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Sturmian function approach and N̄N bound states
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A suitable numerical approach based on Sturmian functions is employed to solve theN̄N bound state
problem for local and nonlocal potentials. The approach accounts for both the strong short-range nuclear

potential and the long-range Coulomb force and provides directly the wave function of protonium andN̄N

deep bound states with complex eigenvaluesE5ER2 i (G/2). The spectrum ofN̄N bound states has two parts,
the atomic states bound by several keV, and the deep bound states which are bound by several hundred MeV.
The observed very small hyperfine splitting of the 1s level and the 1s and 2p decay widths are reasonably well
reproduced by both the Paris and Bonn potentials~supplemented with a microscopically derived quark anni-
hilation potential!, although there are differences in magnitude and level ordering. We present further argu-
ments for the identification of the13PF2 deep bound state with the exotic tensor mesonf 2(1520). Both
investigated models can accommodate thef 2(1520) but differ greatly in the total number of levels and in their
ordering. The model based on the Paris potential predicts the13P0 level slightly below 1.1 GeV while the
model based on the Bonn potential puts this state below 0.8 GeV. It remains to be seen if this state can be
identified with a scalar partner of thef 2(1520).@S0556-2813~97!01408-8#

PACS number~s!: 13.75.Cs, 02.60.2x, 14.40.Cs, 36.10.2k
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I. INTRODUCTION

Replacing an electron orbiting around a nucleus in
atom with a heavier, negatively charged particle has ope
up new windows in nuclear and particle physics. In the l
three decades ‘‘muonic’’@1# and ‘‘pionic’’ @2# atoms have
been the focus of much theoretical and experimental eff
at various ‘‘pion factories’’~LAMPF, PSI, TRIUMF!. More
recently the even heavier, negatively charged, antiprotop̄
has become available in sufficient numbers to probe
nucleus at much smaller distances. Very low-energeticp̄ can
be ‘‘trapped’’ to form ‘‘antiprotonic atoms.’’ These allow u
to study the interference of QED and QCD on the one ha
and the strong interaction~QCD! in the form of the annihi-
lation into mesons, with unprecedented sensitivity, on
other hand. The simplest antiprotonic atom is the antip
tonic hydrogen atom known as ‘‘protonium.’’ Thep̄p sys-
tem can have quantum numbers unavailable to thee1e2

system and, therefore, is particularly suited to study ‘‘e
otic’’ ~i.e., non-Q̄Q) mesons. In this paper we wish to inve
tigate the possibility that the firmly established broad ten
mesonf 2(1520) is aN̄N deep bound state.1 The tensor me-
son f 2(1520) is reported in protonium annihilations such
N̄N→p f 2 andN̄N→pp f 2 „see ASTERIX~1989! @3#, Crys-
tal Barrel~1991! @4#…. Theoretical predictions for the produc
tion rate of thef 2(1520) depend strongly on the wave fun
tions of the initial and final states@5–8#. We employ here a
powerful and well-documented mathematical method~not

1The f 2(1520) observed inN̄N annihilations was originally
known as theAX tensor meson.
560556-2813/97/56~3!/1596~9!/$10.00
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previously applied toN̄N bound states!, known in atomic
physics as the Sturmian function approach. With this meth

N̄N atomic states, arising from the interference of the lon
ranged Coulomb interaction with the short-ranged strong
teraction of QCD, can reliably be evaluated. Unlike the t
ditionally used Numerov method, the here employ
Sturmian function approach can also be applied to nonlo
potentials~such as the Bonn potential! and to atomic states
with higher angular momenta.

In recent years several experiments have been carried
at the low-energy antiproton ring LEAR at CERN to stud
the properties of protonium. In these experiments low en
getic antiprotons are captured into the Coulomb field of
proton via Auger electron emission, after deceleration t
kinetic energy of a few eV@9#. In the case of hydrogen,p̄
are captured into orbits ofnp̄'40 and cascade rapidly to th
1s and 2p levels ~by x-ray emission!, from which the p̄p
system annihilates mostly into multimeson final states~occa-
sionally those multimeson states are observed to be co
lated viap f 2, pp f 2, etc.!. The strong interaction shifts th
Coulombic binding energies of the 1s and 2p states and adds
a finite width describing the annihilation from this state. F
a p̄p atom the purely Coulombic 1s Bohr radius is calcu-
lated to be 57.6 fm with a binding energy ofE1s512.49
keV. The electromagnetic energies for the Lym
Ka(2p→1s), Balmer La(3d→2p), and Paschen
Ma(4 f→3d) transitions have been calculated; they a
9.367, 1.735, and 0.607 keV, respectively. The strong in
action splits the 1s state into1S0 and 3S1, and the 2p state
into 3P0, 3P2, 1P1 , and 3P1. In principle, these energy
levels can be determined by measuring the emitted x ray
the electromagnetic transitions. It is, however, extremely d
1596 © 1997 The American Physical Society
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56 1597STURMIAN FUNCTION APPROACH ANDN̄N BOUND STATES
ficult to measure such small energy splittings~less than 0.5
keV!. Therefore, the first experiments@10# delivered only
spin-averaged data, since the experimental resolution
not sufficient to separate the transitions to the1S0 and 3S1

levels. Recent measurements@11# at LEAR yielded the first
information on the spin dependence of the 1s protonium en-
ergy shift and width.

Theoretical interest in the properties of protonium aro
long before the first experiments were performed. Bryan

Phillips @12# first studied the scattering lengths of thep̄p

annihilation at rest in their model ofN̄N interaction. From

the scattering lengths, the energy shifts and widths ofN̄N
atoms can be derived via Trueman’s formula@13#. Later, the
energy shift and width of protonium states were investiga
by other groups using either the original Trueman’s form
@14,15# or an improved Trueman’s approach@16#, or a WKB
approximation@17# or an iteration technique which, how

ever, neglected then̄n component@18#. More accurate stud
ies of the protonium properties were carried out in the ma
Numerov algorithm@19,20#. All these theoretical prediction
for the energy shifts and widths of protonium states are c
sistent with available experimental data. In order to qua
tatively evaluate the photon and pion emission in the reac

of protonium decay toN̄N deep bound states, Doveret al.

@21# explicitly worked out the wave function of theN̄N 1S0
and 3S1 atomic states in the Numerov approach. In th
calculation, the coupling of the3D1 and 3S1 states is ne-
glected. Using the numerical method developed in Ref.@20#,
they recalculate, in a later work@8#, the wave functions of
N̄N atomic states with the tensor coupling included. Ho
ever, the wave function ofN̄N atomic states for nonlocalN̄N
potentials has not yet been evaluated in an accurate num
cal method which takes into account the two length sca
involved, thep̄p and n̄n component coupling and the tens
coupling of the nuclear force. In the present work, we so
the Schro¨dinger equation forN̄N bound states employing
properly adapted numerical method. The method acco
for both the strongshort-range nuclear potential~local and
nonlocal! and thelong-range Coulomb force and provide
directly the wave function of the protonium system and
the N̄N deep bound states with complex eigenvalu
E5ER2 i (G/2). Details of this method can be found belo
in Sec. III.

The protonium states also provide a new tool for mes
spectroscopy, which is still an active field exhibiting ma
open questions. The physics of mesons is far from comp
although the quark model has been remarkably successf
understanding and classifying most of the experiment
well-established mesons asQQ̄ bound states. However, i
recent years there has been a variety of experiments
examplepN scattering,N̄N annihilation, J/C decay, and
e1e2 annihilation, which suggest the existence of new m
sons which do not fit into the usualQ̄Q multiplets of flavor
SU(Nf). These new meson states might be glueballsggg,
hybridsQQ̄g, or four quark-antiquarkQ2Q̄2 states as well as
more ‘‘conventional’’ resonances such asN̄N bound states
and meson-meson molecules. Recent reviews, concer
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the status of non-Q̄Q states, are found in Ref.@22#.
Exotic mesons come in two varieties:~i! meson reso-

nances with quantum numbersJPC5022, 012, 121, 212,

etc., which are unaccessible toQ̄Q pairs and~ii ! meson reso-
nances with anomalous decay modes and/or isolated pro
tion modes. The first evidence for a meson resonance u
~i! with JPC5121 came from the GAMS Collaboration@23#
which investigated the charge exchange reactionp2p→nX0

(X0→p0h). There is more evidence for meson resonan
under~ii !. Broad mesonsX ~with a widthGX.50 MeV! have
been seen in the reactionsN̄N→pX and N̄N→ppX from
initial atomic states of orbital angular momentumL50,1, as
discussed above. Such mesons have typical hadronic s
and lie in the mass range around 1.5 GeV. The best ca
date, seen in different decay modes, has been the tensor
son f 2(1520) with the quantum number
JPC(I G)5211(01). Note that f 2(1520) appearing in the
full listing of the Review of Particle Properties@41# was
originally namedAX(1565) by the ASTERIX Collaboration
@3#. The f 2(1520) should not be confused with the mes
f 28(1525) which has quite different decay modes. T

f 28(1525) decays mostly intoK̄K while the f 2(1520) favors
nonstrange mesons. In this paper, we concentrate on
identification of the exotic tensor mesonf 2(1520) as theN̄N
deep bound state13PF2. It is interesting to note that an ex
otic tensor meson with the same quantum numbers and in
same mass range features prominently in the react
p̄p→pp, K̄K @24#.

TheNN̄ deep bound state spectrum has been calculate
a variety of local potential models. So far no calculation h
been reported for nonlocal potentials. In one-boson excha
potential~OBEP! models, the elastic part of theNN̄ interac-
tion is described in terms of meson exchange which may
obtained from aG-parity transform of a suitable nucleon
nucleon (NN) model. The real, elastic part must be supp
mented with an absorptive potential, reflecting the sho
ranged annihilation into mesonic final states. Mod
predictions forNN̄ bound states usually apply an annihil
tion part which is either described by a phenomenologi
optical potential@25–27#, adjusted to fit low-energyNN̄
scattering data, or derived microscopically in so-called re
rangement versions of the quark model@28,29#. The original
theoretical expectation for the existence ofNN̄ deep bound
states was very much in line with the first tentative expe
mental evidence for narrow~decay widthsG<20 MeV! reso-
nances coupled to theNN̄ system. However, high-precisio
experiments at the Low Energy Antiproton Ring~LEAR! at
CERN subsequently dismissed this early evidence for
production of narrow (G<20 MeV! states inNN̄ annihila-
tion @30#.

In the next section we give details of our treatment ofN̄N
atomic states and in Sec. III we present the Sturmian fu
tion approach to solve the coupled equations forN̄N atoms
accounting for theN̄N tensor force and then̄n component in
local and nonlocalN̄N models. This is the central part of ou
paper. Section IV follows with our results forN̄N bound
states in a microscopically derived potential model, and
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comparison with experiments and other models. The sec
ends with our conclusions.

II. THE SCHRÖ DINGER EQUATION
FOR N̄N ATOMIC STATES

A correct treatment ofN̄N atomic states must include th
coupling of the proton-antiproton (p̄p) and neutron-
antineutron (n̄n) configurations. We define the Hilbe
spaces of proton-antiproton and neutron-antineutron byP1
andP2 projection operators, respectively. The Hilbert spa
of meson channels is defined asQ space. The correspondin
projection operatorsP1, P2 , andQ satisfy the completenes
relation

P11P21Q51, ~1!

as well as orthogonality

P1P25P2P150, ~2!

P1Q5QP150, ~3!

P2Q5QP250. ~4!

Let H be the Hamilton operator of the full coupled-chann
with the corresponding wave functionuc& defined in the
complete Hilbert space. We eliminate meson final state
teractions, resulting in the coupled set of equations for
p̄p and n̄n wave function:

~E2P1HP1!P1uc&5P1HQGQHP1P1uc&1P1HP2P2uc&

1P1HQGQHP2P2uc&, ~5!

~E2P2HP2!P2uc&5P2HQGQHP2P2uc&1P2HP1P1uc&

1P2HQGQHP1P1uc&, ~6!

whereE is the energy eigenvalue andG is the Greens func-
tion for meson intermediate states, defined as

G5
1

E2QHQ
. ~7!

The interaction terms in Eqs.~5! and ~6! are given as

FIG. 1. G-parity transformation of a one boson-exchangeNN

potential to itsN̄N version.
n

e

l

-
e

P1HP15H0
p1Vc1VEL , ~8!

P2HP25H0
n1VEL , ~9!

P1HP25P2HP15VCEX, ~10!

where Vc is the Coulomb interaction.H0
p5Amp

21kW2 and

H0
n5Amn

21 kW2 are the free energies of the proton and ne
tron, respectively. The masses of the proton and neutron
denoted asmp and mn . The elastic potentialVEL and the
charge-exchange potentialVCEX are combinations of the
isopin I 50 andI 51 meson-exchange potentials correspon

ing to the process in Fig. 1, such asVEL5 1
2 (V01V1) and

VCEX5 1
2 (V02V1).

PiHQGQHPj are the optical potentials, denoted byW

for N̄N annihilation into two and three mesons in Fig. 2:

WEL5P1HQGQHP15P2HQGQHP25
1

2
~W01W1!,

~11!

WCEX5P1HQGQHP25P2HQGQHP15
1

2
~W02W1!,

~12!

whereW0,1 are the annihilation potentials for isospinI 50, 1
N̄N states.

As an example, we give the final equation for spin-trip
N̄N states in the$J,L,S% basis as

S H11 H12

H21 H22
D S C p̄p

C n̄n
D 52EbS C p̄p

C n̄n
D , ~13!

with

FIG. 2. N̄N annihilation into two and three mesons in the no
relativistic 3P0 quark model.
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H115S P2/2m1Vc
L1L11VEL

L1L11WEL
L1L1 VEL

L1L2

VEL
L2L1 P2/2m1Vc

L2 ,L21VEL
L2 ,L21WEL

L2 ,L2D , ~14!

H125S VCEX
L1L11WCEX

L1L1 VCEX
L1L2

VCEX
L2L1 VCEX

L2 ,L21WCEX
L2 ,L2D 5H21

T , ~15!

H225S P2/2m12dm1VEL
L1L11WEL

L1L1 VEL
L1L2

VEL
L2L1 P2/2m12dm1VEL

L2 ,L21WEL
L2 ,L2D , ~16!

and

C p̄p5S C
p̄p

L1

C
p̄p

L2 D , C n̄n5S C
n̄n

L1

C
n̄n

L2 D , ~17!
d
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where dm5mn2mp , m5mp/2, Vc52a/r , L15J21,
L25J11, J is the total angular momentum, an
Eb52mp2E the binding energy ofN̄N atomic states. Note
that the final equation for protonium is in a nonrelativis
form. Our calculation shows that the predictions obtain
with the relativistic and nonrelativistic equations are not n
ticeably different.

III. COMPLETE SET OF STURMIAN FUNCTIONS

In principle, one could solve Eq.~13! through expanding
the N̄N wave functionsC p̄p andC n̄n in any complete set o
orthonormal functions. The complete set of harmonic os
lator wave functions is widely applied to bound state pro
lems since they have analytical forms both in coordinate
momentum spaces. Bound state problems with only
strong interaction or only the Coulomb force can be w
solved in the regime of harmonic oscillator wave function
by choosing the oscillator length being of order 1 or 100 f
respectively. Detailed investigations@31#, however, have
shown that the harmonic oscillator wave function approa
fails to describeN̄N atomic states which are dominated b
the long-ranged Coulomb force and influenced by the sh
ranged strong interaction. The reason is that two very dif
ent oscillator lengths are involved to describe theN̄N deep
bound stateand the atomic state.

The Sturmian function method was first used in atom
physics to evaluate the binding energy and wave function
atoms@32,33#. It was pointed out that the method is muc
more powerful than the approach using harmonic oscilla
and hydrogen wave functions. Subsequently, the method
applied to various physical problems such as electromagn
collisions@34#, binding energies of nuclei@35,36#, and bound
and resonant states in special potentials@37,38#. The Stur-
mian functions are very similar to the hydrogen wave fun
tions and are, therefore, also named Coulomb-Sturmian fu
tions. In coordinate space the SturmiansSnl(r ), which are
used in the present work, satisfy the second-order differen
equation@34#
d
-

l-
-
d
e
l
,
,

h

t-
r-

c
f

r
as
tic

-
c-

al

S d2

dr2
2

l ~ l 11!

r 2
1

2b~n1 l 11!

r
2b2D Snl~r !50. ~18!

By solving Eq.~18!, one finds

Snl~r !5F n!

~n12l 11!! G
1/2

~2br ! l 11exp~2br !Ln
2l 11~2br !,

~19!

where Ln
2l 11(x) are Laguerre polynomials. The Sturmian

are orthogonal and form a complete set with respect to
weight function 1/r , which follows from the corresponding
1/r potential term in Eq.~18!:

E
0

`

r 2dr
Snl~r !

r

1

r

Sn8 l~r !

r
5dnn8. ~20!

Thus radial functionsRl(r ) can be expanded in the comple
set of the Sturmian functionsSnl(r ),

Rl~r !5(
n

anl

Snl~r !

r
. ~21!

Inserting Eq.~21! into Eq. ~13! does not lead to a diagona
form on the right-hand side of Eq.~13! unlike the case of the
harmonic oscillator wave functions. The matrices on bo
sides of Eq.~13! must be simultaneously diagonalized. No
that the Sturmians have analytical form@34# in momentum
space. One is allowed to deal with strong interactions
momentum space with the complete set of the Sturmian
easily as with the set of the harmonic oscillator wave fun
tions. The matrix elements of the Coulomb interaction
well as the kinetic term can be evaluated analytically acco
ing to Eq.~18! and Eq.~20!.

Because almost all bound-state hydrogenic wave fu
tions are close to zero energy, the innermost zeros of
functions are insensitive to the principle quantum numb
This accounts for the fact that the bound hydrogen functi
do not form a complete set; the continuum is needed to a
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1600 56Y. YAN, R. TEGEN, T. GUTSCHE, AND A. FAESSLER
lyze the region between the origin and the limiting first ze
Unlike hydrogen functions, the first node of the Sturmi
functions continues to move closer to the origin with incre
ing the principle numbern. This is the key point why a
short-ranged nuclear force can easily be taken into acc

for the N̄N atomic state problem by using complete sets
the Sturmian functions.

The parameterb is the length scale entering the Sturmi
functions in Eqs.~18! and ~19!, in the same way as the co
responding parameter enters the harmonic oscillator fu

tions. ForN̄N deep bound states one should use 1/b of order
1 fm while the atomic states without strong interactions
quire 1/b of order 102 fm. However, for protonium account
ing for both the strong interaction and the Coulomb for
one must use a 1/b between the two values used for th
above cases. Using a complete basis of, for example,
Sturmian functions~100 for theL5J21 wave, and anothe
100 for theL5J11 wave! with 1/b552500 fm, one can
precisely reproduce the analytical 1s and 2p wave functions
of the N̄N system subject to only the Coulomb interactio
Using the same basis with 1/b50.1230 fm, the wave func-
tions of N̄N deep bound states can be precisely evalua
The N̄N deep bound states can be evaluated in the comp
set of the harmonic oscillator wave functions, and also in
complete set of Sturmian functions with a more suita
length parameter, for example, 1/b51 fm. From the above
investigation, a length parameter 1/b around 20 fm is suit-
able for the protonium problem.

We have compared our numerical method with the tra
tionally used method, namely, the Numerov approach@20#,
applied to theN̄N atomic problem in, for example, th
Kohno-Weise potential. The binding energies and wid
presented in Ref.@20# for the states1S0, 3P0, 3S1, and 3SD1
are well reproduced in the Sturmian function approa
Wave functions for these states are also compared in the
approaches. Here only the wave functions for the state3SD1
are presented in Fig. 3. It is found that at short distance
outputs in the two approaches are quite consistent, and
the discrepancies between the wave functions evaluate
the two methods become more and more obvious as the
tive distance between nucleon and antinucleon increases
pecially the imaginary part of the1S0 and 3S1 wave func-
tions.

Finally, it should be pointed out that the Numerov meth
cannot be applied to a nonlocal potential, for example,
Bonn potential which is given in momentum space, and i
not easy to handle atomic states with higher angular mom
tum @39#, for example, the state3PF2. Therefore it is essen
tial to use a precise numerical method, applied not only
local but also to nonlocal potentials, to handle theN̄N atomic
state problem from a more general point of view. In pr
ciple, there is no limit to the accuracy in the evaluation of t
N̄N atomic states in the Sturmian function approach. On
allowed to use larger and larger complete bases of the S
mian functions until the theoretical results converge.2 And

2There is no CPU problem, most university computers are cap
enough.
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the N̄N atomic states with higher angular momenta can
easily handled in the approach.

IV. N̄N BOUND STATES

A. Experiments on N̄N bound states

The properties ofN̄N atomic states have been studied
several experiments@10,11# at LEAR. The results for energy
shift DE and width G of the 1s and 2p atomic states are
collected in Table I, where the energy shiftDE is measured
with respect to the pure Coulomb binding energyE1s

0 512.49
keV, see Fig. 4~a!. Except for the energy shift and width o
the state3SD1 reported in Ref.@11#, other data are available
only at the spin-averaged level. All the experiments det
mined DE1s,0, which corresponds to a 1s state which is
less bound, hence the effect of the strong interaction is
pulsive. Theoretical predictions@12–20# for the energy shift
DE1s and widthsG1s and G2p are in reasonable agreeme
with the experimental data except for the quark rearran
ment model@40#. In addition to the measurement of the pro
erties of p̄p atoms, another important result of recent LEA
experiments is the evidence for broad mesonic resona
~decay widthsG>50 MeV! which cannot be fitted into the
usual QQ̄ flavor multiplets. One prominent exampl
le

FIG. 3. The wave functionsrRl(r ) of the N̄N atomic states
3SD1. Here only theI 50 part is presented. The solid curves are f
the wave functions evaluated by Carbonell in the Numerov met
@39#, and the dashed curves represent our results.~a! the real part of
the 13S1 wave function,~b! the imaginary part of the13S1, ~c! the
real part of the13D1 wave function, and~d! the imaginary part of
the 13D1. The states are labeled according to2I 11,2S11LJ . And

C I51/A2@C p̄p1(2) IC n̄n#.
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TABLE I. Experimental energy shiftsDE and widthsG for NN̄ atomic states.

DE1s ~keV! G1s ~keV! G2p ~meV! Refs.

20.506 0.30 , 1.0 Ahmadet al. ~1985! @10#

20.706 0.15 1.606 0.40 Ziegleret al. ~1988! @10#

20.756 0.06 0.906 0.18 456 10 Bakeret al. ~1988! @10#

20.736 0.05 1.136 0.09 Van Eijket al. ~1988! @10#

20.626 0.10 1.136 0.17 326 10 Bacheret al. ~1989! @10#

20.736 0.02 1.126 0.06 346 2.9 K. Heitlineret al. ~1993! @11#

20.856 0.04 (3SD1) 0.776 0.15 (3SD1)
h
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iv
is the tensor mesonf 2(1520) @41# with quantum numbers
JPC(I G)5211(01) and mass near 1530 MeV, for whic
there was some evidence in earlier bubble chamber exp
ments@42#. The ASTERIX group at LEAR studied the rea
tion p p̄→p1p2p0 from a pure initialL51 atomic state
and established the tensor mesonAX(1565), which appears

FIG. 4. ~a! N̄N atomic states given in the binding energ
2E1s522mp1E. The left state is the unperturbed Coulombic 1s
state. The column labeled ‘‘LEAR’’ represents the Monte Ca
simulation result@55#, the columns labeled ‘‘model A’’ and ‘‘mode

B’’ refer to the Paris and Bonn potentials, respectively.~b! N̄N
deep bound states given in total energies~masses!. Note that
f 2(1520) has the same quantum numbers as the13PF2 state,f 0 has
the same quantum numbers as the13P0 state. Similarly other me-
sons could be associated with energy levels of the spectrum. O
f 2(1520) is a firm candidate, other identifications are speculat
Model A puts such anf 0 at ;1100 MeV while model B puts it
below 800 MeV. The notation for the states is (2I 11)(2S11)LJ.
That two different valuesL andL12 as inSD, PF, etc., are given
indicates their mixing in this state.
ri-

in the full listing of the Review of Particle Properties@41# as
f 2(1520), in thep1p2 channel@3#. First results obtained by
the Crystal Barrel Collaboration forp p̄→3p0 in liquid hy-
drogen ~which is dominated by initialL50 atomic states,
and associated with initialL51 atomic states! also revealed
the presence of thef 2(1520) resonance in thep0p0 D-wave
annihilation channel@4#. However, a later analysis of th
Crystal Barrel data forp p̄→3p0 together withp p̄→hhp0

@43#, imposingp p̄ S states only, also indicated the presen
of an isoscalar-scalarJPC5011 resonance with a mass o
1520 MeV, where the contribution of thef 2(1520) is re-
duced@44#. The latest partial-wave analysis of the reacti
p p̄→3p0 in liquid hydrogen, relaxing the previous con
straint of purep p̄ S-state annihilation, indicates both th
need for a scalar 011 and a tensor 211 state in thep0p0

annihilation channels@45#. The respective values for massM
and widthG of these two resonances are@45#

f 0~1500!:M51500 MeV, G5120 MeV,

JPC~ I G!5011~01!, ~22!

and

f 2~1520!/AX:M51530 MeV, G5135 MeV,

JPC~ I G!5211~01!. ~23!

The analysis@27#, which demonstrated that quantum num
bers, production branching ratios, and relative strength
strong decay modes, are consistent with the interpretatio
the f 2(1520) as a tensor coupled2I 11,2S11LJ513PF2 NN̄
bound state. However, other interpretations, such asvv/rr
molecules@46#, might also be tenable.

Although observed in thep1p2 andp0p0 channels, re-
spectively, of the reactions p̄p→p1p2p0 and
p̄p→p0p0p0, f 2(1520) cannot havepp as the dominant
decay mode, since this 211(01) state has not been seen
pp phase shift analyses and in thegg→pp process. The
decaysf 2(1520)→hh,hh8 are shown to be small by Crys
tal Barrel and E760, and thevv mode must be small be
cause of phase space restrictions. Therefore,f 2(1520)→rr
is likely to be the largest decay mode. This mode would
exceedingly difficult to detect as it requiresr-like correla-
tions among pion pairs in the final states including more th
4p. The nonrelativistic quark modelA2 @47,48# in Fig. 2

ly
e.
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TABLE II. The parameters adjusted to low-energyN̄N data.

Model A Model B

r 0 ~fm! lA2
~GeV21) lA3 ~GeV23/2) L ~GeV! lA2

~GeV21) lA3 ~GeV23/2)
0.5720.65 5.527.5 4.026.5 0.721.0 2.524.0 4.026.0
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predicts indeed the dominance of therr decay mode of the
f 2(1520). Recently, evidence for a possible 211 state at
1640 MeV decaying intor0r0 has been reported in the re
action n̄ p→p1p1p1p2p2 at high n̄ momenta@49#. A
211 resonance with mass; 1640 MeV andG<70 MeV has
also been seen in the final statevv by the GAMS and VES
Collaborations@50,51#. One might suppose that thef 2(1520)
and the 211 resonance with mass 1640 MeV can be redu
to the same object.

B. Predictions for N̄N bound states

In this section, we use the Sturmian function approach
evaluate the mass and width of both theN̄N deep bound
states and atomic states, with special emphasis on how
N̄N strong interaction influences the energy shift and wi
of N̄N atoms. We resort to aNN̄ potential, where the absorp
tion is derived in the nonperturbative quark annihilati
model@47#, the elastic part taken as theG-parity transforma-
tion of different meson-exchange models of theNN interac-
tion, namely, as defined by versions of the Bonn@52# and
Paris@53# groups.

The complexNN̄ potentialVNN̄ consists of an elastic an
an annihilation part:

VNN̄5VOBE1VANN1 iWANN . ~24!

The short-ranged imaginary partWANN describes annihila-
tion into two and three meson final states, thereby also g
erating a dispersive real partVANN . The microscopic deriva-
tion of the complex annihilation partVANN1 iWANN is done
in a nonrelativistic quark model using the planar annihilat
topology A2 and A3 @47# in Fig. 2. The effectiveQQ̄
annihilation/creation operator is described by the3P0 vertex,
i.e., QQ̄ pairs are created/destroyed with vacuum quant
numbers:JPC(I G)5011(01) and 3P0 in LS coupling. It is
interesting to note that the relativistic annihilation model
@57# also finds a preference for the3P0 vertex. The overall
strength of the respective two- and three-meson transit
are free phenomenological parameters given ultimately
nonperturbative QCD dynamics~gluonium spectrum, energ
dependence of the strong coupling, etc.!. The basis for the
use of the planar quark modelsA2 andA3 is founded in the
analysis of two meson production data forNN̄ annihilation
@48#. The derivation of the optical potential due to these a
nihilation diagrams is extensively discussed in Ref.@47#. The
explicit consideration of the mesonic annihilation chann
results in an energy- and state-dependent absorption po
tial, which is nonlocal.

The elastic partVOBE is constructed by theG-parity trans-
formation of a realistic one-boson exchange potential of
NN interaction, as illustrated in Fig. 1. In model A, we co
d

o

he
h

n-

f

ns
y

-

s
n-

e

sider theG-parity transformed meson-exchange part of t
NN Paris potential@53#, containingp, 2p, andv exchange.
The short-range part of the elastic interaction has to be re
larized by use of a cutoff, as introduced by the Helsin
group @28#:

f ~r !5
~r /r 0!10

11~r /r 0!10
. ~25!

In model B, we use the energy-independent one-boson
change potential~OBEPQ! of the Bonn group@52#. A short-
range regularization to the potential is applied@47#, by ap-
plying the following cutoff function to the Bonn potential:

F~q,q8,L!5
1

11~q/L!10
•

1

11~q8/L!10
. ~26!

In the present work there are three parameters, namelyr 0,
lA2

, lA3
) in model A and (L, lA2

, lA3
) in model B. These

parameters are determined in three steps: first fitted to
experimental data of the charge-exchange, elastic, and
elastic integrated cross sections of thep̄p reaction@54#, then
to theN̄N atomic data, and finally to the exotic tensor mes
f 2(1520). The theoretical results for the integrated cross s
tions of the p̄p reaction are not sensitive to the paramete
Each parameter is adjusted into a range, but not a cer
value@54#. Then we fit the preadjusted parameters to exp
mental data ofN̄N atomic states. After these two steps, t
parameters are bound into narrow ranges as listed in Tab
The freedoms of the parameters make the theoretical pre
tions for the energy levels and widths of theN̄N deep bound
states uncertain. The binding energies ofN̄N deep bound
states depend strongly on the cutoffsr 0 and L. The uncer-
tainties of ther 0 andL result in;6150 MeV and;6200
MeV to the 13PF2 mass in models A and B, respectivel
Compared to the cutoffs, the freedoms oflA2 andlA3 only
affect the final result a little. The theoretical results for t
energy shifts and widths of the atomic states1S0, 3SD1, and
3P0 are presented in Table III and Fig. 4~a! with a parameter
such as r 050.60 fm, lA256.5 GeV21, and lA355.5
GeV23/2 in model A andL50.8 GeV,lA253.0 GeV21 ,
andlA355.0 GeV23/2 in Model B. For comparison, the en
ergy shifts and widths in the Monte Carlo simulation@55# of
a planned LEAR experiment are also listed in the table. W
the same parameters, we obtain the mass and width of
N̄N deep bound state13PF2 as

MA51570 MeV, GA5110 MeV ~27!

and

MB51580 MeV, GB590 MeV, ~28!
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TABLE III. The energy shifts and widths of the 1s and 2p N̄N atomic states, see also Fig. 4~a!.

Monte Carlo Model A Model B
DE ~eV! G ~eV! DE ~eV! G ~eV! DE ~eV! G ~eV!

1S0 2500620 990673 2140 1020 2650 820

3SD1 278464 660615 2630 725 2615 510

3P0 20.10060.008 0.07560.015 20.045 0.080 20.050 0.060
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for models A and B, respectively. The spectrum ofN̄N deep
bound states is presented in Fig. 4~b!. The ratio oflA3 to
lA2 found here is comparable with the value in Ref.@47#.
Such values forr 0 andL are close to the annihilation radiu
as deduced from the convolution of the baryon number
tribution in theNN̄ system@56# as well as those derived from
the effective quark-antiquark annihilation density@57#.

The annihilation potential derived from theA2 and A3
N̄N annihilation diagrams supports reasonable widths for
1s and 2p N̄N atomic states, see Table III. The predictio
for the width of 1s N̄N atoms in a quark rearrangeme
model@40# is too small, compared to experimental data. T
shows again that experiments prefer theA2 and A3 N̄N
annihilation processes over the quark rearrangement mo

We find that it is extremely difficult to reproduce th
Monte Carlo simulation results@55# and the experimenta
data @11#, namely, both the energy shifts and widths w
model A. If one employs a large enough annihilation pote
tial derived from theA2 andA3 diagrams to fit the energ
shift of the atomic state1S0, one obtains too large a widt
for the state.

We notice, in Fig. 4~b!, that the predictions for theN̄N
deep bound states are rather different in models A and
While model A predicts no bound states below 1.0 Ge
model B has a proliferation of states in that region. T
spectrum of model A looks to us more realistic than the o
of model B. We recall that thelA2, lA3, and the cutoffL are
adjusted to reproduce the properties of theN̄N 1s and 2p
atomic states and to identify theN̄N deep bound state
13PF2 with the exotic mesonf 2(1520). Note that the
f 2(1520) meson should not be confused with the tensor
son f 28(1525) @41#. The discrepancy between the spectra
models A and B indicates to us the need for a proper ene
dependentN̄N potential in momentum space which provid
for the proper reduction in strength as theN̄N energy de-
creases below threshold. It should be pointed out that
energy-dependent Bonn potentials are not suitable for th

The properties ofN̄N atomic states are naturally sensitiv
to theN̄N strong interaction at threshold. The shift of prot
nium energy levels is dominated by both the long-dista
p-exchange potential and the admixture of then̄n compo-
nent to p̄p atoms. The long-distancep-exchangeN̄N inter-
action is model independent. One is forced to conclude
the difference between theI 50 and I 51 parts of theN̄N
interaction for the1S0 state at threshold as derived from th
NN Paris potential through aG-parity transformation, is ap
-

e

s

el.

-

B.
,
e
e

e-
f
y-

e
.

e

at

parently too small. The Bonn potential roughly reproduc
the observed small energy shifts of the 1s atomic state but
gives the wrong level ordering for the states1S0 and
3SD1, see Fig. 4~a!. For theN̄N deep bound state spectru
the situation is reversed; here the Paris potential looks m
realistic than the Bonn potential. None of the investiga
models is able to reproduce both the atomic and deep bo
spectrum equally well.

In conclusion, theN̄N bound state spectrum represents
sensitive test for currentNN and N̄N models. For the first
time the N̄N spectrum has been calculated for a nonlo
potential in momentum space~the Bonn potential!. The spec-
trum has two distinct parts, which are separated by a w
energy gap. The ‘‘upper’’ part consists of the atomic sta
which are several keV below theN̄N threshold of
2mp51.88 GeV and which represent a large (;102 fm! sys-
tem dominated by QED forces. The ‘‘lower’’ part of th
spectrum consists of a presently unknown number of d
bound states, which are several hundred MeV below
N̄N threshold and have a much smaller, hadronic size (;1
fm! dominated by QCD forces. Only one state13PF2 has
been identified with the exotic mesonf 2(1520) so far. On
the theoretical side, theNN̄ spectrum with its two very dif-
ferent parts and nonlocalN̄N potentials involved requires a
new numerical approach. We have used here the Sturm
function approach which is shown to be particularly suited
the N̄N spectrum and wave functions. We find that the tw
models investigated~versions of the local Paris and nonloc
Bonn potentials supplemented with an optical potential
rived in the 3P0 quark model! either work well in the lower
or in the upper part of the spectrum, but not in both parts
is noteworthy that all Bonn potentials give a very de
bound state11S0 which is not so for the Paris potential. Th
can be traced back to differences in the isospin depende
of the two models. We also find a sensitivity of the spectru
to the type of the quark annihilation potential used (3P0 or
others!. Both models can accommodatef 2(1520) as aN̄N
deep bound state13PF2, but they differ significantly in the
number and level ordering of other deep bound states. It
be interesting to see if other exotic mesons@for example the
scalar partner off 2(1520)# can be identified with member
of the N̄N bound state spectrum.
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erauf, T. Gutsche, Y. Yan, A. Muhm, and A. Faessler, Nu
Phys.A588, 783 ~1995!.

@55# D. Gotta, Nucl. Phys.A558, 645c~1993!.
@56# W. Weise, Nucl. Phys.A558, 219c~1993!.
@57# F. Myhrer and R. Tegen, Phys. Lett.126B, 237 ~1985!.


