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Description of superdeformed nuclear states in the interacting boson model
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We show in this paper that the superdeformed nuclear states can be described with a four parameter formula
in the spirit of the perturbated SU~3! limit of the sdg IBM. The E2 transitiong-ray energies, the dynamical
moments of inertia of the lowest superdeformed~SD! bands in even-even Hg, Pb, Gd, and Dy isotopes, and the
energy differencesDEg2DEg

ref of the SD band 1 of194Hg are calculated. The calculated results agree with
experimental data well. This indicates that the SD states are governed by a rotational interaction plus a
perturbation with SOsdg(5) symmetry. The perturbation causing theDI 54 bifurcation to emerge in the
DI 52 superdeformed rotational band may then possess SOsdg(5) symmetry.@S0556-2813~97!01509-4#

PACS number~s!: 21.10.Re, 21.60.Fw, 23.20.Lv, 27.80.1w
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I. INTRODUCTION

Since the discovery of the first discrete superdeform
~SD! rotational band in the nucleus152Dy @1# in 1986, the
investigation of superdeformation at high angular mome
remains one of the most interesting and challenging topic
nuclear structure. The detailed experimental investigation
superdeformation~for a review on the data see the compil
tion in Ref. @2#! reveals many interesting properties of t
SD bands such as the phenomenon of the identical band@3#,
DI 54 bifurcation~many experimental results and theoretic
investigations are available now: for experiments see,
example, Refs.@4–10#; for theory see, for example, Refs
@11–18#!, and the turnover of the dynamical moment of i
ertia J (2) with rotational frequency\v @5#. By now, it is
commonly accepted that the properties of the SD bands, s
as the dependence ofJ (2) on \v, depend sensitively on th
number of occupied high-N intruder orbitals. On the micro
scopic side, the density-dependent Hartree-Fock calcula
with zero range forces of the Skyrme type@19# or with finite
range forces of the Goney type@20# and calculations with the
cranked relativistic mean field theory@21# have been per-
formed. In these models, the bulks and the single-part
properties are treated consistently based on the conce
variation principle, however, the price to be paid is a high
numerical effort. With this in mind there are so far not ma
applications available yet. Based on the semiphenomeno
cal approach~the cranked Nilsson-Strutinsky and crank
Woods-Saxon-Strutinsky approach! @22#, many calculations
~for instance, Refs.@23,24#! have been accomplished~for a
review, see Refs.@22# and @25#! and many experimenta
manuscripts also contain applications of these models to
latest experimental data. By treating the bulks and sing
particle properties separately they have the advantage o
ting many details of the actual nuclei under investigat
directly to the appropriate region under study. Since the r
variety of physical phenomena in the region of super
formed shapes is based on a complicated and rather s
interplay of collective and single-particle properties, the n
560556-2813/97/56~3!/1370~10!/$10.00
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merical calculation within the framework is also quite tim
consuming. Moreover, the agreement between the calcul
results and the experimental data still has room for impro
ment.

On the phenomenological side, many models@26–29#
have also been proposed with different microscopic
semimicroscopic foundations. Because of the rich underly
physics and the conciseness of calculation, the interac
boson model~IBM ! @30# has also been extended to descri
SD states@31,32#. In the SD IBM, all the group structure an
techniques are the same as those in the usual IBM. Howe
from the Nilsson model we know that states with large d
formation and high spins can be described only by the inc
sion of many spherical shells, the number of bosons is t
much larger for superdeformed states than for normally
formed states~2–4 times or more! @31,32#. More recent in-
vestigations @32–35# indicated thatg bosons ~the L54
nucleon pairs! in the IBM play a much more significant rol
in describing SD states than in describing normally deform
states. Especially, Ref.@32# indicated that the SU~3! limit of
the sdg IBM is a reasonable starting point to describe S
states in the IBM. Reference@33# showed that there exists
basis and a Hamiltonian within thesdg IBM which repro-
duces the geometric model results@11–13# for the DI 54
bifurcation ~in other words, theDI 52 staggering ofEg en-
ergies or dynamical moments of inertia! @4–10# and Ref.
@34# pointed out that the perturbated SU~3! limit may be a
suitable candidate to describe the valuable insight of the
namics of SD states. Otherwise the spin dependence o
J (2) of SD states is treated by introducing a spin-depend
strength~referred to as the Arima coefficient! for the inter-
action with SO~3! symmetry (L̂•L̂) @36#. However, numeri-
cal calculation shows that theJ (2) obtained from the IBM
with an Arima coefficient changes monotonously with ro
tional frequency. Then the turnover can not be described
this paper, by employing the perturbated SUsdg~3! symmetry
in the sdg IBM and extending the Arima coefficient, w
discuss the properties of the SD states of the even-even
1370 © 1997 The American Physical Society
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56 1371DESCRIPTION OF SUPERDEFORMED NUCLEAR STATES . . .
clei in the A;190 andA;150 regions. In particular, the
turnover of the dynamical moment of inertia with rotation
frequency and theDI 54 bifurcation will be investigated.

The paper is organized as follows. In Sec. II a short
scription of the possibility that SD states can be described
a firmer foundation within the perturbated SUsdg(3) symme-
try with perturbation holding the SOsdg(5) symmetry is pre-
sented and a four parameter formula is developed by ext
ing the Arima coefficient and considering the perturbation
Sec. III numerical results for the lowest SD bands of t
even-even nuclei in theA;190 and 150 regions are de
scribed and discussed. Finally conclusion and remarks
given in Sec. IV.

II. FORMALISM

In thesdg interacting boson model@37,38#, the collective
nuclear states~with quadrupole and hexadecupole deform
tions! are generated as states of a system withN s, d, andg
bosons. Since the total single boson space is 15 dimensi
the symmetry group is U~15!. It has strong coupling dynami
cal symmetries SU~3!, SU~5!, SU~6!, O~15! and weak cou-
pling dynamical symmetries Usd(6)^ Ug(9), Udg(14),
Ud(5)^ Usg(10). It has been shown@32,34# that the
SUsdg(3) limit could provide a reasonable phenomenologi
framework for superdeformed nuclear states.

As a nucleus holds the SU~3! symmetry of thesdg IBM,
the states of the nucleus can be classified by the irreduc
representations~irreps! of the group chain

Usdg~15!.SUsdg~3!.SOsdg~3!. ~1!

The wave functions are

uc~ I !&5u@N#15

Usdg~15!,
a ~l,m!

SU~3!,
K I &

SOsdg~3!, ~2!

wherea andK are the additional quantum numbers. All th
irreps and additional quantum numbers can be determ
with the branching rules@38# of the irrep reductions. And the
interaction Hamiltonian of the nucleus can be written as

H5eC1Usdg~15!1kC2SUsdg~3!1CC2SOsdg~3! , ~3!

in which CkG is thek-order Casimir operator of the groupG.
The energy of the stateu@N#15a(l,m)KI & is

E~ I !5E01eN1k@l21m21lm13~l1m!#1CI~ I 11!.
~4a!

Considering only the relative excitation of the states in
rotational band, the energy of the state with angular mom
tum I can be simply expressed as

E~ I !5CI~ I 11!. ~4b!

With the spin dependence of the dynamical moment
inertia being considered, Eq.~3! should be rewritten as

H5eC1Usdg~15!1kC2SUsdg~3!1
C0

11 f C2SOsdg~3!
C2SOsdg~3! ,

~5!
l
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in which the parameterf can be regarded as the Arima c
efficient. The energy of the stateI in a band is given as

E~ I !5
C0

11 f I ~ I 11!
I ~ I 11!. ~6!

Numerical calculation shows that theJ (2) obtained in this
way changes with\v monotonously. Then, the recently ob
served turnover@2,5,10# of theJ (2) with \v in experiment
cannot be described with Eqs.~5! and ~6!.

Along the line of the variable moment of inertia~VMI !
model @39#, we expand the Arima coefficientf as
f 5 f 11 f 2C2SOsdg(3) . Equation~5! can then be rewritten as

H5eC1Usdg~15!1kC2SUsdg~3!

1
C0

11 f 1C2SOsdg~3!1 f 2~C2SOsdg~3!!
2

C2SOsdg~3! . ~7!

The energy of the stateI in a band is given as

E~ I !5
C0

11 f 1I ~ I 11!1 f 2I 2~ I 11!2
I ~ I 11!. ~8!

As the parametersf 1 and f 2 are taken asf 1.0, f 2,0 ~or
f 1,0, f 2.0), Eqs.~7! and ~8! generate the rotational ban
which exhibits turnover or platform of theJ (2) with \v
pretty well. However, the obtained dynamical moment
inertia changes with rotational frequency so smooth that
quite weakDI 52 staggering~for example, in Refs.@5,10#!
cannot be reproduced. Then, to describe the turnover and
DI 52 staggering of dynamical moment of inertia with rot
tional frequency simultaneously, the SU~3! symmetry must
be broken down. On the other hand, experimental data i
cate that superdeformed nuclear states are mainly gove
by rotational characteristic plus some components of ot
deformations. It indicates that the breaking down of t
SU~3! symmetry is quite slight, so that only an appropria
perturbation should be added to Eq.~7!.

On the other hand, many investigations on the other
pects of thesdg IBM have been accomplished. In view o
the geometric shape, by employing the coherent state t
nique @30#, Devi and Kota@40# showed that the geometri
shape of the SUsdg(5) limit of the sdg IBM is relevant for
deformed nuclei as well as the SUsdg(3) limit. However, its
stable shape is not oriented atg50° but atg560°. In the
view of other variables, calculations on the hexadecup
deformation parameterb4 @41#, the two nucleon transfe
cross section@42#, and energy spectra@40,35# indicated that
the SUsdg(5) limit has almost the same property in descr
ing deformed rotational nuclear states as the SUsdg(3) does.
Moreover, the potential energy surface of the nucleus w
the SUsdg(5) symmetry via its intrinsic deformation variabl
b4 has two minima that are displayed in energy@40#. This
indicates that the SUsdg(5) symmetry of thesdg IBM admits
shape coexistence and shape phase transformation whic
be driven by hexadecupole deformation or angular mom
tum. Combining these facts with the well-known idea th
superdeformed nuclear states are the ones generated i
second minimum of the potential energy surface, we kn
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TABLE I. Parameters used in the calculation (B andC0 in keV!.

f 2Þ0 f 250
B C0 f 1 f 2 B C0 f 1

190Hg 0.001136 6.027 8.31431025 28.56231029 20.002062 5.963 6.37831025

192Hg 0.001887 5.706 7.82731025 29.10831029 0.001326 5.605 4.58531025

194Hg 0.0005095 5.618 7.09731025 26.84231029 0.002550 5.515 4.28431025

192Pb 0.006755 5.860 1.15131024 22.81331028 0.003875 5.758 7.33531025

194Pb 0.001681 5.688 8.18231025 21.37531028 0.002313 5.601 5.27531025

196Pb 20.0005568 5.709 5.13731025 21.80831029 20.0008264 5.699 4.75631025

198Pb 0.005425 5.725 4.33631025 24.22931029 0.002556 5.695 3.07431025

148Gd 0.002965 5.248 22.86231025 1.42731029 0.0002014 5.354 21.83631025

150Gd 20.001187 5.634 2.18131025 22.89431029 0.0007603 5.255 24.51031026

152Dy 20.0001534 5.393 21.04231025 5.817310210 0.0002124 5.443 26.12731026

154Dy 20.001103 5.480 29.18431026 5.845310210 0.0001570 5.536 24.78531026

TABLE II. Calculatedg-ray energies of the SD bands of Hg isotopes and the comparison with ex
ment.

190Hg 192Hg 194Hg~1!

Spin Exp.a Cal. Exp.b Cal. Exp.a Exp.c Cal.

10 214.4~3! 213.8
12 257.8~1! 257.2 254.3~1! 253.93~4! 253.72
14 316.9~4! 316.1 300.1~1! 299.7 296.4~1! 295.99~3! 295.85
16 360.0~2! 359.7 341.4~1! 341.4 337.6~1! 337.18~3! 337.12
18 402.34~04! 402.1 381.6~1! 381.8 377.7~1! 377.39~3! 377.40
20 442.98~06! 443.3 421.1~2! 421.3 416.9~1! 416.60~3! 416.68
22 482.71~06! 483.2 458.8~2! 459.6 454.9~1! 454.76~3! 454.86
24 521.30~06! 521.8 496.0~2! 496.9 492.1~1! 491.86~5! 492.00
26 558.6~1! 559.0 532.1~2! 532.9 528.0~1! 527.88~3! 528.00
28 594.9~1! 595.0 567.4~2! 568.0 563.0~1! 562.92~3! 562.98
30 630.1~1! 630.0 601.7~2! 601.9 596.9~1! 596.87~5! 596.88
32 664.1~1! 663.9 634.9~2! 635.2 630.1~1! 629.93~3! 629.87
34 696.9~1! 696.6 668.1~2! 667.5 662.2~1! 662.07~4! 661.92
36 728.5~4! 728.6 700.1~2! 699.4 693.6~1! 693.40~4! 693.24
38 757.4~4! 759.8 731.5~2! 730.6 724.2~1! 723.91~6! 723.82
40 783.5~6! 790.6 762.3~3! 761.8 754.2~1! 753.92~6! 753.95
42 792.7~4! 792.7 783.9~1! 783.67~8! 783.63
44 822.9~4! 824.0 813.5~2! 813.12~3! 813.18
46 853.1~5! 855.6 842.8~3! 842.55~6! 842.65
48 888.7~7! 888.3 872.6~5! 872.41~13! 872.39
50 903.5~8! 903.10~18! 902.47

aReferences@2,5#.
bReference@43#.
cReference@10#.
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TABLE III. Calculatedg-ray energies of the SD bands of Pb isotopes and the comparison with ex
ment.

192Pb 194Pb 196Pb 198Pb
Spin Exp.a Cal. Exp.a Cal. Exp.a Cal. Exp.b Cal.

6 124.9~5! 124.5
8 169.6~2! 169.1 171.0~2! 170.3
10 213.4~1! 213.1 215.1~3! 214.9
12 262.6~4! 262.0 256.4~1! 256.3 258.9~2! 259.1
14 304.1~4! 304.4 298.6~1! 298.6 302.4~3! 302.6 305.1 304.5
16 345.6~4! 345.8 339.8~1! 340.0 345.3~3! 345.4 348.3 348.1
18 385.6~3! 385.7 380.2~1! 380.4 387.3~3! 387.5 391.1 390.8
20 424.4~4! 424.7 419.3~2! 419.8 428.3~3! 428.7 432.6 433.2
22 462.8~5! 462.3 458.2~1! 458.1 468.8~3! 469.0 473.9 474.5
24 500.0~6! 499.4 495.4~1! 495.6 508.2~4! 508.2 515.0 515.5
26 535.1~8! 535.3 532.1~2! 532.0 546.4~4! 546.5 555.2 555.3
28 570.6~11! 571.4 568.4~2! 567.7 584.2~4! 583.6 594.9 594.9
30 604 606.8 602.7~1! 602.7 620.0~4! 619.7 633.6 633.3
32 636 643.2 638.1~4! 637.4 654.6~4! 654.6 671.9 671.5
34 672.3~4! 671.7 688.6~4! 688.4 709.9 708.5
36 706.2~2! 706.1 720.1~7! 721.0 747.3 745.7
38 739.5~4! 740.6 752.1~8! 752.5 781.7 781.6
40 818.8 817.8
42 850.5 853.0

aReference@2#.
bReference@44#.

TABLE IV. Calculatedg-ray energies of the SD bands of Gd and Dy isotopes and the comparison
experiment~the experimental data are taken from Ref.@2#!.

148Gd 150Gd 152Dy 154Dy
Spin Exp. Cal. Exp. Cal. Exp. Cal. Exp. Cal.

28 602.4~1! 602.1
30 647.5~1! 647.2
32 699.8~4! 697.7 692.7~1! 692.6
34 747.3~4! 746.6 738.1~1! 738.2 749.0~3! 748.0
36 796.7~4! 796.7 780.0~10! 768.1 784.0~1! 784.1 794.4~2! 794.2
38 846.6~4! 847.2 815.0~4! 809.1 829.9~1! 830.3 840.6~2! 840.7
40 897.9~4! 899.0 848.9~1! 849.9 876.481! 876.7 887.4~2! 887.3
42 950.1~4! 951.3 888.0~1! 890.9 923.2~1! 923.4 933.5~2! 934.2
44 1003.9~6! 1004.8 928.9~1! 931.9 970.2~1! 970.3 981.1~1! 981.2
46 1058.4~6! 1058.9 970.9~4! 973.3 1017.4~1! 1017.5 1028.2~2! 1028.5
48 1114.3~6! 1114.2 1013.4~2! 1014.9 1064.9~1! 1064.9 1075.8~2! 1075.8
50 1170.6~6! 1169.8 1056.2~1! 1057.3 1112.7~1! 1112.6 1123.8~2! 1123.5
52 1227.6~6! 1226.8 1099.7~1! 1100.1 1160.5~1! 1160.4 1171.1~2! 1171.0
54 1285.2~6! 1284.0 1144.1~3! 1144.0 1208.6~1! 1208.4 1218.7~2! 1218.9
56 1343.7~6! 1342.4 1190.4~1! 1188.7 1256.6~1! 1256.5 1266.7~2! 1266.6
58 1402.9~5! 1400.9 1237.6~1! 1234.9 1304.8~1! 1304.7 1315.1~2! 1314.6
60 1461.7~5! 1460.5 1286.3~2! 1282.3 1352.9~1! 1353.0 1361.9~3! 1362.3
62 1520.0~6! 1519.9 1336.8~2! 1331.8 1401.3~1! 1401.4 1410.2~5! 1410.1
64 1579.6~9! 1580.3 1387.0~2! 1382.9 1449.6~2! 1449.7 1457.5~6! 1457.6
66 1439.3~3! 1436.7 1497.8~3! 1497.9 1503.7~7! 1505.2
68 1492.4~3! 1492.9 1545.6~5! 1546.0
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1374 56LIU, SONG, SUN, AND ZHAO
that the SUsdg(5) symmetry of thesdg IBM may be also a
good candidate to describe superdeformed rotational st
Furthermore the spectrum generating process shows tha
irrep @n1 ,n2 ,n3 ,n4# of SUsdg(5) plays the same role in la
beling the states as the irrep (l,m) of SUsdg(3) does, and it
does not contribute to the excitation energy of the state
band labeled by it. The most significant difference betwe
the SUsdg(5) limit and the SUsdg(3) limit is then the term of
interaction with SOsdg(5) symmetry. Therefore it is quite
sophisticated if an interaction with SOsdg(5) symmetry is
added as a perturbation to the Hamiltonian~7!. We get then

H5eC1Usdg~15!1kC2SUsdg~5!1BC2SOsdg~5!

1
C0

11 f 1C2SOsdg~3!1 f 2~C2SOsdg~3!!
2

C2SOsdg~3! . ~9!

The excited energy of the state with angular momentumI in
a SD band is thus given as

E~ I !5B@t1~t113!1t2~t211!#

1
C0

11 f 1I ~ I 11!1 f 2I 2~ I 11!2
I ~ I 11!. ~10!

FIG. 1. The calculated result of the dynamical moments of
ertia as a function of the rotational frequency of the SD band 1
190Hg and the comparison with experiment. The experimental d
are taken from Ref.@2#.

FIG. 2. The same as Fig. 1 but for192Hg. The experimental data
are taken from Ref.@43#.
es.
the

a
n

Comparing Eq. ~9! with Eq. ~7!, we know that the
SUsdg(3) is changed to SUsdg(5) besides a term
BC2SOsdg(5) being added. It seems at first glance that t
interaction Hamiltonian has been changed completely, h
ever, they are, in fact, almost equivalent to each other
describing SD rotational band in the view of the above d
cussion except for the perturbation. It is certain that, to gu
antee that the interaction with SOsdg(5) symmetry is only a
perturbation, we should preserve very smalluBu!C0 ,u f 1u,
and u f 2u.

Summarizing the previous discussions we know that
perturbating the SUsdg(3) symmetry of thesdg IBM and
extending the Arima coefficient, the excitation energy of t
state in a SD band is given with a four parameter form
@Eq. ~10!#. With the four parameter formula, theE2 transi-
tion g-ray energyEg(I )5E(I )2E(I 22), the rotational fre-
quency \v(I )5@Eg(I )1Eg(I 12)#/4 and the dynamica
moment of inertiaJ (2)54\2/@Eg(I 12)2Eg(I )# can con-
sequently be determined. Moreover, the energy differen
DEg between two consecutiveg-ray transitions after sub
traction of a smooth referenceDEg

ref(I ) can also be obtained
Taking Cederwall’s notation, we have

DEg~ I !2DEg
ref~ I !5

3

8H Eg~ I !2
1

6
@4Eg~ I 22!14Eg~ I 12!

2Eg~ I 24!2Eg~ I 14!#J . ~11!

-
f

ta

FIG. 3. The same as Fig. 1 but for the SD band 1 of194Hg. The
experimental data are taken from Ref.@10#.

FIG. 4. The same as Fig. 1 but for192Pb. The experimental data
are taken from Ref.@2#.
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56 1375DESCRIPTION OF SUPERDEFORMED NUCLEAR STATES . . .
It is also necessary to mention that to demonstrate theDI 54
bifurcation in experiment, one expresses theDEg as a func-
tion of the rotational frequency@4–10# since the angular mo
menta are not assigned. However, in a theoretical desc
tion, it can be illustrated as a function of the rotation
frequency or the angular momentum@11–18#. Qualitative
calculation@35# shows that, only if the parameters hold rel
tion uBu!C @the case off 15 f 250 in Eq.~10!#, the variation
characteristic ofDEg(I )2DEg

ref(I ) as a function of angula
momentum is consistent with that as a function of rotatio
frequency. We now turn our discussion to the changing f
ture of theDEg(I )2DEg

ref(I ) versus the rotational frequenc
\v in the practical calculation of this paper.

FIG. 5. The same as Fig. 1 but for194Pb. The experimental dat
are taken from Ref.@2#.
a

p-
l

l
-

III. CALCULATION AND DISCUSSION

Investigating the above formalism more carefully, w
know that the four parameter formula@Eq. ~10!# can only be
used for positive parity states in even-even nuclei. Howev
experiment shows that there are also many SD bands
negative parity. To describe the negative parity states
IBM, f bosons should be taken into account. Then the gr
chain which classifies the wave functions of the states m
be rewritten. Considering the lower excitation which i
cludes only onef boson, the group chain and the correspon
ing irreps can be given as

FIG. 7. The same as Fig. 1 but for198Pb. The experimental data
are taken from Ref.@44#.
U~22!. Usdg~15! ^ Uf~7! .SUsdg~3! ^ SUf~7! .SOsdg~3! ^ SOf~7! .SOsdg~3! ^ SOf~3! .SO~3!,

@N# @Nsdg#15 @1#7 ~l,m! @1#7 I sdg ~1!7 I sdg 3 I

with perturbation

U~22! .Usdg~15! ^ Uf~7! .SUsdg~5! ^ SUf~7! .SOsdg~5! ^ SOf~7! .SOsdg~3! ^ SOf~3! .SO~3!,

@N# @Nsdg#15 @1#7 @n1,n2,n3,n4#5 @1#7 ~t1 ,t2!5 ~1!7 I sdg 3 I .
It shows that for a state with definite angular momentumI ,
the angular momentum contributed by thes, d, andg bosons

FIG. 6. The same as Fig. 1 but for196Pb. The experimental dat
are taken from Ref.@2#.
can beI sdg5I 23,I 22,I 21,I ,I 11,I 12,I 13 and the num-
ber of thes, d, andg bosons isNsdg5N21, whereN is the

FIG. 8. The same as Fig. 1 but for148Gd. The experimental data
are taken from Ref.@2#.
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total boson number determined by the shell structure. T
we can takeI 5I sdg for simplicity but pay no attention to the
exact boson number and the parity when we regard Eq.~10!
as a four parameter formula to fit experimental data. In fa
in view of the last section, the boson number does not c
tribute directly to the excitation energy of the state in a S
band except for the influence on the angular momentum
practical calculations, the angular momentum is assig
with the guidance of experimental data. The irrep (t1 ,t2) of
the SOsdg(5) in Eq. ~10! is determined by the branchin
rules of the irrep reduction@38#. What we used in calculation
can be simply given as

~t1 ,t2!

5H S I

2
,0D , if I 54k,4k11~k10,1,2, . . . !,

S I

2
21,2D , if I 54k12,4k13~k50,1,2, . . . !.

After a nonlinear least fitting to the experimentally o
servedEg energies, we get the spin assignment and theE2
transitiong-ray energies. The best fitted parameters are lis
in Table I. It shows that the practical value of theB is only
C0/1000 or even less, i.e., the interaction with the SOsdg(5)
symmetry is really only a perturbation. The calculated res
of the Eg energies and the comparison with experimen
data are listed in Tables II, III, and IV for the SD bands
Hg, Pb, Gd, and Dy isotopes, respectively. W

FIG. 9. The same as Fig. 1 but for150Gd. The experimental data
are taken from Ref.@2#.

FIG. 10. The same as Fig. 1 but for152Dy. The experimental
data are taken from Ref.@2#.
n

t,
n-

In
d

d

ts
l

J (2)54\2/@Eg(I 12)2Eg(I )#, the dynamical moments o
inertia of the above SD bands are also obtained. The ca
lated results and comparison with experimental data are
lustrated in Figs. 1–11. For comparison, we give also
calculated results in the case withf 250 and where theE2
g-ray energies are reproduced well.

From the figures we know that the smooth increase of
dynamical moment of inertia with rotational frequency in t
Hg-Pb region is reproduced well in both thef 2Þ0 andf 250
cases. In more detail, the case off 250 is favored for the
monotonous increase at higher rotational frequency in
SD bands of190Hg and 192Pb, but fails to reproduce the
changing feature of the SD bands of192Hg, 194Hg, and
194Pb, which exhibit a turnover or platform in the changin
curve of theJ (2) vs \v. For the SD bands in the Gd-D
region, the experimentally observed dynamical moment
inertia changes much more smoothly with rotational f
quency than that in the Hg-Pb region, and holds a platfo
or even a turnover. Figures 8–11 show that only iff 2Þ0,
can the changing characteristic be depicted well. In parti
lar, if f 250, the obtained dynamical moment of inertiaJ (2)

of 150Gd is almost a constant. Only iff 2Þ0, can the experi-
mentally observed feature of theJ (2) of 150Gd be repro-
duced. However, the SD bands of144Gd and146Gd cannot be
described well not only withf 250 but also withf 2Þ0 be-
cause there are sudden jumps inJ (2) which are probably
due to sudden particle alignment@45#.

For the DI 54 bifurcation, since there is not a definit
conclusion for band 2 and band 3 of194Hg and the phase

FIG. 11. The same as Fig. 1 but for154Dy. The experimental
data are taken from Ref.@2#.

FIG. 12. The calculated result of the energy differencesDEg as
a function of rotational frequency of the SD band 1 of194Hg and the
comparison with experiment. The experimental data are taken f
Ref. @10#.
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shifts are quite complicated in these two bands@10#, we
show then only the calculated result ofDEg2DEg

ref against
the rotational frequency of the SD band 1 in194Hg in Fig.
12. It indicates that the experimentally observed staggerin
well reproduced in our approach except for the phase shi
about\v50.38–0.39 MeV.

Investigating the tables and the Figs. 1–11, we know t
the E2 transitiong-ray energies and the dynamical mome
of inertia of the SD states can be quantitatively describ
excellently when thef 2 is not taken as zero. In particular, th
turnover or the platform can be reproduced well. Howev
as the parameterf 250, the turnover cannot be depicted. T
discuss the mechanism for why the turnover ofJ (2) with
\v is described well in our approach, we compare it with
rigid rotor. It is known that the energy of a rigid rotor
given asErot5(\2/2J)I (I 11). Its dynamical moment of in-
ertia is a constantJ. When the energy of the state is given
Eq. ~10! with uBu!C0, u f 1u, andu f 2u very small, the dynami-
cal moment of inertia of the stateI is

J ~2!'
\2@116 f 1I ~ I 11!115f 2I 2~ I 11!2#

2C0

'
\2

2C0
H 11

3 f 1\2v2

2C0
2 @114 f 1I ~ I 11!#1

15f 2\4v4

16C0
4

3@118 f 1I ~ I 11!#J .

It is obvious that whenf 250, the angular momentum has
driving ~restraining! effect on theJ (2) if f 1.0 ( f 1,0), and
theJ (2) changes monotonously with\v. If the parameters
are taken asf 1.0, f 2.0 ~or f 1,0, f 2,0), the angular
momentum driving effect~or the restraining effect! is
strengthened. ThenJ (2) changes more rapidly with\v. As
they are taken asf 1.0, f 2,0 ~ or f 1,0, f 2.0), both the
driving effect and the restraining effect are considered,
the competition between them determines the changing c
acteristic. If the driving effect is stronger,J (2) increases
with \v. If the restraining effect is stronger, theJ (2) de-
creases while\v increases. When these two effects are
balance with each other, an extreme value appears. Th
turnover emerges. In the present case, the parameter
taken asf 1.0, f 2,0 for Hg and Pb isotopes andf 1,0,
f 2.0 for 148Gd, 152Dy, and 154Dy, respectively, and
u f 1u@u f 2u. Sinceu f 2u@ I (I 11)#2 increases more rapidly tha
u f 1uI (I 11) as I increases, the two kinds of effects chan
from driving dominant to restraining dominant in the S
states of Hg-Pb isotopes and from restraining dominan
driving dominant for 148Gd and 1522154Dy, respectively, a
turnover point must then emerge. It is also worthwhile
mention that the best fitted parameters for150Gd aref 1.0,
f 2,0, which are the same as those for the Hg and Pb
topes. This suggests then that the property of150Gd may be
similar to that in the range beyond the turnover of Hg-
isotopes, but not close to its neighbors. Comparing the
sults of f 2Þ0 with those obtained withf 250, we know that
the competition between the driving effect and the restra
ing effect plays a crucial role in reproducing the turnover
shows also that the larger one ofu f 1uI (I 11) and
is
at

t
t
d

r,

d
r-

a
are

to

o-

e-

-
t

u f 2uI 2(I 11)2 in Eq. ~10! determines the slope of theJ (2)

curve with\v and the smaller one (f 1 and f 2 take opposite
symbols to each other! has an opposite effect and reproduc
the turnover.

In a microscopic point of view, Ref.@36# has shown that,
as the interaction is written as Eq.~5! with f .0, the term
f I (I 11) in the denominator plays a role of antipairing. E
tending this idea we know that, asf ,0, the termf I (I 11)
has a pairing favorite effect. Then, when the Hamiltonian
taken as Eqs.~7!, ~9! and the parameters are taken asf 1.0,
f 2.0 ~or f 1,0, f 2,0), the antipairing~or pairing favorite!
effect is strengthened. As they are taken asf 1.0, f 2,0 ~ or
f 1,0, f 2.0), both the antipairing and pairing effects a
taken into account, and the competition between them de
mines the changing characteristic. The successful descrip
of the dynamical moment of inertia within this approach su
gests that there exists competition, even a change over
tween pairing and quasiparticle alignment caused by
Coliolis antipairing interaction in the SD states in both t
A;190 andA;150 regions.

Recalling the spectrum generating process we know
the totally symmetric irreps (t1 ,0) of the SOsdg(5) generate
rotational bands with level sequences$0,4,8,12, . . . %,
$2,6,10, . . . %, etc, and the nontotally symmetric irrep
(t1 ,2) of the SOsdg(5) produce bands with level sequenc
$6,10,14,18, . . . %, $8,12,16,20, . . . %, etc. According to the
rules of sdg IBM, there are strongE4 transitions between
the statesI 14 andI which belong to the same kind of SO~5!
irreps (t112,2), (t1,2) @or (t112,0), (t1,0)# separately.
StrongE2 transition can take place between the statesI 12
andI which belong to a different kind of SO~5! irreps (t1,2),
(t1,0) @or (t112,0), (t1,2)#. Thus, two closely placed en
ergy bands with level sequencesI 0, I 014, I 018, . . . , and
I 012, I 016, I 0110, . . . , appear naturally, and couple t
one band with level sequenceI 0, I 012, I 014, . . . . In this
band the states differing by 2 in angular momentum
linked with strongE2 transitions. From Eq.~10! we know
that the contribution of the term CI(I 11) to
Eg5E(I )2E(I 22) is smooth, and that the contributio
of the term with SO~5! symmetry is Eg

SO(5)(I 54k)
5(2I 24)B and Eg

SO(5)(I 54k12)56B. Therefore, there
existsEg staggering in the SD band, even though the ex
value of uBu is very small. This indicates that the simulta
neous appearance of the totally and nontotally symme
irreps in thesdg IBM, which is not possible in thesd IBM,
generates the spectrum withDI 54 bifurcation. In other
words, it shows that the emergence of the energy band w
DI 54 bifurcation is an intrinsic property of the perturbatio
with the SOsdg(5) symmetry. From Fig. 12 we know that th
feature of the staggering ofDEg(I )2DEg

ref(I ) obtained in
this spirit agrees with experimental data quantitatively we

Since the parameterC5C0/11 f 1C2O(3)1 f 2@C2O(3)#
2 in

Eq. ~9! holds the SO~3! symmetry and the parameters us
in practical calculations keeping the relationuBu!C, the
interaction Hamiltonian we used is definitely an axial ro
tional interaction plus a perturbation with SO~5! symmetry.
The successful description ofEg(I ), J (2)(I ), and DEg(I )
2DEg

ref(I ) implies that the interaction generating the sup
deformed rotational bands is governed by the rotational
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1378 56LIU, SONG, SUN, AND ZHAO
teraction, and the perturbation causing theDI 52 rotational
band to split intoDI 54 bifurcation may possess SOsdg(5)
symmetry.

IV. CONCLUSION AND REMARKS

In summary, we have shown in this paper that the sup
deformed nuclear states can be described in the framew
of an interacting boson model as theg bosons are taken into
account. By perturbating the SUsdg(3) symmetry with an
interaction holding the SOsdg(5) symmetry and extending
the Arima coefficient to two coefficientsf 1 and f 2, the ener-
gies of the states in a SD rotational band are expressed
four parameter formula with two terms. The first ter
B@t1(t113)1t2(t211)# holds the SOsdg(5) symmetry,
and determines theDI 52 staggering. The second ter
C0 /@11 f 1I (I 11)1 f 2I 2(I 11)2#I (I 11) possesses SO~3!
symmetry and a many-body interaction, and dominates
general characteristic of the band and the changing featu
the dynamical moment of inertia with rotational frequenc
With the Arima coefficient being extended to two coef
cients f 1 and f 2, both the angular momentum driving an
restraining effects on the dynamical moment of inertia a
the competition between them can be taken into accoun
multaneously. On the other hand, along the same line s
gested in Ref. @36# we know that the f 1I (I 11) and
f 2I 2(I 11)2 in the denominator play roles of antipairin
( f 1.0,f 2.0) or pairing (f 1,0,f 2,0) favored effects and
the competition between the paring and antipairing effect
taken into account whenf 1 and f 2 are taken with different
symbols. However, a more sophisticated microscopic fo
dation of the parameters remains to be clarified.
c
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With the four parameter formula, we have calculated
E2 transitiong-ray spectra and the dynamical moments
inertia of the lowest SD bands in Hg, Pb, Gd, and Dy is
topes and the energy differencesDEg2DEg

ref of the SD band
1 of 194Hg. The calculated results agree with experimen
data excellently, especially the turnover or the platform
theJ (2) with \v is reproduced well. It indicates thus that
superdeformed rotational band withDI 54 bifurcation can
be described well in thesdg IBM as the Hamiltonian is
taken as a rotational interaction plus a perturbation w
SOsdg(5) symmetry. This provides also a clue that the p
turbative interaction making theDI 52 superdeformed rota
tional band split into DI 54 bifurcation may posses
SOsdg(5) symmetry. The electromagnetic transition rat
and the moments of deformations can be given in princip
work to do so is currently in progress. Meanwhile, the app
cations to other SD bands are also underway. Furtherm
the investigation of describing the SD states in the fram
work of perturbated SU~3! symmetry with SU~3! wave func-
tions @34# is also being carried out.
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