
PHYSICAL REVIEW C SEPTEMBER 1997VOLUME 56, NUMBER 3
EnhancedT-odd, P-odd electromagnetic moments in reflection asymmetric nuclei
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Collective P- and T-odd moments produced by parity and time invariance violating forces in reflection
asymmetric nuclei are considered. The enhanced collective Schiff, electric dipole, and octupole moments
appear due to the mixing of rotational levels of opposite parity. These moments can exceed single-particle
moments by more than 2 orders of magnitude. The enhancement is due to the collective nature of the intrinsic
moments and the small energy separation between members of parity doublets. In turn these nuclear moments
induce enhancedT- and P-odd effects in atoms and molecules. A simple estimate is given and a detailed
theoretical treatment of the collectiveT-, P-odd electric moments in reflection asymmetric, odd-mass nuclei is
presented. In the present work we improve on the simple liquid drop model by evaluating the Strutinsky shell
correction and include corrections due to pairing. Calculations are performed for octupole deformed long-lived
odd-mass isotopes of Rn, Fr, Ra, Ac, and Pa and the corresponding atoms. Experiments with such atoms may
improve substantially the limits on time reversal violation.@S0556-2813~97!00809-1#

PACS number~s!: 21.10.Ky, 21.60.Ev, 24.80.1y, 32.80.Ys
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I. INTRODUCTION

In 1964 Christensonet al. @1# discovered thatCP is vio-
lated in the decay of neutralK mesons. As one expects th
CPT theorem to be valid this discovery implied that tim
reversal (T) is violated in the observed decays of the kao
This fact immediately led to the search forCP or T violation
in other systems. Since the 1960s many attempts have
made to observeT violation in systems different from the
kaons. Time reversal violation has not been observed so
but upper limits forT conservation have been establishe
The search for time reversal violation encompasses a l
variety of physical systems and involves many methods. O
of the more widely used methods involves the search
static T-, P-odd electromagnetic moments, moments t
would be absent if the Hamiltonian of the system is ev
under time reversal and reflection. Such moments include
electric dipole moment~EDM!, the electric octupole, the
magnetic quadrupole, etc. Early on, with the discovery
CP violation, attempts were made to measure the elec
dipole moment of the neutron and at present significant
per limits depend on the existence of such moment@2,3#. The
neutron was not the only system in which attempts w
made to find a static electric dipole moment. Experime
with atoms and molecules were performed in which up
limits for electric dipole moments of the respective syste
were established. In fact the recent measurements of di
moments of Hg and Xe atoms@4# and TlF molecule@5# have
established upper limits for time reversal violating nucleo
nucleon and quark-quark interactions that are of the sa
order~or maybe even exceed! the limits obtained in the mea
surement of the neutron dipole moment.

The existence of a static atomic dipole moment may
due to the following three reasons:~a! the possible existenc
of a dipole moment of the electron~the best limits on the
electron EDM were obtained in Tl atom EDM measureme
in Ref. @6#, see also Cs measurements in Ref.@7#!; ~b! time
reversal violation in the electron-nucleon interaction, thus
560556-2813/97/56~3!/1357~13!/$10.00
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the lepton-hadron interactions;~c! the possible existence of
staticT-odd, P-odd moment of the nucleus arising from th
time reversal violating component of the hadron-hadron
teractions. The recent experiments with Hg gave the b
limit on this interaction. This possibility will also be th
subject of this work.

In a recent paper@8# we put forward a suggestion tha
rotating nuclei that have static octupole deformations wh
viewed in their intrinsic~body! frame of reference will have
enhancedT-odd, P-odd ~for shortT-, P-odd! moments if a
time reversal and parity violating interaction is present in
nuclear Hamiltonian. In the intrinsic frame the nucleus w
an octupole deformation has large octupole, Schiff, and
pole moments. An orientation of these moments is connec
to a nuclear axisn ~e.g., the dipole moment isd5dn). In a
stationary rotational state the mean orientation of the a
vanishes (̂n&50) since the only possible correlation̂n&
}I violates time reversal invariance and parity~hereI is the
total angular momentum of the system!. Therefore, the mean
values of electric dipole, octupole and Schiff moments va
ish in laboratory frame if there is noT, P violation. In the
nuclei with the octupole deformation and nonzero intrin
angular momentum there are doublets of rotational state
opposite parity with the same angular momentumI ~in mo-
lecular physics this phenomenon is calledL doubling!. A T-,
P-odd interaction mixes these rotational levels. As a res
the nuclear axis becomes oriented along the total ang
momentum,̂ n&}aI wherea is the mixing coefficient. Due
to this orientation of the nuclear axis by aT-, P-odd inter-
action the mean values of theT-, P-odd moments are no
zero in the laboratory frame, e.g.,^d&5d^n&}adI .

We find two basic enhancement factors in this mec
nism: first, in the intrinsic frame the nucleus with an octupo
deformation will have large octupole, Schiff, or dipole ele
tric moments because a large number of nucleons will c
tribute to the moments, and second due to the appearan
closely spaced parity doublets in the spectrum of the nuc
with octupole deformation. It is not only that the spacin
1357 © 1997 The American Physical Society
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1358 56V. SPEVAK, N. AUERBACH, AND V. V. FLAMBAUM
between the members of the doublets is small but also~T-,
P-odd! interaction will mix well two such states. The en
hanced nuclear Schiff moments that result in such nuc
with a reflection asymmetric shape will induce;1000 times
enhanced atomic electric dipoles, and measurements
formed with such atoms may improve upper limits for tim
reversal violation.

It is the aim of the present work to examine in detail t
consequences of the intrinsic reflection asymmetry on theT-,
P-odd electromagnetic moments in nuclei produced byT-,
P-odd components in the nuclear force and on the indu
T-, P-odd moments in the corresponding atoms. In this pa
we extend the work in Ref.@8# attempting to provide an
improved and more detailed theory of the nuclei with asy
metric shapes and of the resultingT-, P-odd moments if
parity time reversal is violated to some degree in the nuc
force.

Present experimental studies of nuclei in the actinide
gion (Z around 88 andN around 134! indicate that these
nuclei possess octupole shapes in the ground state~g.s.!
@9–12#. In these nuclei near the Fermi energy, orbital pa
are coupled strongly by the octupole-octupole part of
effective nuclear interaction. The existence of octupole
formations in the actinide nuclei is manifested in the ex
tence of parity doublet states and parity doublet bands.
E1 and E3 transitions between these states are relativ
strong, of the order of a Weisskopf unit. These experime
findings are supported by theoretical studies. Some isoto
of Rn, Fr, Ra, Ac, Th, and Pa in the 218,A,230 region are
predicted theoretically to be reflection asymmetric in the g
The phenomena of octupole instability are observed and
scribed theoretically also aroundZ;56, N;88. Several iso-
topes of Ba, Ce, Nd, and Sm in theA5140–152 region are
known to be octupole-soft and develop reflection asymme
shapes at higher spins but no experimental data at pre
can confirm such shapes in the g.s.@11,12#

We will present in this work results for relatively long
lived neutron-odd isotopes of Rn, Ra, and proton-odd i
topes of Fr, Ac, and Pa for which there is theoretical and
most cases experimental evidence of reflection-asymm
intrinsic shapes in the g.s.

We use the results of the Nilsson-Strutinsky mean fi
calculations@13# and employ the Leanderet al. @14# particle
plus core model to calculate the wave functions, energy s
tings andT-, P-odd interaction matrix elements betwee
members of the parity doublets. In the calculation of t
intrinsic dipole, Schiff and octupole electric moments we u
a two-liquid drop model. Strutinsky corrections and corre
tions due to pairing are taken into account in this work.

In the past one conjectured thatT-, P-odd moments will
be enhanced in the cases when close to the g.s. there is
whatever reason, a level with the same spin and oppo
parity @15–18#. The connection between enhancedE1 tran-
sitions between these levels and the nuclear electric di
moment was made in the work of Haxton and Henley@17#.
At that time, nuclei which possess an intrinsic reflecti
asymmetry and quadrupole deformed nuclei without such
asymmetry but in which an accidentally close ‘‘parity do
blet’’ exists, were treated on an equal footing@17#. The fact
that in some nuclei systematically enhancedE1 matrix ele-
ments are the direct consequence of intrinsic reflection as
s
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metry was realized and investigated extensively by Lean
et al. several years later@19#.

In the work @18# the Schiff moment induced by nuclea
T-, P-odd forces was introduced in the presently used fo
and calculations for Xe, Hg, Tl, and other interesting ca
were done. The calculations of the atomic electric dip
moments induced by the nuclearT-, P-odd Schiff moments
were also presented~we should note that similar conside
ations forT-, P-odd effects in molecules and atoms induc
by the proton electric dipole moment were applied
@20,21#!.

In our earlier paper@8# the connection was made betwee
the collectiveT-, P-odd electric moments in theintrinsic
frameof reference in reflection-asymmetric nuclei and the
moments in thelaboratory frame@24#. Due to the collective
nature of the intrinsic moments and the nearly identical
trinsic structure of the parity doublets one expects that
electricT-, P-odd moments will be maximal.

After the present introduction in Sec. II we define th
T-, P-odd moments, including the Schiff moment. In Sec.
we present a simple expression for aT-, P-odd moment in
the case of a deformed rotating nucleus in the presence
T-, P-odd interaction. The first part of Sec. IV deals with th
calculation of the dipole, Schiff, and octupole intrinsic m
ments in a two-fluid liquid drop model. In the same secti
we bring a simple schematic estimate of a Schiff momen
an octupole deformed nucleus. Next we present the par
1core model and describe the calculation of theT-, P-odd
matrix elements and mixing amplitudes. In Sec. V the n
merical results are presented for each of the nuclei and a
end of this section results are given for the atomic dip
moments. In the last section~Sec. VI! a summary is pre-
sented.

II. ATOMIC ELECTRIC DIPOLE AND NUCLEAR T-,
P-ODD MOMENTS

We start from the electrostatic potential of a nucle
screened by the electrons of the atom. If the nucleus ha
T-, P-odd dipole moment the dipole term in the potent
vanishes in accordance with the Purcell-Ramsey-Schiff th
rem @22,23# ~see the derivation in the Appendix!:

w~R!5E er~r !

uR2r u
d3r 1

1

Z
~d“ !E r~r !

uR2r u
d3r . ~1!

Here r(r ) is the nuclear charge density,*r(r )d3r 5Z, and
d5*err(r )d3r is the electric dipole moment~EDM! of the
nucleus. The first term in this expression is usual elec
static nuclear potential, and the second term is a result of
electron screening effect. The multipole expansion ofw(R)
contains bothT-, P-even andT-, P-odd terms. We conside
here only the latter. The dipole part in Eq.~1! is canceled by
the second term in this equation:

2E eS r“
1

RD r~r !d3r 1
1

Z
~d“ !

1

RE r~r !d3r 50. ~2!

The next term is the electric quadrupole which isT-,
P-even, thus the first nonzeroT-, P-odd term is
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w~3!52
1

6E er~r!r ar br gd3r¹a¹b¹g

1

R

1
1

2Z
~d“ !¹a¹b

1

RE r~r!r ar bd3r. ~3!

Herer ar br g is a reducible tensor. After separation of th
trace there will be terms which will contain a vectorS and a
rank 3 tensorQabg ~see, e.g.,@18#!:

w~3!5wSchiff
~3! 1woctupole

~3! ,

wSchiff
~3! 52S“D

1

R
54pS“d~R!,

woctupole
~3! 52

1

6
Qabg¹a¹b¹g

1

R
, ~4!

where

S5
1

10S E er~r!r 2rd3r2
5

3
d
1

ZE r~r!r 2d3rD ~5!

is the Schiff moment~SM! and

Qabg5E er~r!S r ar br g2
1

5
r 2~dabr g1dbgr a

1dagr b! Dd3r,

Qzzz[
2

5
Q35

2

5
A4p

7 E er~r!r 3Y30d
3r ~6!

is the electric octupole moment. Because the intrinsic dip
moment of the nucleus appears in second order in the nuc
deformation@see Eq.~21!# a correction to the octupole fiel
which arises from the nonspherical part of the density in
screening term in Eqs.~3! and ~5! can be neglected. Indeed
this correction is at least third order in the nuclear deform
tion.

In the absence ofT- andP-violating interactions the elec
tric dipole moment of an atom is equal to zero. The inter
tion between atomic electrons and theT-, P-odd part of the
electrostatic nuclear potential in Eq.~4! will mix atomic
states of the opposite parity and thus generate an ato
electric dipole moment:

Dz52e^c̃ ur zuc̃&522e(
uk2&

^k1ur zuk2&^k1u2ew~3!uk2&
Ek1

2Ek2

,

~7!

where c̃ denotes the perturbed atomic wave functio
uk1&5 uk1 ,J1 ,J1z& is the unperturbed electron ground sta
and$uk2&% is the set of opposite parity states with whichuk1&
is mixed due the perturbation2ew (3).

The most accurate measurements of atomic and molec
T-, P-odd electric dipole moments have been done in
atoms Xe and Hg with zero electron angular momentu
J150. Examining Eq.~7! it is easy to demonstrate that i
such atoms nuclear electric octupole~as well as anotherT-,
le
ar

e

-

-

ic

,
,

lar
e
,

P-odd moment, magnetic quadrupole! cannot generate an
atomic electric dipole. Indeed, according to the triangle r
for the addition of angular momenta,^k1ur zuk2& can only
have a nonzero value ifuJ12J2u<1< J11J2. Similarly, for
^k1uwoctupole

(3) uk2& to be nonzero, we must haveuJ12J2u
<3< J11J2. This implies that the following conditions
need to be satisfied for the dipole moment to be nonzero

uJ12J2u<1 and J11J2>3. ~8!

The lowest pair of values that satisfies this condition
J153/2 andJ253/2 for the states with one or odd number
electrons outside the closed subshells, andJ151, J252 for
states with even number of electrons. In the case of the m
netic quadrupole one needsJ11J2>2, i.e., the lowest pair
is J151/2, J253/2. Hence, the nuclear electric octupole a
magnetic quadrupole moments cannot contribute to
atomic electric dipole moment ofJ150 states. Therefore, we
mostly center our considerations on the Schiff moment. N
also that theT-, P-odd part of the electrostatic nuclear p
tential in Eq.~4! is concentrated mainly inside the nucleu
As a result the induced atomic electric dipole moment
proportional to the density of external electrons at t
nucleus ~more accurately, to the gradient of this densit!
which rapidly increases with the nuclear chargeZ. This is
why in general heavy atoms and nuclei are favored in
studies ofT-, P-odd moments.

III. T-, P-ODD MOMENTS AND ROTATIONAL
DOUBLETS

If a deformed nucleus in theintrinsic ~body-fixed! frame
of reference is reflection asymmetric, it can have collect
T-, P-odd moments. As a consequence of this reflect
asymmetry, rotational doublets appear in the laboratory s
tem. Without T-, P-violating forces aT-, P-odd moment
vanishes exactly in the laboratory. AT-, P-odd interaction
however may reveal such intrinsicT-, P-odd moments in the
laboratory frame. Consider a nearly degenerate rotatio
parity doublet in the case of an axially symmetric nucle
The wave functions of the members of the doublet are w
ten as@24#

C65
1

A2
~ uIMK &6uIM 2K&). ~9!

Here I is the nuclear spin,M5I z and K5In , wheren is a
unit vector along the nuclear axis.

The intrinsic dipole and Schiff moments are directe
alongn:

dintr5dintrn,

Sintr5Sintrn. ~10!

For these good parity states^C6uIn uC6&50 becauseK
and2K have equal probabilities and this means that ther
no average orientation of the nuclear axis in the laborat
frame (̂ C6unuC6&50). This is a consequence of time in
variance and parity conservation since the correlationIn is
T-, P-odd. As a result of̂C6unuC6&50, the mean value of
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1360 56V. SPEVAK, N. AUERBACH, AND V. V. FLAMBAUM
the T-, P-odd moments~whose orientation is determined b
the direction of the nuclear axis! is zero in the laboratory
frame.

A T-, P-odd interactionVPT will mix the members of the
doublet. The admixed wave function of the predominan
positive parity member of the doublet will b
C5C11aC2 or

C5
1

A2
@~11a!uIMK &1~12a!uIM 2K&], ~11!

wherea is theT-, P-odd admixture

a5
^C2uVPTuC1&

E12E2
, ~12!

andE12E2 is the energy splitting between the members
the parity doublet. A similar expression is obtained for t
negative parity member of the doublet.

In the T-, P-admixed state

^CuIn uC&5^CuK̂uC&52aK, ~13!

i.e., the nuclear axisn is oriented along the nuclear spinI :

^CunzuC&52a
KM

~ I 11!I
. ~14!

Therefore in the laboratory system the electric dipole a
Schiff moments obtain nonzero average values. For exam
in the ground state~g.s.! usuallyM5K5I and

^CuSzuC&52a
I

I 11
Sintr . ~15!

IV. NUCLEAR MODELS OF THE T-, P-ODD MOMENTS

A. Nuclear shape and intrinsic moments

In this paper we consider the moments of heavy deform
nuclei in the ground states. The main contribution to
electric moments comes from the even-even core whic
well described by the two-fluid liquid drop model, see, e.
Refs. @25,26,24#. The surface of an axially symmetric de
formed nucleus is

R5c
V
~b!R0S 11(

l 51
b lYl0D , ~16!

wherec
V
512(1/A4p)( l 51b l

2 ensures the volume conse

vation andR05r 0A1/3. For the sake of brevity and becau
the nuclear deformations we deal with are relatively sm
b2,0.2, b3,4,0.1 we will put in our discussion the coeffi
cientc

V
(b)51. @In the actual calculationsR0 is replaced by

c
V
(b)R0.#

If the nucleus is reflection asymmetric then theb1 defor-
mation parameter is needed to keep the center of mass
at z50, i.e.,*zd3r 50. In lowest order in nuclear deforma
tions @27,28,24#
y

f

d
le,

d
e
is
,

ll

ed

b1523A 3

4p(
l 52

~ l 11!b lb l 11

A~2l 11!~2l 13!
. ~17!

Due to the Coulomb force protons and neutrons are dif
ently distributed over the nuclear volume. From the requi
ment of a minimum in the energy@25,19#

rp~r !2rn~r !

rp~r !1rn~r !
52

1

4C
VCoul~r !, ~18!

where rp[r and rn are the proton and neutron densitie
VCoul(r ) is the Coulomb potential created byrp(r ) andC is
the volume symmetry-energy coefficient of the liquid dr
model. To lowest order@19#

r5
r0

2
2

r0

8

e2Z

CR0
F3

2
2

1

2S r

R0
D 2

1(
l 51

3

2l 11S r

R0
D l

b lYl0G ,
~19!

wherer053A/(4pR0
3). The coefficientC is not known very

accurately, its value for nuclei studied here is in the ran
20–35 MeV @19,28,29#. Note that requiring*r(r )d3r 5Z
one has in lowest order@25#

Z5
1

2
AS 12

3

10

e2Z

CR0
D . ~20!

We compute the intrinsic Schiff moment by substitutin
the density in Eq.~19! into Eq. ~5!. Because of the relative
shift of protons versus neutrons the nucleus in the intrin
frame has a dipole moment as calculated in the p
@27,30,19,28# and given by

dintr5eAZ
e2

C

3

40p(
l 52

~ l 221!~8l 19!

@~2l 11!~2l 13!#3/2
b lb l 11 .

~21!

A more detailed treatment of the intrinsic dipole mome
includes also the neutron skin effect which reducesdintr
somewhat@28,29#. To discuss corrections to the intrinsic SM
it is convenient to decompose it into two terms

Sintr5Sintr
~1!1Sintr

~2! . ~22!

The first term includes only contribution from the consta
part of the density,r(r 50) in Eq. ~19!. In lowest order in
deformation it equals to

Sintr
~1!5eAR0

3 3

40pS 12
e2Z

R0C

3

8D(
l 52

~ l 11!b lb l 11

A~2l 11!~2l 13!
.

~23!

As observed above this contribution comes from the fi
term in Eq.~5! only. The second term is due to the Coulom
redistribution of the proton density and stems from the l
two terms in the brackets in Eq.~19!. A simple derivation
gives

Sintr
~2!5eAR0

3 3

40p

e2Z

R0C

29

280(l 52

~ l 11!b lb l 11

A~2l 11!~2l 13!
. ~24!
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This term gives about 10% contribution for nuclei wi
Z;90. Using Eq.~20! one can approximate the intrinsic SM
as

Sintr.eZR0
3 3

20p(
l 52

~ l 11!b lb l 11

A~2l 11!~2l 13!
. ~25!

The contribution of theb3b4 term in bothdintr andSintr , for
the nuclei studied here, is of about the same size as
contribution of theb2b3 term.

The expression for the intrinsic octupole moment
@24,31#

Q3 intr5
3eZR0

3

2A7p
S b31

2

3
A5

p
b2b31

15

11Ap
b3b41••• D .

~26!

Various nuclear surface corrections to the density
nucleons such as the neutron skin are not included in
above equations for the SM. For the intrinsic dipole mom
these corrections were included in Refs.@28,29# using the
droplet model. The corrections fordintr are of the same orde
as the main term in Eq.~21! but have the opposite sign. On
can conclude from Eqs.~21!–~25! that since such correction
alter only the termSintr

(2) they can contribute to the Schif
moment at most 10%.

Values of the Schiff moment obtained using Eq.~25! are
about 30% less than given by the direct calculation us
Eqs. ~5! and ~19! ~with C'27 MeV corresponding to the
value obtained in the droplet model which includes the eff
of a neutron skin@28,29#!. This is partly due to terms o
higher orders in the deformation not included in Eqs.~20!–
~25!.

Both the intrinsic SM and dipole moments are seco
order in nuclear deformation and may turn out to be sensi
to details of the proton density distribution. Because of tha
is important to take into account quantum mechanical c
rections to the liquid drop model. Such correction can
included through the Strutinsky shell correction meth
@32,33#. In this method the level density is decomposed in
a smooth averaged density and a remaining part, fluctua
with the shell filling. The corrected expectation value of
one-body operator, e.g., the intrinsic Schiff moment~for the
similar treatment of the intrinsic dipole moment see Re
@19,29#! is written as a sum of ‘‘macroscopic’’ and she
correction terms@33#

S̃intr5Sintr
M 1Sintr

shell. ~27!

As the ‘‘macroscopic’’ part one takes the liquid drop m
ment, in the case of the Schiff momentSintr

M is given in lowest
order inb i by Eq.~22! or by approximate Eq.~25!. The shell
correction term is given by@33,19,29#

Sintr
shell5(

i
~v i

22ni !^ i uSu i &, ~28!

wherev i
2 are the BCS quasiparticle occupation numbers

ni — the smoothed single-particle occupation numbers,
the statei . The latter are determined by the averaged le
he

f
e
t

g

t

d
e
it
r-
e

o
ng

.

d
r
l

density and energies of the statesi in the single-particle po-
tential. ~Detailed expressions can be found in Refs.@33,34#.!

It is convenient to express the corrections relatively to
Sintr

M . The second term in Eq.~5! is proportional to the intrin-
sic dipole momentdintr . The shell correction todintr was
studied in detail in@19,29#. The results show that the she
correction todintr is of the same order of magnitude as t
‘‘macroscopic’’ dipole moment given by Eq.~21!. Therefore
the subsequent correction to the second term of the intri
SM in Eq. ~5! does not exceed~5–7!% of the value of
Sintr

M .
The shell correction to the deviation of proton and ne

tron centers of mass for octupole deformed actinide nu
was also investigated in Refs.@19,29#. The deviation of the
center of mass can be represented formally as a change o
b1 deformation parameter, because*zr td

3r;R0@b1

1A(3/4p)(9/A35)b2b31•••#. Note that the intrinsic Schiff
moment is in the lowest order proportional to theb1 for
protons @Eqs. ~17! and ~23!–~25!#. Therefore the resulting
shell correction for the first term of the intrinsic SM in Eq
~5! is analogous to the one obtained in@19,29# for the proton
center of mass.

B. The P- and T-odd interaction

The P- and T-odd nucleon-nucleon two-body potenti
can be written in the form@35,36# as

Wab5
G

A2

1

2m
@~habsa2hbasb!“ad~r a2r b!

1hab8 @sa3sb#$~pa2pb!,d~r a2r b!%#, ~29!

whereG51025/m2 is the Fermi constant (m is the nucleon
mass!, a,b designate a proton or neutron and the curly bra
ets denote the anticommutation operation. Note, thathab are
in fact effective constants. In this work we use the cor
sponding effective one-bodyP- and T-odd potential
@18,36,37#

VPT5
G

A2

h

2m
r0(

i
s i@“ i f ~r i !#, ~30!

where r t(r )5r0f (r )is the nuclear density. We assum
@35,36# that effective constantshab and h are of the same
order in magnitude. For the deformed nuclear density we
the expansion@24#

r~r !5r0~r !2R0

]r0

]r F( b lYl02
c

4p( b l
21

1

2
~r 2R0!R0

3S ( b l“Yl0D 2G1
1

2
R0

2 ]2r0

]r 2 S ( b lYl0D 2

1•••,

~31!

where r0(r ) has the usual Woods-Saxon form,b i are
the nuclear deformation parameters in Eq.~16! and c
5(R0/2)(*r0dr/*r0rdr ).
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C. Simple estimate of the Schiff moment

Let us present a simple estimate of the nuclear Sc
moment in the case there is aT-, P-odd interaction and the
nucleus possess a quadrupole and octupole deformation.
needs to calculate theintrinsic moment and the mixing co
efficienta. We consider an axially symmetric nucleus whi
has a sharp surface and constant nucleon densityr t . The
proton density can be approximated by const
r53Z/4pR0

3. The intrinsic electric dipole moment in thi
approximation is zero, and only the first term in Eq.~5!
contributes to the intrinsic SM. Using Eqs.~5!, ~16!, and~17!
and keeping only the terms containingb2 andb3 one gets, in
accordance with Eq.~25!,

Sintr[
1

10
eE rr 2zd3r 5eZR0

3 9

20pA35
b2b3 . ~32!

Using then the deformation parametersb250.12 and
b350.1, R05 1.23A1/3 fm, A5230, andZ588 we obtain:
Sintr5 10.4e fm 3.

The rotational states of an odd-mass nucleus can be w
ten in terms of intrinsic states as

uIM 6K&5S 2I 11

8p2 D 1/2

DM6K
I ~w,q,c!w6K

~A! ~r 8!x~A!,

~33!

where DM6K
I (w,q,c) is a WignerD function, x (A) is the

wave function of the quadrupole and octupole deformed~re-
flection asymmetric! nuclear core in the intrinsic frame, an
w6K

(A) (r 8) is the wave function of the unpaired nucleon in t
intrinsic frame, with an angular momentum projection
6K on thez8 axis.

Let us now present an order of magnitude estimate of
mixing coefficienta which is needed to find the magnitud
of the Schiff moment in the laboratory frame@see Eq.~15!#.
K̂5In and VPT are bothT-, P-odd pseudoscalars. There
fore, ^w1K

(A) uVPTuw1K
(A) &}K and so ^w2K

(A) uVPTuw2K
(A) &

5 2^w1K
(A) uVPTuw1K

(A) & ~this fact can be easily supported b
model calculations!. Using this fact and Eqs.~33! and~9! we
get ^C2uVPTuC1&5 ^w1K

(A) uVPTuw1K
(A) &. If single-particle

wave functionw1K
(A) was a good parity state this matrix el

ment would be zero. However, due to the perturbat
caused by the static octupole deformation of the nucl
(V3), it is a combination of the opposite parity orbita
f1,1K andf2,1K :

w1K
~A! 5f1,1K1gf2,1K , ~34!

g5
^f2,1KuV3uf1,1K&

E12E2
, ~35!

f1,1K5R1~r 8!V j ,l ,1K~q8,w8!,

f2,1K5R2~r 8!V j , l̃ ,1K~q8,w8!

52R2~r 8!~s r̂ 8!V j ,l ,1K~q8,w8!, ~36!
ff

ne

t

it-

f

e

n
s

where r̂5r/r is a unit vector alongr , V j lK is a spherical
spinor, l̃ 52 j 2 l , e.g.,p3/2 andd3/2 orbitals.~Of course there
will also be an admixture of other states having differe
values of l , j . We neglect these states for simplicity.! The
mixing coefficientg is proportional to the parameter of th
octupole deformationb3. To make an estimate we assum
that the single-particle potentialU(r) has the same form a
the nuclear densityr t(r). Using the expansion in Eq.~31!

where r0(r 8)5 u(R02r 8)/( 4
3 pr 0

3) ~where u is the step
function! we get

V3'U~0!R0b3d~R02r 8!Y30. ~37!

Using Eq.~35! we then have

ugu.Ub3U~0!R1~R0!R2~R0!R0
3

E12E2
E V2* Y30V1dV8U.b3 ,

~38!

where we have used R1(R0)R2(R0)' 1.4/R0
3

@26#, uU(0)u'50 MeV, uE12E2u'5 MeV, and
u*V2* Y30V1dV8u.0.07 . Therefore, we have

a5
^w1K

~A! uVPTuw1K
~A! &

E12E2
.2b3

^f1,1KuVPTuf2,1K&

E12E2
. ~39!

Finally, we must estimate the matrix element betwe
spherical orbitalŝf1,1KuVPTuf2,1K&. Using Eq.~30! for the
form of VPT we get

VPT52h
3G

8pA2mr0
3
~sr̂8!d~R02r 8!. ~40!

Herer 051.2 fm is the internucleon distance. Using Eq.~36!

and (sr̂8)251 gives

^f1,1KuVPTuf2,1K&5h
3G

8pA2mr0
3
R1~R0!R2~R0!R0

2

'
h

A1/3
1 eV. ~41!

Using uE12E-u550 keV, b350.1 ~see data in the tables!,
and Eqs. ~39! and ~41! gives ~for A5230)
uau; 2b3A21/3h eV/uE12E2u;731027h. This provides
the following estimate for the collective Schiff moment
the laboratory frame:

S;aSintr;0.05eb2b3
2ZA2/3h~r 0!3 eV/uE12E2u

;70031028he fm3. ~42!

We see that the collective Schiff moment is about 500 tim
larger than the Schiff moment due to the unpaired nucleo
spherical nucleus,S. 1.531028he fm3 @18,35#. Note, how-
ever, the strong dependence of the collective Schiff mom
on the deformation parameters.

We should remark here that this is a schematic calcula
and more detailed and realistic calculations are presente
Secs. IV A, IV D, and V. Nevertheless the present estim
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represents the essence of this theory and the order of ma
tude estimate agrees with the detailed calculations.

D. Particle-core model for a reflection-asymmetric nucleus
and P-, T-odd mixing of parity doublets

Any nucleus, whether even or odd mass, that is reflec
asymmetric may possessintrinsic T-, P-odd moments. Such
moments will exist in thelaboratory frame only if there is
also aT-, P-odd mixing between g.s. parity doublet levels.
the even-even nucleus is axially symmetric, a pseudosc
T-, P-odd operator cannot mixK50 doublet states which
have identical intrinsic structure@38#. Besides, the energ
splitting within parity doublets is systematically much less
odd ~or odd-odd! than in neighboring even-even nucl
@39,14,40#. So in odd~or odd-odd! nuclei the mixing should
be considerably larger. For this reason we consider odd
clei in what follows.

We use here the particle-core model for a reflectio
asymmetric nucleus@14,40#. TheT-, P-odd as well asP-odd
T-even mixing was studied in this model recently@41,38#.
This model involves twoKp501 andKp502 members of
a parity doublet of the even-even core with the energy sp
ting Ec between them. The wave functions of these statesxp

are projections of the reflection-asymmetric core statex
A

@14#

xp5
1

A2
~11p P̂!x

A
, ~43!

whereP̂ is the core parity operator. The single-particle sta
w

A
are solutions of the reflection-asymmetric single-parti

plus pairing HamiltonianHsp1Hpair ~different forms of po-
tentials such as folded Yukawa, deformed Woods-Saxon
Nilsson are used inHsp @14,31,42,38#!. The wave functions
in the model are@14,38#

CMK
Ip 5F2I 11

16p2 G 1/2

@11R̂2~p!#DMK
I FK

p , ~44!

whereR̂2(p) denotes rotation through an anglep about the
intrinsic 2 axis. TheFp[F6are particle-core intrinsic state
of good parityp. Denoting the good parity particle statesfp

we write ~in the matrix notationaf5 (kakfk)

F15a1x1f11b1x2f2,

F25a2x2f11b2x1f2. ~45!

The matrix elements ofVPT are given by@38#

^CMK
I 1 uVPTuCMK

I 2 &5a1b2^fK
1uVPTufK

2&

1a2b1^fK
1uVPTufK

2&. ~46!

~As already mentioned the pseudoscalar operatorVPT cannot
connect doublet states of an even-even corexp because of
the opposite rotational symmetry of these states@38#

R̂2xp5pxp .!
The expectation value of aT-, P-odd operatorÔ in a T-,

P-admixed stateF̃ i
1 is
ni-

n

lar

u-

-

t-

s
e

or

^F̃ i
1uÔuF̃ i

1&52a i i ^F i
1uÔuF i

2&12(
j Þ i

a i j ^F i
1uÔuF j

2&.

~47!

The matrix elements between core states are

^x1uÔux2&5^x
A
uÔux

A
&. ~48!

One can write the one-body operatorÔ as the sum of core
and particle termsÔ5Ôcore1Ôp and obtain

^F i
1uÔuF j

2&5^x
A
uÔcoreuxA

&~a1 ia2 j1b1 ib2 j !

1^f i
1uÔpuf j

2&a1 ib2 j

1^f j
1uÔpuf i

2&a2 jb1 i . ~49!

For i 5 j this is just the intrinsic moment in the
reflection-asymmetric core-particle stateF5 x

A
w

A

[ x
A
(af11bf2). For closely spaced doubletsa1 i'a2 i ,

b1 i'b2 i and (a1 ia2 j1b1 ib2 j )'d i j . With respect to the
single-particle contribution to aT-, P-odd moment in Eqs.
~47! and ~49! note that the admixture of the doublet level
considerably larger than the admixtures of the other level
opposite parity, i.e.,a i i @a i j ,iÞ j . Neglecting these ‘‘off-
diagonal’’ a i j contributions one gets

^F̃ i
1uÔuF̃ i

1&'2a i i ~^xA
uÔcoreuxA

&1^w
A
uÔpuw

A
&!

~50a!

and

^C̃MK
I 1 uÔm50uC̃MK

I 1 &5^IMl 0uIM &^IKl 0uIK &

3^F̃ i
1uÔm50uF̃ i

1&, ~50b!

wherel is the rank of the operator. For a vector operator su
as Ŝ ~or d̂) one obtains, in accordance with Eqs.~10!, ~14!,
and ~15!,

^C̃MK
I 1 uŜzuC̃MK

I 1 &5
MK

I ~ I 11!
2a i i ~^xA

uŜcoreuxA
&1^w

A
uŜpuw

A
&!.

~51!

The intrinsic SM of the evenZ core^x
A
uŜcoreuxA

& is given by
Eq. ~27!.

We stress again that the essential difference between
reflection-asymmetric~octupole deformed! nucleus and the
reflection symmetric~quadrupole deformed! one is that the
former hasintrinsic T-, P-odd moments which are esse
tially collectivesince they involve contributions of the cor
nucleons. Note that in a nucleus which has a quadrup
deformation but no octupole deformation the ground st
and its parity ‘‘partner’’ are built from a single good parit
core state, e.g.,x1, and therefore the coefficients in Eq.~45!
are thena151, b150, a250, b251. So apart from a
small core polarization contribution@18,35# there is no con-
tribution from the core.
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The parity mixing of a reflection asymmetric singl
particle statew

A
5 (kakfk

11(mbmfm
2 is conveniently ex-

pressed via the expectation value of the single-particle pa
operatorp̂p @14#:

pp[^w
A
up̂puw

A
&5(

k
ak

22(
m

bm
2 . ~52!

Using this quantity one can write the admixture coefficie
a i i as

ua i i u'U^f i
1uVPTuf i

2&

Ei
1

2Ei
2 UA~12ppi

2 !. ~53!

HereEi
1

andEi
2

are the energies of the particle-core sta
F i

1 , F i
2 . The a i i obviously is maximal for a doublet buil

on the strongly parity admixed (uppu!1) intrinsic state.
Note, that although the form of Eq.~53! is analogous~for
ppi50) to the case when there is a close single-particle le
of opposite parity in reflection-symmetric deformed nuc
@18#, there is an important difference. Namely@18#, if one
neglects the spin-orbit interaction and assumes that
nuclear densityr t(r ) and the single-particle potentialU(r )
have the same form then

VPT;s“U~r !5 i @sp,Hsp#, ~54!

and the one-body matrix element^f1uVPTuf2& is propor-
tional to the energy difference

^f1uVPTuf2&; i ^f1u@sp,Hsp#uf2&;ef22ef1,
~55!

whereef1 and ef2 are the single-particle energies. In th
case of a reflection symmetric~e.g., quadrupole deformed!

nucleusE
1

5ef1 and E
2

5ef2. The mixing coefficient is
therefore enhanced only in a few cases when single-par
deformed levels are accidentally close and the approxima
of Eqs. ~54! and ~55! becomes a crude one@18#. In the
reflection-asymmetric case always@14,40,38#

uE
1

2E
2
u&

Ecuef12ef2u

2u^f1uVodduf2&u
!uef12ef2u, ~56!

where Vodd is the reflection-asymmetric part of the singl
particle HamiltonianHsp. Therefore the admixture coeffi
cient a i i is generally enhanced relatively to that in spheri
or quadrupole deformed nuclei. The splitting within the p
ity doublet ~for KÞ 1

2 ) can be also written as@14,40#

uE
1

2E
2
u.uEcppu, ~57!

exhibiting the reduction of splitting for an odd nucleus
comparison with the splitting of parity doublet states of t
even-even core. In the case ofK5 1

2 doublets the Coriolis
interaction, leading to an additional splitting within double
is included in the model@38#.

Let us look now at the single-particle part of the S
given by Eqs.~5!, ~49!, and ~50!. The ‘‘diagonal’’ single-
particle contribution in Eq.~50a! can be written as
ty

t

s

el
i

e

le
n

l
-

2a i i ^f i
1uÔpuf i

2&~a1 ib2 i1a2 ib1 i !

'2^f i
1uÔpuf i

2&
^f i

1uVPTuf i
2&

Ei
1

2Ei
2 ~12ppi

2 !. ~58!

Thus, in general, due to the enhancement ina i i the single-
particle contribution of the odd proton is enhanced relativ
to the case of a quadrupole deformed but reflection symm
ric nucleus. In the proton-odd nuclei the single proton co
tributes to both terms of the SM operator in Eq.~5!. These
terms are of the same order and partially cancel. In
neutron-odd nuclei the single neutron contribution to the S
operator in Eq.~5! enters only through the corrections to th
dipole moment term and therefore is very small.

As is shown in Ref.@14# the effects of BCS-like pairing
are maximal when the Fermi level is exactly halfway b
tween the single-particle levels. In this case the simp
model of two opposite parity single-particle levels results
an exactly degenerate parity doublet. In realistic calculati
the effect of pairing correlations on single-particle levels
revealed only in somewhat altered energy splittings betw
members of parity doublets. In the calculations of mat
elements of parity and parity and time reversal violating p
tentials and single-particle parts of electric moments, the
fect of pairing is more important. When one uses the B
quasiparticle states instead of single-particle states, the
trix elements of the operatorsVPT, VPV and Ôp are to be
multiplied by pairing factorsufui1csymv fv i , wherecsym de-
pends on the symmetry properties of the operator under
time reversal and Hermitian conjugation@24,26#. For Her-
mitian operators,csym51 if an operator isT odd and
csym521 if it is T even@26#. Thus, for theT-odd VPT, one
has the factorufui1v fv i , whereas for theT-evenVPV and a
single-particle matrix element of an electric operatorÔp the
corresponding factor isufui2v fv i . The difference in signs
in the expressions for pairing correlation factors is related
the fact that matrix element ofVPV operator between mem
bers of a parity doublet goes to zero when the doublet
comes degenerate while the matrix element ofVPT operator
does not vanish@43,38,44#.

V. CALCULATIONS AND ESTIMATES

A. Nuclear structure calculations

The set of deformation parametersb l ~up to l 56) was
taken from Ref.@13# where it was calculated using a de
formed Woods-Saxon single-particle potential and Strutin
shell correction method. From the sets of deformations,
culated in Ref.@13#, we have chosen those which correspo
to the experimental value ofK in the g.s. This set is shown in
Table I. The particle-core wave functions were calcula
using the reflection-asymmetric particle core model@14#. In
an attempt to be consistent we calculated both the intrin
T-, P-odd moments and admixture coefficients using ba
cally the same single-particle potential and shell correct
parameters. The computer codeWSBETA @42# and the ‘‘uni-
versal’’ set of parameters was used in calculations involv
deformed single-particle Woods-Saxon potential.~A modifi-
cation of the code was made to include explicitly theb1
deformation.!
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To check the stability of the values of admixture coef
cients we calculated them also using a Nilsson potential w
e l deformations approximately corresponding to the sa
nuclear surface~see, e.g., Ref.@45#!. It is known @46# that
there are some differences in the energies and wave f
tions when calculated with deformed Nilsson or Wood
Saxon potentials in the actinide region. Especially the pro
levels are different because of the fact that the Coulomb t
is included in the Woods-Saxon potential but is only sim
lated in the Nilsson potential. Because of that we perform
calculation ofa admixtures with the Nilsson potential onl
for the neutron-odd nuclei. For the Nilsson potential we us
parameters of Ref.@46# which are known to produce a goo
fit to experimental data. See for example the reflecti
asymmetric calculations of225Ra in Ref.@47#.

The energy splittings of the core parity doublets,Ec , and
moments of inertia were taken from Ref.@31#. The values of
Ec we used are given in Table I. The effect of thel 51
deformation (b1 or e1) in the deformed single-particle po
tential on the energies and admixture coefficients of doub
is small. However this deformation is important for the c
culation of the shell correction to the intrinsic Schiff m
ment.

For the BCS treatment of pairing we used the stren
parameterGp,n @48#

Gp,n5
1

AS g06g1

N2Z

A D , ~59!

with g0519.2 MeV, g157.4 MeV for neutrons and
g0522.0 MeV,g158.0 MeV for protons. We found that th

TABLE I. Intrinsic g.s. deformations and energy splittings b
tween opposite parity core states.

223Ra 225Ra 223Rn 221Fr 223Fr 225Ac 229Pa

b2 0.125 0.143 0.129 0.106 0.122 0.138 0.17
b3 0.100 0.099 0.081 0.100 0.090 0.104 0.08
b4 0.076 0.082 0.078 0.069 0.076 0.078 0.09
b5 0.042 0.035 0.024 0.045 0.033 0.038 0.02
b6 0.018 0.016 0.023 0.020 0.022 0.013 0.01
Ec ~keV! 212 221 213 305 212 206 333
h
e

c-
-
n
m
-
d

d

-

ts
-

h

admixture coefficients, as well as other properties of th
nuclei calculated in Ref.@31#, are not sensitive to the pairin
strength~or gap parameterD). The standard Strutinsky she
correction calculation of the smoothed single-particle oc
pation numbersn was performed using parameters tak
from Ref. @34#.

The intrinsic SM was calculated using Eqs.~27! and~28!.
The ‘‘macroscopic’’ termSintr

M was computed directly using
Eqs. ~5! and ~19! with C527 MeV which is the droplet
model value@29#. We calculated the shell correction for th
first term of the intrinsic SM operator in Eq.~5!. This cor-
rection strongly depends on the proton number and for
<Z<91 its absolute value decreases with increasing ofZ.
For Z,92 it has a negative sign relatively toSintr

M and
changes from 33% for86

223Rn to 9% for 89
225Ac. In case of

proton-odd nuclei we calculated also the single proton c
tribution to the SM. For the g.s. of223Fr, 225Ac, and 229Pa it
amounts to 2–5 % of the corresponding values ofSintr

M . The
resulting intrinsic Schiff moments of octupole deformed n
clei are in the range~15–28!e fm3. We estimate that when
we allow for reasonable changes in the parameters used
when other corrections~not treated here! are introduced the
intrinsic SM will change by 30% at most. Thus we believ
that the uncertainties in the evaluated values of theintrinsic
SM are of the same order.

The computed values ofintrinsic Schiff moments, admix-
ture coefficients, and resulting Schiff moments in the labo
tory system as well as the calculated and experimental
ergy splitting for the g.s. parity doublets and calculat
paritiespp of the intrinsic single-particle g.s. are all given
Table II.

The main uncertainty in the entire calculation of Sch
moments in the laboratory frame arises from the estimate
admixture coefficientsa, which are calculated using theore
ical values of the energy splitting between members of
doublets. In our calculations the first state above the Fe
level which has the same value ofK as the experimentally
determined g.s. was chosen to be the g.s. level. In the w
of Leander and Chen@31# the nonadiabatic Coriolis coupling
and other refinements were introduced~in some cases also
adjustments of quasiparticle energies were made!, which al-
lowed to describe properties of g.s. and excited levels.
atomic
TABLE II. Admixture coefficientsa ~absolute values! and theoretical energy splitting between the g.s. doublet levelsDE5E22E1,
parities of the intrinsic~reflection-asymmetric! single-particle g.s. calculated using the Woods-Saxon~WS! and Nilsson~Nl! potentials,
experimental energy splitting,intrinsic Schiff moments and Schiff moments calculated with the Woods-Saxon potential, and induced
dipole moments. The values for199Hg, 129Xe, and 133Cs from Refs.@35,57,18# are given for comparison.

223Ra 225Ra 223Rn 221Fr 223Fr 225Ac 229Pa 199Hg 129Xe 133Cs

a(WS)(107h) 1 2 4 0.7 2 3 34
DE(WS) ~keV! 170 47 37 216 75 49 5
pp~WS! 0.81 -0.02 0.17 -0.55 -0.34 -0.35 0.01

a(Nl)(107h) 2 5 2
DE(Nl) ~keV! 171 55 137

DEexpt ~keV! 50.2 55.2 234 160.5 40.1 0.22
Sintr(e fm3) 24 24 15 21 20 28 25
S(108he fm3) 400 300 1000 43 500 900 1.23104 -1.4 1.75 3
d(at) (1025he cm) 2700 2100 2000 240 2800 5.6 0.47 2.2
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did not include couplings between states with differentK and
did not adjust model parameters to fit properties of individ
states. In some cases the states calculated as the lowes
above the Fermi surface do not have the experimentally
termined values ofK @13#. For example, theI 5 7

2 g.s. of
223Rn which was described in@31# as arising from Coriolis
coupling ofK5 7

2 andK5 1
2 states, is not the lowest state

our calculation but is 270 keV above the g.s. Thus it can
be ruled out that in some cases some single-particle s
close to the Fermi level and different from the ones
chose, fit better the g.s. parity doublet. The absolute va
of the admixture coefficients for the doublet which was tak
as the g.s. are for all nuclei we calculated~except 229Pa
which has an exceptionally small energy splitting in the g
parity doublet! in the range~1–5!31027h for both reflection
asymmetric Woods-Saxon and Nilsson single-particle po
tials. If we consider also admixture coefficients for the tw
parity doublets closest to the g.s. parity doublet which h
the sameK the range is~0.15–5!31027h. We remark that
because the one-bodyP-, T-odd potentialVPT in Eq. ~30! is
proportional to the derivative of the density of nucleons a
thus is surface-peaked, its matrix elements depend on
behavior of the single particle wave functions in the nucl
surface region and hence may vary significantly from leve
level.

The values of the Schiff moments in the laboratorysystem
and the resulting atomic dipole moments given in Table
are computed using the Woods-Saxon single-particle po
tial, whereas in Ref. [8] they were evaluated using the N
son potential.The admixturesa calculated here with the
Nilsson potential are only slightly different~due to pairing
correction! from those in Ref.@8#. As already noted the main
source of difference in the values ofS and d(at) given in
Table II and in Ref.@8# is the variation of admixture coeffi
cientsa for the two potentials.

As one sees in Table II some of paritiespp depart con-
siderably from61 meaning that these orbitals are strong
parity mixed, which is one of the reasons for large admixt
coefficientsa. Equation ~57! describes well the splittings
within the doublets except for theK5 1

2 cases of the225Ra
and 221Fr g.s., where there is an additional Coriolis splittin
@14,38#. For 225Ra, 221Fr, and225Ac the experimental energ
splitting between members of the g.s. parity doublet is w
reproduced in our calculation whereas in223Fr and 223Ra
nuclei it differs by a factor of 2 or 3. For223Rn no data on
doublets are available. We should remark here that in v
of Eq. ~55! one can expect some correlation between
matrix element ofVPT and the energy splitting within the
doublet. We expect therefore that the use of experime
energy splittings will not necessarily lead to more prec
values for the admixture coefficientsa.

The nuclear Schiff moments for the octupole deform
nuclei calculated here are about two orders of magnit
larger that those obtained in Refs.@18,35# for isotopes of
129,131Xe, 199,201Hg, and 203,205Tl. As already mentioned the
enhancements we discuss are for nuclei with asymme
shapes and therefore there is also two orders of magni
enhancement with respect to nuclei such as161Dy and
237Np @18# which have large quadrupole deformation. The
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nuclei have close to the g.s. levels of the same spin
opposite parity as the g.s., but are believed to be reflec
symmetric.

The SM’s in evenZ nuclei such as Xe and Hg are caus
mainly by the polarization of protons in the core by theT-,
P-odd field of the external nucleon@see Eq.~29!#. Therefore,
the SM is proportional to thehnp constant. It was demon
strated in@35# that this ‘‘polarization’’ mechanism gives SM
of the same order of magnitude as in nuclei that hav
proton outside the core. Many-body corrections give a
contributions proportional to otherT-, P-odd constants, e.g.
hnn . In our calculations the interaction of the odd proton
neutron with the even-even core and the nuclear SM in
laboratory system are expressed via the effective cons
h.

The experimental data regarding the nuclei we consi
are discussed in the reviews@31,10–12#. The 223Ra and
225Ra nuclei were also considered in detail in Refs.@49,47#.
In both 221,223Rn isotopes theI 5 7

2 g.s. spin was determine
using laser spectroscopy methods@50#, and no data on ex-
cited levels are presently available. The computed defor
tions in these two isotopes calculated in Ref.@13# are similar.
Using the Coriolis coupling Leander and Chen@31# were
able to reproduce spectroscopic characteristics of g.s. so
what better for223Rn than for221Rn. We made a calculation
for 223Rn because itsI 5 7

2 g.s. is easier to interpret theoret
cally @13,31#.

The case of Fr is especially interesting in light of th
recent experiments involving trapping of Fr atoms@51#. The
latest experimental and theoretical studies of221Fr @52# and
223Fr @53,54# provide strong evidence of intrinsic reflectio

asymmetry in the g.s. The g.s of221Fr is Kp5 1
2

2, I p5 5
2

2.

The assignment of the doubletKp5 1
2

1, I p5 5
2

1 state at 234
keV was suggested in@52#. The result for the Schiff momen
of 221Fr is smaller than that of223Fr because of the following
factors. Firstly, the factorMK/I (I 11) in Eq. ~51! is 1

7 for
221Fr, whereas forI 5 3

2, K5 3
2 g.s. of 223Fr it is 3

5. Secondly
our calculation gives the admixture coefficienta for 221Fr
about 3 times less than for223Fr. Because of these factors th
Schiff moment of221Fr in the laboratory frame is about 12
times less than that of223Fr, although in theintrinsic frame
the values ofSintr are roughly equal.

There is a controversy regarding the g.s. spin and pa
doublet in 229Pa, which is on the border of the region o
octupole deformed nuclei. Two assignments:~a! K5 5

2, I 5
5
2 g.s. and 220 eV energy splitting within the parity doub

@11,55# and~b! K5 1
2, I 5 3

2
2 g.s. and unidentified parity part

ner level@56,12# were made. In case~a! our calculations give
using the experimental value of the energy splitting the
mixture coefficienta564031027h and the Schiff moment
in the laboratory frame,S5230 00031028he cm. Note
however that in Table II the results for229Pa are an order o
magnitude smaller because a theoretical value of 5 keV
used for the energy splitting of the doublet.

B. Calculation of atomic electric dipole moments

Atomic electric dipole moment can be calculated usi
Eq. ~7!. However, we do not need new complicated nume
cal calculations to find the EDM of interest. We can u
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numerous calculations for the lighter atomic analogs~Xe,
Hg, Cs! and introduce corresponding corrections taking in
account theZ dependence of the effect to find EDM of hea
atoms~Rn, Ra, and Fr correspondingly!. Indeed, it follows
from the atomic calculations that atomic EDM in Eq.~7! is
saturated by the contributions of electrons from the exte
shells which are similar in the analogous atoms~the energy
denominators for the transitions from these shells are sm
and radial integrals are large!. The expression for the atomi
EDM is a product of three factors: matrix elements of t
radius^k1ur zuk2&, energy denominatorsEk1

2Ek2
and matrix

elements of the T-, P-odd nuclear electric potentia
^k1u2ew (3)uk2&. The first two factors are determined by th
wave functions at large distances and they are the sam
analogous atoms. This fact is deduced from numerous s
empirical and computer calculations, from experimental d
for energy levels and probabilities of electromagnetic tran
tions, as well as from the data on atomic polarizabilities
analogous atoms~the expression for the polarizability als
contains radial integrals and energy denominators!. The ma-
trix elements^k1u2ew (3)uk2& are determined by the wav
function at small distances~more accurately, by the gradien
of the external electron density at the nucleus! which
strongly depends on the nuclear charge. However, this
pendence was calculated analytically@18#. The contribution
of the Schiff moment is determined by the matrix eleme
betweens1/2 and p1/2 ~or s1/2 and p3/2) electron orbitals
which is proportional toSZ2R1/2 ~or SZ2R3/2). The number
of p3/2 states is two times larger than the number ofp1/2,
therefore we will need linear combination of the relativis
factorsRsp5(R1/212R3/2)/3.

The relativistic factorsR1/2 andR3/2 are given by

R1/25
4g1/2

@G~2g1/211!#2S 2ZR0

a
B

D 2g1/222

,

R3/25
48

G~2g1/211!G~2g3/211!S 2ZR0

a
B

D g1/21g3/223

,

~60!

whereg j5@( j 1 1
2 )22(Za)2#1/2, a

B
is the Bohr radius and

R0 is the nuclear radius. In light atomsRsp.1, in heavy
atomsRsp.10. Thus, we have simple estimates of the el
tric dipole moments of Ra, Rn, and Fr induced by the nucl
Schiff moments:

dat~Ra!5dat~Hg!
~SZ2Rsp!Ra

~SZ2Rsp!Hg

,

dat~Rn!5dat~Xe!
~SZ2Rsp!Rn

~SZ2Rsp!Xe

,

dat~Fr!5dat~Cs!
~SZ2Rsp!Fr

~SZ2Rsp!Cs

, ~61!

where only the nuclear Schiff moment contributions
atomic EDM’sdat of Hg, Xe, and Cs are taken into accoun
The atomic structure ratios here are
al
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~Z2Rsp!Ra

~Z2Rsp!Hg

51.6,

~Z2Rsp!Fr

~Z2Rsp!Cs

.
~Z2Rsp!Rn

~Z2Rsp!Xe

57.7. ~62!

The calculation of EDM of Hg, Xe, and Cs has been done
Refs.@18,57,35#. The results of our calculations for Ra, R
and Fr are presented in Table II.

VI. SUMMARY

In this paper we studied theT-odd, P-odd electric mo-
ments in heavy nuclei with intrinsic reflection asymmet
and induced electric dipole moments in corresponding
oms. We presented a detailed theory of the collectiveT-,
P-odd electric moments in reflection asymmetric odd-m
nuclei, in particular the Schiff moment. We employed t
two-fluid liquid drop model, particle plus core model, an
used the results of Nilsson-Strutinsky mean field calculati
for intrinsic reflection asymmetric nuclear shapes. Vario
corrections for nuclearT-odd, P-odd electric moments were
evaluated.

In the calculations of induced atomic electric dipole m
ments we employed the scaling relations between such
ments in heavy atoms and their lighter analogs and used
results of the calculations for the latter to find the cor
sponding moments in heavy atoms. We studied the case
all the heavy reflection-asymmetric odd-mass nuclei
which there is evidence of intrinsic octupole deformation
the ground state and which are relatively long lived, so th
atoms could be suitable for experiment.

The results can be summarized in the following form.
~a! In a reflection asymmetric nucleus which has o

mass number or is odd-odd, enhanced collectiveT-odd,
P-odd electric moments appear, ifT-odd, P-odd terms are
present in the nuclear Hamiltonian.

~b! The T-odd, P-odd Schiff moments in heavy nucle
with intrinsic reflection asymmetry are typically enhanced
more than 2 orders of magnitude in comparison w
reflection-symmetric deformed or spherical nuclei.

~c! Due to the atomic structure effects, atomic elect
dipole moments in heavy atoms are enhanced, compare
the lighter analogs. For atoms of nuclei withZ around 90, the
atomic enhancement is of about 8 times, in comparison w
analog atoms withZ around 55. This enhancement factor
about 2 compared to analogs withZ around 80.

~d! The atomic electric dipole moments, induced
T-odd,P-odd hadron-hadron interaction in the nuclei studi
are typically enhanced 400–1000 times in comparison w
Hg and Xe nuclei, for which the best experimental upp
limits on atomic electric dipole moments are obtained. Th
findings may open new experimental possibilities of study
time reversal violation.
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APPENDIX: SCREENED T-, P-ODD ELECTROSTATIC
POTENTIAL OF A NUCLEUS AND THE SCHIFF

THEOREM

The Hamiltonian of an atom placed in a homogeneo
external electric fieldE0 is

H5(
i

@Ki2ew0~Ri !2eRiE0#1(
i .k

e2

uRi2Rku
2dE0 ,

w0~Ri !5eE r~r!d3r

uRi2ru
. ~A1!

HereKi andRi are the kinetic energy and coordinate of t
electron,w0(Ri) is the electrostatic nuclear potential andd is
the nuclear dipole moment. We consider the case of an
nitely heavy nucleus. The nuclear recoil correction by its
is not enough to generate an atomic EDM. This can easily
seen for the limit of a pointlike nucleus@22,23#. The atomic
EDM occurs due to the finite size of the nucleus@23# @see
Eqs.~4!–~7!#. The recoil correction times the correction du
to finite size is extremely small. Let us add toH an auxiliary
term

V5dE02
1

eZ(i
d“ iw0~Ri !. ~A2!
y,

el

ys

s.

ev

cl

d

p.
s

fi-
lf
e

It is easy to demonstrate that in the linear approximation id
the interactionV does not produce any energy shift,^V&50.
Indeed

i

mF(
i

pi ,HG52e(
i
“ iw0~Ri !1ZeE0 . ~A3!

We have taken into account that the total electron mom
tum ( ipi commutes with the electron-electron interacti
term. Using Eq.~A2! and ^nu@H,( ipi #un&; (En2En)50
we obtain^V&5dE02(1/eZ)eZdE050.

To find an electric dipole moment one needs to measu
linear energy shift in an external electric field. SinceV does
not contribute to this shift we can add it to the Hamiltonia

H̃[H1V5(
i

@Ki2ew~Ri !2eRiE0#1(
i .k

e2

uRi2Rku
,

w~Ri !5w0~Ri !1
1

eZ
d“ iw0~Ri !. ~A4!

Note, that the HamiltonianH̃ does not contain the direc
interactiondE0 between the nuclear electric dipole mome
and external field~Schiff theorem@22,23#!. The dipole term
is also canceled out in the multipole expansion ofw(Ri).
ek,
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