p" D) 2t et )~ 2\ P i (PosD)

~ 8¢22(Po+P) ¥1(Po, P)
J3

1
+4ﬁ¢21(po,p)1/f?l(po,p)—Zﬁwpl(po,p)wvl(po,pm(EM 0= po)[—2@/fao(po,p)waz(po,p)

+M[4\2425(P0,P) $10(Pos P) + 4\2a0(Po . P) ¥12(Po, P) + 81a2(Po, P) ¥ia( Po, P)

—2<ﬂa2(povp)2—8\/§¢to(po:p)¢t2(po:p)—8¢t2(p0'p)2—8¢?1(p01p)2—Zlﬂul(pmp)z]] Polcog )]

8¢p1(Po.P) Yio(Po.P)

2 2 222(Po.P) Y1(Po.P)
NG +4\/;¢p1(po,p)¢tz(po,p)—4\[gwao(po,p)%l(po,pw Ve2lPo.P)YuslPo.P

J3
+M[84a0(Po.P) Yt0(PosP) — 4¥aa(Po . P) t2(Po, P) — 43221 (P, P) ¥ (Po . P) + 232401 (o, P) #1(Po,P) ]

+p
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1. _ 2 2 2 2 4.0 2 2
+ 2Md po)[ 220(P0+P)“F a2(Po,P) == 8i0(Po,P) “+ 4¢h12(Po.P) = 441 (Po.P) = ¥, 1(Po. P) ],
(A7)

AfY'P(p)=P,[cog a)][ Ml — 12y2¢25(Po, P) ¥10(Po, P) — 12V24a0(Po, P) #i2(Po+ P) + 12022(Po. P) 2 Po, P) ]
+pL83p1(Po.P) Yo Po.P) — 86 ¢p1(Po. P) o Po,P) + 26 4a0(Po, P) ¥ 1(Po,P)

+24/32(Po,P) ¥1(Po.P) ]+

1
EMd_ pO)[_6¢gl(p01p)2+ 67220(Po,P) az(PosP) — 3%az(Po,P)?

—6451(Po,P) 2+ 24210 Po., P) 2 Po, P) — 1212(Po, P) 2+ 1241 (Po, P) >+ 3¢,1(Po,P) 2] (A8)

AfY'®(p)=cog 0)[ PL— 4420(Po . P) %+ 22a0(Po, P) ¥az(Po . P) + 41az(Po. P) 2+ 16i0( Po., P) 2~ 820 Po. P) #ia(Po , P)

1

—16/12(Po.P)’1+| 5 Md—po)[—Sﬁwpl(po,p) Yr0(Po.P) = 464/p1(Po.P) tia(Po. P)

—26420(Po.P) ¥1(Po.P) + 4\31a2(P0.P) ¥,1(Po. P) 1+ M[4\3ta0(Po. P) ¥p1(Po,P)
+2\622(Po. P) ¥p1(Po.P) + 4B 4io(Po.P) hy1(Po . P) — 8v342(Po. P) #,1(Po.P)]

1
+P;[cog 6)][(51\4(1— po) [12V84/51(Po.P) ¥2(Po.P) ~ 6v3¥az(Po.P) Y1(Po. P)
+m[ — 6\6422(Po.P) ¥p1(Po. )

+12\3¢2(Po,P) ¥o1(Po.P) | + PL— 6421 (Po,P) 2= az(Po,P) >+ 6p1(Po,P) 2+ 362 Po, P) 2+ 124 (o, p)?

—3¢,1(Po.p)?] (A9)

APPENDIX B: HADRONIC TENSOR (1
FOR THE DEUTERON PROJECTORS —(0,~1,—i,0, M=1,

N

The parametrization of the hadronic tensor for the deu-
teron utilized in the present paper is given by Bj1). It has E(M) =1
both symmetric{- - -}, and antisymmetri¢ - - - | parts with
respect to permutation of its indices E(O,l,—i,O), M=—-1.
\

(0,0,0,1, M=0, (B3)

The symmetric part of the hadronic tenwfw} contains
terms proportional to two tensor structures:

D _\aD D
WMV_W{HV}+W[MV] : (B1)

Three physical vectors are used in this parametrization: T =—0,,+ G g”, (B4)
(1) Pp the deuteron momentum. In the rest frame of the q
deuteronPp=(Mp,0), (2) g the momentum transfer in deep
inelastic scattering. With proper choice of the orientation of To_|p _ Ppq P _ Ppg| 1 (B5)
the coordinate systemq=(»,0,0~»?+Q?). In the deep p Du™ Au 92 pv= Ay 9?2 /Pod’

inelastic limit, whenQ?/ v*—0, pq=v(po+ps), and (3)
Sp(M) is the total angular momentum of the deuteron, i.e.Because of the conservation of the electromagnetic current,
spin of the deuteron as an elementary particle: the contraction of the hadronic tensor wif) with any index
is zero. For this reason onky,Pp, andg,, are available
. to construct the projection operators to extract the structure
SE(M)=— I_faﬁyﬁEz(M )E,(M)Pps, (B2) functionsF? andF5 from the hadronic tensor. We introduce
Mp the coefficients
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C1=g""T,, Co=g"'T,), iMp
I Wi =g Sureed”| SBMI97 (X0 .Q%) +92(x0.Q?)]
P5Pb 1 P5Pp o5 (M) 2}
= ), Co=— T, PE—5——9:(x,Q% |, B11
Ca= =~ T, Cu= = T2, (B6) b poq  9200.Q% (B11)

where the second structure functigB vanishes in the deep
inelastic limit v— o, Q2—%, Q%*/v— const. We do not dis-
Dc=C,Cy—CyCy, (B7)  cuss this structure function in the present paper. To obtain
the spin-dependent structure functigB we construct anti-
symmetric projectors. The two following projectors are

P5PD equivalent for our purpose:
A=grWe o Ay=—— WD, (B8)
D
R =j “SB(M), B12
Then the structure functions are recovered by wr = €uvapd So(M) (B12)
AiCa” AsCy i[So(M)a]
FPl=————=, B9 22 "L>otV)q a
1 Do (B9) R g Cnres PE. (B13)
FE=A2C1D_ AlCS' (810) SO itis interesting that in the limi©?/v*—0
C
. . . R(l),u,VWD R(Z),U,VWD
In the general case the antisymmetric part of the hadronic D_ wr wv (B14)
tensor of the deuterowp, ,; has the form S
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