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QCD sum rules for the isospin-breaking axial correlator with correct chiral behavior
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We revisit the QCD sum-rule treatment of the isospin-breaking correlator^0uT@Am
3 (x)An

8(0)#u0&, in light of
the recent claim that a previous treatment produced results incompatible with known chiral constraints. The
source of the error in the previous analysis is identified, and a corrected version of the sum-rule treatment
obtained. It is then shown that, using input from chiral perturbation theory, one may use the resulting sum rule
to extract information on the leading chiral behavior of isospin-breaking parameters associated with the cou-
pling of excited pseudoscalar resonances to the axial currents. A rather accurate extraction is possible for the
case of theh8. Demanding stability of the sum-rule analysis also allows us to improve the upper bound on the
fourth-order low-energy constant,L7. @S0556-2813~97!03409-2#

PACS number~s!: 24.85.1p, 11.55.Hx, 11.30.Hv, 12.39.Fe
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I. INTRODUCTION

One of the most attractive features of chiral perturbat
theory ~ChPT! @1# is that it provides a framework for con
structing effective hadronic Lagrangians in the most gen
possible way that implements both the symmetries of Q
and the symmetry breaking pattern of the approximate ch
symmetries of QCD. As such, it fully incorporates the co
sequences of QCD in the low-energy regime. The price to
paid for using only symmetry arguments is that every term
the effective Lagrangian,Leff , allowed by these argument
will appear, multiplied by an undetermined constant~re-
ferred to as a low-energy constant, or LEC!. These LEC’s
could, in principle, be computed from QCD, but must
treated as parameters to be determined phenomenologi
if one does not go beyond ChPT.

Although such effective Lagrangians are necessarily n
renormalizable, Weinberg’s counting argument@2# shows
that only a finite number of terms inLeff contribute if one
expands to fixed ‘‘chiral’’ order, that is in powers of th
external momenta~generically denoted asp) and current
quark masses@wheremq counts as orderO(p2)#. As a result,
in the chiral expansion of any low-energy observable,
general form of the dependence on external momenta
light quark masses, to a given order, can be compu
straightforwardly from the form of the relevant terms inLeff .

Since this formal dependence is a rigorous conseque
of the symmetries and approximate symmetries of QCD
follows that ChPT can be used to place constraints on tr
ments of the same observable using other methods. Indee
one makes a chiral expansion of the results obtained by
other method and finds that terms present in ChPT to a g
order are missing, then one knows unambiguously that ei
the method itself, or some truncation employed in it, is
compatible with QCD. This is true regardless of the rapid
of convergence of the chiral series in question: all ter
required by the symmetries of QCD must be present if
method is to correctly incorporate the consequences of Q
560556-2813/97/56~3!/1588~8!/$10.00
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An example of the use of such constraints is provided
the analysis of the nucleon mass using QCD sum rules. S
dard treatments were shown to produce an expression formN
in terms of condensates that implies the presence of ce
chiral logarithms inmN , although such contributions ar
known from ChPT to be absent@3,4#. The source of this
problem was found to be a failure to treat properly the co
tribution of thepN continuum to the sum rule in the origina
analyses@4#; including the leading contributions from suc
states restores the correct chiral behavior ofmN .

A more severe problem of the same type has been poi
out in the case of the isospin-breaking axial correlator

Pmn
38 ~q!5 i E d4x eiq•x^0uT„Am

3 ~x!An
8~0!…u0&

[P1~q2!qmqn2P2~q2!q2gmn , ~1!

whereAm
3 , An

8 are the neutral members of the octet of ax

currentsAm
a 5 q̄gmg5(la/2)q. This correlator was first ana

lyzed using QCD sum rules in Ref.@5# ~CHM!. As shown in
Ref. @6#, however, if one writesP1(q2), which contains the
p0 andh pole contributions, in the form

P1~q2!5S gh

q22mh
2
2

gp

q22mp
2 D 1•••

5S q2~gh2gp!1~gpmh
22ghmp

2 !

~q22mh
2 !~q22mp

2 !
D 1•••, ~2!

then the expression forgh2gp ~given by the slope of the
numerator with respect toq2) obtained from the sum-rule
analysis is lacking both the leading analytic and leading n
analytic terms from its chiral expansion in terms of the lig
quark masses.~The demonstration of this is reviewed briefl
below in Sec. II.!
1588 © 1997 The American Physical Society



ia
W
an
in

es
fly
.
le
a
io
he
th
th
W

ll
r

t-

on
r
l

ex
e

lta
e
to
a

ith

so

ly
e

o
l

the
nd

orm

d

n-
-
-

are

g

e-

re-

m

r to
HM
sum
el

d

56 1589QCD SUM RULES FOR THE ISOSPIN-BREAKING . . .
In this paper we revisit the sum-rule analysis of the ax
correlator above, and identify the source of this problem.
then obtain a corrected version of the relevant sum rule
show how it can be used to extract information on isosp
breaking couplings of the higher pseudoscalar resonanc

The paper is organized as follows. In Sec. II, we brie
review the sum-rule and ChPT analyses of the correlator
Sec. III, we identify the problem with the previous sum-ru
treatment and work out the corrected version of the relev
sum rules. In Sec. IV, we show how one can use informat
from ChPT as input into the sum rule. We also clarify t
physical content of the corrected sum rule, extracting in
process information on the isospin-breaking couplings of
higher pseudoscalar resonances to the axial currents.
conclude in Sec. V with a brief summary.

II. PREVIOUS CHPT AND SUM-RULE TREATMENTS

We provide here only a very brief review, which wi
serve also to fix notation. For more details the reader is
ferred to Refs.@5# and @6# for the sum-rule and ChPT trea
ments, respectively.

We first review the sum-rule treatment.1 As usual, the aim
is to write dispersion relations forP1(q2) andP2(q2) which
relate integrals over the relevant physical spectral functi
to the behaviors at large spacelikeq2, where the operato
product expansion~OPE! becomes valid. One then Bore
transforms the resulting dispersion relations in order to
ponentially suppress the higher-energy portions of the sp
tral integral on the phenomenological side and simu
neously factorially suppress the contributions of high
dimension operators on the OPE side. The scalar correla
P1(q2) and P2(q2) in Eq. ~1! have been chosen in such
way that, from the asymptotic behavior ofPmn

38 (q) in QCD,
it is known that the relevant spectral integrals converge w
out subtraction. Note that the definition ofP2 employed here
agrees with that used in Ref.@5#, but differs from that in Ref.
@6# by a factor of2q2.

On the phenomenological side, the axial-vector re
nances contribute to bothP1(q2) and P2(q2). In the
narrow-width approximation, their contributions to the com
plete spectral function are written

1

p
„Im Pmn

38 ~q!…A5(
A

g~A!@2gmn1qmqn /MA
2 #d~q22MA

2 !.

~3!

The pseudoscalar resonances, in contrast, contribute on
P1. Following the convention of earlier works, we writ
these contributions as

1

p
„Im P1~q2!…P5gpd~q22mp

2 !2ghd~q22mh
2 !

1gh8d~q22mh8
2

!1gp8d~q22mp8
2

!

1•••. ~4!

1See, for example, Refs.@7–10# for details of the general metho
of QCD sum rules.
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~The minus sign in front ofgh is conventional and related t
the fact that, so defined,gh5gp at leading order in the chira
expansion.!

On the OPE side of the sum rule, the expressions for
scalar correlators have been worked out by CHM up to a
including operators of dimension 6, and to orderO(mq ,as).
Neglecting electromagnetic effects, the results have the f
~with Q252q2)

P1~q2!5
1

4A3
FC0lnQ21

C1

Q2 1
C2

Q4 1
C3

Q6G ,
P2~q2!5

1

4A3
FC0lnQ21

C1

Q2 2
C2

Q4 1
C3

Q6G , ~5!

whereC0 andC2 vanish at the level of the truncations note
above, and

C252@mu^ ū u&2md^ d̄d&],

C35
352

81
pas@^ ū u&22^ d̄d&] 2. ~6!

If one were to include higher-order terms in Eq.~5!, C0

would receive contributions at orderO(aEM ,as ,mq
2) andC1

at O(mq
2). An argument analogous to that of Shifman, Vai

shtein, and Zakharov@8# for the corresponding isospin
conserving correlatorPmn

33 (q) shows that the higher
dimension operators not included in these expressions
also all explicitly of orderO(mq

2). The form of the dimen-
sion 6 coefficientC3 in Eq. ~6! has been obtained assumin
vacuum saturation.

As can be seen from the Lorentz structure of Eq.~3!, it is
possible to remove the contributions of the axial-vector m
sons by considering the combination

PP~q2![P1~q2!2P2~q2!. ~7!

CHM, motivated by this observation, write a dispersion
lation for PP(q2) in the form

PP~q2!5E 1

p

Im PP~s!

s2q2
ds. ~8!

When Borel transformed, this relation gives CHM’s su
rule,

2C2S 1

M4D 5
4A3

M2
@gpe2mp

2 /M2
2ghe2mh

2 /M2
#1•••, ~9!

whereM is the Borel mass parameter and the dots refe
the contributions of higher pseudoscalar resonances. C
then neglect higher resonance contributions and use this
rule, together with its derivative with respect to the Bor
mass,M , to solve forgh and gp . This procedure leads to
their result
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1590 56KIM MALTMAN AND MICHAEL C. BIRSE
~gh2gp!CHM5S C2

2A3M2D
3Femh

2 /M2
~M21mp

2 !2emp
2 /M2

~M21mh
2 !

mh
22mp

2 G
~10!

for the slope of the numerator on the RHS of Eq.~2!.
The analysis ofPmn

38 (q) at next-to-leading~1-loop! order
in ChPT is straightforward, and follows standard metho
We employ throughout the notation of Gasser and Leutwy
@1#. The result forP2(q2), recast so as to correspond to t
definition employed in this paper, is@6#

P2
1 loop~q2!52

B0~md2mu!

A3q2 F 3

32p2
„ln~mK

2 /m2!11…

28L5
r ~m2!G , ~11!

whereB0 is the usual second-order LEC, related to the qu
condensate in the chiral limit,m is the renormalization scale
and L5

r (m2) is a renormalized fourth-order LEC. Note th
P2(q2) results solely from contact terms~that is, terms in
Leff that are quadratic in the external axial sources!. To this
order,P1(q2) is saturated by thep0 andh pole terms. From
a similar analysis, one finds, for the coefficientsgp and gh
appearing in Eq.~4!,

gp5 f p
2 e1 and gh5 f h

2e2 , ~12!

whereFp, f h are the physicalp,h decay constants ande1, e2
are isospin-breaking parameters defined by

^0uAm
8 up&5 i f pe1qm

^0uAm
3 uh&52 i f he2qm . ~13!

The expressions forf p , f h , e1, and e2 valid to one-loop
order can be found in Ref.@1#.

The problem with the sum-rule treatment is exposed w
one uses the known chiral expansions of the meson ma
and quark condensates to rewrite the sum-rule result,
~10!, as

~gh2gp!CHM5u0F2S 8

9

B0
2~ms2m̂!~ms12m̂!

M4
1••• D ,

~14!

to orderO(mq
2). HereF is a second-order LEC, equal tof p

in the chiral limit, andu0 is the leading-orderp0-h mixing
angle,
.
r

k

n
es
q.

u05
A3

4 S md2mu

ms2m̂
D , ~15!

with m̂5(mu1md)/2. Comparing this expression with th
corresponding one obtained from the one-loop ChPT resu

~gh2gp!ChPT5u0F2S ~mp
2 2m̄K

2 !

8p2F2
ln~m̄K

2 /m2!2
B0~ms2m̂!

8p2F2

1
32B0~ms2m̂!

3F2
L5

r ~m2!1••• D , ~16!

one sees that the sum-rule expression is lacking both
leading analytic and leading non-analytic terms in its chi
expansion@6#, and hence is incorrect. Moreover, the nume
cal consequences of this are significant: the sum-rule va
for the slope is more than an order of magnitude smaller t
that given by ChPT.

III. CORRECTED VERSION
OF THE SUM-RULE ANALYSIS

The key to understanding the origin of the problem w
the CHM sum-rule analysis lies in Eq.~8!. This relation fol-
lows from general properties of analyticity and unitarity u
der two assumptions:~a! that the singularities ofPP(q2)
consist solely of those associated with physical intermed
states and~b! thatPP(q2) converges sufficiently fast that n
subtractions are required. The latter assumption is explic
verified by the known asymptotic behavior ofP1(q2) and
P2(q2) in QCD. The former, however, is more subtle, sin
there can also be singularities of purely kinematic origin.
the case at hand, Eq.~11! shows explicitly thatP2(q2) has a
kinematic pole atq250. As a consequence, the correct ve
sion of the dispersion relation Eq.~8! must include the con-
tribution of this kinematic pole to the underlying conto
integral. Another way of saying this is that it isq2P2(q2)
which satisfies a dispersion relation without kinematic p
terms. The dispersion relation for this function, however,
quires one subtraction in order to converge. The result
subtraction constant gives rise to the kinematic pole term
P2(q2). Its value is calculable in ChPT, and turns out
correspond precisely to the contact contributions given in
~11!.

Bearing this in mind, it is straightforward to write dow
the corrected dispersion relation forPP(q2),

PP~q2!52
1

q2

B0~md2mu!

A3
F 3

32p2
„ln~mK

2 /m2!11…

28L5
r ~m2!G1E 1

p

Im PP~s!

s2q2
ds, ~17!
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56 1591QCD SUM RULES FOR THE ISOSPIN-BREAKING . . .
where ImPP(s) includes only the spectral strength asso
ated with pseudoscalar states. The corresponding Bo
transformed sum rule is then

C2

2A3M2
5F S 2

B0~md2mu!

A3
D S 3

32p2
„ln~mK

2 /m2!11…

28L5
r D 1gpe2mp

2 /M2
2ghe2mh

2 /M2
1gh8e

2m
h8
2

/M2

1gp8e
2m

p8
2

/M2
1•••G . ~18!

As one might expect, the inclusion of the kinematic-po
contribution cures the problem of the incorrect chiral beh
ior of gh2gp . To see this, consider theO(M0) terms of Eq.
~18!. Bearing in mind thatgh8, gp8, . . . are all of order
O(mq

2) @8#, one has

05S 2
B0~md2mu!

A3
D S 3

32p2
„ln~mK

2 /m2!11…28L5
r ~m2!D

1gp2gh1O~mq
2!, ~19!

where the first term on the RHS results from the kinema
pole in Eq. ~17!. Without this term, one gets
gh2gp5O(mq

2), as found by CHM. In contrast, using th
corrected sum rule, one finds that Eq.~19! is simply an al-
ternate form of Eq.~16!, as required.

To clarify the physical content of the remaining pieces
the sum rule, Eq.~18!, it is useful to note the chiral order o
various quantities appearing therein. In particular, the ch
expansions ofgp , gh , mh8

2 , andmp8
2 start at orderO(p0),

mp
2 , mh

2 , andC2 at O(p2), and~as already noted above! gh8,
gp8 at O(mq

2)5O(p4). After the cancellation embodied i
Eq. ~19!, the only O(p2) terms remaining in Eq.~18! are
those inC2 and 2gpmp

2 1ghmh
2 . Using the leading-orde

expressionŝ ūu&5^ d̄d&52B0F2 andgp5gh5u0F2, it is
straightforward to show that theO(p2) terms on both sides
of the sum rule also match properly. To this order, t
matching is just an isospin-breaking version of the Ge
Mann–Oakes–Renner relation.

The information obtained in the previous paragraph is
that we can extract from Eq.~18! in its present form. This is
because terms ofO(p4) have not been included on the OP
side of the sum rule. If one wishes to use the sum rule
obtain information about anything beyond the leading a
next-to-leading order behavior ofgp and gh , one must,
therefore, restore theO(mq

2) terms to the OPE. This is easil
accomplished starting from the expression for the co
sponding terms in the OPE of the analogous isosp
conserving correlator, as given in Ref.@11#. The result is
-
el-

-
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-

ll

o
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-
-

@PP~q2!#OPE52
1

A3Q2F3~md
22mu

2!

8p2
lnS Q2

m2D
1

md^ d̄d&2mu^ ūu&

Q2
1

~md
22mu

2!

pQ4
^asG

2&G ,

~20!

where we have kept terms only up to dimension 4 and w
ten down the coefficient functions only to leading order
as . Substituting the expression@PP(q2)#OPE into the LHS
of Eq. ~17! and Borel transforming, we obtain an improve
version of the corrected CHM sum rule, Eq.~18!. To facili-
tate subsequent analysis, it is convenient to multiply b
expressions for the correlator byQ2 before Borel transform-
ing ~thereby eliminating the contribution of the kinemat
pole!. We also follow standard practice and introduce a co
tinuum threshold parameter,s0, representing the point be
yond which the hadronic spectral function is modelled by
perturbative QCD counterpart. The contribution correspo
ing to the integral over that portion of the phenomenologi
spectral function can then be moved to the OPE side of
sum rule. The result of these manipulations is the sum ru

gpmp
2 e2mp

2 /M2
2ghmh

2e2mh
2 /M2

1 (
PÞp,h

gPmP
2e2mP

2 /M2

5
1

A3
F3~md

22mu
2!

8p2
M2~e2s0 /M2

21!1~md^ d̄d&

2mu^ ūu&!2
~md

22mu
2!

pM2
^asG

2&G , ~21!

where the sum on the LHS now runs over pseudoscalar r
nances with squared masses less thans0.

The chiral expansion of the sum rule, Eq.~21!, contains
terms of orderO(p2) and higher, together with the usua
chiral logs, which start at orderO(p4lnp). TheO(p2) terms
are the same as those in Eq.~18! and so it is easy to see th
sum rule is consistent to this order. Since only the lig
quark condensate and the quantitiesgp , gh , mp

2 , and mh
2

contain leading chiral logs, these contributions must a
cancel in Eq.~21! ~as verified below!. Finally, the expansion

of gpmp
2 e2mp

2 /M2
2ghmh

2e2mh
2 /M2

to order O(p4) can be
found from known one-loop expansions, and that
md^ d̄d&2mu^ ūu& can be obtained from a straightforwar
one-loop calculation. With these results, we may employ t
sum rule to obtain a relation describing the leading ch
behavior @O(mq

2)5O(p4)# of the isospin-breaking param
etersgh8,gp8, . . . for the heavy pseudoscalar mesons. N
further information can be extracted from Eq.~21! without
two-loop ChPT calculations as input.

To verify the cancellation of the chiral logs, and to obta
the promised sum rule for the leading chiral behavior ofgh8,
gp8, . . . , weexpand thep, h and condensate terms in Eq
~21! to orderO(p4). To do so for thep andh terms appear-
ing on the LHS requires only the one-loop expressions
f p , f h , e1, ande2 given by Gasser and Leutwyler@1#. The
results are
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gpmp
2 2ghmh

252u0F2F4

3
B0~ms2m̂!2B0S 9~ms22m̂!l p16msl K1~ms12m̂!l h

72p2F2 D
1

128B0
2~ms2m̂!

3F2
@~ms12m̂!L6

r ~m2!22~ms2m̂!L7
r 12m̂L8

r ~m2!#

1
B0

2m̂2

6p2F2
ln~mK

2 /m2!2
B0

2m̂~ms2m̂!

12p2F2 G ~22!

and

1

M2
~2gpmp

4 1ghmh
4 !5

16u0F2

9M2
B0

2~ms2m̂!2, ~23!

where l P5mP
2 ln(mP

2/m2) and all other notation is as in Gasser and Leutwyler@1#. For the condensate contributions on t

RHS, we require the expressions for^ d̄d& and^ ūu& valid to orderO(md2mu). These are easily obtained, and can be writ

^ ūu&5^ ūu& I1d,

^ d̄d&5^ ūu& I2d, ~24!

where^ ūu& I is the one-loop expression for the condensate in the isospin-symmetric limit, also to be found in Ref.@1#, and

d5~md2mu!F l h2l p

64p2F2~ms2m̂!
1

B0„11 ln~mK
2 /m2!…

32p2F2
2

4B0

F2
„2L8

r ~m2!1H2
r ~m2!…G . ~25!

From Eqs.~24! and ~25! it follows that, to orderO(p4),

@md^ d̄d&2mu^ ūu&#

A3

52u0F2F4

3
B0~ms2m̂!2

B0
2m̂~ms2m̂!

12p2F2
1

B0
2m̂2

6p2F2
lnS mK

2

m2 D 2B0S 9~ms22m̂!l p16msl K1~ms12m̂!l h

72p2F2 D
1

64B0
2~ms2m̂!

3F2
@2~ms12m̂!L6

r ~m2!12m̂L8
r ~m2!1m̂H2

r ~m2!#G . ~26!

To obtain a sum rule for the leading chiral behavior of the higher pseudoscalar resonances, we make use of Eqs.~22! and
~23! to replace the leading terms of thep andh contributions in Eq.~21!. The terms of higher order inmp andmh may be
neglected since they are at least of orderO(p6) in the chiral expansion, and they are numerically small for the Borel ma
of interest. Finally, inserting the chiral expansion of the quark condensates, Eq.~26!, into this sum rule, we get

(
PÞp,h

gPmP
2e2mP

2 /M2
5

A3M2

8p2
~e2s0 /M2

21!~md
22mu

2!1
~md

22mu
2!

8A3pM2
^asG

2&

2
64B0

2~ms2m̂!u0

3
@4~ms2m̂!L7

r 22m̂L8
r ~m2!1m̂H2

r ~m2!#2
16

9M2
u0F2B0

2~ms2m̂!2. ~27!
in

s
ul
t-
’

lar
led
ant
ts

Eq.
t

Note that all of the chiral logarithms have cancelled, leav
only terms that start at orderO(p4).

It is worth noting that the term involving the chiral LEC’
makes a numerically significant contribution to the sum r
and is dominated byL7

r . Moreover, phenomenological trea
ments that use resonance exchanges to generate the LEC
the effective Lagrangian of ChPT@20,21# show thatL7

r re-
g

e

s in

ceives contributions only from flavor-singlet pseudosca
states. Hence it already follows, without any more detai
analysis, that the sum rule implies the existence of signific
isospin-breakingh8 coupling. Before presenting the resul
of our analysis for the isospin-breaking parameters,gP , it is
also worth stressing a number of features of the sum rule,
~27!, which imply that, onceL7

r is fixed, these results for a
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least theh8 coupling should be quite reliable.
The renormalized LEC’sL7

r ,L8
r have been determine

phenomenologically and are reasonably well-known~see, for
example, Refs.@12,13# for recently updated values!. The re-
maining LEC, H2

r , can be related, for example, to th

isospin-breaking condensate ratiog[@^ d̄d&2^ ūu&#/^ ūu&.
This ratio has been estimated in a number of sum-rule an
ses@14–16,10,17,18#. Using any of the values ofg obtained
in these treatments to estimateH2

r , the resulting values are
such that the LEC combination in Eq.~27! is dominated by
the L7

r term. In particular, the uncertainty in the LEC com
bination associated with the sum of the errors on the p
nomenological determinations ofL8

r andH2
r ~where the latter

error is taken to correspond to the entire range of values c
above! is an order of magnitude smaller than that associa
with the error on the existing phenomenological determi
tion of L7

r . We may, therefore, ignore the effect of the u
certainties in the values ofL8

r and H2
r . This feature of the

analysis results from the fact that the coefficients ofL8
r and

H2
r are suppressed by a factor of (ms2m̂)/m̂;23 @19# rela-

tive to that ofL7
r . The uncertainty in the ratioms /m̂ which

enters this suppression is, of course, also completely ne
gible. Note that we do not require an explicit input value f
ms since, to the order considered in the chiral expansion,
may take

B0
2~ms2m̂!25~mK

2 2mp
2 !2. ~28!

On the phenomenological side of the sum rule, we exp
contributions from all of the higher pseudoscalar resonan
h8(958),h(1295),p8(1300), h(1440),p8(1800), . . . . The
p8(1300) is relatively broad (G5325 MeV @22#! and spans
the region between theh(1295) and theh(1440). Therefore,
without keeping terms of yet higher dimension in the OP
we have too little information in the sum rule to both a
equately parametrize the spectral function in the region
tween;1300 and;1450 MeV and at the same time to u
the sum rule to extract the values of all such paramet
Hence we concentrate on the extraction ofgh8, parametriz-
ing the h(1295), p8(1300), h(1440) region in terms of a
single effective contribution of zero width located at arou
1375 MeV. By varying the position of this contribution be
tween 1300 and 1450 MeV, we have verified that the
tracted value ofgh8 is not sensitive to this approximation
varying by ;66% over this range. This is a factor of
smaller than the variation induced by the uncertainty in
input value ofL7

r , which we discuss in more detail below
The effective strength parameter describing theh(1295),

p8(1300), andh(1440) region~which we denote bygp8 in
what follows! is, of course, much more sensitive to the a
sumed position of this strength. The corresponding unc
tainty in the extraction ofgp8 is ;15%, which is significant,
although still much less than the;60% associated withL7

r .
The stability of the determination ofgh8 is attributable, to a
large extent, to the fact that the residual term proportiona
L7

r provides the major contribution to the sum rule; as
ready noted above,L7

r is known to receive contributions onl
from flavor-singlet states, of which theh8 is nearest and
hence should provide the dominant contribution. This feat
y-
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of the sum rule is also responsible for the greater sensiti
of gp8 to the input value chosen for the location of the e
fective strength describing theh(1295), p8(1300), and
h(1440) region: the combined effective contribution to t
sum rule is small relative to the dominanth8 term and the
extracted value can therefore depend sensitively on the
sumed separation from theh8 peak.

Having employed information from ChPT to fix the low
lying p and h contributions to the original sum rule, an
explicitly modeled the contributions up to 1.44 GeV, we no
that there is now a significant gap to the next resona
contribution at 1.8 GeV. We therefore expect that Bo
masses of order 1–1.5 GeV will suppress the contributi
of higher resonance on the phenomenological side of the
rule.

On the OPE side it turns out that the situation is a
rather favorable. First, the gluon condensate term turns ou
be numerically very small compared to the dominantL7

r con-
tribution. Indeed, if we take for definiteness the value for t
condensate advocated in Ref.@23# ~which is similar to that
employed, for example, in Ref.@24#!,

K as

p
G2L 50.0360.015 GeV4, ~29!

which includes rather conservative errors, then we find t
this uncertainty corresponds to,0.3% variations ingh8 and
gp8.

The perturbative contribution@the first term on the RHS
of Eq. ~27!# is similarly small. This is fortunate since rece
analyses@25–27# suggest that conventional sum-rule dete
minations of the light current quark masses@24,28,29# may
have overestimated these masses by as much as a factor
For the central value ofL7

r , allowing mu1md to vary be-
tween the conventional value, 12 MeV@24# and 6 MeV
produces a variation of only 2.5% ingh8 and gp8. Such
an uncertainty is again much smaller than that arising fr
the errors onL7

r , and hence can be neglected. The smalln
of this perturbative contribution also implies that the analy
should be rather insensitive to the continuum threshold
rameter,s0. We expect that this should lie somewhere in t
vicinity of the onset of thep8(1800) resonance. In ou
analysis, we find, for example, that varyings0 by 61 GeV2

about a central values053 GeV2 produces variations o
,1% in gh8 andgp8.

From the above discussion, we see that the RHS of
sum rule in Eq.~27! is dominated by the terms that are d
rectly calculable using ChPT. The first of these, involvi
the O(p4) LEC’s, is the piece of the quark condensate te
from the OPE that remains after cancellation againstp andh
contributions from the phenomenological side of the s
rule. The second consists of the remainingO(mq

2) p andh
contributions from the phenomenological side. Numerica
it is more than a factor of 2 smaller than the LEC term, f
M.1 GeV2, and of the same sign. The major uncertainty
the values of these terms is that arising from the phenome
logical determination of the ~scale-independent! LEC
@12,13#,
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L7
r 5~20.460.15!31023. ~30!

For completeness we list below the remaining input v
ues~apart from well-determined meson masses!:

mu1md59 MeV,

K as

p
G2L 50.03 GeV4,

s053.0 GeV,

L8
r ~mr

2!50.931023,

H2
r ~mr

2!527.531024,

mp851.37560.075 GeV,

ms /m̂524.4,

r 5
md2mu

md1mu
50.360.05, ~31!

where bymp8 we mean the location of the effective streng
for the h(1295), p8(1300), h(1440) region, as discusse
above. In most cases we have not shown the correspon
uncertainties, since, as already noted, the variations in
results associated with them are small. Apart fromL7

r , the
largest uncertainty is that associated with the choicemp8,
which parametrizes the strength lying above theh8.

Also significant is the uncertainty associated with t
isospin-breaking mass ratio,r @19#. The quoted range cover
a wide range of possibilities for the degree of breaking
Dashen’s theorem@30# for the electromagnetic contributio
to the kaon mass splitting. The recent results of Refs.@31–
33# would appear to confirm a larger value for the breakin
as suggested by earlier analyses@34–36#, and hence large
values ofr in the quoted range, with a somewhat smal
resulting error. Since the subject is not yet fully resolved~see
Ref. @31# for a detailed list of recent work on the subjec
including some work advocating smaller violations of Das
en’s theorem@37#!, we have refrained from attempting t
make a revised estimate for the input central value and e
on r . In any case, every term on the RHS of Eq.~27! con-
tains one factor ofmd2mu , so that this uncertainty enter
only into the overall normalization of the final results. It do
not, therefore, affect the stability analysis of the sum ru
and it can be removed by quoting results in the fo
gP /u0F2.

For a given set of values for the input parametersL7
r

and mp8, we look for values ofgh8 and gp8 that bring the
two sides of the sum rule into agreement over a range
Borel mass values. A convenient way to do this is to u
the sum rule, Eq.~27!, and its derivative with respect toM ,
at a fixed value of the Borel mass, as simultaneous lin
equations forgh8 and gp8. If a region is found where the
results of this procedure are independent ofM , then this
indicates the existence of a stability window where the t
sides of the sum rule match. In Fig. 1 we show some typ
results for a case where we obtain good stability,L7

r 5
20.3431023 andmp851375 MeV, with gh852.8831025
-

ing
he

f

,

r

-

or

,

of
e

ar

o
l

and gp8525.5731026. The two curves are essentially in
distinguishable, except at the very lower end of Borel mas
displayed.

As uL7
r u is decreased, the stability window moves to larg

values ofM . In this region, the perturbatively modeled co
tinuum becomes increasingly important in the spectral rep
sentation of the correlator and so the sum rule becomes
reliable for the determination of resonance properties.
contrast, asuL7

r u is increased the stability window moves
smaller values ofM and also becomes very much narrowe
In fact, for values of uL7

r u that are larger than abou
0.4831023 we are unable to find a stable matching betwe
the two sides of the sum rule. This occurs before the wind
reaches sufficiently small values ofM that the convergence
of the OPE becomes questionable. We are thus able to
the sum rule to make a somewhat improved determinatio
the LECL7

r , reducing by about a factor of 2 the distance
the upper bound on its magnitude compared to the Ch
result, Eq.~30! @12,13#.

For values of L7
r in the range 20.2531023 to

20.4831023, we obtain

gh8 /u0F250.4260.15,

gp8 /u0F2520.1360.07. ~32!

The dependence onr has been scaled out of these results,
discussed above, and so the dominant uncertainties quot
Eqs. ~32! are those associated with the range of values
L7

r . Allowing for the uncertainty inr taken from@19#, our
values for the isospin-breaking parameters are

gh85~3.661.9!31025 GeV2,

gp85~21.160.8!31025 GeV2. ~33!

IV. SUMMARY

In this paper, we have revisited the sum-rule treatment
the isospin-breaking axial correlator, correcting the error i
previous treatment which led to the incorrect chiral behav
of the slope parametergh2gp . Including the kinematic pole
omitted from the previous treatment restores the correct

FIG. 1. The OPE versus the phenomenological side of the
proved sum rule as a function of the Borel mass,M . The dotted line
is the OPE side, the dash-dotted line the phenomenological sid
units of GeV2.
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ral behavior of the correlator. We have then used the exp
evaluation of thep andh contributions to the correlator a
next-to-leading order in ChPT to obtain a rather we
behaved sum rule for the leading chiral behavior of
isospin-breaking parameters,gP , of the higher pseudoscala
resonances. This sum rule has been analyzed and show
provide a rather reliable estimate forgh8, once one has fixed
the chiral LEC,L7

r . The requirement of the stability of thi
sum rule is shown, moreover, to provide a somewhat
proved determination this LEC by reducing the upper bou
on its magnitude.
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