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Halo excitation of 6He in inelastic and charge-exchange reactions
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Four-body distorted wave theory appropriate for nucleon-nucleus reactions leading to three-body continuum
excitations of two-neutron Borromean halo nuclei is developed. The peculiarities of the halo bound state and
three-body continuum are fully taken into account by using the method of hyperspherical harmonics. The
procedure is applied forA56 test-bench nuclei; thus we report detailed studies of inclusive cross sections for
inelastic 6He(p,p8)6He* and charge-exchange6Li( n,p)6He* reactions at nucleon energy 50 MeV. The
theoretical low-energy spectra exhibit two resonancelike structures. The first~narrow! is the excitation of the
well-known 21 three-body resonance. The second~broad! bump is a composition of overlapping soft modes of
multipolarities 12,21,11,01 whose relative weights depend on transferred momentum and reaction type.
Inelastic scattering is the most selective tool for studying the soft dipole excitation mode.
@S0556-2813~97!02809-4#
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I. INTRODUCTION

Recent success in developing experimental methods
dripline nuclei, that in particular allow exploration of ha
phenomena in light nuclei, has put on the agenda a need
appropriate theoretical methods which take into account
peculiarities of weakly bound and spatially extended s
tems. For Borromean two-neutron halo nuclei (6He, 11Li,
etc.! an understanding of the essential halo structure has b
obtained in the framework of three-body models@1#. Reac-
tions involving these nuclei present, however, at least a fo
body problem. The direct solution of four-body systems
extremely difficult, and approximate methods are requir
For high-energy elastic scattering and relativistic fragmen
tion of Borromean halo nuclei, a four-body Glauber meth
has been developed@2,3#. For Coulomb breakup or electro
magnetic dissociation~EMD! the first-order~Alder-Winther!
perturbation theory or an equivalent semiclassical treatm
@4# has been used, but with exact three-body continu
wave functions@5–7#. Also for the ~anti!neutrino-induced
reactions on6Li populating the 6He and 6Be three-body
continua, proper final state wave functions have been u
recently@8#.
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The most reliable information on properties of halo n
clei, especially for the low-lying part of excitation spectra,
experimentally obtainable by intermediate energy elastic
inelastic scattering and charge-exchange reactions. The
torted wave theory is the most common way to analyze s
processes@9#, but for halo systems their spatial granularity
well as peculiarities of their quantum structure have to
taken into account. The three-body interaction dynamics
fines the low-lying part of excitation spectra, in particular t
soft modes of Borromean systems, and has to be tre
properly. Until now, only the hyperspherical harmonics~HH!
method@10# is able to provide a formulation of the scatterin
theory to the three-body Borromean continuum. The F
deev equations technique@11# has been developed to inve
tigate breakup of three-nucleon systems, but has hitherto
been applied to investigate the continuum in Borromean
clei. The coordinate complex rotation method@12,13# gives
Gamow and not scattering states, and is mostly suitable
searching for resonance positions or poles in the comp
energy plane. Calculations with a discrete basis@14# may
give B(E1) distributions, but not continuum phase shifts a
wave functions.

In previous studies@1,15#, the HH method gave a very
successful and comprehensive description of data on w
and electromagnetic characteristics of the6He and 6Li sys-
tems, and of the absolute values of differential cross sect
of (p,n), (p,p8), and (n,p) reactions to the bound states
A56 nuclei. These nuclei still represent the best testbe
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1484 56S. N. ERSHOVet al.
for quantitative calculations for Borromean halo nuclei.
the present work we develop distorted wave theory for
elastic and charge-exchange reactions leading to the th
body continuum. For the continuum excitations of6He we
perform a detailed analysis of inclusive excitation and diff
ential cross sections for beam energies in the range of
GANIL facility, where such experiments are in progress.
vestigations of continuum spectra of6He are also the subjec
of future experiments at Kurchatov Institute~Moscow!,
NSCL ~Michigan!, RIKEN ~Tokyo!, JINR ~Dubna!, and GSI
~Darmstadt!.

II. SHORT PREAMBLE

The known spectrum of6He contained until quite re
cently only the 01 bound state, the well known 21 ~1.8
MeV! three-body resonance, and then a desert in the th
body a1n1n continuum up to the3H 1 3H threshold at
about 13 MeV@16#. With radioactive nuclear beam tech
niques and dynamic approaches to three-body continu
theory @10# new possibilities are opened, and we may n
ask to what extent our knowledge of6He is complete, and
what specific influence the halo has on the continuum st
ture. The so-called soft dipole mode suggested in@17,18#
was the first example of this quest. That it is not a sim
binary core-point dineutron resonance in11Li seems now
widely accepted, nor is it in6He according to our recen
calculations@19#. Is it rather a genuine three-body resonan
or just a dynamically induced very large dipole moment,
the consequence of two-body final state interactions?
modes of other multipolarity have also been theoretica
suggested@20#. Their presence needs clarification, both th
oretical and experimental.

The most natural way to observe soft modes in exo
nuclei is by inelastic excitation of radioactive beams. In t
6He case, however, only results of fragmentation exp
ments without reconstruction of inclusive spectra have b
published @21–23#. Other ways include transfer reaction
@such as7Li( n,d)6He at En 5 56.3 MeV @24## or charge-
exchange reactions of (n,p) type on 6Li. At En 5 60 MeV
the 6Li( n,p) 6He reactions have been measured, but w
poor statistics and limited angles@25#. In heavy-ion charge-
exchange reactions6Li( 7Li, 7Be! 6He a broad bump at exci
tation energy; 6 MeV was observed@26,27#, but different
assignments were made for its multipolarity.

In our recent work@19,28# we have used several metho
to investigate the internal structure of the three-body c
tinuum, as well as the transition properties for access
nuclear reactions in terms of nuclear and electromagn
response functions.Our methods have the advantage th
even off a resonance, the continuum structure can still
investigated while taking into account all final state intera
tions.

We have predicted@19# a surprising richness of the6He
continuum structure, and applied elaborate methods to
plore the nature of different modes of excitation of the B
romean halo continuum@28#. In three-body dynamics we
have found two kinds of phenomena. First we have the t
three-body resonances with characteristic three-body p
shifts @10# crossingp/2, and with resonance behavior in a
partial waves. Secondly, we find structures~exhibiting fast
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growth of three-body phase shifts up top/2 in some partial
waves! which are often caused by resonant and/or virt
states in binary subsystems. We call these structures th
body virtual excitations. The analysis of the lowest part
components~those having the physically most transpare
meaning! enables us in the HH method to obtain compreh
sive insights into both the three-body effects, and into
influence of resonances in binary subsystems on three-b
amplitudes.

In @19# we predicted~and in @28# explored in detail! in
addition to the well-known 21 resonance,~i! a second 21

and a 11 resonance in the6He continuum which both
qualify as three-body resonances,~ii ! a soft dipole mode
which does not but is a three-body virtual excitation, and~iii !
unnatural parity modes. Because of the halo structure of
ground state, there are peaks in the isoscalar responses o
soft monopole mode and soft dipole mode, even though th
are no resonances in the low-energy continuum region
higher-energy ‘‘breathing mode’’ appears as well, in t
monopole continuum.

Summarizing the extended analysis of@28#, we show in
Table I the positions and widths of possible resonances
tained by different methods. All of them give about the sa
positions, but different widths which should be testable e
perimentally.

The way in which these structures could be experim
tally observed depends on the reaction considered, as
now be demonstrated via nucleon charge-exchange and
elastic scattering to the6He continuum. A complicating fea
ture is the overlapping of resonances and soft modes in
region of excitation energies 3–6 MeV, thus only a mo
detailed analysis of excitation functions and angular distri
tions may possibly distinguish those states. This will be
central issue of this paper, where we will show that ev
inclusive cross sections are informative.

III. MODEL DESCRIPTION

In this section details are given on the physical ingre
ents of the model we have developed for calculating inela
and charge-exchange reactions to low-energy continu
states in6He. Structure and reaction scenarios are often
tertwined in a very complicated way. In some situation
such as the very dilute matter of halo nuclei, the react
dynamics becomes simpler, and an approximate scheme
ing distorted waves is reasonable. In the DW framework,

TABLE I. Comparison of resonance positions and widths
6He. Results from the present hyperspherical harmonics~HH!
method and the complex scaling~CS! method@12,13# are shown,
together with experimental data. Resonance positions are g
relative to the theoretical ground state.

HH CS1 @12# CS2 @13# Exp. @16#

Jp E G E G E G E G

01
1 0 0 0 0

21
1 1.72 0.04 1.71 0.06 1.77 0.26 1.8 0.1

22
1 4.0 1.2 3.5 4.7

12 not found not found not found
11 4.4 1.8 4.0 6.4
02

1 6.0 6.0 5.0 9.4
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56 1485HALO EXCITATION OF 6He IN INELASTIC AND . . .
follows from the formulas below, the reaction amplitude h
three ingredients:~A! The structural information contained i
the transition densities which describe the response of
nuclear system to an external field,~B! the effective interac-
tions between projectile and target nucleons, and~C! the dis-
torted waves describing the relative motion of project
~ejectile! and target~residual! nucleus.

A. Nuclear structure

For description of the nuclear structure we have used
three-bodya1N1N model. In this model, the total wav
function is represented as a product of wave functions
scribing the internal structure of thea core and the relative
motion of three interacting constituents~see Appendix A!.
The method of hyperspherical harmonics~HH! ~see Refs.
@1,10,29#! was used to solve the Schro¨dinger three-body
equation, for both bound and continuum states. A modifi
Sack-Biedenharn-Breit Gaussian-typeaN interaction @30#
with purely repulsives-wave component~Pauli core! @1# and
the ‘‘realistic’’ Gogny-Pires-TourrellNN interaction @31#
were used.

We are now going to apply this model to continuum lo
energy excitations above the~three-body! breakup threshold
The main model assumption about the factorization of
wave function into two parts suggests that low-lying nucle
transitions of interest are connected with excitations of
two valence particles in the halo outside thea core. This
assumption is physically reasonable for the low-energy sp
trum sincea-core excitations must involve a significant e
ergy transfer due to the particularly stable structure of tha
particle.

The 6He continuum reveals a variety of structures: the1

spin-flip resonance has an almost pure shell-model struc
(p3/2p1/2), the 21

1 and 22
1 resonances are on the other hand

strongly mixed nature, and there are three-body virtual e
tation such as the soft dipole and monopole modes.
qualitative insight in the resonance structure, Tables II a
III give partial wave function norms in the interior regio
r0,15 fm for all resonances and the 12 peak both inLS and
~Jacobi! j j coupling scheme. These norms reflect t
‘‘eigen’’ resonance properties of any few-body system a
measure the continuum strength accumulated in the st
interaction and centrifugal barrier regions. A hyperrad
resonance wave function in the interior (r,r0) can be rep-
resented in a factorized form:

x~r;E!;A~E!•CR~r!5
c

E2~E02 iG0/2!
•CR~r!, ~1!

TABLE II. Weights of the main components of interior parts
01 wave functions of6He in LS and j j representation~ground state
and 02

1 resonance at 5 MeV above the breakup threshold!.

01
1 02

1 01
1 02

1

K L S lx l y g.s. resonance (j j ) g.s. resonance

0 0 0 0 0 4 15 p3/2 p3/2 86 17
2 0 0 0 0 78 30 p1/2 p1/2 5 68
2 1 1 1 1 15 51 s1/2 s1/2 7 3
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whereCR(r) has a structure similar to that of a bound sta
This general energy dependence is revealed by the rea
cross section, but for wide resonances it is strongly infl
enced by the reaction mechanism.

The HH method is particularly suited for Borromean sy
tems due to their simple asymptotic behavior. The phys
characteristics of bound and low continuum states are c
centrated in only a few wave function components cor
sponding to the lowest angular momenta and energy confi
rations of the three-body system. This, combined with
convergence behavior for ground state and resonances w
is very much the same, preserves their relative position
enables us to avoid time consuming calculations. Thus
only take into account the hyperharmonics with hyperm
mentsK<6 that correspond to excitation energy up to abo
10 MeV (kr;K). Only the specific three-body virtual na
ture of the soft dipole mode demands a substantially lar
series of hyperharmonics to achieve convergence. So
shall use the main components keeping in mind that the
pole mode will be somewhat shifted to lower energy with
the peak width.

B. Effective interactions between projectile
and target nucleons

The effectiveNN interactionVpt between projectile and
target nucleons is a key point in the microscopic approac
to the description of one-step reactions. It differs from a fr
interaction since one of the nucleons is embedded in
nuclear medium, its motion being restricted by Pauli bloc
ing and interactions with the nuclear environment. Usua
these modifications are expressed by means of density
pendence of the effective interactions, and a lot of work h
gone into calculating effective interactions starting from t
free one. As a rule, the calculations are based on nuc
matter with applications made to finite nuclei via local de
sity approximations. These procedures include some un
tainties, which are especially troublesome when we deal w
the lightest nuclei. Some physical situations exist, howev
where the interaction dynamics simplifies, and simpler
proaches can be used. At intermediate energies the imp
approximation has proven to be very successful. In this s
ation the nucleon-nucleon collision energy is sufficien
large compared to binding energies, and the modification
the free interaction is not very significant. Using as effect
interaction the free nucleon-nucleont matrix, that takes into
account an infinite number of rescatterings between
nucleons interacting via a freeNN potential, we obtain a

TABLE III. Weights of the main components of the interior 21

resonance state wave functions of6He in LS and j j representations
at 0.8 and 3.0 MeV above the breakup threshold.

21
1 22

1 Config. 21
1 22

1

L S lx l y resonance resonance (j j ) resonance resonanc

1 1 1 1 32 58 p3/2 p3/2 33 45
2 0 0 2 45 30 p1/2 p3/2 32 32.5
2 0 2 0 22 11 s1/2 d5/2 21 13

s1/2 d3/2 14 8.5
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1486 56S. N. ERSHOVet al.
complex, energy-dependent interaction with parameters
can be extracted from analysis of experimental data on
NN scattering.

Another simplified situation occurs in interactions wi
halo particles, because the halo particles have small bin
energy and large probability to be outside the core
strongly bound nucleons. In the course of interaction w
halo nucleons, small momentum and energy transfers are
blocked as is the case for interaction with core nucleons.
a result, the interaction with a halo nucleon is very similar
the interaction between two free nucleons, and we can
the freet-matrix interactions, in close analogy with the im
pulse approximation at intermediate energies. This appro
is in the spirit of our model for nuclear structure, when t
‘‘active’’ part of the nuclear wave function is defined by th
motion of halo particles. In concrete calculations of inelas
and charge-exchange, we use thet-matrix parametrization of
Love and Franey@32# with central, tensor, and spin-orb
components. The contribution of an exchange knock-out
plitude is taken into account in the pseudopotential appro
mation @33#.

To be consistent with the three-bodya1N1N model of
nuclear structure, we must also take into account theaN
interaction between the projectile nucleon anda core. For
charge-exchange reactions at low excitation energy, only
halo nucleons are the active particles in our model. Cha
exchange with core nucleons must destroy thea core and
involve a large excitation energy, and was therefore
glected in our calculations. In inelastic scattering theaN
interaction can give a contribution also at low excitation e
ergy. If the a core is taken to have an infinite mass th
contribution will be exactly zero, due to the orthogonal
between initial bound and final continuum states of the thr
body system. In real situations the center-of-mass of the t
nucleus is somewhat shifted from thea-particle center-of-
mass, and we have a finite contribution from this interacti
We expect that the role of directaN interaction increases
with increasing transferred momentum. At this stage of
investigations, we neglect these contributions. Therefore,
calculations of inelastic scattering should be reasonable
for moderate transferred momentum. Physically this co
sponds to the situation where thea particle is a spectator
and experimentally it would be realized if only events witha
particles in the forward direction were detected. It is nec
sary to emphasize that when we take into account the in
action with halo nucleons, the recoil effects are treated in
exact way because the wave functions which we use
defined in terms of the translational invariant Jacobi coo
nates.

C. Distorted waves

For calculations of distorted waves we need to know
optical potentials describing the nucleon elastic scatter
We used a phenomenological optical potential@34# describ-
ing proton elastic scattering from6Li at energyEp 5 49.5
MeV. The same optical potentials were used in both incid
and exit channels.

IV. REACTION FORMALISM

Among the quasielastic reactions, the nucleon-nucleus
elastic scattering and charge-exchange reactions are the
at
e

ng
f

h
ot
s

se

ch

c

-
i-

e
e-

-

-

e-
al

.

r
ur
ly
-

-
r-
n
re
i-

e
g.

t

n-
im-

plest and best understood. Experimental possibilities are
available for applying these reactions~in inverse kinematics
on nucleon targets! to investigation of the structure of exoti
halo nuclei. The cross section of quasielastic reactions

N1A→N81C1n11n2

between a nucleon and a two-nucleon halo nucleus~coreC,
with A5C1n11n2 in the g.s.! exciting the latter to the
continuum, can be written in the form

s5
~2p!4

\v i
( E dkN8 dk1dk2dkCd~Ef2Ei !

3d~Pf2Pi !uTf i u2, ~2!

where Ei5«N1«A , Ef5«N8 1«11«21«C1Q, Pi5kN

1kA , Pf5kN8 1k11k21kC are the total energies and mo
menta of all particles before and after collisions. In the
expressionsQ is the binding energy of the target nucleus
the case of inelastic scattering, while it is the difference
binding energies of parent and daughter nuclei for a cha
exchange reaction. The relative incident velocity
v i5\ki /m i , and m i5mNMA /(mN1MA) is the reduced
mass of the particles before collision. We will work in th
center-of-mass~c.m.! coordinate frame (Pi 5 0, kN 5 2kA
5 k i), and use Jacobi coordinates for particles both in ini
and final systems. The coordinates used are defined on F
and are given by

kx5mxS k1

m1
2

k2

m2
D , mx5

m1m2

m11m2
,

ky5myS kC

mC
2

k11k2

m11m2
D , my5

~m11m2!mC

m11m21mC
,

FIG. 1. Spatial coordinates~a! in nucleon-nucleus scattering
and particle momenta~b! in the two-neutron halo system.
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K5k11k21kC52kN8 52k f . ~3!

In the c.m. frame Ef5« f1Ek1Q, where « f

5\2kf
2/2m f , and m f5mN8 MA /(mN8 1MA) is the reduced

mass for the exit channel, while Ek5«x1«y

5\2kx
2/2mx1\2ky

2/2my is the excitation energy measure
from the breakup threshold. Taking into account conser
tion of energy and momenta, the exclusive cross sec
~when energies and momenta of all particles are observe! is
an average over initial and a sum over final spin orientati
and can be written as
o

p

c
m
th
e

is
e
c

r-

p

,

ns

le
n

-
n

,

d5s

dVxdVydV fd«ydEk

5~2p!4
m im f

\4

kf

ki
2S mxmy

\4 D 3/2

3A«y~Ek2«y!
1

2~2Ji11!( uTf i u2. ~4!

The factorA«y(Ek2«y) describes the distribution of energ
between different modes of particle motion, and reflects
phase space accessible for breakup. The matrix elemenTf i
includes all the interaction dynamics, and is given in t
distorted-wave~DW! framework by
Tf i5K x f ,Mb

~2 ! ~k f !,Cm1 ,m2 ,mC

~2 ! ~kx ,ky!U(
t

VptUCJi Mi
,x i ,Ma

~1 ! ~k i !L , ~5!
rs
-
ve
rs

c-

as
ith

the
wherex i , f
(6) are distorted waves describing relative motion

colliding nuclei,CJi Mi
andCm1 ,m2 ,mC

(2) (kx ,ky) are the initial

bound and final continuum nuclear states, respectively. S
projectionsMa , Mi , Mb , m1, m2, and mC , together with
relative momentak i , f and kx,y characterize the asymptoti
state of all particles taking part in the reaction. Continuu
wave functions are a matrix in spin space, and contain
probability for spin-flip in the course of scattering. Since w
are interested in studying the6He nucleus where the core
ana particle with spin zero, for simplification of notation w
omit everywhere below mentioning of the core spin proje
tion mC .

In Eq. ~5! Vpt is a local, effective nucleon-nucleon inte
action between projectile and target nucleonsp and t, ex-
pressed in terms of central, spin-orbit, and tensor com
nents:

V~r pt ,ppt!5(
T

H(
S

tST
C ~r pt!sp

S
•s t

S1tLS
T ~r pt!L•S

1tT
T~r pt!Spt~ r̂ pt!J tp

T
•t t

T , ~6!

where r pt5r p2r t and ppt5
1
2 (pp2pt) are relative distance

and momentum~wave number! between two nucleons

S5 1
2 (sp1st) and L5r pt3ppt are operators of total spin

and orbital angular momentum of the two nucleo
pi52 i¹i, s i

S51, si for S50, 1, respectively.Spt( r̂ pt) is the
tensor operator

Spt~ r̂ pt!5
3~sp•r pt!~st•r pt!

r pt
2

2~sp•st!. ~7!

Using the method of hyperspherical harmonics, the nuc
wave function above the breakup threshold can be writte
follows ~for details see Appendix A!:
f

in

e

-

o-

ar
as

Cm1 ,m2

~1 ! 5 (
g,Jf ,M f ,ML f

^s1m1s2m2uSfMSf
&

3^L fML f
SfMSf

uJfM f&

3Y
K fL f ML f

l xl y* ~V5
k!Cg,Jf ,M f

~x,y,k!, ~8!

where g is an abbreviation for a set of quantum numbe
g5$K f ,L f ,Sf ,l x ,l y%, which characterizes the relative mo
tion of the three particles flying apart. The continuum wa
function Cg,Jf ,M f

(x,y,k) depends on the quantum numbe

g, Jacobian space coordinates (x,y), nuclear excitation en-
ergyEk ~expressed by the hypermomentumk), and the total
angular momentumJf and its projectionsM f :

Cg,Jf ,M f
~x,y,k!5

1

~kr!5/2 (
g8,ML8

x
K8 l

x8 l
y8 ,K f l xl y

L8S8,L fSf ~kr!

3Y
JfK8L8S8M f

l x8 l y8 ~V5!. ~9!

The transition amplitudeTf i can be further decomposed a
cording to Eq.~8!,

Tf i5 (
g,ML f

,MSf

^s1m1s2m2uSfMSf
&

3^L fML f
SfMSf

uJfM f&Y K fL f ML f

l xl y* ~V5
k!Tg~kx ,ky ,k!,

~10!

whereTg(kx ,ky ,k) formally now has the same structure
any two-body amplitude for excitation of a nuclear state w
total momentumJf ,M f , excitation energyEk , and a fixed
state of relative motion of breakup fragments defined by
quantum numbersg:
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Tg~kx ,ky ,k!

5K x f ,Mb

~2 ! ~k f !,Cg,Jf ,M f
~k!U(

t
VptUCJi Mi

,x i ,Ma

~1 ! ~k i !L
5(

jm
^JiM i jmuJfM f&Tg, j

Ma ,Mb ,m
~kx ,ky ,k!. ~11!

To calculate the reaction amplitude we use the partial w
decomposition for the distorted wavesx i ,Ma

(1) (k i), describing

the relative motion of the projectile nucleon and the cen
of-mass of the target nucleus:

x i ,Ma

~1 ! ~k i !5(
Ma8

x i ,M
a8Ma

~1 !
~k i ,r p!uSaMa8&

5
4p

kir p
(
l aj a

^ l aml a
SaMau j ama& i

l a

3Yl aml a
* ~ k̂ i !x l aj a

~ki ,r p!u j ama&, ~12!

where u j ama&5(^ l aml a
8 SaMa8u j ama&Yl am

l a
8 ( r̂ p)uSaMa8&, and

uSaMa8& is the projectile spin function. Nuclear form facto
can be defined as

K j bmb ,JfM fU(
t

VptUJiM i , j amaL
5(

ls j
^JiM i jmuJfM f&ı

2 l ~13!

3
~21! l 1s2 j 1m

ŝ

3^ j bmbu@Yl~ r̂ p! ^ sp
s# jmu j ama&F j bj a

ls j S k,r p ,
]

]r p
D , ~14!

whereŝ5A2s11. In the case of nuclear excitations of no
mal and unnatural parity the explicit formulas for radial for
factor F j bj a

ls j are given in@35# and Appendix B. Taking into

account these definitions the reaction amplitu
Tg, j

Ma ,Mb ,m(kx ,ky ,k) can be written in the usual form

Tg, j
Ma ,Mb ,m

~kx ,ky ,k!

5
~4p!2

kikf
(

l aj al bj bls
i l a2 l b2 lYl aml a

* ~ k̂ i !Yl bml b
~ k̂ f !I l aj a ,l bj b

ls j

3
ĵ ĵ bA2 l̂ bl̂

A4p
^ l aml a

SaMau j ama&^ l bml b
SbMbu j bmb&

3^ j bmbjmu j ama&^ l b0l0u l a0&H l b Sb j b

l s j

l a Sa j a

J , ~15!

where the radial integralsI l aj a ,l bj b

ls j are defined as
e

r-

e

I l aj a ,l bj b

ls j 5E
0

`

drpr p
2 1

r p
x l bj b

~kf ,r p!

3F j aj b

ls j S k,r p ,
]

]r p
D 1

r p
x l aj a

~ki ,r p!. ~16!

It is useful to compare the expression~10! for the breakup
amplitudeTf i with the amplitude for a usual two-body rea
tion which has the same structure as amplitude~11!. In the
three-body case, the amplitudeTf i has additional degrees o
freedom which are manifested as dependence on an
V5

k5$a,k̂x ,k̂y%, where sin2a5«x /Ek . In contrast to a tradi-
tional two-body approach, the exclusive cross section~pro-
portional to uTf i u2) contains an incoherent sum over tot
spin Sf but a coherent sum over total transferredj and final
Jf . Consequently, we expect that the exclusive cross sec
will be especially sensitive to the correlations in the nucle
structure.

The different exclusive cross sections and correlation d
tributions will be considered elsewhere, here we restrict o
selves to inclusive cross sections. To calculate the dou
differential inclusive cross sections when experime
measure the energy and angle for one particle, we mus
tegrate the fivefold exclusive cross section~4! over the un-
observed coordinates of breakup particles~anglesk̂x5Vx ,
k̂y5Vy), and over various distributions of relative energy«y
between fragments:

d2s

dV fdEk
5E

0

Ek
d«yE dVxdVy

d5s

dVxdVydV fd«ydEk
.

~17!

Using the following orthogonality properties of the hype
spherical harmonics:

E
0

Ek
d«yA«y~Ek2«y!E dVxdVyY K8L8ML8

l x8 l y8* ~V5
k!YKLML

l xl y ~V5
k!

52Ek
2dK8KdL8LdM

L8ML
d l

x8 l x
d l

y8 l y
, ~18!

the inclusive cross section now becomes an incoherent
over total transferredj and final Jf angular momenta, and
different g components of the final target state are exci
independently of each other. Thus

d2s

dV fdEk
5~2p!4

m im f

\4

kf

ki
(

j ,Jf ,g

~2Jf11!

~2Ji11!~2 j 11!

3
1

2 (
mmamb

uTg, j
mambm

~k f ,k i ,k!u24Ek
2S mxmy

\4 D 3/2

.

~19!

In this expression the factorEk
2 , which originates from the

three-body phase volume, guarantees the correct cross
tion behavior at the breakup threshold. From Eq.~19! it also
follows that, due to the averaging procedure, we lose inf
mation about correlations in relative motion of the break
particles@which were defined byY KLML

l xl y (V5
k) hyperharmon-

ics#; remnants of the complex dynamics that governs
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56 1489HALO EXCITATION OF 6He IN INELASTIC AND . . .
particles motion are kept only in different shapes a
strengths with which various components of final states
distributed over excitation energies. One may hope tha
the differential inclusive cross sections, due to specifics
reaction mechanisms, we can under certain conditions
hance the excitations of some of the components and
still obtain valuable information about structures of halo n
clei.

The inclusive excitation cross section can be obtained
integrating over all ejectile anglesV f :

ds

dEk
5E dV f

d2s

dV fdEk
. ~20!

This cross section describes the distribution of total stren
of different excitation modes over energy spectra in qua
elastic reactions.

V. RESULTS

With the model described above, we have calculated
excitation@Eq. 20!# and double-differential@Eq. ~19!# inclu-
sive spectra in the c.m. system for the charge-exchange
action 6Li( n,p)6He and the inelastic scattering6He
(p,p8)6He at EN 58 50 MeV, with excitation of different
Jf

p f506,16,26,36 low-energy states of6He. The corre-
sponding cross sections are shown in Figs. 3–6. In the
uresE* is the nuclear excitation energy measured from
6He ground state. For inelastic scattering the initial tar
state of6He hasJi50 and the totalj transferred has a uniqu
value and coincides withJf of the final state. For charg
exchange on6Li the situation is more complex: sinceJi 5 1
for the 6Li ground state it is possible to excite final states
6He with definiteJf by different j transfers. All values ofj
allowed by angular momentum conservation (Ji2Jf5 j )
were taken into account in our calculations. It follows fro
Eq. ~19! that everyj gives an independent contribution to th
inclusive cross sections. Our main goal is to demonstrate
even in the simplest inclusive experiments it is still possi
to extract information about structures in the continuum
detailed examination of both excitation and differential cro
sections.

A. Two test cases for the model

Two cases were used to check the model and consist
of our reaction continuum calculations. The sharp 21

1 reso-
nance at 1.8 MeV was used in the first. This resonance
sembles a usual bound state and can be described with
accuracy by calculating it with a boundary condition und
the barrier corresponding to a discrete state. We use th
calculate the differential cross sectionds/dV. Next we cal-
culate the double-differentiald2s/dVdE* cross sections for
the 21

1 resonance at differentE* and after that integrate ove
E* across the resonance. In fact, calculating a resona
width and cross section at peak position, energy integra
has been done analytically since the resonance has the B
Wigner form~we checked it!. In both calculations we got the
same results fords/dV.

The second way is to compare our calculation with kno
experimental data for excitation to the continuum. In wo
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@36# the reaction6Li( n,p)6He at neutron energy 118 MeV
was measured. The proton energy resolution in the exp
ment was; 2.3 MeV. This should be kept in mind whe
comparing with the reported differential cross sections
transitions from the 11 ground state of6Li to the 01 ground
state and 21

1 resonance~1.8 MeV! of 6He. Figure 2 shows
the corresponding experimental data plotted together w
our calculations using the Love and Franeyt-matrix interac-
tion @32# at 100 MeV and an optical potential@37# describing
proton elastic scattering from6Li at 144 MeV. A good de-
scription for the shape and absolute value of the differen
cross section to ground state was obtained and also a rea
able agreement with the data on the 21 resonance. The 21

angular distribution has a characteristic form correspond
to a transition of mixed angular momenta. To demonstr
this we show in Fig. 2~b! the separate contributions from
transitions with total transferredj equal 1, 2, and 3 by
dashed, dotted, and dashed-dotted lines, respectively.
transition with j 5 1 includes transfer of relative orbita
momentuml 5 0 and determines the cross section at sm
angles, the others withj 5 2 and 3 havel 5 2 and dominate
at larger angles. Thus the reliability of our approach w
confirmed, lending support to our predictions for low-ener
excitation spectra, for which the model was developed.

B. Inclusive excitation spectra

1. Partial content

The inclusive excitation spectra~Fig. 3, thick solid line!
for charge-exchange and inelastic scattering reveal two
tinguished bumps in the low-energy total spectrum: The fi
narrow at excitation energy; 1.8 MeV and the second
broad at; 4.5 MeV. To understand the nature of these str
tures, the left side of Fig. 3 shows the decomposition of
total spectra into contributions from excitations of differe
partial componentsJf

p of 6He. The 12, 21, and 01 excita-
tions are given by thin solid, dashed, and dotted lines,
spectively. The dot-dashed line shows the contribution fr
11 excitation for charge exchange and 32 for inelastic scat-
tering. Contributions from other partial waves are less s
nificant and not given in the figure.

FIG. 2. Angular distributions for6Li( n,p) 6He at 118 MeV. The
dashed, dotted, and dashed-dotted lines show the contributions
j 51, 2, and 3, respectively. The experimental data are from R
@36#.
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1490 56S. N. ERSHOVet al.
The first narrow peak is the well-known 21
1 resonance in

6He. The broad bump has a more complex structure. A m
ture of different excitations is responsible for the total sha
a second 21 resonance and concentration of low lyin
strength of 12 and 01 excitations dominate the spectrum
The double-hump shape of 21 excitations is the most re
markable feature of the low-energy spectrum. The stren
concentration of 12 transitions atEx; 4 MeV is the other
peculiarity. The behavior of other excitations, for examp
32, is different. It smoothly increases from threshold, and
the case of inelastic scattering gives a significant contri
tion at higher excitation energy.

The excitation spectra for both reactions have qual
tively the same gross structure, but the absolute cross
tions are a few times larger for inelastic scattering than
charge-exchange.

Nuclear reactions in which halo nuclei take part ser
due to somewhat different dynamics, as filters and could l
to different multipole composition in observed excitatio
structures. In inelastic scattering the dipole mode domina
while in charge exchange the 21 resonance is about 50%
larger.

The pronounced 12 nuclear excitation has similaritie
with electromagnetic response for the soft dipole mo
prevalent in Coulomb breakup on heavy targets. Figur
shows theoretical cross sections for Coulomb breakup~dot-
ted line! of 6He on gold at 63 MeV/A and inelastic proton
scattering~solid line! with 12 excitations, arbitrarily normal-
ized. A semiclassical description is used for the Coulo
dissociation process and our model for the electromagn

FIG. 3. Multipole Jf
p f and spin decomposition~left and right

sides! of inclusive proton energy spectra from6Li( n,p) 6He* ~top
row! and 6He~p,p 8) 6He* ~bottom row! reactions.
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dipole response in6He @6#. Both processes show streng
accumulation in the same energy region and hence,
should expect no matter which excitation mechanism do
nates, a similar behavior for excitation functions. In an
egant experiment on6He breakup reaction at 63.2 MeV
nucleon on Al and Au targets@23# with registration ofg rays
in coincidence, similar behavior ofa particle distributions
was found for both targets. For the light Al target, th
nuclear mechanism is believed to give the main contribut
to the spectra while for Au the EM dominates. Our theor
ical results explain qualitatively the observed similarity.

2. Spin structure

The composition of spectra, or relative role of excitatio
of variousJf

p f , is as discussed above different for the tw
reactions. In charge exchange a relatively larger numbe
states was excited with about equal intensity, while inela
scattering is more selective. To better illustrate this point,
right side of Fig. 3 shows separately the contributions fro
excitations of6He states with total spinSf 5 0 ~dashed line!
and 1 ~dotted line!. For inelastic scattering the excitation
with Sf50 dominate the spectrum, while for charg
exchange both contributions become comparable. This
reflection of specific reaction mechanisms. In inelastic sc
tering theS50, T50 component of effective interactions
the biggest one, while in charge exchange only isovec
components play a role and in the charge channel the ef
tive forces withS50 andS51 are comparable in strength
The relative role of different components of effective forc
depends on collision energy and so the ratio between ex
tions of the various structures will change accordingly.

C. Double-differential inclusive cross sections

1. Fixed angle

Excitation functions, measured at a fixed angle, can se
as a filter for selecting partial waves with definite multip
larity and therefore make it possible to extract informati
on resonances in complex situations such as that descr

FIG. 4. The electromagnetic and nuclear inelastic cross sec
for 12 excitation.
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56 1491HALO EXCITATION OF 6He IN INELASTIC AND . . .
above. Figure 5 shows spectra for charge exchange at di
ent exit proton angles. The total, 12, 21, 01, and 11 spectra
are denoted by thick solid, thin solid, dashed, dotted,
dashed-dotted lines, respectively. The double-hump sh
appears at all angles, but the composition of the sec
bump depends on scattering angle or angular momenta tr
ferred in the reaction. At 0° the excitation of 01, 11, and 21

dominates the spectrum. All are populated by strong tra
tions with relative orbital momentuml 5 0. With increasing
angle the excitation of 12 grows and at 10° all these state
are important. At 20° the 12 and 21 are most pronounced
At 40° the absolute cross section has been reduced to
value, and all energy spectra except 21 have flat distribu-
tions. It is also interesting to note that for 12 excitation the
main contribution comes from the transition withj 52, s51,
and l 51. The dominance of spin-flip transition is due to t
structure of initial and final states where components w
Si51 andSf50 prevail.

Figure 6 shows the analogous spectra for inelastic sca
ing. All lines mean the same as in the previous figure, exc
that the dotted line denotes 32 excitation foru 5 20° and
40°. At 0° the 01 is excited very effectively in the region o
the second bump. With increasing scattering angle 12 be-
comes pronounced. It dominates the total spectra at 10°
20°. Contributions from 21 and 11 additionally increase the
width of this bump. At 40° the total cross section is aga
diminished, with 21 and 12 excitations being the largest. A
higher excitation energy 32 now gives a significant contri
bution to the total spectrum.

From the results represented in the figures, it follows t
the second bump structure in the low-energy part of the sp
tra is a complex mixture of various excitations of the6He

FIG. 5. Inclusive differential proton energy spectra from6Li
(n,p)6He* for four values of the scattering angleuc.m.. See the text
for further details.
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nucleus. The way these excitations are revealed depend
the external fields~or reactions! applied to the system. This
is a characteristic feature of continuum excitations witho
sharp resonances.

2. Fixed excitation energy

We discussed above the dependence of the differen
cross sections on excitation energy for fixed scattering an
or momentum transfer. It is also interesting to compare
behavior of the cross sections at fixed excitation energy
different scattering angles. Figure 7 shows angular distri
tions for the (n,p) reaction, for a few excitation energies th
cover both sides of the second bump. The values of the tr
ferred momentaq5k i2k f ~in units of fm21) are shown on
the top abscissa, corresponding to the scattering an
shown at the bottom abscissa. The thick solid line shows
total cross section. On the left side of the bump@E* 53.5
MeV, Fig. 7~a!# the differential cross section has an asy
metric bell shape with maximum at about 15°. Going
higher excitation energy@E* 54.1 MeV, Fig. 7~b!# through
the bump maximum@E* 54.5 MeV, Fig. 7~c!# to the right
side @E* 55.2 MeV, Fig. 7~d!#, the cross section shap
changes smoothly and becomes gradually more flat wit
plateau from 0° to 20° on the high-energy side. This sha
modification becomes transparent if we examine how
contributions from excitations of differentJf

p f change with
energy. The thin solid, dotted, dashed, and dash-do
curves show the contributions of 01, 12, 11, and 21, re-
spectively. We see that at small angles, the dominating st
are all those (01, 11, and 21) which can be reached b
transitions with zero relative orbital momentum. For a ran

FIG. 6. Inclusive differential proton energy spectra from6He
(p,p8)6He* for four values of the scattering angleuc.m.. See the
text for further details.
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1492 56S. N. ERSHOVet al.
of somewhat larger angles the contribution of 12 is most
significant. The 01 and 11 have smoothly falling angula
distributions, 21 is more flat due to the already mentione
mixing of transitions with differentj . Hence, the interplay
between 01, 11, and 21 excitations, which together create
smooth background with the highest cross section at sm
angles, and the 12 peaking at 20°, define the total shape. T
competition between them is responsible for the modificat
of this shape with excitation energy. As a result, we get a
total distribution extending over a rather wide angular ran
on the high-energy slope of the second bump. These re
are in qualitative agreement with experimental data on
6Li( 7Li, 7Be! 6He* reaction@26,27# if we scale angular dis-
tribution according to the transferred momentumq.

The corresponding data for inelastic scattering are sho
in Fig. 8. The thick solid, thin solid, dashed, and dotted lin
again show total, 01, 12, and 21 cross sections, respec
tively. For inelastic scattering, in contrast to charge e
change, the total cross section remains bell shaped a
excitation energies of the second bump. This is caused by
dipole excitation which dominates the spectra. The contri
tion from 01 is also significant, especially at small scatteri
angles, counteracting the drop of the total cross section.
excitation of 21 in (p,p8) does not play the prominent role
does in charge exchange. Together, 01 and 21, create a
smooth background in angular distributions. These diff
ences in the two reactions are due to two reasons:~i! because
of the different structure of initial states we need differe
operators to excite the same final state in6He and ~ii ! in
addition to isovector forces in charge exchange the str
isoscalarNN interaction acts between target and projec
nucleons in inelastic scattering.

FIG. 7. Proton energy spectra from the6Li( n,p)6He* versus
scattering angleuc.m. for four excitation energiesE* .
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To further understand the nature of continuum excitatio
it is also useful to make a comparison between angular
tributions for the two 21 resonances: the first one being na
row and the second broad. Figure 9~a! shows the differential
cross sections for 21

1 at three excitation energies: approx
mately at peak~solid line! and at energies shifted from th
peak position a half width to the left~dashed line! and to the
right ~dotted line!. We see that all angular distributions hav
identical shape through the resonance. Figure 9~b! shows
separately the contributions from excitation of the three m
components of the6He wave function@1 ~dashed! is for
L52, S50, l x50, l y52; 2 ~dotted! is for L52, S50,
l x52, l y50; and 3~dot dashed! is for L51, S51, l x51,
l y51# to the total~solid line! 21

1 cross section at peak pos

FIG. 8. Proton energy spectra from6He(p,p8)6He* versus
scattering angleuc.m. for four excitation energiesE* .

FIG. 9. Proton energy spectra from6He(p,p8)6He* for the first
narrow 21 resonance.~a! The cross sections at peak position and
energies shifted from the peak by a half width to either side.~b!
Partial contents of the peak cross section. For details, see the
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56 1493HALO EXCITATION OF 6He IN INELASTIC AND . . .
tion. Again, the angular distributions for all componen
have the same shape. For the broad resonance the pictu
different, as shown in Fig. 10~a! where solid, dashed an
dot-dashed lines show the total angular distributions for2

1

at peak position and shifted from it by a half width to the le
and right, respectively. For the broad resonance, the shap
the differential distribution is changed through the res
nance. Figures 10~b!–10~d! show decomposition of the tota
distribution into contributions from main components. T
notation is the same as in Fig. 9~b!. For 22

1 the main contri-
bution comes from excitation of final quantum numbe
L51 andS51 ~curve 3!. The shape of this component
only slightly changed when going across resonance:
maximum shifts by about 2° and the width becomes n
rower on the high-energy side. The shapes of other com
nents experience dramatic changes: the interference pa
in the angular distributions has a different character on
posite sides of the resonance. Usually the resonance am
tude, as a function of energy, can be separated into a sm
background and a resonance part. It is reasonable to as
that for a sharp resonance the background part remains m
or less constant over the resonance width and all energy
pendence is only in the resonance part. As a result, the s
of angular distributions does not change over the resona
For broad resonances the background part may change
interference with the resonance part can produce diffe
angular distributions. For dominant components the role
the background part is relatively small, hence shape va
tions are not pronounced. For smaller components both p
of the amplitude are comparable, and can give different
gular distributions on opposite sides of the resonance.

FIG. 10. Proton energy spectra from6He(p,p8)6He* for the
second 21 resonance:~a! The cross sections at peak position and
energies shifted from the peak by a half-width to either side. T
partial contents of the corresponding cross sections are show
~b!, ~c!, and~d!, respectively. See the text for further details.
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D. Transition densities to bound and continuum states

Another interesting illustration can be obtained from co
parison of transition densities to bound and continuum sta
As an example, Fig. 11 shows transition densities in mom
tum space from the 11 ground state of6Li to ground and
continuum 01 states of6He for transferred orbital, spin, an
total angular momenta equal to 0, 1, and 1, respectively.
continuum energy was chosen as 6 MeV, where excitation
the continuum 01 in charge exchange is largest. Since tra
sition densities to continuum are complex, we show o
absolute values. Curve 1 is for transition to ground sta
curves 2, 3, and 4 are components of continuum 02

1 with
quantum numbers (K52,L51,S51,l x51,l y51), (K52,L
50,S50,l x50,l y50), and (K50,L50,S50,l x50,l y50),
respectively. We see that between bound states the trans
density has a unique spectral composition, which coinci
with that known from the electron scatteringM1 form factor.
For transitions to the continuum, there are various com
nents with different spectral forms. In the bound transitio
similar components with the same quantum numbers a
exist, but since the bound state presents a unique structu
these components are organized in a unique way, and gi
joint system response to external perturbation. In the c
tinuum the various components correspond to differ
modes of relative motion between breakup fragments
should, in principle, be accessible to measurement. They
be excited differently by different reactions and the respo
will depend from the external fields applied to the syste
Only in the case of sharp resonances~which in many respects
are similar to bound states and represent to a large exten
internal property of the system! will the response be more o
less the same.

VI. CONCLUSION

We have developed a four-body distorted wave the
which is appropriate for analysis of nucleon-nucleus re

t
e
in

FIG. 11. Absolute values of the charge-exchange momen
space transition densitiesr l 50,s51,j 51(q) to the 01 states of6He
are shown. Curve 1 is the 01

1 density, curves 2–4 are the 02
1 density

components. For details, see the text.
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1494 56S. N. ERSHOVet al.
tions leading to continuum excitations of two-neutron Bo
romean halo nuclei. Spatial granularity of the halo bou
state and the final state interaction in the three-body c
tinuum was fully taken into account by the method of hyp
spherical harmonics. The weak binding and dilute matte
halo systems enabled us to use a freeNN t matrix for the
interaction with halo nucleons. Although applicable to a
two-neutron Borromean halo nucleus, theA56 nuclei were
again chosen as benchmark systems. For these nucle
have the most complete knowledge of the binary subsyste
Experimental investigations of these nuclei are also curre
being performed or are planned. As an initial check
model was successfully tested against data for ela
6Li( p,p)6Li, inelastic 6Li( p,p8)6Li (0 1, 3.56 MeV!, and
6Li( n,p)6He ~g.s. and 21

1 , 1.8 MeV!, which has been avail
able for a decade.

A detailed study of inclusive excitation and differenti
cross sections for inelastic6He(p,p8)6He* and charge-
exchange6Li( n,p)6He* reactions at beam energy 50 Me
was performed. The theoretical low-energy spectra exh
two resonancelike structures. The first~narrow! is the exci-
tation of the well-known 21

1 resonance. The second~broad!
bump is a structural composition of overlapping soft mod
of multipolarities 12,21,11,01 whose relative weights de
pend on transferred momentum and reaction type. Re
experimental data on heavy-ion charge-exchange reac
@26,27#, although sparse, confirm the existence of the sec
structure.

The soft excitations of different multipolarities have
concentration in a relatively narrow energy region near
21

1 resonance. This poses a challenge. Nuclear reaction
which halo nuclei take part serve, however, due to diff
ences in reaction mechanisms, as filters emphasizing di
ent multipole components in the observed excitation str
tures. To some extent we may exploit this to our advanta

Thus comparison of (n,p) and (p,p8) shows that the ex-
citation cross section for inelastic scattering preferentia
selects the 12 component. Hence (p,p8) is the most prom-
ising tool for studying the soft dipole excitation mode.

Double differential distributions for the broad structu
show that association of the observed structure with exc
tion of a unique multipolarity would be misleading. This
especially so for charge exchange6Li( n,p)6He* , where a
flat shape of the total angular distribution extending outs
forward angles, is due to mixing of excitations with differe
multipolarities. Under favorable conditions, measuremen
spectra at definite momentum transfer makes it possibl
extract information on individual resonances in comp
situations such as the one described above.

Our results on charge exchange are in qualitative ag
ment with experimental data on the6Li( 7Li, 7Be! 6He* reac-
tion @26,27# if we scale angular distributions according to t
transferred momentum. Forward angles are most impor
for partial analysis, but in both experiments there are
enough statistics in this region for more definite conclusio
on the resonant structure of6He continuum. Since all reso
nant states are concentrated in the vicinity of the extrem
pronounced 21

1 state, high-resolution experiments with d
tailed angular distributions will be needed.

The model we have developed allows us to calculate c
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sections for kinematically complete experiments when ch
acteristics of four particles are measured. Hence we
study a variety of correlations existing in Borromean ha
nuclei that could not be seen in the inclusive observables.
analysis of different exclusive cross sections of nucle
nucleus reactions with excitation of the three-body co
tinuum of 6He is in progress.
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APPENDIX A

Within the cluster representation~for details see Refs
@1,10,29#!, three-body bound and continuum state wa
functions~WF! have the product form

uF&5exp~ iK•R!FC~zC!CJM
T , ~A1!

where FC(zC) is an intrinsic core WF, whileCJM
T is the

‘‘active’’ part of the three-body WF carrying the total angu
lar momentJ, its projectionM , and total isospinT. This part
depends on relative coordinates and cluster spins~suppressed
in our notations! and it is the object of the calculation.K and
R are momentum and coordinate of the center-of-mass of
nucleusA, respectively.

Translationally invariant normalized sets of Jacobi co
dinatesx3 andy3 are defined as

x35AA12~r22r1!,

y35AA~12!CS rC2
A1r11A2r2

A11A2
D , ~A2!

R5
1

A
~A1r11A2r21ACrC!.

Here A125A1A2 /(A11A2) is the reduced mass of the~12!
subsystem in units of the nucleon massmN ,
A(12)C5(A11A2)AC /(A11A21AC) is the reduced mass o
the ~12! cluster with respect to the core C, an
A5A11A21AC . Notice, thaty3 is colinear with rC2R.
Alternative sets (x1,y1) and (x2,y2) of Jacobi coordinates ar
obtained by cyclic permutations of~1,2,C!. The set of Jacobi
momentaq3, p3, andK conjugate tox3, y3 andR is defined
by the relations,

q35AA12S k1

A1
2

k2

A2
D ,
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p35AA~12!CS kC

AC
2

k11k2

A11A2
D , ~A3!

K5k11k21kC ,

wherek i , i 51,2,C are the particle wave numbers in an a
bitrary frame. The Jacobi momentaq3, p3 are connected to
kx andky defined in Eq.~3! with simple relation

kx5AA12q3 ,

ky5AA~12!Cp3 . ~A4!

We use hyperspherical coordinatesr, a, ux , fx , uy , fy ,
where (ux , fx) and (uy , fy) are angles associated with th
unit vectorsx̂ and ŷ, and

r5~x21y2!1/25S (
i 51,2,C

Ai~r i2R!2D 1/2

, a5arctan~x/y!.

~A5!

The collective variablesa and r are called hyperangle an
hyper-radius. The last variable is rotationally and permu
tionally invariant, having the character of total moment
inertia or a weighted measure of distances in the three-b
system. The corresponding conjugated momenta are

k5~q21p2!1/25\21~2mNuEku!1/2, ak5arctan~q/p!,
~A6!

whereEk is the total three-body energy. Since we introdu
a new degree of freedom its corresponding conjugated q
tum operator has eigenvaluesK52n1 l x1 l y called the
hypermoments. Hyperspherical harmonics ~HH!
cK

l xl y(a)•Yl xmx
(Vx)•Yl ymy

(Vy) are eigenfunctions of this
operator.

We seek our bound-state and continuum wave functi
in the form of expansions on a generalized angle-spin b
(LS coupling!

YJKLSMJ

l xl y ~V5!5@Y KL
l xl y~V5! ^ XS#JMJ

, ~A7!

with HH defined as

Y KLM
l xl y ~V5!5cK

l xl y~a!@Yl x
~Vx! ^ Yl y

~Vy!#LM . ~A8!

Here thea, ux , fx , uy andfy variables are denoted collec
tively by V5, XS is a spin function,@••• ^ •••# means vector
coupling,

@Al ^ Bl# jm5 (
ml ,ml

^ lmllmlu jm&Alml
Blml

. ~A9!

The relative orbital momental x , l y , couple to the total or-
bital momentumL and its projectionM . Hyperangular part
of HH has the explicit form
-
f
dy

e
n-

s
is

cK
l xl y~a!5NK

l xl y~sina! l x~cosa! l yP
~K2 l x2 l y!/2
l x11/2,l y11/2

~cos2a!,

~A10!

wherePn
a,b are Jacobi polynomials andNK

l xl y is a normaliza-
tion factor.

For bound states the internal WF in LS coupling has
form

CJM
T 5

1

r5/2(g
xKl xl y

LS ~r!YJKLSMJ

l xl y ~V5!XTMT
, ~A11!

where g is an abbreviation for a set of quantum numbe
g5$K,L,S,l x ,l y%. For continuum states we have the form

CJM
T 5

1

~kr!5/2(
g,g8

xKl xl y ,K8 l
x8 l

y8
LS,L8S8 ~kr!YJKLSMJ

l xl y ~V5!

3^L8ML8S8MS8uJM&Y
K8L8M

L8

l x8 l y8*
~V5

k!XTMT
, ~A12!

with normalization condition

E Ck8
* Ckdxdy5k25d~k82k!d~V5

k82V5
k!

5d~q82q!d~p82p!. ~A13!

The WF CJM
T is a solution of the three-body Schro¨dinger

equation

~ T̂1V̂2E!CJM
T 50, V̂5V̂121V̂1C1V̂2C , ~A14!

whereV̂i j is the interaction potential between particlesi and
j . After separating out the hyperangular parts of the WF
obtain a set of coupled equations similar to those for a p
ticle moving in a deformed mean field.

In the case of neutral particles the bound hyperradial W
for Borromean nuclei has true three-body asymptotics:

xg~r→0!;rK15/2; xg~r→`!;exp~2kr!. ~A15!

For the continuum WF the boundary condition at the orig
coincides with that for the bound state, while for chargele
particles atr→` it is

xg,g8~kr!;r1/2@HK12
2 ~kr!dg,g82Sg,g8HK812

1
~kr!#.

~A16!

Here Hn
2and Hn

1 are Hankel functions of integer inde
(n5K12) with asymptotic;r21/2exp(7ikr), describing
the in- and out-going three-body spherical waves,Sg,g8 is the
S matrix for the 3→3 scattering.

Wave functions discussed above are characterized by
total angular momentumJ and its projectionM . Due to ro-
tational invariance the continuum wave functions with d
ferent J are dynamically decoupled and can be calcula
separately. For transition densities we need the three-par
scattering statesCm1 ,m2

(1) (kx ,ky) in other representation
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characterized bykx andky momenta of relative motions an
projectionsm1 and m2 of particle spins on a chosen dire
tion. They can be written as

Cm1 ,m2

~1 ! 5
1

~kr!5/2 (
g,g8,J,M ,ML8

xKl xl y ,K8 l
x8 l

y8
LS,L8S8 ~kr!

3YJKLSM
l xl y ~V5!Y

K8L8M
L8

l x8 l y8*
~V5

k!^L8ML8S8MS8uJM&

3^s1m1s2m2uS8MS8&XTMT
. ~A17!

The transition density describes the system response
zero-range perturbation, and can be expressed as a m
element between the initial bound and final continuum sta

rmMT

ls j ,T

5K Cm1 ,m2

~2 ! U (
t51,2

d~r 2r t!

r t
2 @Yl~ r̂ t! ^ s t

s# jmtMT

T ~ t !UJiM i L
5 (

Jf ,M f

1

Ĵf

^JiM i jmuJfM f&

3 (
g f8,ML f

8 ,MSf
8

^s1m1s2m2uSf8MSf
8 &

3^L f8ML f
8 Sf8MSf

8 uJfM f&Y
K

f8L
f8M

L f
8

l xf
8 l yf

8 *
~V5

k!rg
f8

ls j ,T
~r ,k!.

~A18!
-

a
trix
s:

The easiest way to calculate space integrals inrg
f8

ls j ,T
(r ,k) is

to do it in a coordinate system where radiusr t is colinear
with the y coordinate:

r t5akyk5AAi1Aj

AAk
yk. ~A19!

In our case we must rotate from the initial Jacobi coor
nate system~basisx3,y3 with A15A251) to the alternative
similar sets (x1,y1) or (x2,y2). HyperharmonicsY KLM

l x ,l y trans-
form under this rotation through Raynal-Revai coefficient

Y KLM
l x ,l y ~V5!5 (

l x8 ,l y8
^ l x8 ,l y8u l x ,l y&KLY KLM

l x8 ,l y8~V58!. ~A20!

Using the definition of reduced matrix elements

^ j fmf uÔjmuJimi&5
^ j imi jmu j fmf&

ĵ f

^ j f uuÔj uu j i& ~A21!

and with the necessary summation over Clebsch-Gordan
efficients, the radial part of transition density matrix el
mentsrg8

ls j ,T
(r ,k) is
f

rg
f8

ls j ,T
~r ,k!5 (

g f ,g i ,l xf
9 ,l yf

9 ,l xi
9 ,l yi

9
^ l xf

9 l yf
9 u l xf

l yf
&K fL f

^ l xi
9 l yi

9 u l xi
l yi

&KiLi
^Sf uuss~1!uuSi&^ l yf

9 uuYl uu l yi
9 & ĵ L̂ i L̂ f Ĵi Ĵ fd l

xf
9 ,l

xi
9

3~21! l xi
9 1 l yi

9 1 l 1L fH l yi
9 l xi

9 Li

L f l l yf
9 J H Si Sf s

Li L f l

Ji Jf jJ
3@11~21!Si1Sf1Ti1Tf#I g f8,g f ,g i

~r ,k!^TfMTf
utMT

T ~1!uTiMTi
&. ~A22!
The factor (21)Si1Sf1Ti1Tf comes from symmetry proper
ties of spin and isospin matrix elements

^SfM f usm
s ~2!uSiMi&5~21!Si1Sf^SfM f usm

s ~1!uSiMi&,
~A23!

and the reduced spin and orbital matrix elements are

^Sf uuss~1!uuSi&5~21!11s1SiA2ŝŜi Ŝf 5
1

2

1

2
Si

Sf s
1

2 6 ,

~A24!
^ l yf
9 uuYl uu l yi

9 &5
1

A4p
l̂ l̂ yi

9 ~ l yi
9 0l0u l yf

9 !. ~A25!

The radial matrix elementI g
f8,g f ,g i

is

I g
f8,g f ,g i

~r ,k!5E
0

`

dxx2E
0

`

dyy2
1

~kr!5/2
x

K f l xf
l yf

,K
f8 l

xf
8 l

yf
8

L fSf ,L f8Sf8*
~kr!

3
d~r 2ay!

~ay!2 xKi l xi
l yi

LiSi ~r!
1

r5/2

3c
K

l xf
9 l yf

9
~a!c

K

l xi
9 l yi

9
~a!, ~A26!
f i
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which can be reduced to a one-dimensional integral over
r variable

I g
f8,g f ,g i

~r ,k!5
1

a3k5/2Er /a

`

dr
Ar22~r /a!2

r4
c

K f

l xf
9 l yf

9
~a!

3c
Ki

l xi
9 l yi

9
~a!x

K f l xf
l yf

,K
f8 l

xf
8 l

yf
8

L fSf ,L f8Sf8*
~kr!xKi l xi

l yi

LiSi ~r!,

~A27!

where cosa5r/ar anda5a15a2.

APPENDIX B

To calculate the radial form factors we need the multip
decomposition of the effectiveNN interaction. For this pur-
pose it is convenient to use momentum representation

V~r pt ,ppt!5
1

~2p!3E dk exp~2 ik•r pt!V~k,ppt!,

~B1!

where in V(k,ppt) the longitudinal tT
i (k)5t1T

C (k)22tT
T(k)

and transversetT
'(k)5t1T

C (k)1tT
T(k) parts are usually

singled out:

V~k,ppt!5(
T

H (
S

tST
C ~k!sp

S
•s t

S1
i

k2
tLS
T ~k!k

3ppt•S2tT
T~k!Spt~ k̂!J tp

T
•t t

T

5( H t0T
C ~k!1tT

i ~k!~sp• k̂!~st• k̂!

T

e

e

1tT
'~k!@sp3 k̂#•@st3 k̂#

1
i

k2
tLS
T ~k!k3ppt•SJ tp

T
•t t

T . ~B2!

Form factorst j
i (k) are Fourier transforms of correspondin

forces in coordinate space:

tST
C ~k!54pE

0

`

j 0~kr !tST
C ~r !r 2dr, ~B3!

tT
T~k!54pE

0

`

j 2~kr !tT
T~r !r 2dr, ~B4!

tLS
T ~k!54pkE

0

`

j 1~kr !tLS
T ~r !r 3dr. ~B5!

With shorthand notations for multipole operators,

r̂ ls j ,m~ i !5 j l~kri !@Yl~ r̂ i ! ^ s i
s# jm , ~B6!

r̂ l j ,m
l ~ i !5

1

k
j l~kri !@Yl~ r̂ i ! ^ ¹i # jm , ~B7!

r̂ j ,m
ls ~ i !5

1

k2 @¹i r̂ j 0 j ,m~ i !#pi•si , ~B8!

the multipole decomposition of theNN potential can be writ-
ten as@38#
tor
V~r pt ,ppt!5(
jT

tp
T
•t t

T 2

pE0

`

dkk2H t0T~k!„r̂ j 0 j~p!• r̂ j 0 j~ t !…1tT
i ~k!„r̂ j

i~p!• r̂ j
i~ t !…1tT

'~k!@„r̂ j
'~p!• r̂ j

'~ t !…2„r̂ j 1 j~p!

• r̂ j 1 j~ t !…#2
1

4
tLS
T ~k!@„r̂ j

ls~p!• r̂ j 0 j~ t !…1„r̂ j 0 j~p!• r̂ j
ls~ t !…1„r̂ j

'~p!• r̂ j j
l ~ t !…

1„r̂ j j
l ~p!• r̂ j j

' ~ t !…1„r̂ j
l'~p!• r̂ j 1 j~ t !…1„r̂ j 1 j~p!• r̂ j 1 j

l' ~ t !…#J . ~B9!

Inserting this decomposition of theNN interaction into the expression for the nuclear form fac
^ j bmb ,JfM f u( tVptuJiM i , j ama&, we obtain@35# formula ~14!.

The radial part of the form factor can be written in the following form.
~a! For excitation ofnormal parity states,

F j aj b

ls j S k,r p ,
]

]r p
D5(

T
^TiMTi

TMTuTfMTf
&^TbMTb

TMTuTaMTa
&
~21!Tb2Ta

T̂f T̂a
K 1

2I tp
TI 1

2L i j
ŝ

Ĵ f

2

p

3E
0

`

dkk2H ds0d l j F j j~krp!t0T~k!r j 0 j ,T~k!2
1

4
tLS
T ~k!r j 0 j ,T~k!S ~ga2gb! j j~krp!

1

k2r p

]

]r p

1ga

d j j~krp!

drp

1

k2r p
1

1

2
@ j ~ j 11!2~gb2ga!~gb2ga11!# j j~krp!

1

~krp!2D G
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2
1

4
tLS
T ~k!r j 1 j ,T~k!FAj ~ j 11! j j~krp!

1

k2r p

]

]r p
1

@~gb2ga!~ga1gb11!2 j ~ j 11!#

2Aj ~ j 11!

3S j

2 j 11
j j 11~krp!S j 11

2 j 11
j j 21~krp! D G1ds1d l j j j~krp!tT

'~k!r j 1 j ,T~k!J . ~B10!

~b! For excitation ofunnaturalparity states,

F j aj b

ls j S k,r p ,
]

]r p
D5(

T
^TiMTi

TMTuTfMTf
&^TbMTb

TMTuTaMTa
&
~21!Tb2Ta

T̂f T̂a
K 1

2I tp
TI 1

2L i j 11
ŝ

Ĵf

2

p

3E
0

`

dkk2H ds1d l , j 21 j j 21~krp!F2A j

2 j 11
tT

i ~k!r j ,T
i ~k!2A j 11

2 j 11
tT
'~k!r j ,T

' ~k!

2
1

2
~ga1gb112 j !A2 j 11

j 11

1

4
tLS
T ~k!r j ,T

' ~k!
1

krp
G1ds1d l , j 11 j j 11~krp!FA j 11

2 j 11
tT

i ~k!r j ,T
i ~k!

2A j

2 j 11
tT
'~k!r j ,T

' ~k!G J , ~B11!
tr
s
nc
if

e

t
in

by
where

ga5^ j amauL•su j ama&5H l a , j a5 l a1
1

2
,

2~ l a11!, j a5 l a2
1

2
.

~B12!

In the formulas abover ls j ,T(k)5^JfTf i( tr̂ ls j(t)t t
TiJiTi& is

a complex expression containing spin-angle reduced ma
elements and one-dimensional integrals over radial part
different components of bound and continuum wave fu
tions and given in Appendix A. Other densities are the d
ferent linear combinations
.

.

g,

V

n,
ix
of
-
-

r j ,T
i ~k!5A j

2 j 11
r j 211j ,T~k!1A j 11

2 j 11
r j 111j ,T~k!,

~B13!

r j ,T
' ~k!5A j 11

2 j 11
r j 211j ,T~k!2A j

2 j 11
r j 111j ,T~k!.

~B14!

In radial form factors we omit the contributions from th
current r l j ,T

l (k)5^JfTf i( tr̂ l j
l (t)t t

TiJiTi& and spin-current
r j ,T

ls (k)5^JfTf i( tr̂ j
ls(t)t t

TiJiTi& densities which we did no
take into account in calculations. The transition densities
coordinate and momentum space are simply connected

r ls j ,T~r !5
2

pE0

`

dqq2 j l~qr !r ls j ,T~q!. ~B15!
,

r.
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