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QCD sum rules for the isospin-breaking axial correlator with correct chiral behavior
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We revisit the QCD sum-rule treatment of the isospin-breaking correﬂﬁtd’[Ai(x)Af(O)ﬂO}, in light of
the recent claim that a previous treatment produced results incompatible with known chiral constraints. The
source of the error in the previous analysis is identified, and a corrected version of the sum-rule treatment
obtained. It is then shown that, using input from chiral perturbation theory, one may use the resulting sum rule
to extract information on the leading chiral behavior of isospin-breaking parameters associated with the cou-
pling of excited pseudoscalar resonances to the axial currents. A rather accurate extraction is possible for the
case of thep’. Demanding stability of the sum-rule analysis also allows us to improve the upper bound on the
fourth-order low-energy constarit;. [S0556-28137)03409-2

PACS numbgs): 24.85+p, 11.55.Hx, 11.30.Hv, 12.39.Fe

[. INTRODUCTION An example of the use of such constraints is provided by
the analysis of the nucleon mass using QCD sum rules. Stan-

One of the most attractive features of chiral perturbationdard treatments were shown to produce an expressiangor
theory (ChPT) [1] is that it provides a framework for con- in terms of condensates that implies the presence of certain
structing effective hadronic Lagrangians in the most generathiral logarithms inmy, although such contributions are
possible way that implements both the symmetries of QCknown from ChPT to be abse8,4]. The source of this
and the symmetry breaking pattern of the approximate chiragproblem was found to be a failure to treat properly the con-
symmetries of QCD. As such, it fully incorporates the con-tribution of thewN continuum to the sum rule in the original
sequences of QCD in the low-energy regime. The price to b@&nalyseg4]; including the leading contributions from such
paid for using only symmetry arguments is that every term irstates restores the correct chiral behaviomgf.
the effective Lagrangianfe;, allowed by these arguments A more severe problem of the same type has been pointed
will appear, multiplied by an undetermined constgrg-  out in the case of the isospin-breaking axial correlator
ferred to as a low-energy constant, or LEChese LEC’s
could, in principle, be computed from QCD, but must be 38 ] 4 idx 3 8
treated as parameters to be determined phenomenologically H,W(Q)Ilf d*x € <O|T(A#(X)A,,(O))|O>
if one does not go beyond ChPT.

Although such effective Lagrangians are necessarily non- =111(9%a,9,~112(9*) 0%y, , (1)
renormalizable, Weinberg’'s counting argumgai shows
that only a finite number of terms i contribute if one  whereA® , AY are the neutral members of the octet of axial
expands to fixed “chiral” order, that is in powers of the o

) currentsAZ= qv,vs(A%2)q. This correlator was first ana-
external momentdgenerically denoted ag) and current lyzed using QCD sum rules in R4E] (CHM). As shown in
quark massegvherem, counts as ordeD(p%)]. As aresult, pot 6] however, if one writed],(q2), which contains the
in the chiral expansion of any low-energy observable, theTro and 7 pole contributions, in the form
general form of the dependence on external momenta and '

g, 9n ) o

light quark masses, to a given order, can be computed
straightforwardly from the form of the relevant termsdg. .(g2) =

Since this formal dependence is a rigorous consequence Ciohy qz_mz qz_mz
of the symmetries and approximate symmetries of QCD, it K i

follows that ChPT can be used to place constraints on treat- (q2(gn_gw)+(gwmi_gnmi)) -

ments of the same observable using other methods. Indeed, if =
one makes a chiral expansion of the results obtained by any

other method and finds that terms present in ChPT to a given

order are missing, then one knows unambiguously that eithehen the expression fay,—g, (given by the slope of the
the method itself, or some truncation employed in it, is in-numerator with respect tq?) obtained from the sum-rule
compatible with QCD. This is true regardless of the rapidityanalysis is lacking both the leading analytic and leading non-
of convergence of the chiral series in question: all termsanalytic terms from its chiral expansion in terms of the light
required by the symmetries of QCD must be present if theguark massegThe demonstration of this is reviewed briefly
method is to correctly incorporate the consequences of QChelow in Sec. 1)

(92—m’)(g2—m2)
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In this paper we revisit the sum-rule analysis of the axial(The minus sign in front 0§, is conventional and related to
correlator above, and identify the source of this problem. Wehe fact that, so defined,, =g, at leading order in the chiral
then obtain a corrected version of the relevant sum rule andxpansion.
show how it can be used to extract information on isospin- On the OPE side of the sum rule, the expressions for the
breaking couplings of the higher pseudoscalar resonances.scalar correlators have been worked out by CHM up to and

The paper is organized as follows. In Sec. Il, we brieflyincluding operators of dimension 6, and to or@mg, as).
review the sum-rule and ChPT analyses of the correlator. IiNeglecting electromagnetic effects, the results have the form
Sec. Ill, we identify the problem with the previous sum-rule (with Q%= —q?)
treatment and work out the corrected version of the relevant
sum rules. In Sec. 1V, we show how one can use information
from ChPT as input into the sum rule. We also clarify the ) 1] ,, C1 Cy Cg
physical content of the corrected sum rule, extracting in the I1,(q%) = 403 ColnQ=+ @ﬂL §+§ ;
process information on the isospin-breaking couplings of the ]
higher pseudoscalar resonances to the axial currents. We
conclude in Sec. V with a brief summary.

C, G Cs}

L
(g% = m ColnQ?+ o7 ngag 5

Il. PREVIOUS CHPT AND SUM-RULE TREATMENTS

We provide here only a very brief review, which will whereC, andC, vanish at the level of the truncations noted
serve also to fix notation. For more details the reader is reabove, and
ferred to Refs[5] and[6] for the sum-rule and ChPT treat-
ments, respectively.

We first review the sum-rule treatmenAs usual, the aim C,= 2[mu<u_u)— md<ﬁ>],
is to write dispersion relations fdi ;(q%) andII,(g?) which
relate integrals over the relevant physical spectral functions 352

_ N2 /A2
to the behaviors at large spaceliké, where the operator Cs= 81 mad(uu)*—(dd)]" 6)

product expansiofOPE becomes valid. One then Borel
transforms the resulting dispersion relations in order to ex-
ponentially suppress the higher-energy portions of the spedf one were to include higher-order terms in E®), Co
tral integral on the phenomenological side and simultawould receive contributions at ord@(aEM,as,mé) andC;
neously factorially suppress the contributions of higherato(mg), An argument analogous to that of Shifman, Vain-
dimension operators on the OPE side. The scalar correlatoghtein, and Zakharo\8] for the corresponding isospin-
I1;(9%) andII,(g?) in Eq. (1) have been chosen in such a conserving correlatorII35(q) shows that the higher-
way that, from the asymptotic behavior B(q) in QCD,  dimension operators not included in these expressions are
itis known that the relevant spectral integrals converge withqlso all explicitly of orderO(mg). The form of the dimen-
out subtraction. Note that the definitioan2 employed here sion 6 Coefﬁcienc3 in Eq (6) has been obtained assuming
agrees with that used in R¢b], but differs from that in Ref.  yacuum saturation.
[6] by a factor of—g?. As can be seen from the Lorentz structure of &y, it is

On the phenomenological side, the axial-vector resopossible to remove the contributions of the axial-vector me-

nances contribute to bothl (g% and I1,(g%). In the  sons by considering the combination
narrow-width approximation, their contributions to the com-

plete spectral function are written p(g?)=113(q%) —I(g?). (7)

1 CHM, motivated by this observation, write a dispersion re-
—(Im Hffv(q))A=; 9~ —g,,+0,0d,/M318(q>~M3). lation for I1p(g?) in the form
©) _— 1 Im TIp(s)
PAT)= | —
The pseudoscalar resonances, in contrast, contribute only to T s—q?
IT,. Following the convention of earlier works, we write
these contributions as

ds. (8)

When Borel transformed, this relation gives CHM’'s sum
rule,

1

M4

1
= (Im 14(@)p=g,8(0%~m?) ~g,o(e” ~m?) _4\3
MZ

2C, [g.e ™M —g e ™M+ ... (9

+9, 80>~ m2,) +9,, 8(q*~m2)) _
whereM is the Borel mass parameter and the dots refer to
+oee (4)  the contributions of higher pseudoscalar resonances. CHM
then neglect higher resonance contributions and use this sum
rule, together with its derivative with respect to the Borel
ISee, for example, Refs7—10] for details of the general method mass,M, to solve forg, andg,. This procedure leads to
of QCD sum rules. their result
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90:\/T§< md—mu) :

(gn_gﬂ')CHM: (15)

mg—m

2./3M2

e™M/MA (M 24 m2) — ™M (M 2+ m2) . o o
7 with m=(m,+mgy)/2. Comparing this expression with the

mf]— me corresponding one obtained from the one-loop ChPT results,
(10)
for the slope of the numerator on the RHS of E2). ( ) (me— 1)
~ The analysis of135(q) at next-to-leading1-loop) order (9= 9x)chpr= eon(”—KI n(m2/u?) — %
in ChPT is stralghtforward and follows standard methods. ™ 8mF
We employ throughout the notation of Gasser and Leutwyler
[1]. The result forll,(g?), recast so as to correspond to the 32B,(Me— M)
definition employed in this paper, |§] + O—z L)+ - (16)
3F
Bo(mg—m )[ 3
1 loop, _ 2ol'd u 2, 2
I3 *a?) = V392 132772 (In(mic/w%)+1) one sees that the sum-rule expression is lacking both the

leading analytic and leading non-analytic terms in its chiral
expansiori6], and hence is incorrect. Moreover, the numeri-

—8Lg(u? |, (11)  cal consequences of this are significant: the sum-rule value
for the slope is more than an order of magnitude smaller than
that given by ChPT.

whereBy is the usual second-order LEC, related to the quark

condensate in the chiral limig is the renormalization scale, Ill. CORRECTED VERSION
andLg(u?) is a renormalized fourth-order LEC. Note that OF THE SUM-RULE ANALYSIS
I1,(g?) results solely from contact termghat is, terms in
L that are quadratic in the external axial soujcd® this
order,I1,(g?) is saturated by the® and # pole terms. From
a similar analysis, one finds, for the coefficiegts andg,,
appearing in Eq(4),

The key to understanding the origin of the problem with
the CHM sum-rule analysis lies in E{). This relation fol-
lows from general properties of analyticity and unitarity un-
der two assumptions(a) that the singularities oflp(g?)
consist solely of those associated with physical intermediate
states andb) thatI15(q?) converges sufficiently fast that no
subtractions are required. The latter assumption is explicitly
verified by the known asymptotic behavior bf,(g?) and
I1,(g?) in QCD. The former, however, is more subtle, since
there can also be singularities of purely kinematic origin. In
the case at hand, E€L1) shows explicitly thail,(g?) has a
kinematic pole ag>=0. As a consequence, the correct ver-
sion of the dispersion relation E¢8) must include the con-

<O|A8|7-r)=if €.q _tribution of this kinematic pqle to.th_e unde'rlying contour
~ m integral. Another way of saying this is that it ¢11,(g?)

3 . which satisfies a dispersion relation without kinematic pole
<0|A#| ny=—if,€0,. (13 terms. The dispersion relation for this function, however, re-
quires one subtraction in order to converge. The resulting
subtraction constant gives rise to the kinematic pole term of

I1,(g?). Its value is calculable in ChPT, and turns out to
correspond precisely to the contact contributions given in Eq.

9.=f2e; and g,=fe,, 12

whereF ., f,, are the physicatr,7 decay constants and, €,
are isospin-breaking parameters defined by

The expressions fof ., f,,
order can be found in Ref1].

The problem with the sum-rule treatment is exposed whe
one uses the known chiral expansions of the meson mass
and quark condensates to rewrite the sum-rule result, E

€1, and e, valid to one-loop

rgs Bearing this in mind, it is straightforward to write down
3he corrected dispersion relation fBip(q?),

(10), as
8 B3(ms— m)(mg+2m)
(9= 9x)crm= 0oF? ) : 7 : T ’ 1 Bo(my— u)[ 3 2, 2
M Mp(q?)=—— S (In(m2/ u2) +1)
(14) o V3 |[32m
to orderO(m ). HereF is a second-order LEC, equal tq 1 1m Ip(s)
in the chiral I|m|t andd, is the leading-orderr®-5 mixing —8LL(u?) +f —P ds, a7
angle, T s—q?
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where ImIIp(s) includes only the spectral strength associ- 1 [3(m2_m2) Q2
ated with pseudoscalar states. The corresponding BorelfITp(q?)]ope= — 5 d 5 “In =
transformed sum rule is then \/§Q L 8m M
ma(dd) —my(uu) (mG-m)
Co Bo(mg—my) 3 2, 2 Q2 + Q* (@G|,
=| - (In(mg/p)+1)
2\/3Mm2 V3 3272 20

2 > 2 where we have kept terms only up to dimension 4 and writ-

+g,e "M —g,e”™/M +g,.e”™'M"  ten down the coefficient functions only to leading order in
as. Substituting the expressidilp(g%)]opg into the LHS
of Eq. (17) and Borel transforming, we obtain an improved
version of the corrected CHM sum rule, E48). To facili-

: (18)  tate subsequent analysis, it is convenient to multiply both
expressions for the correlator I§y? before Borel transform-
ing (thereby eliminating the contribution of the kinematic

As one might expect, the inclusion of the kinematic-poleP0l€). We also follow standard practice and introduce a con-
contribution cures the problem of the incorrect chiral behavtinuum threshold parametes,, representing the point be-
ior of g,—g.,. To see this, consider t@(M°) terms of Eq. yond which the hadronic spectral function is modelled by its

(18). Bearing in mind thatg,,, g,, ... are all oforder perturbative QCD counterpart. The contribution correspond-

O(m?) [8], one has ing to the integral over that portion of the phenomenological

a spectral function can then be moved to the OPE side of the
sum rule. The result of these manipulations is the sum rule

—8LL

2 2
+g e MM

Bo(mg—my) 3 2 2 -m2/M2_ 2 \—m2/M2 D 2 —m2/M?
0=| - (In(m&/ w?)+1)—8LE(u?) g,mze "= g,m,e "+ gempe P
V3 3272 UMl A s(u pE
1|3(mi—-md) e _
+9.—0g,+0(m)), (19) "B 2 “M2(e M’ 1)+ (my(dd)
— (mi—m?d) ,
where the first term on the RHS results from the kinematic —my(uu))— M2 (@G|, (2D

pole in Eqg. (17). Without this term, one gets

9,~9,=0(m?), as found by CHM. In contrast, using the where the sum on the LHS now runs over pseudoscalar reso-
corrected sum rule, one finds that E¢9) is simply an al- nances with squared masses less than
ternate form of Eq(16), as required. The chiral expansion of the sum rule, E&1), contains

To clarify the physical content of the remaining pieces ofterms of orderO(p?) and higher, together with the usual
the sum rule, Eq(18), it is useful to note the chiral order of chiral logs, which start at ordé(p*Inp). The O(p?) terms
various quantities appearing therein. In particular, the chirahre the same as those in E8) and so it is easy to see the
expansions ofy., g,, mf],, andmi, start at ordeO(p°), sum rule is consistent to this order. Since only the light-
m’., m?, andC, atO(p?), and(as already noted abovg,,,  quark condensate and the quantitigs, g,,. mZ, andm’,
g, at O(mg):O(p“). After the cancellation embodied in contain. leading chiral ngs, these cpntributions must also
Eq. (19), the only O(p?) terms remaining in Eq(18) are cancel in Eq§21g (as venﬂedzbezlow Finally, the expansion
those inC, and —g,m%+g,m’. Using the leading-order of g,mZe ™" —g,m2e™/M" to order O(p*) can be
expressionguu)=(dd)=—BoF? andg,=g,= 6F>, it is found from known one-loop expansions, and that for
straightforward to show that th®(p?) terms on both sides mg(dd)—m,(uu) can be obtained from a straightforward
of the sum rule also match properly. To this order, theone-loop calculation. With these results, we may employ this
matching is just an isospin-breaking version of the Gell-sum rule to obtain a relation describing the leading chiral
Mann—Oakes—Renner relation. behavior[O(m§)=O(p4)] of the isospin-breaking param-

The information obtained in the previous paragraph is aIIetersg,,,,g,T,, ... for the heavy pseudoscalar mesons. No
that we can extract from E@18) in its present form. This is further information can be extracted from E@1) without
because terms @(p*) have not been included on the OPE two-loop ChPT calculations as input.
side of the sum rule. If one wishes to use the sum rule to To verify the cancellation of the chiral logs, and to obtain
obtain information about anything beyond the leading andhe promised sum rule for the leading chiral behaviog pf,
next-to-leading order behavior af, and g,, one must, g.,..., weexpand ther, » and condensate terms in Eq.
therefore, restore th@(mg) terms to the OPE. This is easily (21) to orderO(p*). To do so for ther and 5 terms appear-
accomplished starting from the expression for the correing on the LHS requires only the one-loop expressions for
sponding terms in the OPE of the analogous isospinf,, f,, €;, ande, given by Gasser and Leutwylét]. The
conserving correlator, as given in REL1]. The result is results are
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9(mg—2m)/ ,+6my/+(ms+2m)/,
727w°F?

4 “
5 Bo(ms—m) —Bg

gwmfr_ gnmzn: - GOF2 3

128B3(ms—m) . , . ~
oy L(Me+ 2m)Lg(p?) —2(mg—m)L7+2mLg( )]

3F?
Bam? ) B5m(ms—m)
y_ Y > > 7
+6w2F2|n(mK/'u = @2
and
1 166,F 2 .
W(—gwmiJrgnmfy): B3(ms—m)?, (23

9M?2

where/pzmﬁ,ln(rnzpmz) and all other notation is as in Gasser and Leutwyldr For the condensate contributions on the
RHS, we require the expressions fad) and(uu) valid to orderO(my—m,). These are easily obtained, and can be written

(uuy=(uuy,+34,
(dd)=(uuy, -4, (24)

Where(mj)l is the one-loop expression for the condensate in the isospin-symmetric limit, also to be found [ih]Reid

So—t Bo(1+In(mz/u?) 4B,
§=(my=my)| 4772F”2(ms_ﬁ1)+ = 2 (@La(u?) T Hy(u?)|. (25)
From Eqs.(24) and (25) it follows that, to orderO(p?),
[my(dd)—my(uu)]
3
P (i) B2m(me— ﬁ1)+ Bom® [ mg 9(ms—Zrh)/w+6mS/K+(ms+2fn)/,7)
o370 1272F2  6m2F2 |\ u2) O 72m2F2
64Bg(m5_ |:n) SN T2 AT ,,2 NHT (2
+T[2(ms+2m)Le(M )+2mLg(p®) +mH(u)]|. (26)

To obtain a sum rule for the leading chiral behavior of the higher pseudoscalar resonances, we make us@2fdtgk.
(23) to replace the leading terms of theand » contributions in Eq(21). The terms of higher order im, andm, may be
neglected since they are at least of or@€p®) in the chiral expansion, and they are numerically small for the Borel masses
of interest. Finally, inserting the chiral expansion of the quark condensateg2@&ginto this sum rule, we get

2 2 2
2 —m2/M2_ ‘EM — g /M2 2 2 (mg—mp) 2
mpe” MM = ——— (e —1)(mi—m)) + ———(a G
P;Mgp 2 el )(mi—mj) B@TMA G?)
- 64B3(ms—m) 6,

- - - 16 -
3 [4(mg—m)L7—2mLg(w?) + mHa(u*)] — = 6oFBo(ms—m)2. - (27)

Note that all of the chiral logarithms have cancelled, leavingceives contributions only from flavor-singlet pseudoscalar
only terms that start at ord€(p*). states. Hence it already follows, without any more detailed
It is worth noting that the term involving the chiral LEC’s analysis, that the sum rule implies the existence of significant
makes a numerically significant contribution to the sum rulejsospin-breakingy’ coupling. Before presenting the results
and is dominated by’ . Moreover, phenomenological treat- of our analysis for the isospin-breaking parametggs, it is
ments that use resonance exchanges to generate the LEC’sailso worth stressing a number of features of the sum rule, Eq.
the effective Lagrangian of ChP[R20,21 show thatL} re-  (27), which imply that, once.} is fixed, these results for at
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least then' coupling should be quite reliable. of the sum rule is also responsible for the greater sensitivity
The renormalized LEC'd.},Lg have been determined of g, to the input value chosen for the location of the ef-

phenomenologically and are reasonably well-kndsee, for  fective strength describing they(1295), #'(1300), and
example, Refs[12,13 for recently updated valugsThe re-  7(1440) region: the combined effective contribution to the
maining LEC, H},, can be related, for example, to the sum rule is small relative to the dominapt term and the
isospin-breaking condensate ratje=[(dd)—(uu)]/(uu).  extracted value can therefore depend sensitively on the as-
This ratio has been estimated in a number of sum-rule analysumed separation from the’ peak.

ses[14-16,10,17,1B Using any of the values of obtained Having employed information from ChPT to fix the low-

in these treatments to estimatg,, the resulting values are lying 7 and » contributions to the original sum rule, and
such that the LEC combination in E(R7) is dominated by explicitly modeled the contributions up to 1.44 GeV, we note
the L5 term. In particular, the uncertainty in the LEC com- that there is now a significant gap to the next resonance
bination associated with the sum of the errors on the phecontribution at 1.8 GeV. We therefore expect that Borel
nomenological determinations b andH), (where the latter Masses of order 1-1.5 GeV will suppress the contributions
error is taken to correspond to the entire range of values cite@f higher resonance on the phenomenological side of the sum
above is an order of magnitude smaller than that associatedule.

with the error on the existing phenomenological determina- On the OPE side it turns out that the situation is also
tion of L. We may, therefore, ignore the effect of the un- rather favprable. First, the gluon condensate term turns out to
certainties in the values dff and H),. This feature of the € numerically very small compared to the dominiahton-

analysis results from the fact that the coefficientdpfand tribution. Indeed, if we take for definiteness the value for this
® €Ot R hich is simi
HY, are suppressed by a factor ah{— m)/~23[19] rela- condensate advocated in RE23] (which is similar to that

_ S embEE employed, for example, in Reff24]),
tive to that ofL’,. The uncertainty in the ratimg/m which
enters this suppression is, of course, also completely negli-

gible. Note that we do not require an explicit input value for s
m; since, to the order considered in the chiral expansion, we <?Gz> =0.03£0.015 GeV, (29
may take
2 - _ . . . .
Bo(ms— m)z—(mﬁ—mi)z. (28)  which includes rather conservative errors, then we find that

this uncertainty corresponds t00.3% variations irg,, and

On the phenomenological side of the sum rule, we expeay_,.
contributions from all of the higher pseudoscalar resonances, The perturbative contributiofthe first term on the RHS
7' (958) »(1295) 7' (1300), 7(1440)7'(1800).... The of Eq.(27)] is similarly small. This is fortunate since recent
7' (1300) is relatively broadl{=325 MeV[22]) and spans analysed25-27 suggest that conventional sum-rule deter-
the region between thg(1295) and they(1440). Therefore, minations of the light current quark masgé«,28,29 may
without keeping terms of yet higher dimension in the OPEhave overestimated these masses by as much as a factor of 2.
we have too little information in the sum rule to both ad- For the central value of’, allowing m,+my to vary be-
equately parametrize the spectral function in the region between the conventional value, 12 Mef24] and 6 MeV
tween~ 1300 and~1450 MeV and at the same time to use produces a variation of only 2.5% ig,, and g,,. Such
the sum rule to extract the values of all such parametersan uncertainty is again much smaller than that arising from
Hence we concentrate on the extractionggf, parametriz-  the errors orL}, and hence can be neglected. The smallness
ing the 5(1295), 7' (1300), 7(1440) region in terms of a of this perturbative contribution also implies that the analysis
single effective contribution of zero width located at aroundshgyld be rather insensitive to the continuum threshold pa-
1375 MeV. By varying the position of this contribution be- rameter,s,. We expect that this should lie somewhere in the
tween 1300 and 1450 MeV, we have verified that the exyjcinity of the onset of them’(1800) resonance. In our
tracted value ofg, is not sensitive to this approximation, gnalysis, we find, for example, that varyieg by +1 GeV?
varying by ~+6% over this range. This is a factor of 6 apout a central valus,=3 Ge\? produces variations of
smaller than the variation induced by the uncertainty in the—qo4 in g, andg,.
input value ofL’,, which we discuss in more detail below. From tﬁe above discussion, we see that the RHS of the

The effective strength parameter describing #{&295),  sum rule in Eq.(27) is dominated by the terms that are di-
m'(1300), andn(1440) region(which we denote by, in  rectly calculable using ChPT. The first of these, involving
what follows is, of course, much more sensitive to the as-the O(p*) LEC's, is the piece of the quark condensate term
sumed position of this strength. The corresponding unceffrom the OPE that remains after cancellation againand »
tainty in the extraction of . is ~15%, which is significant, contributions from the phenomenological side of the sum
although still much less than the60% associated with?, . rule. The second consists of the remainmgng) 7 and %
The stability of the determination df,, is attributable, to a  contributions from the phenomenological side. Numerically
large extent, to the fact that the residual term proportional tqt ijs more than a factor of 2 smaller than the LEC term, for
L7 provides the major contribution to the sum rule; as al-M>1 Ge\Z, and of the same sign. The major uncertainty in
ready noted abové,} is known to receive contributions only the values of these terms is that arising from the phenomeno-
from flavor-singlet states, of which the’ is nearest and logical determination of the(scale-independent LEC
hence should provide the dominant contribution. This featur¢12,13,
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LL=(—0.4+0.15x10 2, (30) . 1.6x107° - - _
S i
For completeness we list below the remaining input val- g s . :
ues(apart from well-determined meson magses g t4x1iocr - N
s o
m,+myg=9 MeV, o ’
2 12x1072F .
aS 2 (:{Z)
—G?)=0.03 GeV, & [
. T 1.0x1079} 4 .
° '/:’/
50=3.0 GeV, Q@ -
- —6 5
- . 8.0x10 . .
Lg(m7)=0.9x10"", 1.0 1.5 2.0 2.5

Borel mass (GeV)
FIG. 1. The OPE versus the phenomenological side of the im-
proved sum rule as a function of the Borel mads,The dotted line
is the OPE side, the dash-dotted line the phenomenological side in

H5(m?)=—7.5x10"%,

m,,=1.375-0.075 GeV,

units of Ge\2.
ms/m=24.4, 6 I
andg,..=—5.57x10"°. The two curves are essentially in-
Mi—m distinguishable, except at the very lower end of Borel masses
d u .
r= =0.3%£0.05, (31 displayed.
my+m,

As|L}| is decreased, the stability window moves to larger

where bym_, we mean the location of the effective strength Values ofM. In this region, the perturbatively modeled con-
for the 5(1295), 7' (1300), 7(1440) region, as discussed finuum becomes increasingly important in the spectral repre-
above. In most cases we have not shown the correspondirggntation of the correlator and so the sum rule becomes un-
uncertainties, since, as already noted, the variations in théliable for the determination of resonance properties. In
results associated with them are small. Apart frofy the ~ contrast, agL 7| is increased the stability window moves to
largest uncertainty is that associated with the chaice, smaller values oM and also becomes very much narrower.
which parametrizes the strength lying above #ie In fact, for values of|L}| that are larger than about

Also significant is the uncertainty associated with the0.48<10”° we are unable to find a stable matching between
isospin-breaking mass rati[)’[lg]_ The quoted range covers the two sides of the sum rule. This occurs before the window
a wide range of possibilities for the degree of breaking ofreaches sufficiently small values M that the convergence
Dashen’s theorerfid0] for the electromagnetic contribution ©Of the OPE becomes questionable. We are thus able to use
to the kaon mass splitting. The recent results of R~  the sum rule to make a somewhat improved determination of
33] would appear to confirm a larger value for the breakingthe LECL?, reducing by about a factor of 2 the distance to
as suggested by earlier analy§84—36, and hence larger the upper bound on its magnitude compared to the ChPT
values ofr in the quoted range, with a somewhat smallerresult, Eq.(30) [12,13].
resulting error. Since the subject is not yet fully resolveee For values of L, in the range —0.25<x10 % to
Ref. [31] for a detailed list of recent work on the subject, —0.48< 10 3, we obtain
including some work advocating smaller violations of Dash-
en’s theorem[37]), we have refrained from attempting to
make a revised estimate for the input central value and error
onr. In any case, every term on the RHS of Eg7) con-
tains one factor oimy—m,,, so that this uncertainty enters
only into the overall normalization of the final results. It does
not, therefore, affect the stability analysis of the sum rule
and it can be removed by quoting results in the form
gp/ OoF2.

For a given set of values for the input parametkts
andm,., we look for values ofy,, andg, that bring the
two sides of the sum rule into agreement over a range of

9,/ 6oF?=0.42+0.15,
g, /6,F?=—0.13+0.07. (32

The dependence anhas been scaled out of these results, as
discussed above, and so the dominant uncertainties quoted in
Egs. (32) are those associated with the range of values for
LS. Allowing for the uncertainty inr taken from[19], our
values for the isospin-breaking parameters are

g, =(3.6£1.9x10° GeV,

Borel mass values. A convenient way to do this is to use g, =(—1.1+0.8xX10 ° Ge\? (33
the sum rule, Eq(27), and its derivative with respect d,
at a fixed value of the Borel mass, as simultaneous linear V. SUMMARY

equations forg,, andg,. If a region is found where the

results of this procedure are independentMf then this In this paper, we have revisited the sum-rule treatment for
indicates the existence of a stability window where the twothe isospin-breaking axial correlator, correcting the error in a
sides of the sum rule match. In Fig. 1 we show some typicaprevious treatment which led to the incorrect chiral behavior
results for a case where we obtain good stability= of the slope parametegy, —g . Including the kinematic pole
—0.34x10"2 andm,,=1375 MeV, with g, =2.88x 10>  omitted from the previous treatment restores the correct chi-
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ral behavior of the correlator. We have then used the explicit ACKNOWLEDGMENTS
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