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Halo excitation of ®He in inelastic and charge-exchange reactions
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Four-body distorted wave theory appropriate for nucleon-nucleus reactions leading to three-body continuum
excitations of two-neutron Borromean halo nuclei is developed. The peculiarities of the halo bound state and
three-body continuum are fully taken into account by using the method of hyperspherical harmonics. The
procedure is applied foh=6 test-bench nuclei; thus we report detailed studies of inclusive cross sections for
inelastic ®He(p,p’)®He* and charge-exchang®li( n,p)®He* reactions at nucleon energy 50 MeV. The
theoretical low-energy spectra exhibit two resonancelike structures. Thénfirsbw) is the excitation of the
well-known 2" three-body resonance. The secdhobad bump is a composition of overlapping soft modes of
multipolarities 1°,2%,1%,0" whose relative weights depend on transferred momentum and reaction type.
Inelastic scattering is the most selective tool for studying the soft dipole excitation mode.
[S0556-281®7)02809-4

PACS numbes): 21.45+v, 21.60.Gx, 24.30.Gd, 27.26n

[. INTRODUCTION The most reliable information on properties of halo nu-
clei, especially for the low-lying part of excitation spectra, is
Recent success in developing experimental methods faxperimentally obtainable by intermediate energy elastic and
dripline nuclei, that in particular allow exploration of halo inelastic scattering and charge-exchange reactions. The dis-
phenomena in light nuclei, has put on the agenda a need féorted wave theory is the most common way to analyze such
appropriate theoretical methods which take into account therocesseg9], but for halo systems their spatial granularity as
peculiarities of weakly bound and spatially extended syswell as peculiarities of their quantum structure have to be
tems. For Borromean two-neutron halo nucléHé, i, taken into account. The three-body interaction dynamics de-
etc) an understanding of the essential halo structure has bedimes the low-lying part of excitation spectra, in particular the
obtained in the framework of three-body modgl3. Reac-  soft modes of Borromean systems, and has to be treated
tions involving these nuclei present, however, at least a fourproperly. Until now, only the hyperspherical harmoniet)
body problem. The direct solution of four-body systems ismethod[10] is able to provide a formulation of the scattering
extremely difficult, and approximate methods are requiredtheory to the three-body Borromean continuum. The Fad-
For high-energy elastic scattering and relativistic fragmentadeev equations techniqii21] has been developed to inves-
tion of Borromean halo nuclei, a four-body Glauber methodtigate breakup of three-nucleon systems, but has hitherto not
has been developd@,3]. For Coulomb breakup or electro- been applied to investigate the continuum in Borromean nu-
magnetic dissociatiofEMD) the first-order(Alder-Winthep  clei. The coordinate complex rotation methd®,13 gives
perturbation theory or an equivalent semiclassical treatmerffamow and not scattering states, and is mostly suitable for
[4] has been used, but with exact three-body continuunsearching for resonance positions or poles in the complex
wave functions[5-7]. Also for the (antjneutrino-induced energy plane. Calculations with a discrete bddi4] may
reactions on®Li populating the ®He and ®Be three-body give B(E1) distributions, but not continuum phase shifts and
continua, proper final state wave functions have been usesiave functions.
recently[8]. In previous studiel,15], the HH method gave a very
successful and comprehensive description of data on weak
and electromagnetic characteristics of fiiée and °Li sys-

*Permanent address: JINR, Dubna, Russia. tems, and of the absolute values of differential cross sections
"Permanent address: RRC The Kurchatov Institute, Moscow, Russf (p,n), (p,p’), and (,p) reactions to the bound states of
sia. A=6 nuclei. These nuclei still represent the best testbench
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for guantitative calculations for Borromean halo nuclei. In  TABLE I. Comparison of resonance posi_tions and widths of
the present work we develop distorted wave theory for in-°He. Results from the present hyperspherical harmortids))
elastic and charge-exchange reactions leading to the thregethod and the complex scaliig@S) method[12,13 are shown,
body continuum. For the continuum excitations &1e we  together with experimental data. Resonance positions are given

perform a detailed analysis of inclusive excitation and differ-rélative to the theoretical ground state.
ential cross sections for beam energies in the range of the

GANIL facility, where such experiments are in progress. In- HH Cs1[12] Cs2[13] Exp. [16]
vestigations of continuum spectra fle are also the subject JmwE T E I E I E I
of future experiments at Kurchatov Instituté/loscow, 0f 0 0 0 0
NSCL (Michigan), RIKEN (Tokyo), JINR (Dubng, and GSI 2f 172 004 171 006 177 026 18 0113
(Darmstady. 25 40 12 35 47
17 not found not found not found
Il. SHORT PREAMBLE 1" 44 18 4.0 6.4
0; 6.0 6.0 5.0 9.4

The known spectrum ofHe contained until quite re-
cently only the O bound state, the well known "2 (1.8
MeV) three-body resonance, and then a desert in the thre@rowth of three-body phase shifts up 42 in some partial
body a+n+n continuum up to the®H + 3H threshold at Waves which are often caused by resonant and/or virtual
about 13 MeV[16]. With radioactive nuclear beam tech- States in binary subsystems. We call these structures three-
niques and dynamic approaches to three-body continuudiody virtual excitations. The analys_ls of the lowest partial
theory [10] new possibilities are opened, and we may nowcomponentsithose having the physically most transparent
ask to what extent our knowledge 8He is complete, and meaning enables us in the HH method to obtain comprehen-

what specific influence the halo has on the continuum strucSiVe insights into both the three-body effects, and into the
ture. The so-called soft dipole mode suggested1in,1§ influence of resonances in binary subsystems on three-body

was the first example of this quest. That it is not a simpledmPplitudes.

binary core-point dineutron resonance i seems now In [19] we predicted(and in[28] explored in detajlin

widely accepted, nor is it ifHe according to our recent addition to the well-known 26 resonance(i) a second 2

calculationg 19]. Is it rather a genuine three-body resonance?d @ I' resonance in the’He continuum which both

or just a dynamically induced very large dipole moment, ordualify as three-body resonances) a soft dipole mode

the consequence of two-body final state interactions? Sofhich does not but s a three-body virtual excitation, @ng

modes of other multipolarity have also been theoreticallyinnatural parity modes. Because of the halo structure of the

suggested20]. Their presence needs clarification, both the.ground state, there are peaks in the isoscalar responses of the

oretical and experimental. soft monopole mode and soft dipole mode, even though there
The most natural way to observe soft modes in exotic'® N0 resonances in the low-energy continuum region. A

nuclei is by inelastic excitation of radioactive beams. In thehigher-energy “breathing mode” appears as well, in the

SHe case, however, only results of fragmentation experiMonopole continuum. , ,
Summarizing the extended analysis[@B], we show in

ments without reconstruction of inclusive spectra have been - ) X

published[21-23. Other ways include transfer reactions Table | the positions and widths of possible resonances ob-

[such as’Li(n,d)®He atE, = 56.3 MeV [24]] or charge- tained by different methods. All of them give about the same
’ n .

exchange reactions oh(p) type on®Li. At E, = 60 MeV positions, but different widths which should be testable ex-
. n

the SLi(n,p) ®He reactions have been measured, but Withpetli_r:entally.. hich th d b _
poor statistics and limited angl¢25]. In heavy-ion charge- e way In which these structure; could be experimen-
exchange reaction®.i( ’Li, Be) ®He a broad bump at exci- tally observed depends on the reaction considered, as will

tation energy~ 6 MeV was observe{i26,27], but different nlowt_be det;no.nstrtat?ﬁéna nuctl_eon chirge-ele:_hapge fand n-
assignments were made for its multipolarity. elastic scattering to € continuum. A complicating fea-

In our recent work 19,28 we have used several methods ture is the overlapping of resonances and soft modes in the

to investigate the internal structure of the three-body conf€dion of excitation energies 3—6_MeV, thus only a more
tinuum, as well as the transition properties for acce:ssiblé;_ietalled analy5|_s of e>_<C|_tat|o_n functions and angu_lar O.I'St”bu'
nuclear reactions in terms of nuclear and eIectromagnetiHOns may possmly_ distinguish those states. This will be a
response function®Our methods have the advantage that, Pe””%' issue of th'$ paper, .where we will show that even
even off a resonance, the continuum structure can still bénCIUS'Ve cross sections are informative.

investigated while taking into account all final state interac-
tions.

We have predictefl19] a surprising richness of théHe In this section details are given on the physical ingredi-
continuum structure, and applied elaborate methods to exents of the model we have developed for calculating inelastic
plore the nature of different modes of excitation of the Bor-and charge-exchange reactions to low-energy continuum
romean halo continuuni28]. In three-body dynamics we states in®He. Structure and reaction scenarios are often in-
have found two kinds of phenomena. First we have the trugertwined in a very complicated way. In some situations,
three-body resonances with characteristic three-body phasgich as the very dilute matter of halo nuclei, the reaction
shifts [10] crossing/2, and with resonance behavior in all dynamics becomes simpler, and an approximate scheme us-
partial waves. Secondly, we find structur@xhibiting fast  ing distorted waves is reasonable. In the DW framework, as

Ill. MODEL DESCRIPTION
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TABLE II. Weights of the main components of interior parts of
0" wave functions ofHe in LS andjj representatiofground state
and @ resonance at 5 MeV above the breakup threshold

TABLE lll. Weights of the main components of the interiof 2
resonance state wave functions®fe in LS andjj representations
at 0.8 and 3.0 MeV above the breakup threshold.

07 05 07 0, 27 25 Config. 27 25

K L S I I, gs. resonance ) g.s. resonance L S I I, resonance resonance jj resonance resonance
0O 0 0 O O 4 15 P3p P3. 86 17 1111 32 58  papPap 33 45
2 0 0 0 0 78 30 P12 P12 5 68 2 00 2 45 30 PP 32 325
2 1 1 1 1 15 51 SiypS1p 7 3 2020 22 11 sy dsp 21 13
Syjp Uz 14 8.5

follows from the formulas below, the reaction amplitude has

three ingredients(A) The structural information contained in whereWR(p) has a structure similar to that of a bound state.
the transition densities which describe the response of thghis general energy dependence is revealed by the reaction
nuclear system to an external fiel@) the effective interac- cross section, but for wide resonances it is strongly influ-

tions between projectile and target nucleons, @dhe dis-

torted waves describing the relative motion of projectile

(ejectile and targefresidual nucleus.

A. Nuclear structure

enced by the reaction mechanism.

The HH method is particularly suited for Borromean sys-
tems due to their simple asymptotic behavior. The physical
characteristics of bound and low continuum states are con-
centrated in only a few wave function components corre-
sponding to the lowest angular momenta and energy configu-

For description of the nuclear structure we have used th&ations of the three-body system. This, combined with a

three-bodya+N+N model. In this model, the total wave convergence behavior for ground state and resonances which
function is represented as a product of wave functions delS very much the same, preserves their relative position and
scribing the internal structure of the core and the relative €nables us to avoid time consuming calculations. Thus we
motion of three interacting constituentsee Appendix A  only take into account the hyperharmonics with hypermo-
The method of hyperspherical harmonigsH) (see Refs. MmentsK<6 that correspond to excitation energy up to about
[1,10,29) was used to solve the Scitinger three-body 10 MeV (kp~K). Only the specific three-body virtual na-
equation, for both bound and continuum states. A modifiedure of the soft dipole mode demands a substantially larger

Sack-Biedenharn-Breit Gaussian-typeN interaction [30]
with purely repulsives-wave componentPauli core [1] and
the “realistic” Gogny-Pires-TourrelINN interaction [31]
were used.

series of hyperharmonics to achieve convergence. So we
shall use the main components keeping in mind that the di-
pole mode will be somewhat shifted to lower energy within
the peak width.

We are now going to apply this model to continuum low-
energy excitations above tlighree-body breakup threshold.
The main model assumption about the factorization of the
wave function into two parts suggests that low-lying nuclear
transitions of interest are connected with excitations of the The effectiveNN interactionV ot between projectile and
two valence particles in the halo outside thecore. This  target nucleons is a key point in the microscopic approaches
assumption is physically reasonable for the low-energy speao the description of one-step reactions. It differs from a free
trum sincea-core excitations must involve a significant en- interaction since one of the nucleons is embedded in the
ergy transfer due to the particularly stable structure ofdhe nuclear medium, its motion being restricted by Pauli block-
particle. ing and interactions with the nuclear environment. Usually

The ®He continuum reveals a variety of structures: the 1 these modifications are expressed by means of density de-
spin-flip resonance has an almost pure shell-model structuggendence of the effective interactions, and a lot of work has
(P32P1/2), the 2{ and 22+ resonances are on the other hand ofgone into calculating effective interactions starting from the
strongly mixed nature, and there are three-body virtual excifree one. As a rule, the calculations are based on nuclear
tation such as the soft dipole and monopole modes. Fomatter with applications made to finite nuclei via local den-
qualitative insight in the resonance structure, Tables Il andgity approximations. These procedures include some uncer-
[ll give partial wave function norms in the interior region tainties, which are especially troublesome when we deal with
po<15 fm for all resonances and the beak bothirLSand the lightest nuclei. Some physical situations exist, however,
(Jacobj jj coupling scheme. These norms reflect thewhere the interaction dynamics simplifies, and simpler ap-
“eigen” resonance properties of any few-body system andproaches can be used. At intermediate energies the impulse
measure the continuum strength accumulated in the strongpproximation has proven to be very successful. In this situ-
interaction and centrifugal barrier regions. A hyperradialation the nucleon-nucleon collision energy is sufficiently
resonance wave function in the interigi< p,y) can be rep- large compared to binding energies, and the modification of
resented in a factorized form: the free interaction is not very significant. Using as effective
interaction the free nucleon-nuclebmatrix, that takes into
account an infinite number of rescatterings between two
nucleons interacting via a fredN potential, we obtain a

B. Effective interactions between projectile
and target nucleons

x(p;E)~A(E)- WR(p)= E “WR(p), (1)

—(Eg—iTo/2)
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complex, energy-dependent interaction with parameters tha
can be extracted from analysis of experimental data on free
NN scattering.

Another simplified situation occurs in interactions with
halo particles, because the halo particles have small binding
energy and large probability to be outside the core of
strongly bound nucleons. In the course of interaction with
halo nucleons, small momentum and energy transfers are nc
blocked as is the case for interaction with core nucleons. As
a result, the interaction with a halo nucleon is very similar to
the interaction between two free nucleons, and we can us¢
the freet-matrix interactions, in close analogy with the im- @ ®
pulse approximation at intermediate energies. This approach
is in the spirit of our model for nuclear structure, when the
“active” part of the nuclear wave function is defined by the
motion of halo particles. In concrete calculations of inelastic
and charge-exchange, we use theatrix parametrization of

Love and Franey32] with central, tensor, and spin-orbit lest and best understood. Experimental possibilities are now
components. The contribution of an exchange knock-out amP'€s : - EXperimental p : .
available for applying these reactiofia inverse kinematics

plitude is taken into account in the pseudopotential approxi< ) e >
mation[33]. on nucleon targejdo investigation of the structure of exotic

To be consistent with the three-body+ N+ N model of halo nuclei. The cross section of quasielastic reactions
nuclear structure, we must also take into account dihe
interaction between the projectile nucleon amdcore. For ,
charge-exchange reactions at low excitation energy, only the N+A—N"+C+n;+n,
halo nucleons are the active particles in our model. Charge-
exchange with core nucleons must destroy éheore and
involve a large excitation energy, and was therefore nepetween a nucleon and a two-nucleon halo nucleose C,

glected in our calculations. In inelastic scattering takl with A=C+n;+n, in the g.s) exciting the latter to the
interaction can give a contribution also at low excitation en-continuum, can be written in the form

ergy. If the @ core is taken to have an infinite mass this

contribution will be exactly zero, due to the orthogonality

between initial bound and final continuum states of the three- (2m)* )

body system. In real situations the center-of-mass of the total o= > J dkydk,dkadkcS(Es—E;j)

nucleus is somewhat shifted from tlheparticle center-of- '

mass, and we have a finite contribution from this interaction.

We expect that the role of direetN interaction increases

with increasing transferred momentum. At this stage of our X 8(P =P Tril?, )
investigations, we neglect these contributions. Therefore, our

calculations of inelastic scattering should be reasonable only

for moderate transferred momentum. Physically this cormewhere E;=ey+es, E;=sf+teite,+ectQ, Pi=ky
sponds to the situation where theparticle is a spectator, P;=k{+ky+k,+ke are the total energies and mo-
and experimentally it would be realized if only events with  nantg of all particles before and after collisions. In these
particles in the forward direction were detected. It is NECeSgynressions) is the binding energy of the target nucleus in
sary to emphasize that when we take into account the intefne case of inelastic scattering, while it is the difference of

action with halo nucleons, the recoil effects are treated in art‘)inding energies of parent and daughter nuclei for a charge-
exact way because the wave functions which we use argychange reaction. The relative incident velocity is

gz{?sed in terms of the translational invariant Jacobi coordi-vi:hkillui . and g;=myMA/(my+M,) is the reduced

mass of the particles before collision. We will work in the
. center-of-mas$c.m) coordinate frameR; = 0, ky = —kp
C. Distorted waves = k;), and use Jacobi coordinates for particles both in initial

For calculations of distorted waves we need to know theand final systems. The coordinates used are defined on Fig. 1
optical potentials describing the nucleon elastic scattering2nd are given by
We used a phenomenological optical potenitgd] describ-
ing proton elastic scattering frorfLi at energyE, = 49.5
MeV. The same optical potentials were used in both incident Kko— ﬁ B & _ mmy
and exit channels. T my) M mmy

FIG. 1. Spatial coordinate&) in nucleon-nucleus scattering,
and particle momentéb) in the two-neutron halo system.

IV. REACTION FORMALISM
_(mp+my)me

. . . . +
Among the quasielastic reactions, the nucleon-nucleus in- k. = Ke _kitke hy=————
Y mp+my+me’

o ne conueus -0 Kitke
elastic scattering and charge-exchange reactions are the sim- Vo me mp+m,
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K=Ky +ko+ke=—kl=—kKi. 3) d°
d0,d0,d0;ds,dE,
B At Ke_ [ papey| 32
=(2m) — T2 i
In the c.m. frame E;=g(+E,+Q, where & At ki\ R
=12k?2ue, and p=m{MA/(m{+M,) is the reduced 1
. ) _ — 1 12
mass for the exit channel, while E,=&,+¢, X \ey(E, 8V)2(2Ji+1)2 | Tl (4

=1h2Ki2u+12k5/2, is the excitation energy measured

from the breakup threshold. Taking into account conservaThe factorm describes the distribution of energy
tion of energy and momenta, the exclusive cross sectioBetween different modes of particle motion, and reflects the
(when energies and momenta of all particles are obsg¢ised phase space accessible for breakup. The matrix elefent
an average over initial and a sum over final spin orientationincludes all the interaction dynamics, and is given in the
and can be written as distorted-wavgDW) framework by

Tri={ Xty (KO Wi i me (K Ky)

v,

‘I’JiMiaXi(,Tw)a(ki)> ' 5

wherex(7) are distorted waves describing relative motion of

. . - i) = S1M;S,M,| SM
colliding nuclei, ¥ ;. and Wi o (k,k,) are the initial memT '%'Mtf< 1M SM;| S Mss,)
bound and final continuum nuclear states, respectively. Spin
projectionsM,, M;, My, m;, m,, andmc, together with X(LiM_ SiMg [ItM)
relative moments; ; andk, , characterize the asymptotic .
. . . . . IXI K
state of all particles taking part in the reaction. Continuum Xny{fMLf(QS)\I'%Jf,Mf(x’y"‘)’ 8

wave functions are a matrix in spin space, and contain the

probability for spin-flip in the course of scattering. Since we ] o

are interested in studying tfiHe nucleus where the core is Where y is an abbreviation for a set of quantum numbers

ana particle with spin zero, for simplification of notation we ¥=1Ks,L+,St,lx.ly}, which characterizes the relative mo-

omit everywhere below mentioning of the core spin projec-tion of the three particles flying apart. The continuum wave

tion mc. function ¥, ;v (Xy,x) depends on the quantum numbers
In Eq. (5) V, is a local, effective nucleon-nucleon inter- y, Jacobian space coordinatesy(), nuclear excitation en-

action between projectile and target nuclegnaindt, ex-  ergyE, (expressed by the hypermomentuy) and the total

pressed in terms of central, spin-orbit, and tensor compoangular momentund; and its projectiondvi; :

nents:

1 L'S' LSy
\I,%Jf ,Mf(X!yIK):— E XK,';I;/'Kflxly(Kp)

5/2
V(rpt,ppt)=2 [ZS tSrp) oy o+t g(rpl S (kp)™y m!

(MK
~ XY>*y o (Qg). 9
+t¥(rpt)spt(rpt)}7'g'7';r, (6) JiK'L’S" M

The transition amplitud&y; can be further decomposed ac-
wherer ,=r,—r, and =3 (p,—p;) are relative distance cording to Eq.(8),
and momentum(wave number between two nucleons,

SZ%(O'p-i-O't) and L=r,Xp,; are operators of total spin Th= 2 (Slm152m2|5stf>
and orbital angular momentum of the two nucleons .M Mg,
pi=—iV;, 07=1, a; for S=0, 1, respectivelyS,(r ) is the L .
tensor operator X<LfMLfoMSf|Jfo>yéifML (Q5)T,(Ky Ky, &),
f
10
- (o, ry)(o-r (
Spt(Tpt) = (7 ‘“2( SEL —(0p- o). (7)
Mot whereT (K, ,Kky,«) formally now has the same structure as

any two-body amplitude for excitation of a nuclear state with
Using the method of hyperspherical harmonics, the nucleaiotal momentumJ; ,M;, excitation energy, , and a fixed
wave function above the breakup threshold can be written astate of relative motion of breakup fragments defined by the
follows (for details see Appendix A guantum numbery:
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T'y(kX1ky1K)

Xe (K6, W 50, () \PJiMi,x§,m)a<ki>>

=j2m (JiMijm|Jfo>T“yf?'Mb’m(kx,ky,K). (11)

To calculate the reaction amplitude we use the partial wav
decomposition for the distorted wavg$,{ (k;), describing

the relative motion of the projectile nucleon and the center
of-mass of the target nucleus:

(k=2 x
M,

(+)
H !
MM,

(+)

XiM (kivrp)|SaM;i>

E <|aml S Ma|]ama>| a

lala

krp

XY (Kxj(kiorp)liama), (12

where [jama)=S(1am| SaMyliaMa) Yy (Fp)[SaM2), and

|S:M}) is the projectile spin function. Nuclear form factors
can be defined as

pt

<jbmb-‘]fo ‘]iMiajama>

=Z (IM{im|IM 1! (13
s

1)I+s—j+m

(—
X

s

Jd
><<Jbrnb|[Yl(r )®0'p]1m|]ama>FJbJ Krp ar ) (14)

wheres=/2s+1. In the case of nuclear excitations of nor-
mal and unnatural parity the explicit formulas for radial form
factor Fi}a are given in[35] and Appendix B. Taking into
account these definitions the reaction amplitude
T“y"‘?’Mb’m(kx Ky, «) can be written in the usual form

T Mo M (i, ky k)

~(4m)?

Kk | ila~lo~ vy M (ki)YIbmlb(Rf)I:zJja,lbjb

ajalbjblS
]befbf
Jan ———(lamy_SaMaljama){lom; SpMp|jpmp)

So

S
Sa

Ib
j

Ja

lp

X<jbmbjmljama><|b0|0||ao> l (15)

la

where the radial integrals®] are defined as

Jaslbip

OVet al.

Isj .
|ala’|b1b

l
- [ ary? ki)

Isj
I:J alb

a\1
K,rp,o"Tp EXlaja(ki’rp)' (16)

It is useful to compare the expressid®) for the breakup
amplitudeT;; with the amplitude for a usual two-body reac-
don which has the same structure as amplit@@®. In the
three-body case, the amplitude, has additional degrees of
freedom which are manifested as dependence on angles

c={a, kx,ky} where siRa=¢,/E,.. In contrast to a tradi-
t|onal two-body approach, the exclusive cross sectmo-
portional to|T|?) contains an incoherent sum over total
spin S; but a coherent sum over total transferijednd final
Js . Consequently, we expect that the exclusive cross section
will be especially sensitive to the correlations in the nuclear
structure.

The different exclusive cross sections and correlation dis-
tributions will be considered elsewhere, here we restrict our-
selves to inclusive cross sections. To calculate the double-
differential inclusive cross sections when experiments
measure the energy and angle for one particle, we must in-
tegrate the fivefold exclusive cross secti@) over the un-

observed coordinates of breakup particlasglesk,=Q,,
Ry= ),), and over various distributions of relative eneegy

between fragments:
EK
‘fo ng dQXdedQXdededsydEK'
(17)

Using the following orthogonality properties of the hyper-
spherical harmonics:

EK
f dsyxlay(EK—sy)f dQ,dQ,y
0

—op2
= ZEK‘SK’K5L’L5MLML5I>’(IX5I)’/va

d?c d®c

dQ.dE,

I (DD, (08
(18

the inclusive cross section now becomes an incoherent sum
over total transferred and final J; angular momenta, and
gdifferent y components of the final target state are excited
independently of each other. Thus

d? Miket Ky (23;+1)
—2(277)4|—4__,2 RN IV T
d0,dE, W kS, (23112 + 1)

1 3/2
X5 X |Tmambm (ks ki aK)|24E2(MXi‘Ly) '

(19

In this expression the factdii, which originates from the
three-body phase volume, guarantees the correct cross sec-
tion behavior at the breakup threshold. From E®) it also
follows that, due to the averaging procedure, we lose infor-
mation about correlations in reIative motion of the breakup

particles[which were defined waLM (Q25) hyperharmon-
ics]; remnants of the complex dynamics that governs the
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particles motion are kept only in different shapes and " " T
strengths with which various components of final states are °Li(n,p)°He (g.s.) °Li(n,p)°He (1.8 MeV)
distributed over excitation energies. One may hope that in E, =118 MeV . S=2
the differential inclusive cross sections, due to specifics of 10'F 107 L] P f f
reaction mechanisms, we can under certain conditions eng =
hance the excitations of some of the components and thuig N e
still obtain valuable information about structures of halo nu- 5 \y.»—" """"
clei. o 107 SN
The inclusive excitation cross section can be obtained byg ,,"' Y
integrating over all ejectile angle3; : 10°k 7,/'
do o @ 2 L
d?:J dgfm_ (20 0 5 10 15 20 0 5 10 15 20
K L 0c.m. (deg) O.m (deg)

This cross section describes the distribution of total strength £ 2. angular distributions foPLi( n,p) ®He at 118 MeV. The
of different excitation modes over energy spectra in quasigashed, dotted, and dashed-dotted lines show the contributions from
elastic reactions. i=1,2, and 3, respectively. The experimental data are from Ref.
[36].
V. RESULTS

With the model described above, we have calculated thE36] the reaction®Li(n,p)°He at neutron energy 118 MeV
excitation[Eq. 20] and double-differentiglEq. (19)] inclu-  Was measured. The proton energy resolution in the experi-
sive spectra in the c.m. system for the charge-exchange r&ent was~ 2.3 MeV. This should be kept in mind when
action °Li(n,p)®He and the inelastic scatterindHe comparing with the reported differential cross sections for
(p,p’)®He atEy =8 50 MeV, with excitation of different transitions from the 1 ground state ofLi to the 0" ground
\];Tf:Oi,]_i12i,3i |ow-energy states offHe. The corre- state and z resonanc€1.8 Me\/) of 6He. Figure 2 shows
sponding cross sections are shown in Figs. 3—6. In the figh® corresponding experimental data plotted together with
uresE* is the nuclear excitation energy measured from the?Ur c@lculations using the Love and Frartegatrix interac-
SHe ground state. For inelastic scattering the initial targefion [32] at 100 MeV and an optical potentie87] describing

state of°He hasJ,=0 and the tota] transferred has a unique Proton elastic scattering frorfiLi at 144 MeV. A good de-
value and coincides witd; of the final state. For charge scription for the shape and absolute value of the differential

exchange orfLi the situation is more complex: sinde = 1 Cr0SS section to ground state was obtained and also a reason-
for the SLi ground state it is possible to excite final states of@Ple agreement with the data on the Besonance. The'2
6He with definiteJ; by differentj transfers. All values of angular distribution has a characteristic form corresponding
allowed by angular momentum conservatiod -J;=j) to a transition of mixed angular momenta. To demonstrate
| . . . . .

were taken into account in our calculations. It follows from thiS we show in Fig. @) the separate contributions from
Eq.(19) that evenyj gives an independent contribution to the transitions with total transferred equal 1, 2, and 3 by
inclusive cross sections. Our main goal is to demonstrate th shg_d, dot.ted., End glashed-dotted lines, respectwely. The
even in the simplest inclusive experiments it is still possiblelfansition W'IEJ = 1 includes transfer of relative orbital

to extract information about structures in the continuum byMomentuml = 0 and determines the cross section at small

detailed examination of both excitation and differential cross2ndles, the others with= 2 and 3 havé = 2 and dominate
at larger angles. Thus the reliability of our approach was

sections. X - o
confirmed, lending support to our predictions for low-energy
excitation spectra, for which the model was developed.
A. Two test cases for the model
Two cases were used to check the model and consistency B. Inclusive excitation spectra

of our reaction continuum calculations. The shagp r2so-
nance at 1.8 MeV was used in the first. This resonance re-
sembles a usual bound state and can be described with good The inclusive excitation specti@ig. 3, thick solid ling
accuracy by calculating it with a boundary condition underfor charge-exchange and inelastic scattering reveal two dis-
the barrier corresponding to a discrete state. We use this tinguished bumps in the low-energy total spectrum: The first,
calculate the differential cross sectida/d(). Next we cal- narrow at excitation energy- 1.8 MeV and the second,
culate the double-differenti@?c/dQdE* cross sections for broad at~ 4.5 MeV. To understand the nature of these struc-
the 2/ resonance at differef* and after that integrate over tures, the left side of Fig. 3 shows the decomposition of the
E* across the resonance. In fact, calculating a resonandetal spectra into contributions from excitations of different
width and cross section at peak position, energy integratiopartial componentsf of °He. The 1", 2%, and 0" excita-
has been done analytically since the resonance has the Breitens are given by thin solid, dashed, and dotted lines, re-
Wigner form(we checked jt In both calculations we got the spectively. The dot-dashed line shows the contribution from
same results fodo/d(). 17" excitation for charge exchange and ®r inelastic scat-
The second way is to compare our calculation with knowntering. Contributions from other partial waves are less sig-
experimental data for excitation to the continuum. In worknificant and not given in the figure.

1. Partial content
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h-
dipole response iffHe [6]. Both processes show strength
accumulation in the same energy region and hence, we
% should expect no matter which excitation mechanism domi-

nates, a similar behavior for excitation functions. In an el-
E (MeV) E' (MeV) egant experiment orfHe breakup reaction at 63.2 MeV/
nucleon on Al and Au targe{23] with registration ofy rays
FIG. 3. Multipole J{" and spin decompositiofleft and right i coincidence, similar behavior af particle distributions
sides of inclusive proton energy spectra frofii(n,p) °He* (top  \vas found for both targets. For the light Al target, the
row) and *He(p,p’) ®He* (bottom row reactions. nuclear mechanism is believed to give the main contribution
to the spectra while for Au the EM dominates. Our theoret-

. . + . . . . . . . R
The first narrow peak is the well-known resonance in jcal results explain qualitatively the observed similarity.
%He. The broad bump has a more complex structure. A mix-

ture of different excitations is responsible for the total shape; 2. Spin structure
a second 2 resonance and concentration of low lying

strength of T and 0" excitations dominate the spectrum The composition of spectra, or relative role of excitations
The double-hump shape of'2excitations is the most re-. of variousJ!f, is as discussed above different for the two

markable feature of the low-energy spectrum. The strengtfeactions. In charge exchange a relatively larger number of
concentration of I transitions atE,~ 4 MeV is the other ~States was excited with about equal intensity, while inelastic
peculiarity. The behavior of other excitations, for examMe,s_cattering is more selective. To better illustrate _this_point, the
3~, is different. It smoothly increases from threshold, and infight side of Fig. 3 shows separately the contributions from
the case of inelastic scattering gives a significant contribuéXcitations of°He states with total spif; = 0 (dashed ling
tion at higher excitation energy. and 1 (dotted ling. For inelastic scattering the excitations
The excitation spectra for both reactions have qualitawith S;=0 dominate the spectrum, while for charge-
tively the same gross structure, but the absolute cross sexchange both contributions become comparable. This is a
tions are a few times larger for inelastic scattering than fofreflection of specific reaction mechanisms. In inelastic scat-
charge-exchange. tering theS=0, T=0 component of effective interactions is
Nuclear reactions in which halo nuclei take part servethe biggest one, while in charge exchange only isovector
due to somewhat different dynamics, as filters and could leagomponents play a role and in the charge channel the effec-
to different multipole composition in observed excitation tive forces withS=0 andS=1 are comparable in strength.
structures. In inelastic scattering the dipole mode dominate§he relative role of different components of effective forces
while in charge exchange the"2resonance is about 50% depends on collision energy and so the ratio between excita-

larger. tions of the various structures will change accordingly.
The pronounced 1 nuclear excitation has similarities
with electromagnetic response for the soft dipole mode, C. Double-differential inclusive cross sections

prevalent in Coulomb breakup on heavy targets. Figure 4
shows theoretical cross sections for Coulomb brea(dat-

ted line of ®He on gold at 63 Me\A& and inelastic proton Excitation functions, measured at a fixed angle, can serve
scatteringsolid line) with 1~ excitations, arbitrarily normal- as a filter for selecting partial waves with definite multipo-
ized. A semiclassical description is used for the CoulomHarity and therefore make it possible to extract information
dissociation process and our model for the electromagnetion resonances in complex situations such as that described

1. Fixed angle
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FIG. 5. Inclusive differential proton energy spectra frdini FIG. 6. Inclusive differential proton energy spectra frdide
(n,p)®He* for four values of the scattering angle,, . See the text  (p,p’)°He* for four values of the scattering angi , . See the
for further details. text for further details.

above. Figure 5 shows spectra for c+har9_e exchimge at diffefycleus. The way these excitations are revealed depends on
ent exit proton angles. The total, 127, 07, and 1" spectra  the external fieldgor reaction applied to the system. This

are denoted by thick solid, thin solid, dashed, dotted, angs 3 characteristic feature of continuum excitations without
dashed-dotted lines, respectively. The double-hump shapgarp resonances.

appears at all angles, but the composition of the second
bump depends on scattering angle or angular momenta trans-
ferred in the reaction. At 0° the excitation of 017, and 2
dominates the spectrum. All are populated by strong transi- We discussed above the dependence of the differential
tions with relative orbital momentuin= 0. With increasing ~Cross sections on excitation energy for fixed scattering angle
angle the excitation of 1 grows and at 10° all these states OF momentum transfer. It is also interesting to compare the
are important. At 20° the 1 and 2" are most pronounced. behavior of the cross sections at fixed excitation energy for
At 40° the absolute cross section has been reduced to hdlffferent scattering angles. Figure 7 shows angular distribu-
value, and all energy spectra except Bave flat distribu- tions for the @, p) reaction, for a few excitation energies that
tions. It is also interesting to note that for kexcitation the ~ cover both sides of the second bump. The values of the trans-
main contribution comes from the transition wjtk 2,s=1, ferred momentaj=k;—k; (in units of fm~*) are shown on

andl = 1. The dominance of spin-flip transition is due to the the top abscissa, corresponding to the scattering angles
structure of initial and final states where components witnShown at the bottom abscissa. The thick solid line shows the

S=1 andS;=0 prevail. total cross section. On the left side of the bufi* =3.5

Figure 6 shows the analogous spectra for inelastic scatteMeV, Fig. @] the differential cross section has an asym-
ing. All lines mean the same as in the previous figure, excepietric bell shape with maximum at about 15°. Going to
that the dotted line denotes 3excitation forg = 20° and  higher excitation energyE* =4.1 MeV, Fig. 7b)] through
40°. At 0° the O is excited very effectively in the region of the bump maximumE* =4.5 MeV, Fig. 1c)] to the right
the second bump. With increasing scattering anglebk-  side [E*=5.2 MeV, Fig. 1d)], the cross section shape
comes pronounced. It dominates the total spectra at 10° arfd'@nges smoothly and becomes gradually more flat with a
20°. Contributions from 2 and 1" additionally increase the Plateau from 0° to 20° on the high-energy side. This shape
width of this bump. At 40° the total cross section is againmodlflcatmn becomes transparent if we examine how the
diminished, with 2 and 1~ excitations being the largest. At contributions from excitations of differert{" change with
higher excitation energy 3 now gives a significant contri- energy. The thin solid, dotted, dashed, and dash-dotted
bution to the total spectrum. curves show the contributions offQ 17, 1*, and 2", re-

From the results represented in the figures, it follows thaspectively. We see that at small angles, the dominating states
the second bump structure in the low-energy part of the speare all those (0, 1*, and 2") which can be reached by
tra is a complex mixture of various excitations of tAe  transitions with zero relative orbital momentum. For a range

2. Fixed excitation energy
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FIG. 8. Proton energy spectra froffHe(p,p’)®He* versus

scattering anglé, ., for four excitation energieE* .

To further understand the nature of continuum excitations
it is also useful to make a comparison between angular dis-
d tributions for the two 2 resonances: the first one being nar-
row and the second broad. Figur@Pshows the differential

of somewhat larger angles the contribution of is most
significant. The 0 and 1" have smoothly falling angular
distributions, 2 is more flat due to the already mentione

mixing of transitions with differenf. Hence, the interpla . N . .
9 ! piay cross sections forp at three excitation energies: approxi-

between 0, 1", and 2" excitations, which together create a ately at peaksolid line) and at energies shifted from the
smooth background with the highest cross section at smaj| ey & p 9

. o . peak position a half width to the leftlashed lingand to the
angles,.e}nd the 1 peaking a.t 20°, def|r_1e the total shapg. Theright (dotted ling. We see that all angular distributions have
competition between them is responsible for the modificatio

. : . Ndentical shape through the resonance. Figuft® 8hows
of this shape with excitation energy. As a result, we get a flakgharately the contributions from excitation of the three main

total distribution extending over a rather wide angular rang&omponents of theéfHe wave function[1 (dashed is for
on the high-energy slope of the second bump. These resulfs_» g—q, 1,=0, I,=2; 2 (dotted is for L=2, S=0,

are in qualitative agreement with experimental data on th‘PX=2, |,=0; and 3(dot dasheis for L=1, S=1,1,=1,
°Li(Li, 'Be)®He* reaction[26,27 if we scale angular dis- | —1] t(y) the total(solid line) 2; cross section at peak posi-
. . . y 1

tribution according to the transferred momentgm

The corresponding data for inelastic scattering are shown
in Fig. 8. The thick solid, thin solid, dashed, and dotted lines
again show total, ®, 17, and 2" cross sections, respec-
tively. For inelastic scattering, in contrast to charge ex-
change, the total cross section remains bell shaped at all
excitation energies of the second bump. This is caused by the
dipole excitation which dominates the spectra. The contribu-
tion from 0% is also significant, especially at small scattering
angles, counteracting the drop of the total cross section. The
excitation of 2" in (p,p’) does not play the prominent role it

102

E =1.82MeV,J =2,

®He(p,p")°He , J* = 2,*

-
o
o
T

------- E’ = 1.805 MeV™:,

d %/(dE da) [mb/(MeV sr)]

does in charge exchange. Togethef, Bnd 2", create a ——E=1820MeV oo

th background i lar distributions. These differ- ¢ R T
smooth background in angular distributions. These differ- 0 20 4 80 0 20 20 60 80
ences in the two reactions are due to two reas@hbecause 6, (deg) b, (deg)

of the different structure of initial states we need different
operators to excite the same final state®ide and(ii) in FIG. 9. Proton energy spectra frofhle(p,p’)®He* for the first
addition to isovector forces in charge exchange the strongarrow 2" resonance(a) The cross sections at peak position and at
isoscalarNN interaction acts between target and projectileenergies shifted from the peak by a half width to either site.
nucleons in inelastic scattering. Partial contents of the peak cross section. For details, see the text.
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FIG. 11. Absolute values of the charge-exchange momentum
Oc.m. (d€9) Bc.m, (d€9) space transition densitigg_os-1;-1(q) to the 0" states of°He
are shown. Curve 1 is the/0density, curves 2—4 are thg @ensity

FIG. 10. Proton energy spectra frofte(p,p’)®He* for the components. For details, see the text.

second Z resonancefa) The cross sections at peak position and at
energies shifted from the peak by a half-width to either side. The  D. Transition densities to bound and continuum states

partial contents of the _corresponding cross sections are shown in Apnother interesting illustration can be obtained from com-
(b), (¢), and(d), respectively. See the text for further details. parison of transition densities to bound and continuum states.
As an example, Fig. 11 shows transition densities in momen-
tion. Again, the angular distributions for all componentstum space from the "L ground state of°Li to ground and
have the same shape. For the broad resonance the picturec@ntinuum 0" states of°He for transferred orbital, spin, and
different, as shown in Fig. 18 where solid, dashed and total angular momenta equal to 0, 1, and 1, respectively. The

dot-dashed lines show the total angular distributions gpr 2 COntinuum energy was chosen as 6 MeV, where excitation of

at peak position and shifted from it by a half width to the left the continuum O in charge exchange is largest. Since tran-

: : sifion densities to continuum are complex, we show only
and right, respectively. For the broad resonance, the shape 8bsolute values. Curve 1 is for transition to ground state

the differential distribution is changed through the reso- . .

nance. Figures 1B)—-10(d) show decomposition of the total curves 2, 3, and 4 a_re ccimpoEents_of cgntlnuugn_\mh

distribution into contributions from main components. The 9430tum numbersK=2L=1S=1[,=1/,=1), (K=2L
P - '"®-05=0),=0/,=0), and K=0L=05=0),=0/,=0),

notation is the same as in Figt. For 2, the main contri- respectively. We see that between bound states the transition
bution comes from excitation of final quantum numbersgensity has a unique spectral composition, which coincides
L=1 andS=1 (curve 3. The shape of this component is with that known from the electron scatteriMyl form factor.

only slightly changed when going across resonance: theor transitions to the continuum, there are various compo-
maximum shifts by about 2° and the width becomes narnents with different spectral forms. In the bound transition,
rower on the high-energy side. The shapes of other compaimilar components with the same quantum numbers also
nents experience dramatic changes: the interference pattegist, but since the bound state presents a unique structure all
in the angular distributions has a different character on opthese components are organized in a unique way, and give a
posite sides of the resonance. Usually the resonance ampjpint system response to external perturbation. In the con-
tude, as a function of energy, can be separated into a smootinuum the various components correspond to different
background and a resonance part. It is reasonable to assurf@des of relative motion between breakup fragments and
that for a sharp resonance the background part remains mog&ould, in principle, be accessible to measurement. They will
or less constant over the resonance width and all energy d&¢e excited differently by different reactions and the response
pendence is only in the resonance part. As a result, the shapdll depend from the external fields applied to the system.
of angular distributions does not change over the resonanc©nly in the case of sharp resonanéesich in many respects
For broad resonances the background part may change, aftf similar to bound states and.represent to a large extent the
interference with the resonance part can produce differerjpternal property of the systemwill the response be more or
angular distributions. For dominant components the role oféss the same.

the background part is relatively small, hence shape varia-

tions are not pronounced. For smaller components both parts VI CONCLUSION

of the amplitude are comparable, and can give different an- We have developed a four-body distorted wave theory
gular distributions on opposite sides of the resonance. which is appropriate for analysis of nucleon-nucleus reac-
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tions leading to continuum excitations of two-neutron Bor-sections for kinematically complete experiments when char-
romean halo nuclei. Spatial granularity of the halo boundacteristics of four particles are measured. Hence we can
state and the final state interaction in the three-body constudy a variety of correlations existing in Borromean halo
tinuum was fully taken into account by the method of hyper-nuclei that could not be seen in the inclusive observables. An
spherical harmonics. The weak binding and dilute matter ofnalysis of different exclusive cross sections of nucleon-
halo systems enabled us to use a f\#d t matrix for the nucleus reactions with excitation of the three-body con-
interaction with halo nucleons. Although applicable to anytinuum of ®He is in progress.

two-neutron Borromean halo nucleus, the=6 nuclei were

again chosen as benchmark systems. For these nuclei we ACKNOWLEDGMENTS

have the most complete knowledge of the binary subsystems.
Experimental investigations of these nuclei are also currentl
being performed or are planned. As an initial check th
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A detailed study of inclusive excitation and differential \where some of the work was carried out, is furthermore ac-
cross sections for inelastiHe(p,p’)°He* and charge- knowledged. The authors are grateful to Professor M.V.
exchange®Li(n,p)®He* reactions at beam energy 50 MeV Zhukov for useful discussions.
was performed. The theoretical low-energy spectra exhibit
twg resonancelike structures. The fitearrow) is the exci- APPENDIX A
tation of the well-known 2 resonance. The secoifdroad
bump is a structural composition of overlapping soft modes Within the cluster representatioffor details see Refs.
of multipolarities 1°,27,17,0" whose relative weights de- [1,10,29), three-body bound and continuum state wave
pend on transferred momentum and reaction type. Receifiinctions(WF) have the product form
experimental data on heavy-ion charge-exchange reactions
[26,27], although sparse, confirm the existence of the second |®)y=exp(iK-R)YPc(Lc)¥ ]y, (A1)
structure.

The soft excitations of different multipolarities have a where ®(¢c) is an intrinsic core WF, while¥ ], is the
concentration in a relatively narrow energy region near the‘active” part of the three-body WF carrying the total angu-
2] resonance. This poses a challenge. Nuclear reactions iar momentJ, its projectionM, and total isospifT. This part
which halo nuclei take part serve, however, due to differ-depends on relative coordinates and cluster s{singpressed
ences in reaction mechanisms, as filters emphasizing diffein our notationsand it is the object of the calculatio. and
ent multipole components in the observed excitation strucR are momentum and coordinate of the center-of-mass of the
tures. To some extent we may exploit this to our advantagenucleusA, respectively.

Thus comparison ofr(,p) and (p,p") shows that the ex- Translationally invariant normalized sets of Jacobi coor-
citation cross section for inelastic scattering preferentiallydinatesx; andy; are defined as
selects the T component. Hencep(p') is the most prom-
ising tool for_ study|_ng the s_oft _dlpole excitation mode. X3= \/A_12(r2_r1)a

Double differential distributions for the broad structure
show that association of the observed structure with excita-
tion of_ a unigue multipolarity would_ be misleading. This is e m(rc_
especially so for charge exchan§ei(n,p)®He*, where a
flat shape of the total angular distribution extending outside
forward angles, is due to mixing of excitations with different
multipolarities. Under favorable conditions, measurement of R= K(Alrl+A2r2+ACrC).
spectra at definite momentum transfer makes it possible to
extract information on |nd|V|dua_I resonances in complexHereAlzz ALA,/(A+A,) is the reduced mass of the2)
situations such as the one described above. bsvstem in  units . of the nucleon massn

Our results on charge exchange are in qualitative agrees—u syste . N:

. X T T Bl % Arinc=(A1+A)AC/ (A +A,+Ac) is the reduced mass of
ment with experimental data on ti&i( ’Li, ‘Be) ®He* reac- (12)C ¢l c
. . oSN . the (12) cluster with respect to the core C, and
tion [26,27] if we scale angular distributions according to the

transferred momentum. Forward angles are most importar‘lb‘lt:e'?r};icg;’;g* N(l))t'(;i’ dt(zatyz?j 5 \;:;(I:Igt?iaéo\(l)vrl:ﬂrzgt;sére
for partial analysis, but in both experiments there are no LY 2y

enough statistics in this region for more definite concIusionsObtalned by cyclic permutations ¢f,2,0. The set of Jacobi

on the resonant structure §He continuum. Since all reso- momentad, ps, andK conjugate toxs, ys andR is defined

nant states are concentrated in the vicinity of the extremel)l?y the relations,
pronounced 2 state, high-resolution experiments with de- K K
tailed angular distributions will be needed. ga= VA (_1__2)
3 12| A Al
The model we have developed allows us to calculate cross 1 A2

This work was done under financial support from the Ber-
en and Surrey members of the RNBT Collaboration. Two
of the authorgB.D. and S.B. are thankful to the University
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ke kitks P2 (@) = NXY(sina) x(cosa) yP X Y2y Y3 o0
= /A — -, A3 K K (K=1y—=1y)I2 !
P3=VAuac Ac A TA, (A3) ’ (A10)
K=kit+katke, WherePﬁ'ﬁ are Jacobi polynomials armlI'KX'y is a normaliza-
herek: i=12C th ticl bers i tion factor.
wherek;, 1=21,2% are né particle wave numbers in an ar- o, 1,5 nq states the internal WF in LS coupling has the
bitrary frame. The Jacobi momentg, p; are connected to form
ky andk, defined in Eq(3) with simple relation
Ky= VA1203, 1
V=g Xk (Y 5 s (Q6)Xruy,  (ALD)
Ky=VA(12cP3- (A4) M p°%5 XKy P T akLsmy 228 ATy

We use hyperspherical coordinatesa, 60y, ¢y, 0y, ¢y,  wherey is an abbreviation for a set of quantum numbers
where (@, ¢4) and (6, ¢y) are angles associated with the y={K,L,S,l,,l,}. For continuum states we have the form
unit vectorsx andy, and

1 !
12 ‘I’IM:—E )(LS’L S ,(Kp)YIXIy (2s5)
p=(x2+y2)1’2=( Ai(ri—R)z) , a=arctarix/y). (kp)¥%5 T Ky IKLSM
i-Tac
Q! ! |>,(|’* K
(A5) X(L'M{SMYIM)VXY ()X, (AL2)

K’L'M/
The collective variablegr and p are called hyperangle and )
hyper-radius. The last variable is rotationally and permutawith normalization condition
tionally invariant, having the character of total moment of
inertia or a weighted measure of distances in the three-body

system. The corresponding conjugated momenta are f \I’:,‘Pkdxdyz 58k — k) 5(Q§’—Q§)

k=(q?+p?)=t"Y2my|E. )% a,=arctariq/p), =3(q'=q)s(p'—p). (A13)
(A6) .
The WF W], is a solution of the three-body Sclliager
whereE, is the total three-body energy. Since we introduceequation
a new degree of freedom its corresponding conjugated quan-

tum operator has eigenvalug§é=2n+1,+1, called the (T+V—E)¥],=0, V=V, +Vic+Vye, (Al4)
hypermoments. Hyperspherical harmonics (HH)

z//'KX'V(a)-Y,me(Qx)~Y|ymy(Qy) are eigenfunctions of this whereV;; is the interaction potential between particiesnd
operator. j. After separating out the hyperangular parts of the WF we

We seek our bound-state and continuum wave functiong@btain a set of coupled equations similar to those for a par-
in the form of expansions on a generalized angle-spin basiécle moving in a deformed mean field.
(LS coupling In the case of neutral particles the bound hyperradial WF
for Borromean nuclei has true three-body asymptotics:

Yo (Q6) =[VR(Qs) @ Xshow,  (AT) Xolp=0)=p T Xy (pee)~expl=xp). (ALS)

For the continuum WF the boundary condition at the origin
with HH defined as coincides with that for the bound state, while for chargeless
particles atp— it is

Viow(Qs) = (@Y ()8 Y () Tiw- (A8) xwf(Kp>~pl’2[HK+2<Kp>5y,y,—sy,y,H;,ﬂ(Kp)(]. "
Al
Here thea, 0y, ¢, 6, and ¢, variables are denoted collec- B N . _ .
tively by O, Xs is a spin function[ - - - - - -] means vector Here H, and H, are Hankel functions of integer index
coupling, (n=K+2) with asymptotic~p~2exp(+ikp), describing
the in- and out-going three-body spherical wa&s, is the
S matrix for the 3— 3 scattering.
) Wave functions discussed above are characterized by the
[AI®BA]Jm:m|§:fn <|m')‘m>\|1m>A'm|BmA' (A9) total angular momenturd and its projectiorM. Due to ro-
o tational invariance the continuum wave functions with dif-
The relative orbital momentg,, I, couple to the total or- ferentJ are dynamically decoupled and can be calculated
bital momentumL and its projectiorM. Hyperangular part Separately. For transition densities we need the three-particle
of HH has the explicit form scattering stateslfﬁn?’mz(kx ,Ky) in other representations
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characterized bk, andk, momenta of relative motions and The easiest way to calculate space mtegralﬁ |h (r,x) is
projectionsm; and m, of particle spins on a chosen direc-

to do it in a coordinate system where radi SlS colinear
tion. They can be written as y u

with they coordinate:

1 ,
(+) LSL'S
Y, m,= )52 > XKi gy, K. ¥ /(kp)

(KP 'y,'y’,J,M,er_ A|+AJ (Alg)
re=awe=\/ .
t= AkYk AA Yk

X YJXKVLSM(QSW,Z,VL,M,(Q§)<|— 'M{S'MglIM)

X(S1M1S,My|S' M g Xry-.. (A17) In our case we must rotate from the initial Jacobi coordi-
T nate systentbasisxs,y; with A;=A,=1) to the alternative
The transition density describes the system response to similar sets X;,Y;) or (X5,Y5). Hyperharmonic@i:ZL",% trans-

zero-range perturbation, and can be expressed as a matfm under this rotation through Raynal-Revai coefficients
element between the initial bound and final continuum states:

Isj, T
Pmm My

KLM(Qs)—E (L) VR (QL). (A20)
JiMi> ey

o(r— “
pOJRAULLIVAT PN NS ATe

t=12 [y

-(wi

1 Using the definition of reduced matrix elements
= 2 5 QiMim|3My)
f

Ji Mg
. ~ _<jimijm|jfmf> A (]
X 2 (s1Mismy|SirMg) <mef|0jm|3imi>—Jc—<Jf||Oj||Ji> (A21)
)/f/,MI'_f,M’Sf f
’ Ly K ISiT . .
X(Li7M[ StMg|IM WKfLny, (Qs)PySJ (r,«). and with the necessary summation over Clebsch-Gordan co-
Ly efficients the radial part of transition density matrix ele-

(A18) mentSp (r K) is

(r,x)= > Ty (BT by (Sl o (D [SHCE YT, GL jijfélgf,llb
|” n ”n 4 i

Y6 Yl byl oy,

|SJT

” " S S
o) [

X(— 1)y L popd b b
e by J Jr
X[L+(=D)SFSETETL (L (TM [Ty (D[ TiMy). (A22)

The factor 1)S*S*Ti* Tt comes from symmetry proper- _
ties of spin and isospin matrix elements (A9 IIIG)y= 115.(15.010]17 ). (A25)

i
S+ Var
M¢lom(2)|SMi)y=(—1)3"(SM¢|op(1)|SM;),
(SMAor(DISM)=(-1) (SMdon(DIS (2\23) The radial matrix elemerit,, , , is

and the reduced spin and orbital matrix elements are

LSt LiSt*
1 1 s Vv (T = fdx%f dyy2( p)5/2 Kfflfl Kfflxl)’,f(Kp)
2 2 7
s —(_1\1+s+S 5 & o(r—ay) 1
(Slo%D)l[S)=(~1)*" 52555 s s % : T X;Iily(p)p?z

H H

(A24) XUy yn( a), (A26)
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which can be reduced to a one-dimensional integral over the
p variable

+t5(K)[ oy} k]-[ oy XK]

| B 1 ood ‘/pz_(r/a)z Al
Vf'vyfryi(r"()_as 5/2 p

i

P55 + Et[s(k)kx Ppt- s] oo (B2)
4

p K

1515, L¢St,LiS*
XM x| ,,(Kp)XK (P

Form factorst}(k) are Fourier transforms of corresponding
Xy f X¢

forces in coordinate space:

(A27)
where cog=r/ap anda=a;=a,.

th(k)=4wf:jo(kr)th(r)rzdr,

(B3)
APPENDIX B ©
Tl — ; T 2
To calculate the radial form factors we need the multipole tr(k) 47TJ0 Jo(knte(r)redr, (B4)
decomposition of the effectivlN interaction. For this pur-
pose it is convenient to use momentum representation "
1 tIS(k):477kJO 2kt g(r)ridr. (B5)
V(rptappt):WJ dkexp(—ik-rp)V(K,ppt),
(B1)  with shorthand notations for multipole operators
where inV(k,pp) the IongltudlnaItH(k)—tC (k) —2tT 1(K)
and transversety(k)=t$ (k) +t7(k) parts are usually pisim(D) =T (KI)[Y (1)@ 0 jm, (B6)
singled out:
1
. Al ) -
(D) ==11(kr)Y(r)®Vilim, B7
V=S, fZ (€00 05 T KOk plj (D)= LI (KILYI(F) @ Vil (87)
prt's_tkk)spt(l’(\)] 7—:;. T;I' p] m(') k2[V|p]01 m( )]pl g, (88)
. . the multipole decomposition of tHeéN potential can be writ-
=2 {5 (0 +th(k) (oK) (0 k) ten as[38]
=
v(r S A2 [ ke tor(k)Giog(p)- pioy (1)+ IO (Bl(p)- (1) + (L (1 (P)- B (1)~ Goj11(P)
pt+Ppt i Tp" Tt 7)o or( pJOj(p p]OJ( PP p( ( PJ(p PJ( P]lj(
pig (11— ZtSKL PP - pjoj (1) + (pjoj(P) - (D) + (b} (P)- pj (1))
+(pj;(P)- P (1) + (" (P) - pj1 (1) + (pj1(P) - piz;(1)] (BY)
Inserting this decomposition of theNN interaction into the expression for the nuclear form factor
(Jomp . JtM¢| 2V JiM;,jamy), we obtain[35] formula (14).
The radial part of the form factor can be written in the following form
(a) For excitation ofnormal parity states

Flsi = (TiMy TM|TiM 7 )(ToMr, TMe| TaM (D™ 1) s 2
jalb K’rp’(;r ( 1| Tt Tf>< bV, 1] >T 51| 31 fl_f;
_ 1. , 1 9
"] i Kty tar(Rpi0 100~ (Km0 K| (a7 (kT

djj(kry) 1

o'?l’p
+ +
Ya dr, Kk,

1
U+ = (v~ rva) (7= 7at 1)]J'j(krp)(kr—)”
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1, — 1 9 [(v=vad(YatwmtD—j(j+1)]
_ZtLS(k)pjlj,T(k){\/](]+1)]j(krp)E2r_pan+ N

X +5515”-]j(kfp)t#(k)lej,T(k)]- (B10)

i c j+1 . c
mljﬂ( o) m]j—l( o)

(b) For excitation ofunnatural parity states,

T

(— 1)TbTa< 1
Tp

: J
FI.Sl ( K!rp , &T) = Z <TiMTiTMT|TfMTf><TbMTbTMT|TaMTa>? E
p

E ij+1iz
2 T

Jajb TfTa

00 0 A/ e otk
2j+1 T( )Pj,T( ) 2j+1 T( )Pj,T( )
1 piF11, 1 , L,
_E(‘)’a"' Yot 1)) j-f-—lthS(k)pj'T(k)k_rp + 65101 j+1)j+1(Krp) 2j+1tT(k)pj,T(k)

-\t 0 ] (B11)

X fo dkkz{ 5515|,j71]'j—1(krp)

where i j+1
pljl,T( k)= 2j+1Pi- 1 T(k)+ 2j+1Pitu 1(k),

) 1 (B13)
lav Ja:|a+§1 — i
= 1 . 1 = J+ J
7a=(JaMalL - ol]aMa) St el 1 pi (k)= \/Zj——i—lpi*llj,T(k)_ \/2j—+1pj+111,T(k).
at ) Ja=laT 5 (B14)

(812 In radial form factors we omit the contributions from the

i current pj; (K)=(J¢T¢|Zepy; (1) 7{[JT)) and spin-current
In the formulas aboves; (k) = (I Tl Zipisi(D 719 Ti) IS piSH(k)=(I(TH|[S,pi*(t) 77]13T;) densities which we did not
a complex expression containing spin-angle reduced matriake into account in calculations. The transition densities in
elements and one-dimensional integrals over radial parts ajoordinate and momentum space are simply connected by
different components of bound and continuum wave func- 2
tions and given in Appendix A. Other densities are the dif- ()= —fxd 25 (AF) o1 B15
ferent linear combinations pisi.t)= o 044 hanpis; . (B15
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