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Parametrization of nonaxial deformations in rotational nuclei
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A parametrization is proposed for hexadecapole tensors, which observes symmetries coming from theOh

group of transformations of the frame of reference defined through the quadrupole deformation and/or the
rotation axes. A possible dependence of the hexadecapole deformation parameters on the quadrupole defor-
mation is discussed. The inclusion of octupole deformation is considered.@S0556-2813~97!00307-5#

PACS number~s!: 21.60.Ev, 21.10.Ft, 21.10.Gv
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I. INTRODUCTION

The quadrupole deformation is, indeed, dominant
atomic nuclei, but it is well known that deformations
higher multipolarities are also essential for a satisfactory
scription of nuclear properties. Although axially symmet
shapes prevail in nuclei, nonaxial quadrupole deformat
g has been considered for a long time. Occasions arise
taking into account also higher-multipolarity nonaxial defo
mations which are discussed much less so far. The sec
most important multipolarity in nuclear shape is the hexa
capole deformation, although the existence of hexadeca
vibrations is questionable. An interest in this multipolar
still increased after the observation of theDI54 staggering
of superdeformed bands in some nuclei@1–3#. In the case of
hexadecapole deformation, nonaxial shapes possessing
mutually perpendicular symmetry planes have only been
cussed as yet@4–8#. A parametrization of such special hex
decapole shapes has been proposed in Ref.@7#. It is still not
used in its general, three-parameter form~however, cf.@9#!.
In practical calculations a nonaxiality of the hexadecap
deformation is usually made dependent on the quadru
triaxiality angleg just to reduce the number of deformatio
parameters@10,7,8#. Some special forms of this dependen
are used hitherto~cf. @4,6,11–13#!. Another nuclear multi-
pole mode of great importance is the octupole deformat
The octupole vibrations are observed for a long time~cf. @14#
for a review!. The octupole degrees of freedom appeared
be still more interesting when a significant role of octupo
correlations in various nuclear phenomena, like fissi
shape dependence of nuclear masses, superdeformati
high-spin states, etc., became recognized~see@15# for a com-
prehensive review!. Axially symmetric, pearlike nuclea
shapes have mainly been considered as yet~cf., e.g.,@16#!.
Study of arbitrary nonaxial octupole deformation is exce
tional @17#. Usually, some special octupole shapes are inv
tigated by taking one or a few~but not all! spherical compo-
nents of the octupole tensor~e.g., @18–21#!. A general
parametrization of the octupole deformation superimpo
on the triaxial quadrupole shape was already propose
@22#.

The aim of the present paper is threefold. First, it is
propose a parametrization which is a generalization of tha
@7# for an arbitrary hexadecapole deformation. Second, i
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to discuss the most general dependence of hexadeca
shapes on the quadrupole deformation. These problems
presented in Secs. II and III, respectively. Third, it is to i
clude the octupole deformation, treating it on the same fo
ing with the hexadecapole deformation which is mainly co
sidered here. This is discussed in Sec. IV. A conclusion fr
the present study is drawn in Sec. V.

The hexadecapole and octupole deformations are
dressed here for rotational nuclei for two reasons. It is
sumed throughout the paper that the shape always conta
substantial quadrupole component defining a system of a
up to their senses. Also, a possible external definition of
or all three axes as the rotation axes is considered. T
means that the hexadecapole or the octupole compone
the nuclear surface is always analyzed within a frame of a
fixed in advance and thus not only its shape, but also
orientation with respect to these axes is of physical r
evance.

First of all we recapitulate briefly the well-known descri
tion of the quadrupole deformation. When it does not van
the standard formula for the radius of the nuclear surface

R~V!5R0S 11(
l,m

almYlm* ~V! D , ~1.1!

can be expressed in terms of spherical anglesu andf de-
scribing the orientationV with respect to the principal axe
x, y, z of quadrupole tensora2m in the following form:

R~u,f!5R0F11a20Y20~u,f!1a22Y22
~1 !~u,f!

1 (
l5” 2

S al0Yl0~u,f!1 (
m.0

@almYlm
~1 !~u,f!

1blmYlm
~2 !~u,f!# D G , ~1.2!

where
165 © 1997 The American Physical Society
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166 56STANISŁAW G. ROHOZIŃSKI
Ylm
~1 !5

1

A2
@Ylm1~21!mYl2m#

and

Ylm
~2 !5

1

iA2
@Ylm2~21!mYl2m# ~1.3!

are the real and imaginary parts of spherical harmon
Ylm for mÞ0 multiplied byA2 and, hence,alm andblm are,
up to a coefficient, the real and imaginary parts of the intr
sic components of tensorsalm . The quadrupole deformatio
is parametrized by means of two Bohr parameters@23#
b2>0 and2p<g2<p in the following way:

a205b2cosg2 , a225b2sing2 . ~1.4!

The principal axes are defined up to the groupOh of 48
transformations changing their names and arrows. All th
transformations are superpositions of the four followi
ones:I, the inversion;R1, the rotation by anglep around
axis x; R2, the rotation byp/2 around axisz; andR3, the
circular transposition of axesy→x, z→y, x→z. The three
latter are well-known Bohr rotations@23,24#. The transfor-
mation rules for all four are listed in Table I. The transfo
mationsR1 , R2

2, and I generate the subgroupD2h,Oh

of the eight following transformations changing th
arrows of axes:E, the identity; I, the inversion;Rx

5R1 , Ry5R1R2
2 , Rz5R2

2, the three rotations byp
around axesx, y, z; andSx5IRx , Sy5IRy , Sz5IRz ,
the three reflections with respect to the planes perpen
ular to axes x, y, z, respectively. The entire grou
Oh5D2h3S3 is the direct product ofD2h andS3, the group
of six permutations of axes:Pxyz5E, Pyzx5R3 , Pzxy
5R3

2 , Pyxz5SyR2 , Pzyx5SyR2R3, and Pxzy5SyR2R3
2.

In particular,SyPyxz5R2.
The deformationb2 is Oh invariant, whileg2 is invariant

only underD2h and is transformed underR2 andR3 gener-
atingS3 ~modulo destinations of the arrows! as follows:

g2
~2!52g2 , g2

~3!5g22
2p

3
, ~1.5!

TABLE I. Transformations of the coordinate system generat
theOh group.

Transformation Symbol Index Coordinates in the
transformed system

i x( i ) y( i ) z( i )

Identity E x y z

Inversion I 0 2x 2y 2z

Bohr’s R1 1 x 2y 2z

rotat- R2 2 y 2x z

ions R3 3 y z x
s

-

e

ic-

whereg2
(k) is the angleg2 referring to the system of axe

which is obtained by transformationRk ~the superscript(0)

will be used in the case of transformationI). The parameters
b2 and g2 determine in the following way a contributio
coming from the quadrupole deformation to the leng
Rx , Ry , andRz of the three semiaxes of the nuclear surfa
~1.2!:

Rx5RS u5
p

2
,f50D5R0F11A 5

4p
b2 cosS g22

2p

3 D G ,
Ry5RS u5

p

2
,f5

p

2 D5R0F11A 5

4p
b2cosS g21

2p

3 D G ,
~1.6!

Rz5R~u50,f!5R0F11A 5

4p
b2cosg2G .

The names of the axes can be defined by saying that,
instance,Ry<Rx<Rz . According to Eq.~1.6!, this definition
corresponds to restriction of the range of values ofg2 to
0<g2<p/3. All the other values ofg2 can be obtained by
transformationsR2 andR3 ~Fig. 1!. When, however, one o
the axes, sayx, is nameda priori,1 one has freedom only in
defining axesy andz. The definitionRy<Rz means the re-
striction of the range ofg2’s to 2p/3<g2<2p/3. Transfor-
mationR3R25SxPxzy exchanges the axesy and z and al-
lows continuation ofg2 onto another semiplane~Fig. 1!.
When the names of all three axes are fixeda priori, one does
not have theR2 and R3 symmetry and the entire rang

1One or all of the three axes can be determined not by the sh
itself, but from outside, as is, for instance, in the cranking mode
which the rotation axes are fixed in advance. Then, not only
shape of nuclear surface, but also its orientation with respect to
axes is relevant.

g

FIG. 1. Relations between the lengths of semiax
Rx , Ry , Rz for different sectors of angleg (g2 or g4) within
the range2p<g<p. All the border lines between different sec
tors correspond to the surfaces with two semiaxes equal to
another. In particular, the thicker line corresponds toRy5Rz . The
shaded sectors on the right-hand side of it (2p/3,g,2p/3) cor-
respond toRy,Rz . Within the darker sector between the thicke
lines (0,g,p/3) one additionally hasRy,Rx,Rz .



n
an

rd

f
t
r d
ta

s for
nt.
he
pole

om-
s

n a
ns-

56 167PARAMETRIZATION OF NONAXIAL DEFORMATIONS IN . . .
2p<g2<p should be considered. Sinceb2 andg2 are in-
sensitive to theD2h transformations, the arrows of axes ca
not be defined via the quadrupole deformation, which me
that the quadrupole shapes are invariant underD2h .

Within ‘‘the Lund convention’’@25#, which is often used,
g2 is defined with the opposite sign~axes x and y ex-
changed! and all of the discussion should be changed acco
ingly.

II. THE MOST GENERAL HEXADECAPOLE
DEFORMATION

Let us consider the nuclear surface of Eq.~1.2! with the
hexadecapole deformation (l54) superimposed on top o
the quadrupole shape. Then, not only different shapes of
quadrupole and hexadecapole components, but also thei
ferent relative orientations produce different, in general, to
-
s

-

he
if-
l

shapes of the surface. Only theD2h symmetry of the quad-
rupole shape causes that we have equivalent total shape
four different orientations of the hexadecapole compone
This ambiguity can be eliminated through a definition of t
arrows of axes or a restriction of the ranges of hexadeca
deformation parametersa4m , b4m .

Here, the most general hexadecapole deformation~i.e.,
arbitrary values of parametersa4m , b4m which determine
both the shape and the orientation of the hexadecapole c
ponent of the nuclear surface! is to be parametrized in term
of variables obeying simple transformation rules underOh
and, in particular, allow us to define the arrows of axes i
simple way. To do this one should first establish the tra
formation rules underOh for a4m , b4m . To make the prob-
lem more transparent we rearrange, after@26#, the hexadeca-
pole terms on the right-hand side of Eq.~1.2! according to
irreducible representations ofOh in the following way:
a40Y40~u,f!1 (
m.0

@a4mY4m
~1 !~u,f!1b4mY4m

~2 !~u,f!#5a4A4~u,f!1 (
m50,2

e4mE4m~u,f!

1 (
v5x,y,z

@ f 4vF4v~u,f!1g4vG4v~u,f!#, ~2.1!

where

A45A 7

12
Y401A 5

12
Y44

~1 !5
1

4
A21

p

1

r 4
~x41y41z423x2y223x2z223y2z2!,

E405A 5

12
Y402A 7

12
Y44

~1 !5
1

8
A15

p

1

r 4
@2z42x42y416~2x2y22x2z22y2z2!#,

E4252Y42
~1 !5

A3
8
A15

p

1

r 4
@x42y426z2~x22y2!#,

F4x5A7

8
Y41

~2 !1
1

A8
Y43

~2 !5
3

4
A35

p

1

r 4
yz~y22z2!,

F4y52A7

8
Y41

~1 !1
1

A8
Y43

~1 !5
3

4
A35

p

1

r 4
zx~z22x2!,

F4z5Y44
~2 !5

3

4
A35

p

1

r 4
xy~x22y2!, ~2.2!

G4x5
1

A8
Y41

~2 !2A7

8
Y43

~2 !5
3

4
A5

p

1

r 4
yz~6x22y22z2!,

G4y5
1

A8
Y41

~1 !1A7

8
Y43

~1 !5
3

4
A5

p

1

r 4
zx~6y22z22x2!,

G4z5Y42
~2 !5

3

4
A5

p

1

r 4
xy~6z22x22y2!
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168 56STANISŁAW G. ROHOZIŃSKI
are, apparently, bases for the one-dimensional, the t
dimensional, and the two three-dimensional irreducible r
resentations ofOh , respectively~cf. @27#!. The correspond-
ing coefficients in front of functions
A4 , E4m (m50,2), F4v , G4v (v5x,y,z) in Eq. ~2.1!,

a45A 7

12
a401A 5

12
a44,

e405A 5

12
a402A 7

12
a44,

e4252a42,

f 4x5A7

8
b411

1

A8
b43,

f 4y52A7

8
a411

1

A8
a43, ~2.3!

f 4z5b44,

g4x5
1

A8
b412A7

8
b43,

g4y5
1

A8
a411A7

8
a43,

g4z5b42

should then constitute bases for the respectiveOh irreducible
representations in the space of hexadecapole deformatio
rameters. Hence,a4 is Oh invariant,e40 ande42 ~denoted as
b4 andc4, respectively, in@7#! are transformed in the sam
way as a20[e20 and a22[e22 are, and
f 4v , g4v (v5x,y,z) are transformed like the coordinate
x, y, z themselves with a possible additional change
sign, namely underR1 andR3: f 4v’s and g4v’s are both
transformed like the coordinates~cf. Table I!, i.e.,

x~1!5x, x~3!5y,

y~1!52y, y~3!5z, ~2.4!

z~1!52z, z~3!5x,

underR2: f 4v’s are transformed like the coordinates, i.e.,

x~2!5y,

y~2!52x, ~2.5!

z~2!5z,

whereasg4v’s are transformed with the additional change
sign, underI: f 4v’s andg4v’s are invariants, i.e., unlike the
coordinates, do not change their signs.

A parametrization fora4 , e40, e42 has been proposed i
@7#. This is generalized here for an arbitrary hexadecap
deformation by adding the six new deformatio
o-
-

pa-

f

f

le

parameters—«4 , q4 , w4 , j4 , h4, and z4—to the three
old ones—b4 , d4, andg4 in the following way:

a45b4cos«4cosd4 ,

e405b4cos«4 sin d4cosg4 ,

e425b4cos«4 sin d4 sin g4 ,

f 4x5b4 sin «4 sin q4cosw4cosj4 ,

f 4y5b4 sin «4 sin q4 sin w4cosh4 , ~2.6!

f 4z5b4 sin «4cosq4cosz4 ,

g4x5b4 sin «4 sin q4cosw4 sin j4 ,

g4y5b4 sin «4 sin q4 sin w4 sin h4 ,

g4z5b4 sin «4cosq4 sin z4 ,

where all the parameters are within the following ranges

b4>0, 0<«4<
p

2
, 0<d4<p,

2p<g4<p, 0<q4<
p

2
, 0<w4<

p

2
, ~2.7!

2p<j4<p, 2p<h4<p, 2p<z4<p.

The parameterb4 is, as usual, a measure of the total hex
decapole deformation;«4 is a measure of deviation from
shapes with the three, fixed in advance~for instance, by the
quadrupole deformation!, mutually perpendicular symmetr
planesxy, yz, andzx ~theD2h symmetry!; andd4 is a mea-
sure, discussed further below, of concavity or convexity
the shape in different quadrants. All three parameters
Oh invariants. The transformation rules for the six remaini
parameters are the following:

g4
~1!5g4 , q4

~1!5q4 , w4
~1!5w4 ,

j4
~1!5j4 , h4

~1!5h46p, z4
~1!5z46p,

g4
~2!52g4 , q4

~2!5q4 , w4
~2!5

p

2
2w4 ,

j4
~2!52h4 , h4

~2!56p2j4 , z4
~2!52z4 ,

g4
~3!5g42

2p

3
, q4

~3!5arccos~sin q4cosw4!,

w4
~3!5arctanS cotq4

sin w4
D ,

j4
~3!5h4 , h4

~3!5z4 , z4
~3!5j4 . ~2.8!
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56 169PARAMETRIZATION OF NONAXIAL DEFORMATIONS IN . . .
Because of the positive parity of the hexadecapole tenso
nine parameters are, of course,I invariants.

The angleg4 has the same transformation properties
g2 @cf. Eqs.~1.5!# and plays a similar role. Namely, for give
b4 , «4, andd4, it determines, in an analogy to Eq.~1.6!, the
contribution to the lengths of semiaxes coming from t
hexadecapole deformation:

Rx5R0H 11A 9

4p
b4cos«4FA 7

12
cosd4

1A 5

12
sin d4cosS g42

2p

3 D G J ,
Ry5R0H 11A 9

4p
b4cos«4FA 7

12
cosd4

1A 5

12
sind4cosS g41

2p

3 D G J , ~2.9!

Rz5R0H 11A 9

4p
b4cos«4FA 7

12
cosd4

1A 5

12
sind4cosg4G J .

Relations between the lengths of semiaxes are shown a
in Fig. 1. The discussion at the end of the previous section
possible definitions of names of the axes and the variab
ranges ofg4 can be repeated without changes.

The parameterd4 describes the shape of aD2h symmetric
(«450) surface for givenb4 and g4. The types of shape
can be classified by means of sections of the surface in
symmetry planes. For«450 the section in thexy plane is
described by the following equation:

RS u5
p

2
,f D5R0H 11A 9

4p
b4F38SA 7

12
cosd4

1A 5

12
sind4sing4D 1

A5
4
sind4sing4cos2f

1
A35
8 SA 5

12
cosd4

2A 7

12
sind4cosg4D cos4fG J . ~2.10!

To give the figures of Eq.~2.10! names we notice that, fo
small deformationsb4, the equation represents a superpo
tion of an ellipse2 and a tetratrochoid.3 The radius

2The ellipse is also a hypotrochoid generated by a fixed inte
point of a circle rolling inside a fixed circle twice as large.
3The prefixtetra is added here to indicate that for the trochoids

question, the ratio of radii of the fixed and rolling circles is4:1.
all

s

ain
n
y

he

i-

R(u5p/2,f) always has an extremum at the intersecti
points of the figure ~2.10! with axes x and y
(f50,6p/2,6p). When there are no other extrema of th
radius, the figure is to be named the section of elliptic ty
When, however, the radius has four other maxima~minima!,
the figure is to be named the section of epitetratrocho
~hypotetratrochoidal! type. All three types of sections ar
shown in Fig. 2. For a giveng4, section~2.10! is hypotetra-
trochoidal when

0<d4,dh~g4!, ~2.11!

r

FIG. 2. Sections of the hexadecapole surfaces in planexy for
b450.6, «450, g45p/6. The units are inR0. ~a! Section of the
hypotetratrochoidal type,d45p/12,dh(p/6), ~b! section of the el-
liptic type, d453p/12, dh(p/6),3p/12,de(p/6), ~c! section of
the epitetratrochoidal type,d455p/12.de(p/6).
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FIG. 3. Hexadecapole surface
for b450.6, «450, g45p/6
and ~a! d45p/12, ~b!
d455p/12, ~c! d458p/12, ~d!
d4511p/12. Description of the
shapes is in the text. The units ar
the same as in Fig. 2.
ou

nts

xes

est

xis

ort-

of
-

For

c-
elliptic ~still hypotrochoidal! when

dh~g4!<d4<de~g4!, ~2.12!

epitetratrochoidal when

de~g4!,d4<p, ~2.13!

where

dh~g4!5arccos
7cosg41A3using4u

A351~7cosg41A3using4u!2
,

de~g4!5arccos
7cosg42A3using4u

A351~7cosg42A3using4u!2
. ~2.14!

The anglesdh andde are rising functions ofg4. Therefore,
the D2h symmetric hexadecapole surfaces are of the f
following types for greater and greaterd4.
r

~a! The surface is convex at all the six intersection poi
with the symmetry axes~all the sections are hypotrochoidal!.

~b! The surface is convex on the longest symmetry a
and has saddle points on the two other symmetry axes~the
section in the symmetry plane perpendicular to the long
axis becomes epitetratrochoidal!.

~c! The surface is concave on the shortest symmetry a
and has saddle points on the two other symmetry axes~only
the section in the symmetry plane perpendicular to the sh
est axis remains hypotrochoidal!.

~d! The surface is concave on all symmetry axes~all the
sections are epitetratrochoidal!.

All four types of shapes are shown in Fig. 3.
For «4Þ0 the ‘‘vectors’’ f 4v and g4v ,v5x,y,z, begin

contributing to the hexadecapole surface~this becomes the
only contribution when«45p/2). SinceRv f 4v5Sv f 4v5f 4v
andRuf 4v5Suf 4v52 f 4v for uÞv ~and the same forg4v),
theD2h symmetry is broken and planesxy, yz, andzx quit,
in general, being the symmetry planes. The contribution
f 4v and/org4v to Eq. ~2.1! for a givenv conserves the sym
metry with respect to the plane perpendicular to axisv only.
Hence, the parametersq4 andw4 determine with respect to
which plane and to what extent the symmetry is broken.
given q4 and w4 the anglesj4 , h4, and z4 parametrize
shapes of the sections in planesyz, zx, andxy, respectively.
This is seen when looking at the following equation of se
tion in planexy for «45p/2:



the
y

n

the

ible

t

rom
he
he
e

f Eq.
ram-

ese
ibit
ive
nd
ters

ram-
ers.
is a
-
pole
sor

fol-

e

d

56 171PARAMETRIZATION OF NONAXIAL DEFORMATIONS IN . . .
RS u5
p

2
,f D5R0H 11

3

2
A 5

2p
b4cosq4

3FA7

8
cosz4cos2f2

1

A8
sinz4Gsin2fJ .

~2.15!

For z450, 6p/2, 6p it represents figures still with two

FIG. 4. Sections of the hexadecapole surfaces in planexy for
b450.6, «45p/2, q450. The units are the same as in Fig. 2.~a!
z450, section of the tetratrochoidal type with the symmetry ax
turned byp/8 with respect to the coordinate axesx and y, ~b!
z452p/2, section of the elliptic type~large deformationb4 causes
a deviation from the elliptic shape! with the symmetry axes turne
by p/4 with respect to the coordinate axesx and y; ~c!
z452p/3, section being a superposition of types~a! and ~b! with
no symmetry axes.
perpendicular symmetry axes, but turned with respect to
coordinate axes. For otherz4’s the figures have no symmetr
axes. This is shown in Fig. 4.

Since, according to Eq.~2.8!, transformationsRx , Ry ,
andRz shift the respective pairs ofj4 , h4 , z4 by 6p, the
range of one pair, sayj4 andh4, can be restricted, for in-
stance, to positive values only:

0<j4,p, 0<h4,p ~2.16!

and this way the arrows of axesx andy are defined. Then the
arrow of axisz still remains undefined due to the inversio
invariance of the quadrupole-hexadecapole shapes.

As there is one to one correspondence betweena4m and
b4m , the components of the hexadecapole tensor, and
nine deformation parameters defined by Eqs.~2.6!, the latter,
when taking the values within the ranges~2.7!, describe all
possible hexadecapole surfaces and thus all poss
quadrupole-hexadecapole shapes for givenb2 and g2. In-
equalities~2.16! eliminate three out of the four equivalen
shapes.

Using parametrization~2.6! it is difficult to distinguish the
hexadecapole surfaces not having symmetry planes f
those still having them, but turned with respect to t
xy, yz, andzx planes. This question is connected with t
complicated problem of the definition of an intrinsic fram
linked to the hexadecapole surface~cf. Refs.@26,28# for the
same problem in the case of an octupole surface!.

III. HEXADECAPOLE SHAPES PARAMETRIZED
IN TERMS OF THE QUADRUPOLE DEFORMATION

PARAMETERS

The most general quadrupole-hexadecapole surface o
~1.2! is, as has been seen in the previous sections, pa
etrized in terms of 11 parameters. TheD2h-symmetric
(«450) shapes have been hitherto considered. Still, th
need five deformation parameters. Most of the nuclei exh
a quadrupole deformation and higher multipoles only g
corrections to the quadrupole shape. This is why we try a
we may use as few higher-multipole deformation parame
as possible making some of them dependent on others.4

Some of the hexadecapole shapes can, in fact, be pa
etrized in terms of the quadrupole deformation paramet
Here, all such possible shapes are to be discussed. This
long-standing problem@10#. It consists of constructing hexa
decapole tensors of a quadrupole tensor. All hexadeca
tensors being isotropic functions of the quadrupole ten
a2m take the following form~cf. @29,30,24#!:

a4m~a2!5
A70
6

$x2~b2
2 ,b2

3cos3g2!@a23a2#4m

1x3~b2
2 ,b2

3cos3g2!@a23s2#4m

1x4~b2
2 ,b2

3cos3g2!@s23s2#4m%, ~3.1!

4For instance, we assume that higher-multipole deformations
low the quadrupole one just to minimize the energy.
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wheres2m52A7/2@a23a2#2m andx2 , x3 , x4 are the ar-
bitrary scalar functions of the two independent quadrup
invariants. Not assuming the analyticity of function
x i ( i52,3,4) in the invariantsb2

2 andb2
3cos3g2, Eq. ~3.1!

is rewritten as follows:

a4m5
A70
6 H h2~b2 ,cos3g2!

1

b2
2 @a23a2#4m

1h3~b2 ,cos3g2!
1

b2
3 @a23s2#4m

1h4~b2 ,cos3g2!
1

b2
4 @s23s2#4mJ , ~3.2!

where h2 , h3 , h4 are the arbitrary functions ofb2 and
cos3g2. The components of the tensor of Eq.~3.2! defined in
Eq. ~2.3! read

a45A 7

12
~h21h3cos3g21h4!,

e405A 5

12
~h2cos2g21h3cosg21h4cos4g2!,

e425A 5

12
~2h2 sin2g21h3 sing21h4 sin4g2!,

f 4v5g4v50 for v5x,y,z. ~3.3!

Early parametrizations@4,6# of the nonaxial hexadecapol
deformation as a function ofg2 are not in the form of Eqs
~3.3! and thus do not have correct tensor properties. App
ently, only theD2h-symmetrical hexadecapole shapes~with
«450) can be parametrized by means of a quadrupole te
and made dependent on the quadrupole deformation.
dependence has the following form

b45Fh221h3
2S 5121

7

12
cos23g2D

1h4
212~h21h4!h3cos3g212h2h4

3S 7121
5

12
cos6g2D G1/2,

cosd45A 7

12

h21h3cos3g21h4
b4

,

sing45
2h2 sin 2g21h3sing21h4sin4g2

@h2
21h3

21h4
212~h21h4!h3 cos 3g212h2h4 cos6g2#

1/2,

cosg45
h2 cos2g21h3 cosg21h4 cos4g2

@h2
21h3

21h4
212~h21h4!h3 cos3g212h2h4 cos6g2#

1/2,

«450. ~3.4!

In practical calculations very simple forms of function
h2 , h3 , h4 have been used. The three one-parameter
rametrizations of the nonaxial hexadecapole deforma
have been proposed in@8# by replacing one of the function
e

r-

or
is

a-
n

hi ( i52,3,4) with a constant and putting two others equ
to zero. Usually,h3 and h4 have been put equal to zer
@11–13#. It is not obvious that this is really the optimal pa
rametrization. For instance, Magierskiet al. @31# have shown
that in a rotating system of particles which occupy onej
shell and interact via the quadrupole-quadrupole a
hexadecapole-hexadecapole forces, the hexadecapole d
mation is, for a weak hexadecapole interaction, related to
quadrupole one in such a way that justh3Þ0.

IV. INCLUSION OF THE OCTUPOLE DEFORMATION

When the terms withl53 are also included in Eq.~1.2!,
the results of@22# are applicable. Here these results are
written briefly in the spirit of@26# and the present pape
Also, the notation of the present paper is used.

The octupole tensor is resolved according to the o
dimensional and the two three-dimensional irreducible r
resentations ofOh in the following way:

b35b32,

f 3x5A3

8
a312A5

8
a33,

f 3y5A3

8
b311A5

8
b33,

f 3z5a30, ~4.1!

g3x5A5

8
a311A3

8
a33,

g3y52A5

8
b311A3

8
b33,

g3z5a32.

The componentb3 is invariant under rotationsR1 andR3,
and changes its sign under rotationR2 and inversionI. The
‘‘vectors’’ f 3v andg3v (v5x,y,z) are transformed unde
Ri like f 4v and g4v , respectively, and change their sign
underI. All of them can be parametrized as follows:

b35b3sin«3 ,

f 3x5b3 cos«3sinq3 cosw3cosj3 ,

f 3y5b3 cos«3sinq3sinw3 cosh3 ,

f 3z5b3 cos«3 cosq3 cosz3 , ~4.2!

g3x5b3 cos«3sinq3 cosw3sinj3 ,

g3y5b3 cos«3sinq3sinw3sinh3 ,

g3z5b3 cos«3 cosq3sinz3 .

This is, in fact, the same parametrization as that of@22# with
the following correspondence of the parameters:
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b3⇔b,

«3⇔d0 ,

q3⇔d1 ,

w3⇔d2 , ~4.3!

j3⇔g21c,

h3⇔g32c,

z3⇔g1 ,

wherec5arcsinA5/8.
The transformation rules forb3 , q3 , w3 , j3 , h3 , z3

under Rk are identical with those for
b4 , q4 , w4 , j4 , h4 , z4, respectively. The difference
arise in the case of inversion, namely,

j3
~0!5j36p,

h3
~0!5h36p, ~4.4!

z3
~0!5z36p,

while the hexadecapole counterparts are all invariant un
I. The octupole counterparts of Eqs.~2.8! now being accom-
panied by Eqs.~4.4! allow for defining the arrows of all three
axes by restricting the ranges ofj3 , h3 , z3 to positive
values:5

0<j3,p,

0<h3,p, ~4.5!

0<z3,p.

When the arrows of axesx and y are already defined by

5Inequalities ~4.5! eliminate seven out of the eight possib
quadrupole-octupole shapes equivalent due toD2h symmetry.
iu
er

~2.16! only the latter of inequalities~4.5! have to be fulfilled
in order to define the arrow of axisz. The parameter«3 is
hardly a counterpart ofp/22«4 sincea4 is theOh scalar
while b3 is not. The negative values for«3 are allowed and
its range is2p/2<«3<p/2. It is, like b3, invariant under
R1 andR3 and changes its sign underR2 andI.

V. CONCLUSION

A parametrization of the most general quadrupo
octupole-hexadecapole shapes are described in the fram
fined by the principal axes of the quadrupole deformat
tensor or the rotation axes. It is suggested from the pre
study that when we consider nonaxial shapes of higher m
tipolarities, we should deal with the deformations of typ
a, b, e, f , g corresponding to the irreducible represen
tions of theOh group~calledA1 , A2 , E, F1 , F2 , respec-
tively, according to Hamermesh’s classification@27#! rather
than particular spherical components of the deformation t
sors. This is already well understood when dealing with
hexadecapole deformation although early calculations h
usually been done in the space ofb2 , g2, anda40 ~cf., e.g.,
@32#!. However, this is still not realized in the case of oct
pole deformation. This is perhaps because more than
deformation parameter should then be used to describe
shape.
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