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Parametrization of nonaxial deformations in rotational nuclei
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A parametrization is proposed for hexadecapole tensors, which observes symmetries coming f@m the
group of transformations of the frame of reference defined through the quadrupole deformation and/or the
rotation axes. A possible dependence of the hexadecapole deformation parameters on the quadrupole defor-
mation is discussed. The inclusion of octupole deformation is considg36856-28187)00307-3

PACS numbes): 21.60.Ev, 21.10.Ft, 21.10.Gv

[. INTRODUCTION to discuss the most general dependence of hexadecapole
shapes on the quadrupole deformation. These problems are
The quadrupole deformation is, indeed, dominant inpresented in Secs. Il and lll, respectively. Third, it is to in-
atomic nuclei, but it is well known that deformations of clude the octupole deformation, treating it on the same foot-
higher multipolarities are also essential for a satisfactory delng with the hexadecapole deformation which is mainly con-
Scription of nuclear properties_ A|though axia"y Symme’[ric sidered here. This is discussed in Sec. IV. A conclusion from
shapes prevail in nuclei, nonaxial quadrupole deformatiothe present study is drawn in Sec. V.
¥ has been considered for a long time. Occasions arise for The hexadecapole and octupole deformations are ad-
taking into account also higher-multipolarity nonaxial defor- dressed here for rotational nuclei for two reasons. It is as-
mations which are discussed much less so far. The secorfdmed throughout the paper that the shape always contains a
most important multipolarity in nuclear shape is the hexadesubstantial quadrupole component defining a system of axes
Cap0|e deformation, a|th0ugh the existence of hexadecapo[@ to their senses. AlSO, a pOSSible external definition of one
vibrations is questionable. An interest in this multipolarity O all three axes as the rotation axes is considered. This
still increased after the observation of thé=4 staggering Means that the hexadecapole or the octupole component of
of superdeformed bands in some nuglei-3]. In the case of the nuclear surface is always analyzed within a frame of axes
hexadecapole deformation, nonaxial shapes possessing thiéed in advance and thus not only its shape, but also its
mutually perpendicular symmetry planes have only been disorientation with respect to these axes is of physical rel-
cussed as ydg#t—8|. A parametrization of such special hexa- €vance.
decapo|e Shapes has been proposed in [R]Eﬂt is still not First of all we recapitulate brleﬂy the well-known descrip-
used in its generaL three-parameter fdmwever, Cf[g]) tion of the quadrup0|e deformation. When it does not vanish
In practica| calculations a nonaxia"ty of the hexadecap0|éhe standard formula for the radius of the nuclear Surface,
deformation is usually made dependent on the quadrupole
triaxiality angley just to reduce the number of deformation
parameter$10,7,4. Some special forms of this dependence
are used hithertdcf. [4,6,11-13). Another nuclear multi- R(Q)=Ryo 1+; an, Yru(Q) ], 1.9
pole mode of great importance is the octupole deformation. #
The octupole vibrations are observed for a long tiicfe[ 14]
for a review. The octupole degrees of freedom appeared to
be still more interesting when a significant role of octupolecan be expressed in terms of spherical anglend ¢ de-
correlations in various nuclear phenomena, like fissionscribing the orientatio) with respect to the principal axes
shape dependence of nuclear masses, superdeformationXaty. Z of quadrupole tensot,, in the following form:
high-spin states, etc., became recogni@e#{ 15] for a com-
prehensive revieyy Axially symmetric, pearlike nuclear
shapes have mainly been considered as(gkt e.g.,[16]).
Study of arbitrary nonaxial octupole deformation is excep- R(6,¢)=Rq
tional[17]. Usually, some special octupole shapes are inves-
tigated by taking one or a feybut not al) spherical compo-
nents of the octupole tensde.g., [18-21). A general + >
parametrization of the octupole deformation superimposed AE2
on the triaxial quadrupole shape was already proposed in
[22]. +bwvi;><a,¢>]”, (12
The aim of the present paper is threefold. First, it is to
propose a parametrization which is a generalization of that of
[7] for an arbitrary hexadecapole deformation. Second, it isvhere

1+agY oo 0, ) +825Y55 (6, )

aroYao( 6, ¢>+M§0 [ay, Y\, (6.0)
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TABLE |. Transformations of the coordinate system generating
the Oy, group.

Transformation Symbol  Index Coordinates in the
transformed system
i x(@ y® 20
Identity & X y z
Inversion T 0 —X -y -z
Bohr's Ry 1 X -y -z
rotat- R» 2 y —X z
ions R 3 y z X v=-m3
FIG. 1. Relations between the lengths of semiaxes
1 Ry, Ry, R, for different sectors of angles (7, or vy,) within
Y(+):—[Y (=1, ] the range— w< y<. All the border lines between different sec-
A \/E W Aop tors correspond to the surfaces with two semiaxes equal to one
another. In particular, the thicker line correspondje=R,. The
and shaded sectors on the right-hand side of-it#/3<y<2/3) cor-
respond toR,<R,. Within the darker sector between the thickest
lines (0<y<m/3) one additionally ha® <R,<R,.
1
(=)= —(—1)M . .
Yiu i\/E[YW (D)"Y, 13 where ¥$ is the angley, referring to the system of axes

ko
_l

R, 5 ¢=0)=R0

R( 0=
Q0= B2C0Sy,, A= BSiNY;. (1.9

which is obtained by transformatidR, (the superscript®
are the real and imaginary parts of spherical harmonic¥/ill P& used in the case of transformatigh The parameters
Y, for u#0 multiplied by\2 and, hencea, , andb, , are, Bo gnd v, determine in the following way a contribution
up to a coefficient, the real and imaginary parts of the intrin-c0MNY from the quadrupole qleformatlon to the lengths
sic components of tensots, , . The quadrupole deformation R;LXZ Ry, andR, of the three semiaxes of the nuclear surface
is parametrized by means of two Bohr parametg23] (1.2):
B>=0 and— 7= y,< in the following way: \/? o

1N zzP COS( v2” ?)
The principal axes are defined up to the gradp of 48 Ry=R< 9= z,(f,: Z) =Ry 1+ /iﬁzcm( Yo+ 2_77
transformations changing their names and arrows. All these 2 2 4m 3
transformations are superpositions of the four following (1.6
ones:Z, the inversion;R 4, the rotation by angler around
axis X; R, the rotation byw/2 around axisz; and R;, the R,=R(6=0,4)=R| 1+ 1 /iﬂzco%
circular transposition of axes—x, z—y, x—z. The three z ' 4w
latter are well-known Bohr rotation23,24]. The transfor- ) .
mation rules for all four are listed in Table I. The transfor- "€ names of the axes can be defined by saying that, for
mations R,, RZ, and Z generate the subgroup,,C Oy, instanceRy<R,< RZ..A(.:cordmg to Eq(1.6), this definition
of the eight following transformations changing the corresponds to restriction of the range of valuesygfto
arrows of axes:&, the identity; Z, the inversion; R, 0=<1y,< 77/3: All the other vqlues ofy, can be obtained by
—R,, RyleRz, R,=R2, the three rotations bym ;Lansformatlongjzz and7(2£,1 (F_|g._11). Wh(ra]n, r:cow%ver, onle pf
around axes:, y, z andS,=IRy, S,=TIR,, S,=IR,, e axes, say, is nameda priori,” one <as reedom only in
the three reflections with respect to the planes perpendi _efln_lng axey andz. Th? definitionR, <R, means the re-
ular to axesx, y, z, respectively. The entire group striction of the range of,’s to — 7/3<y,<2mx/3. Transfor-
O=D,, X S; is the direct product oD, andS;, the group mation RgR, = SxPxay exchanges the axeg _andz "%”d al-
of six permutations of axesPy,=& Pyy=Rs, P lows continuation ofy, onto another semiplané-ig. 1).
Y N . xyzm & Tyzx T3 2% \When the names of all three axes are figegkiori, one does
=R3, Pyx=SR2, Pryx=SyR,R3 and Py, =S, R,R3. )
In particular, S, Py=R. not have theR, and R; symmetry and the entire range

1QyllyxzT V2
The deformatiorg, is Oy, invariant, whilewy, is invariant

only underD,,, and is transformed undét, andR; gener-
ating S; (modulo destinations of the arroyvas follows:

10ne or all of the three axes can be determined not by the shape
itself, but from outside, as is, for instance, in the cranking model in
which the rotation axes are fixed in advance. Then, not only the
3)_ ., _ 2_77 shape of nuclear surface, but also its orientation with respect to the
Y2 =72 (1.9

(2) — _
2 3’ axes is relevant.

Y Y2,
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—7<y,< should be considered. Sing® and vy, are in- shapes of the surface. Only tibs,, symmetry of the quad-
sensitive to theéD ,, transformations, the arrows of axes can-rupole shape causes that we have equivalent total shapes for
not be defined via the quadrupole deformation, which meantpur different orientations of the hexadecapole component.
that the quadrupole shapes are invariant uridigy. This ambiguity can be eliminated through a definition of the

Within “the Lund convention”[25], which is often used, arrows of_ axes or a restriction of the ranges of hexadecapole
v, is defined with the opposite sigfaxesx andy ex- deformation parametess,,, b, .

changediand all of the discussion should be changed accord- Here, the most general hexadecapole deformatian,
ingly. arbitrary values of parametess,,, b,, which determine

both the shape and the orientation of the hexadecapole com-
Il THE MOST GENERAL HEXADECAPOLE ponen't of the nuc!ear §urfa)cs to be para.metnzed in terms
DEEORMATION of variables obeying simple transformation rules un@gr
and, in particular, allow us to define the arrows of axes in a
Let us consider the nuclear surface of Ef1.2) with the  simple way. To do this one should first establish the trans-
hexadecapole deformation\€4) superimposed on top of formation rules unde©y, for a,,, b,,. To make the prob-
the quadrupole shape. Then, not only different shapes of them more transparent we rearrange, afg#], the hexadeca-
guadrupole and hexadecapole components, but also their dipole terms on the right-hand side of Hd.2) according to
ferent relative orientations produce different, in general, totalrreducible representations &}, in the following way:

oY ol 0, ¢>+2 [4,,Y5h (0,0)+D04, Y5, (0, d)1=a,A4(6,¢) + Z ,€4uE4,(0,0)

+ X [faFa(0,6)+04,Ga(6,6)], (2.9

v=X,Y,Z

where

A= \fY4O+ \fz (=" \/> 7 (x4 y4+ 24— 3x%y?— 3x272— 3y?7?),
S (+) — 2,2 2
E4o= 1—2Y40 Y = [22 —x4—yt+6(2x%y?—x?22—y?72%)],

J3 151
Ei=—Yip =5\ —alx*~y*-622(—y?)],

F =Y(‘)=§\/3:5£x (XZ— 2) (2.2)
4z~ Yaa =2\ 3 y o), .
1 (=) _ (=) —
Gax \/—Y41 Y = —4yz(6x —y*-2%),
1 7 3 /51
G4y:—§Yfﬁ)+ ng)_Z —aZX(6y* = 2"~ x?),
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are, apparently, bases for the one-dimensional, the twgparameters-e4, ¥4, ¢4, €4, 74, and {,—to the three
dimensional, and the two three-dimensional irreducible repeld ones—8,, &84, andvy, in the following way:
resentations 00y,, respectively(cf. [27]). The correspond-

ing coefficients in front of functions a,= 84C0%4C0S0,,

A4, Eay (0=0,2), Fyy, Gy, =X,y,2) in Eq. (2.1,
€40= B4C0%E 4 SiN 5,C08y,,

—aut \/7 A4, . .
\/7 40 “ €4o= B4C0%,4 SiN &, SIN 74,

_ 2 ’ fax=Ba SiN &4 SiN ¥,C08p4CO0E,,
€407 N 757407 | 15244

f4y= B4 sin &4 Sin V4 SiN @,CO8N,, (2.6
€42= —ayy,
= 1 f4,= B4 Sin £,€089,€0< 4,
fax= \ﬁb + —bys, ) _ _
HNgT g Oax= B4 SiN &4 SiN ¥,C08p, Sin &4,
7 1 Jay= B4 SiN g4 SIN ¥4 SIN @4 SIN 7,4,
fay=— \[5341‘*' ﬁa@' 2.3
J4,= B4 SiN £,C08%, Sin {4,
fa,=baa,
Az T where all the parameters are within the following ranges:
L b \ﬁb T
g4x_ﬁ a1 gl4s B4=0, Oss4s§, 0<s,=m,
_1 \ﬁ T T
g4z:b42 —77$§4$ T, —TSYST, —TS{=TT.

should then constitute bases for the resped@yérreducible
representations in the space of hexadecapole deformation p
rameters. Henca, is Oy, invariant,e,, ande,, (denoted as
b, andc,, respectively, i7]) are transformed in the same
way as ay=€y, and ajy,=ey, are, and

he parametep, is, as usual, a measure of the total hexa-
ecapole deformationg, is a measure of deviation from
shapes with the three, fixed in advar(éer instance, by the
guadrupole deformationmutually perpendicular symmetry

fa,, 9a, (v=Xx,y,2) are transformed like the coordinates pIanesx'y, yz, andzx (the D, symmetry, apd 041s a mea-
X, y, z themselves with a possible additional change ofSure, discussed further below, of concavity or convexity of

sign, namely undeR, and R f,,'s and g,'s are both the shape in different quadrants. All three parameters are
transformed like the éoordina%észvTable ) " Oy, invariants. The transformation rules for the six remaining

parameters are the following:

X(l):X, X(S):y,
. , Y=y, 9P=9,, oP=0,,
yP=-y, y¥=z (2.4
W=—z Z3=x 521)2541 77511): nat o, §511):§4i T,
underR,: f,,’s are transformed like the coordinates, i.e., &
2 v 7512):_741 1?(2):1941 ¢£12):E_¢41
x@=y,
2)_ 2)_ 2)_
JO—_x . = —ne AP=zm—ts G-l
Z2— (3)_ 2m 3) .
' Y4 = YaT 3 U, =arccos$sin $,4C0Ssp,),
whereaqy,,’s are transformed with the additional change of
sign, underZ: f,,’s andgy,’s are invariants, i.e., unlike the cotd,
coordinates, do not change their signs. <p<3)—arctarEs o )
4

A parametrization fom,, €4, €4, has been proposed in
[7]. This is generalized here for an arbitrary hexadecapole (3) @) (3)_
deformation by adding the six new deformation =n4, Mg =la {5 =& (2.8
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Because of the positive parity of the hexadecapole tensor all

nine parameters are, of courseinvariants. (a) .
The angley, has the same transformation properties as

v, [cf. Egs.(1.5] and plays a similar role. Namely, for given

B4, €4, andd,, it determines, in an analogy to Ed..6), the o5

contribution to the lengths of semiaxes coming from the

(0] 4

/9
1+ E[gqcos; 4

R«=Ro

0.5 1
\/g in 5 2
+ 1—25|n 4COY V4 3
9 7
Ry=Rg) 1+ E,B400$4 1—200564 (b) i
5 2
+\ zsindacos vat || 2.9 02
\/7 0.5 1 *
1_2C0854 J
Relations between the lengths of semiaxes are shown again
in Fig. 1. The discussion at the end of the previous section on
possible definitions of names of the axes and the variability ()
.5 1

[9
RZ: Ro[ 1+ Eﬁ4CO&I4
ranges ofy, can be repeated without changes. 1
The paramete$, describes the shape oy,, symmetric
(e4=0) surface for giverB, and v,. The types of shapes o
can be classified by means of sections of the surface in the

S
+ \/1:25|n54c03y4 ]
symmetry planes. Fot,=0 the section in they plane is

described by the following equation:
Rl 0=T & =Rg| 14 \/— 3\/755
0=7.¢|=Ro| 1+ \ 7 -Ba g| \ 13504
5 .
+ 1—25|n645|ny4

\C)

FIG. 2. Sections of the hexadecapole surfaces in planéor
B4=0.6, £,=0, y,=x/6. The units are irR,. (a) Section of the

5
+ Tsin54siny4cosz¢

\/3—5 \/g hypotetratrochoidal typej,= w/12< §,(/6), (b) section of the el-
+ 5| V13F0%%4 liptic type, 8,=3m/12, 8,(m/6)<3m/12< S,(w/6), (c) section of

the epitetratrochoidal type,=5m/12> 5(/6).

cos4gp

]. (2.10

7
\/1:25|n54c03y4 R(6=w/2,¢) always has an extremum at the intersection
points of the figure (2.10 with axes x and vy
To give the figures of Eq2.10 names we notice that, for (¢4=0,+7/2,+ 7). When there are no other extrema of the
small deformationg3,, the equation represents a superposi—adius, the figure is to be named the section of elliptic type.
tion of an ellipsé and a tetratrochoid. The radius When, however, the radius has four other maximinima,
the figure is to be named the section of epitetratrochoidal
(hypotetratrochoidal type. All three types of sections are
“The ellipse is also a hypotrochoid generated by a fixed interioshown in Fig. 2. For a givery,, section(2.10 is hypotetra-
point of a circle rolling inside a fixed circle twice as large. trochoidal when
3The prefixtetrais added here to indicate that for the trochoids in
question, the ratio of radii of the fixed and rolling circles4isl. 0=<6,<6n(7va), (2.11
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elliptic (still hypotrochoidal when

On(V4)=84=Se(74), (2.12

epitetratrochoidal when

Oe( Ya) <4<, (2.13

where

_ fcosy,+ V3|siny,|
::/35"‘ (7c0sy,+ \3|siny,|)?’

6n(y4)=arcco

_ fcosy,— V/3]siny,|
35+ (7cosy,— V3|siny,|)?’

de(y4)=arcco (2.19

The angless,, and &, are rising functions ofy,. Therefore,

FIG. 3. Hexadecapole surfaces
for B4=0.6, £,=0, y,=7l6
and (3 4= /12, (b)
8,=5m/12, (¢) 6,=8m/12, (d)
6,=11m/12. Description of the
shapes is in the text. The units are
the same as in Fig. 2.

(a) The surface is convex at all the six intersection points
with the symmetry axe&ll the sections are hypotrochoiglal

(b) The surface is convex on the longest symmetry axes
and has saddle points on the two other symmetry ébtes
section in the symmetry plane perpendicular to the longest
axis becomes epitetratrochoiglal

(c) The surface is concave on the shortest symmetry axis
and has saddle points on the two other symmetry &xely
the section in the symmetry plane perpendicular to the short-
est axis remains hypotrochoigal

(d) The surface is concave on all symmetry axai the
sections are epitetratrochoiglal

All four types of shapes are shown in Fig. 3.

For ¢,#0 the “vectors” f,, and g,,.v=X,Y,z, begin
contributing to the hexadecapole surfatieis becomes the
only contribution where,=/2). SinceR,f4,=S,f4,=f4,
and R f 4, =Sy f4,= —f4, for u#v (and the same fog,,),
the Dy, symmetry is broken and plang&y, yz, andzx quit,
in general, being the symmetry planes. The contribution of
f4, and/org,, to Eq.(2.1) for a givenv conserves the sym-
metry with respect to the plane perpendicular to axinly.
Hence, the parameter®, and ¢, determine with respect to
which plane and to what extent the symmetry is broken. For
given 9, and ¢, the anglesé¢,, 74, and {, parametrize
shapes of the sections in plangs zx, andxy, respectively.

the Do, symmetric hexadecapole surfaces are of the foufThis is seen when looking at the following equation of sec-

following types for greater and greatéy.

tion in planexy for g,= m/2:
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perpendicular symmetry axes, but turned with respect to the
coordinate axes. For othéy’s the figures have no symmetry
axes. This is shown in Fig. 4.

Since, according to Eq2.8), transformationsk,, R,,
andR, shift the respective pairs &f,, 74, {4 by =, the
range of one pair, say, and 7,4, can be restricted, for in-

x stance, to positive values only:

0=sé<wm, Osy<mw (2.19

and this way the arrows of ax@sandy are defined. Then the
arrow of axisz still remains undefined due to the inversion
invariance of the quadrupole-hexadecapole shapes.

As there is one to one correspondence betwaegnand
by, the components of the hexadecapole tensor, and the
nine deformation parameters defined by E@s9), the latter,
when taking the values within the rangexs7), describe all
possible hexadecapole surfaces and thus all possible
quadrupole-hexadecapole shapes for giygnand y,. In-
equalities(2.16 eliminate three out of the four equivalent

M shapes.

Using parametrizatiof2.6) it is difficult to distinguish the
hexadecapole surfaces not having symmetry planes from
those still having them, but turned with respect to the
XY, yz, andzx planes. This question is connected with the
complicated problem of the definition of an intrinsic frame
linked to the hexadecapole surfa@d. Refs.[26,2§ for the
same problem in the case of an octupole sudface

(c) I1l. HEXADECAPOLE SHAPES PARAMETRIZED
IN TERMS OF THE QUADRUPOLE DEFORMATION

PARAMETERS

The most general quadrupole-hexadecapole surface of Eq.
(1.2) is, as has been seen in the previous sections, param-
etrized in terms of 11 parameters. TH2,,-symmetric
(e4=0) shapes have been hitherto considered. Still, these
need five deformation parameters. Most of the nuclei exhibit
a quadrupole deformation and higher multipoles only give
corrections to the quadrupole shape. This is why we try and
we may use as few higher-multipole deformation parameters
as possible making some of them dependent on ofhers.

FIG. 4. Sections of the hexadecapole surfaces in planéor Some of the hexadecapole shapes can, in fact, be param-
B4=0.6, e,=m/2, 9,=0. The units are the same as in Fig(®.  etrized in terms of the quadrupole deformation parameters.
£4=0, section of the tetratrochoidal type with the symmetry axesHere, all such possible shapes are to be discussed. This is a
turned by 7/8 with respect to the coordinate axgsandy, (b)  |ong-standing problerfil0]. It consists of constructing hexa-
{4=— ml2, section of the elliptic typdarge deformationB, causes  gecapole tensors of a quadrupole tensor. All hexadecapole
a deviation from the elliptic shapevith the symmetry axes turned tansors being isotropic functions of the quadrupole tensor

by /4 with respect to the coordinate axes and y; (¢ ke the following f £ 12 22):
£4=— /3, section being a superposition of typ@s and (b) with 2, take the following formi(cf. [29,30,24):

no symmetry axes.

o
”n
<
o
”n
h
=

70
a4#(az)=g{X2(ﬁgaﬁ§COS3yz)[az>< a2l

T 3 5
R( 0=—,¢)=R [1+—\/— cost
2 0 2 \ 240 + x3( 85, 85€083y,)[ @2 X 03]y,
X \[gcosacoquﬁ— %sin& sin2¢]. + Xa( B2, B3€083y2)[ 02X 0alay}, (3.1
(2.15

“For instance, we assume that higher-multipole deformations fol-
For £,=0, =x/2, * it represents figures still with two low the quadrupole one just to minimize the energy.
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whereo,, = — V74 a;X a,],, andx,, xs3, x4 are the ar-
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h, (i=2,3,4) with a constant and putting two others equal

bitrary scalar functions of the two independent quadrupoldo zero. Usually,h; and h, have been put equal to zero

invariants.

xi (i=2,3,4) in the invariant®3 and 83cos3y,, Eq. (3.1)
is rewritten as follows:
V70 1
ap="g" h2(,82,cos3y2)?[a2>< @34y
2

+hs(B2 :0053)’2) slaxX02]a,

I

1
+h4([32:C053)’2)ﬂ_3[0'2>< Oalap (s 3.2

where h,, hs, h, are the arbitrary functions of8, and
cos3y,. The components of the tensor of £§.2) defined in
Eq. (2.3 read

Not assuming the analyticity of functions [11-13. It is not obvious that this is really the optimal pa-

rametrization. For instance, Magierskial.[31] have shown

that in a rotating system of particles which occupy gne
shell and interact via the quadrupole-quadrupole and
hexadecapole-hexadecapole forces, the hexadecapole defor-
mation is, for a weak hexadecapole interaction, related to the
guadrupole one in such a way that jist 0.

IV. INCLUSION OF THE OCTUPOLE DEFORMATION

When the terms withh =3 are also included in Ed1.2),
the results of22] are applicable. Here these results are re-
written briefly in the spirit of[26] and the present paper.
Also, the notation of the present paper is used.

The octupole tensor is resolved according to the one-
dimensional and the two three-dimensional irreducible rep-

resentations oDy, in the following way:

7
a4: \/1:2(h2+ h3COS3')/2+ h4),

5
€40= \/1:2( h2C0S2y,+ h3cosy, +h,cosdys),

b321

\[331 \/7333 )
3 5
fay= §b31+ §b33 )

f3,=aso,

5 3
= gasﬁ g3
5 3
- §b31+ §b33,

5
€40= \/1:2(—h2 sin2y,+ hs siny,+h, sindy,),

33 “4.D

f4,=04,=0 for v=x,y,z.
Early parametrization$4,6] of the nonaxial hexadecapole
deformation as a function of, are not in the form of Egs.
(3.3 and thus do not have correct tensor properties. Appar-
ently, only theD,,-symmetrical hexadecapole shagesth
g4=0) can be parametrized by means of a quadrupole tensor
and made dependent on the quadrupole deformation. This

dependence has the following form

03z~ a32-
5 7 o . :
Ba=|h3+h3 ( 052372> The componenb; is invariant under rotation®,; and R,
12 12 and changes its sign under rotati® and inversioriZ. The

“vectors” fj3, andgs, (v=Xx,y,z) are transformed under
R; like f,, and gy, , respectively, and change their signs
12 underZ. All of them can be parametrized as follows:

+h2+2(h,+hy)hscos3y,+2h,h,

7 5
12T 1505672

7 h,+hscos3y,+hy
COSH,= I Z ,

—h, sin 2y, + hssiny,+h,sindy,
[h3+h3+h3+2(h,+h,)h; cos 3y,+ 2h,h, cos6y,]*?’

bs=B3Sines,

f3x= B3 COSe3SiNY; COSP3COS €S,

f3y= B3 Cosegsind;sing; cosys,

siny,=
3,= 33 COSe3 COS¥3 COL 3, 4.2
h, cos2y,+h; cosy,+h, cos4y,

[h3+h3+h3+2(h,+h,)h; cos3y,+ 2h,h, cos6y,]Y?’

COSys= 3x= B3 COSe3SiNY3 COSp3SInés,

g4=0. (3.9 g3y = B3 COSe3SiNd3singssings,
In practical calculations very simple forms of functions

h,, hs, h, have been used. The three one-parameter pa-
rametrizations of the nonaxial hexadecapole deformatiofhis is, in fact, the same parametrization as thd2@j with

have been proposed [B] by replacing one of the functions the following correspondence of the parameters:

3,= B3 COSe3 COSY3SINg3.
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B3 B, (2.16 only the latter of inequalitie$4.5) have to be fulfilled
in order to define the arrow of axis The parametet; is
€3¢ &g, hardly a counterpart ofr/2—e, sincea, is the O, scalar
while bs is not. The negative values fer; are allowed and
93901, its range is— w/2<ez=<m/2. It is, like b, invariant under
R, andR; and changes its sign und&, andZ.
0365 6,, 4.3 1 3 g g 2
£3=y2tC,
73 v3—C, V. CONCLUSION
{321, A parametrization of the most general quadrupole-

octupole-hexadecapole shapes are described in the frame de-
fined by the principal axes of the quadrupole deformation
tensor or the rotation axes. It is suggested from the present
study that when we consider nonaxial shapes of higher mul-
tipolarities, we should deal with the deformations of types
a, b, e, f, g corresponding to the irreducible representa-

wherec=arcsin/5/8.

The transformation rules foB3, 93, @3, &3, 73, {3
under Ry are identical with those for
Ba, T4, 04, &4, ma, {4, respectively. The differences
arise in the case of inversion, namely,

§<30):§3i Tr, tions of theOy, group(calledA;, A,, E, F;, F,, respec-
tively, according to Hamermesh’s classificati@v]) rather

7=yt (4.4)  than particular spherical components of the deformation ten-
sors. This is already well understood when dealing with the

§<30>:§3¢ o, hexadecapole deformation although early calculations have

usually been done in the space®f, vy,, anday, (cf., e.g.,
while the hexadecapole counterparts are all invariant undgia2]). However, this is still not realized in the case of octu-
7. The octupole counterparts of E48.8) now being accom- pole deformation. This is perhaps because more than one
panied by Eqs(4.4) allow for defining the arrows of all three deformation parameter should then be used to describe the
axes by restricting the ranges @&, 73, {3 to positive  shape.
values®

<
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