PHYSICAL REVIEW C VOLUME 56, NUMBER 3 SEPTEMBER 1997

EnhancedT-odd, P-odd electromagnetic moments in reflection asymmetric nuclei
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Collective P- and T-odd moments produced by parity and time invariance violating forces in reflection
asymmetric nuclei are considered. The enhanced collective Schiff, electric dipole, and octupole moments
appear due to the mixing of rotational levels of opposite parity. These moments can exceed single-particle
moments by more than 2 orders of magnitude. The enhancement is due to the collective nature of the intrinsic
moments and the small energy separation between members of parity doublets. In turn these nuclear moments
induce enhanced- and P-odd effects in atoms and molecules. A simple estimate is given and a detailed
theoretical treatment of the collectiVie, P-odd electric moments in reflection asymmetric, odd-mass nuclei is
presented. In the present work we improve on the simple liquid drop model by evaluating the Strutinsky shell
correction and include corrections due to pairing. Calculations are performed for octupole deformed long-lived
odd-mass isotopes of Rn, Fr, Ra, Ac, and Pa and the corresponding atoms. Experiments with such atoms may
improve substantially the limits on time reversal violatip80556-28187)00809-1

PACS numbsgs): 21.10.Ky, 21.60.Ev, 24.88.y, 32.80.Ys

I. INTRODUCTION the lepton-hadron interaction&;) the possible existence of a
static T-odd, P-odd moment of the nucleus arising from the
In 1964 Christensoet al.[1] discovered tha€CP is vio-  time reversal violating component of the hadron-hadron in-
lated in the decay of neutré&d mesons. As one expects the teractions. The recent experiments with Hg gave the best
CPT theorem to be valid this discovery implied that time limit on this interaction. This possibility will also be the
reversal {) is violated in the observed decays of the kaon.subject of this work.
This fact immediately led to the search 8P or T violation In a recent papef8] we put forward a suggestion that
in other systems. Since the 1960s many attempts have beéptating nuclei that have static octupole deformations when
made to observ@ violation in systems different from the viewed in their intrinsiqbody) frame of reference will have
kaons. Time reversal violation has not been observed so f&nhancedr-odd, P-odd (for shortT-, P-odd moments if a
but upper limits forT conservation have been established.time reversal and parity violating interaction is present in the
The search for time reversal violation encompasses a largeuclear Hamiltonian. In the intrinsic frame the nucleus with
variety of physical systems and involves many methods. Onén octupole deformation has large octupole, Schiff, and di-
of the more widely used methods involves the search fopole moments. An orientation of these moments is connected
static T-, P-odd electromagnetic moments, moments thato a nuclear axi (e.g., the dipole moment id=dn). In a
would be absent if the Hamiltonian of the system is everstationary rotational state the mean orientation of the axis
under time reversal and reflection. Such moments include theanishes (n)=0) since the only possible correlatidm)
electric dipole momen{EDM), the electric octupole, the oI violates time reversal invariance and pairityerel is the
magnetic quadrupole, etc. Early on, with the discovery oftotal angular momentum of the systeritherefore, the mean
CP violation, attempts were made to measure the electrizvalues of electric dipole, octupole and Schiff moments van-
dipole moment of the neutron and at present significant upish in laboratory frame if there is n®, P violation. In the
per limits depend on the existence of such monj2(d]. The  nuclei with the octupole deformation and nonzero intrinsic
neutron was not the only system in which attempts werengular momentum there are doublets of rotational states of
made to find a static electric dipole moment. Experimentpposite parity with the same angular momentugmn mo-
with atoms and molecules were performed in which uppetecular physics this phenomenon is callealoubling. A T-,
limits for electric dipole moments of the respective systemsP-odd interaction mixes these rotational levels. As a result
were established. In fact the recent measurements of dipolbe nuclear axis becomes oriented along the total angular
moments of Hg and Xe atonjd] and TIF moleculd5] have  momentum{n)xal wherea is the mixing coefficient. Due
established upper limits for time reversal violating nucleon-to this orientation of the nuclear axis byTa, P-odd inter-
nucleon and quark-quark interactions that are of the samaction the mean values of the, P-odd moments are not
order(or maybe even excegthe limits obtained in the mea- zero in the laboratory frame, e.dd)=d{n)«=adl.
surement of the neutron dipole moment. We find two basic enhancement factors in this mecha-
The existence of a static atomic dipole moment may benism: first, in the intrinsic frame the nucleus with an octupole
due to the following three reason®) the possible existence deformation will have large octupole, Schiff, or dipole elec-
of a dipole moment of the electrofthe best limits on the tric moments because a large number of nucleons will con-
electron EDM were obtained in TI atom EDM measurementsribute to the moments, and second due to the appearance of
in Ref. [6], see also Cs measurements in R&}); (b) time  closely spaced parity doublets in the spectrum of the nucleus
reversal violation in the electron-nucleon interaction, thus inwith octupole deformation. It is not only that the spacing
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between the members of the doublets is small but @lsp  metry was realized and investigated extensively by Leander
P-odd) interaction will mix well two such states. The en- et al. several years latdr9].
hanced nuclear Schiff moments that result in such nucleus In the work[18] the Schiff moment induced by nuclear
with a reflection asymmetric shape will indueel000 times ~ T-, P-odd forces was introduced in the presently used form
enhanced atomic electric dipoles, and measurements pend calculations for Xe, Hg, Tl, and other interesting cases
formed with such atoms may improve upper limits for time Were done. The calculations of the atomic electric d|p0|e
reversal violation. moments induced by the nucle@s, P-odd Schiff moments
It is the aim of the present work to examine in detail thewere also presentegive should note that similar consider-
consequences of the intrinsic reflection asymmetry Oﬁ't.he ations forT-, P-odd effects in molecules and atoms induced
P-odd electromagnetic moments in nuclei producedTey by the proton electric dipole moment were applied in
P-odd components in the nuclear force and on the inducet?0.21). )
T-, P-odd moments in the corresponding atoms. In this paper [n our earlier papef8] the connection was made between
we extend the work in Ref[s] attempnng to provide an the collectiveT-, P-odd electric moments in thatrinsic
improved and more detailed theory of the nuclei with asym_frameof reference in reflection-asymmetric nuclei and these
metric shapes and of the resultifg, P-odd moments if Mmoments in théaboratory frame[24]. Due to the collective
parity time reversal is violated to some degree in the nucleapature of the intrinsic moments and the nearly identical in-
force. trinsic structure of the parity doublets one expects that the
Present experimental studies of nuclei in the actinide re€lectricT-, P-odd moments will be maximal.
gion (Z around 88 andN around 13% indicate that these After the present introduction in Sec. Il we define the
nuclei possess Octupo|e Shapes in the ground $m® T', P-odd moments, inCIUding the Schiff moment. In Sec. Il
[9—12. In these nuclei near the Fermi energy, orbital pairsve present a simple expression foffg P-odd moment in
are coupled strongly by the octupole-octupole part of theéhe case of a deformed rotating nucleus in the presence of a
effective nuclear interaction. The existence of octupole deT-, P-odd interaction. The first part of Sec. IV deals with the
formations in the actinide nuclei is manifested in the exis-calculation of the dipole, Schiff, and octupole intrinsic mo-
tence of parity doublet states and parity doublet bands. Theents in a two-fluid liquid drop model. In the same section
E1 and E3 transitions between these states are relativelyve bring a simple schematic estimate of a Schiff moment in
strong, of the order of a Weisskopf unit. These experimentafn octupole deformed nucleus. Next we present the particle
findings are supported by theoretical studies. Some isotopescore model and describe the calculation of e P-odd
of Rn, Fr, Ra, Ac, Th, and Pa in the 248\ < 230 region are matrix elements and mixing amplitudes. In Sec. V the nu-
predicted theoretically to be reflection asymmetric in the g.smerical results are presented for each of the nuclei and at the
The phenomena of octupole instability are observed and deend of this section results are given for the atomic dipole
scribed theoretically also aroui@i-56, N~88. Several iso- moments. In the last sectiofSec. V) a summary is pre-
topes of Ba, Ce, Nd, and Sm in the= 140—152 region are Sented.
known to be octupole-soft and develop reflection asymmetric
shapes at higher spins but no experimental data at present || ATOMIC ELECTRIC DIPOLE AND NUCLEAR  T-,
can confirm such shapes in the d%1,12] P-ODD MOMENTS
We will present in this work results for relatively long-
lived neutron-odd isotopes of Rn, Ra, and proton-odd iso- We start from the electrostatic potential of a nucleus
topes of Fr, Ac, and Pa for which there is theoretical and inscreened by the electrons of the atom. If the nucleus has a
most cases experimental evidence of reflection-asymmetri€-, P-odd dipole moment the dipole term in the potential
intrinsic shapes in the g.s. vanishes in accordance with the Purcell-Ramsey-Schiff theo-
We use the results of the Nilsson-Strutinsky mean fieldem[22,23 (see the derivation in the Appengiix
calculationg13] and employ the Leandet al.[14] particle
plus core model to calculate the wave functions, energy split- ep(r)
tings andT-, P-odd interaction matrix elements between ‘P(R):fm
members of the parity doublets. In the calculation of the

intrinsic dipole, Schiff and octupole electric moments we useHerep(r) is the nuclear charge densitjp(r)d3r =2, and

a two-liquid drop model. Strutinsky corrections and Correc'dzferp(r)d3r is the electric dipole momerEDM) c;f the

tions (:]ue to pairing are takendlnrt]o account in this work.- - dleys. The first term in this expression is usual electro-
In the past one conjectured thigt, P-odd moments will g4t nuclear potential, and the second term is a result of the

be enhanced in the cases when close to the g.s. there is, f@lrectron screening effect. The multipole expansionp(R)

whatever reason, a level with the same spin and oppositg,iains bothT-, P-even andT-, P-odd terms. We consider

pgrity [15-18. The connection between enhanded ran-  here only the latter. The dipole part in Ed) is canceled by
sitions between these levels and the nuclear electric dipolg,. second term in this equation:

moment was made in the work of Haxton and Henl&y].
At that time, nuclei which possess an intrinsic reflection
asymmetry and quadrupole deformed nuclei without such ! 34 L igv) 2 3

y ry and quadrupole deformed nuclei without such an  _ [ o[ rv= | p(r)d3r + S(dV) = | p(r)d3r=0. (2)
asymmetry but in which an accidentally close “parity dou- R z R
blet” exists, were treated on an equal footifig]. The fact
that in some nuclei systematically enhandetl matrix ele- The next term is the electric quadrupole which Ts,
ments are the direct consequence of intrinsic reflection asynf-even, thus the first nonzei-, P-odd term is

1 p(r)
d3r+z(dV)fRT”d3r. D
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P-odd moment, magnetic quadruppleannot generate an
atomic electric dipole. Indeed, according to the triangle rule
for the addition of angular momentdk,|r,|k,) can only
have a nonzero value ifJ; — J,| <1< J;+J,. Similarly, for
(k1| @S hpoidkz) to be nonzero, we must havéd;—J,|
<3< J;+J,. This implies that the following conditions

Herer ,rgr, is a reducible tensor. After separation of the need to be satisfied for the dipole moment to be nonzero:

trace there will be terms which will contain a vec®and a

rank 3 tensoQ .z, (see, e.g.[18]):

3)_ (3 3
(P( )= ‘»D(Sc)hiﬁ+ ‘Péc)tupolei

(3) 1
Psehiff— — SVA ﬁ =475V 5( R),

(3) 1 1
Poctupole” — gQaﬁyvaVﬁV 'yﬁu 4

where

S= %(f ep(r)rzrd3r—§d;J p(r)r2d3r) (5)

is the Schiff momentSM) and
1,
Qupy= f ep(r)| rargl,— gr (Sapl y T 0py1 o

+ §ayr5)) ddr,

2 2 /4
Q= §Q3:§ 777-] ep(r)r3Y3Od3r (6)

[J;—J5/<1 andJ;+J,=3. (8)

The lowest pair of values that satisfies this condition is
J,=3/2 andJ,=3/2 for the states with one or odd number of
electrons outside the closed subshells, ape 1, J,=2 for
states with even number of electrons. In the case of the mag-
netic quadrupole one needk +J,=2, i.e., the lowest pair

is J;=1/2,J,=3/2. Hence, the nuclear electric octupole and
magnetic quadrupole moments cannot contribute to the
atomic electric dipole moment df, =0 states. Therefore, we
mostly center our considerations on the Schiff moment. Note
also that theT-, P-odd part of the electrostatic nuclear po-
tential in Eq.(4) is concentrated mainly inside the nucleus.
As a result the induced atomic electric dipole moment is
proportional to the density of external electrons at the
nucleus (more accurately, to the gradient of this denkity
which rapidly increases with the nuclear chaigeThis is
why in general heavy atoms and nuclei are favored in the
studies ofT-, P-odd moments.

lll. T-, P-ODD MOMENTS AND ROTATIONAL
DOUBLETS

If a deformed nucleus in thiatrinsic (body-fixed frame
of reference is reflection asymmetric, it can have collective
T-, P-odd moments. As a consequence of this reflection

is the electric octupole moment. Because the intrinsic dipoleéisymmetry, rotational doublets appear in the laboratory sys-

moment of the nucleus appears in second order in the nucleggm. Without T-, P-violating forces aT-, P-odd moment

deformation[see Eq(21)] a correction to the octupole field vanishes exactly in the laboratory. B, P-odd interaction

which arises from the nonspherical part of the density in thehnowever may reveal such intrinsle, P-odd moments in the

screening term in Eq¢3) and(5) can be neglected. Indeed, |aboratory frame. Consider a nearly degenerate rotational

this correction is at least third order in the nuclear deformaparity doublet in the case of an axially symmetric nucleus.

tion. The wave functions of the members of the doublet are writ-
In the absence of - andP-violating interactions the elec- ten as[24]

tric dipole moment of an atom is equal to zero. The interac-

tion between atomic electrons and the P-odd part of the 1

electrostatic nuclear potential in E¢4) will mix atomic P =—([IMK)=|IM =K)). 9

states of the opposite parity and thus generate an atomic V2

electric dipole moment: . ; .
P Herel is the nuclear spinM =1, and K=In, wheren is a

unit vector along the nuclear axis.

kqlr ko) (kq| —e@™®|k
(kalr ko) (ke —e¢™lkz) The intrinsic dipole and Schiff moments are directed

Ex,~Ex, ’

D,=—e(y|rd)= —Ze%

alongn:
(7)
~ . . Giner= i,
where ¢ denotes the perturbed atomic wave function,
|k1)= |kq,J1,J1,) is the unperturbed electron ground state, Sitr= SN (10)

and{|k,)} is the set of opposite parity states with whiéh)
is mixed due the perturbation ep(®). For these good parity staté¥ *|In|¥*)=0 becaus&

The most accurate measurements of atomic and moleculand — K have equal probabilities and this means that there is
T-, P-odd electric dipole moments have been done in theno average orientation of the nuclear axis in the laboratory
atoms Xe and Hg with zero electron angular momentumframe (¥ =|n|¥*)=0). This is a consequence of time in-
J;=0. Examining Eq.7) it is easy to demonstrate that in variance and parity conservation since the correlaliois
such atoms nuclear electric octupgtes well as anothef-,  T-, P-odd. As a result of ¥ “|n| ¥ *)=0, the mean value of



1360 V. SPEVAK, N. AUERBACH, AND V. V. FLAMBAUM 56

the T-, P-odd momentgwhose orientation is determined by 3 (1+1)B,B+1
the direction of the nuclear ayiss zero in the laboratory B1=— \/4— . (17)
frame. =2 (21 +1)(21+3)

A T-, P-odd interactionvPT will mix the members of the

doublet. The admixed wave function of the predommantlyDu‘la tg theb Coglomb fﬁrce prlotons ?nd n?:utronshare differ-
posiive parity member of the doublet will be €Nty distributed over the nuclear volume. From the require-

V=Vt + oW or ment of a minimum in the enerdy5,19
pp(r)_pn(r) 1

1 ———=——Vuu(r), 18

= E[(1+oz)|||v|K>+(1—a)|||v| -K), (11 pp(r)+pn(r)  4C co) (18
where p,=p and p, are the proton and neutron densities,

wherew is theT-, P-odd admixture Vcoul(r) is the Coulomb potential created py(r) andC is
the volume symmetry-energy coefficient of the liquid drop

(U |VPT|w ) model. To lowest ordef19]
G "
po  po €Z

> Ar) Bl
575 1Yio|s
andE* —E~ is the energy splitting between the members of 2 8 CR|2 2\R/ =12
the parity doublet. A similar expression is obtained for the (19)
negative parity member of the doublet.

In the T-, P-admixed state wherepy= 3A/(4wR ). The coefficienC is not known very

accurately, its value for nuclei studied here is in the range
20-35 MeV[19,28,29. Note that requiringf p(r)d3r=2

(P[In[¥)=(V|K[¥)=2aK, (13 one has in lowest ordée5]
i.e., the nuclear axia is oriented along the nuclear spin 1 3 e?7
Z= EA l—ﬂ)m . (20)
(W[ng¥)= 2a(l +1)I° (14) We compute the intrinsic Schiff moment by substituting

the density in Eq(19) into Eq. (5). Because of the relative
Therefore in the laboratory system the electric dipole andhift of protons versus neutrons the nucleus in the intrinsic
Schiff moments obtain nonzero average values. For exampléiame has a dipole moment as calculated in the past

in the ground statég.s) usuallyM =K=1 and [27,30,19,28 and given by
| 4 AZe2 3 (12—1)(81+9) 55
= 20——S =e
<‘*P|SZ|\II> 2(1’|+1Smr. (15) intr — C 40m= 2[(2|+1)(2|+3)]3/2 IPlI+1-
(21
IV. NUCLEAR MODELS OF THE T-, P-ODD MOMENTS A more detailed treatment of the intrinsic dipole moment
A. Nuclear shape and intrinsic moments includes also the neutron skin effect which reducks

) _ somewhaf28,29. To discuss corrections to the intrinsic SM
In this paper we consider the moments of heavy deformeg} js convenient to decompose it into two terms
nuclei in the ground states. The main contribution to the

electric moments comes from the even-even core which is Sii= .mr+ Smtr (22
well described by the two-fluid liquid drop model, see, e.g.,

Refs.[25,26,24. The surface of an axially symmetric de- The first term includes only contribution from the constant
formed nucleus is part of the densityp(r=0) in Eqg.(19). In lowest order in
deformation it equals to

R=c (B)Ry| 1+ Yiols 16
WBIRo Zl Bi |o) (16 gl):eA@i e’z 3)E (I+D)BBI+1
2 ntr 40m\ " RoC 8/i% J2I+1)(21+3)
wherec =1-(1/\4m)%,_, 7 ensures the volume conser- (23)

vation andR,=r A, For the sake of brevity and because
the nuclear deformations we deal with are relatively smallAs observed above this contribution comes from the first
B2<0.2, B34<0.1 we will put in our discussion the coeffi- term in Eq.(5) only. The second term is due to the Coulomb
cientc_(8)=1.[In the actual calculationR, is replaced by redistribution of the proton density and stems from the last
\Y . . . . .
¢ (8)Ro.] two terms in the brackets in Eq19). A simple derivation
\%

If the nucleus is reflection asymmetric then {Be defor- gives

mation parameter is needed to keep the center of mass fixed 2
atz=0, i.e., [zd®r=0. In lowest order in nuclear deforma- s 3 &2 29 I+ DBiBI1

eA .
tions[27,28,24 St F%407T RoC 2805 21+ 1)(2+3)

(29)
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This term gives about 10% contribution for nuclei with density and energies of the statei® the single-particle po-
Z~90. Using Eq(20) one can approximate the intrinsic SM tential. (Detailed expressions can be found in R¢&3,34).)

as It is convenient to express the corrections relatively to the
SM... The second term in E@5) is proportional to the intrin-
3 (I1+21)B81Bi+1 sic dipole moment;,,. The shell correction tal,,, was
Sintr:eZF%EI:Ez 20+ 1)(213) (25 studied in detail i19,29. The results show that the shell

correction tod;,, is of the same order of magnitude as the

The contribution of the8s, term in bothd,;, andS, ,,, for “macroscopic” dipole moment given by E@21). Theref_ore. .
the nuclei studied here, is of about the same size as tHige subsequent correction to the second term of the intrinsic

contribution of theB,; term. _ SM in Eqg. (5 does not exceed5-7% of the value of
The expression for the intrinsic octupole moment isSi - . o
[24,31] The shell correction to the deviation of proton and neu-

tron centers of mass for octupole deformed actinide nuclei
> [5 15 was also investigated in Refll9,29. The deviation of the
,33+—\/:52,33+ ——B3B4t - ) _ center of mass can be represented formally as a change of the
3NVm 117 B, deformation parameter, becausézp,d3r ~Ry[ 3,

(26) 4+ \[(3/4m)(9/\/35)B,B5+ - - - ]. Note that the intrinsic Schiff
tmoment is in the lowest order proportional to tjge for
rotons[Egs. (17) and (23)—(25)]. Therefore the resulting
hell correction for the first term of the intrinsic SM in Eq.

5) is analogous to the one obtained 9,29 for the proton
center of mass.

3eZR;
Qs intr:m

Various nuclear surface corrections to the density o
nucleons such as the neutron skin are not included in th
above equations for the SM. For the intrinsic dipole momen
these corrections were included in Reffi28,29 using the
droplet model. The corrections fdk,,, are of the same order
as the main term in Eq21) but have the opposite sign. One

can conclude from Eq$21)—(25) that since such corrections B. The P- and T-odd interaction
alter only the termS{%) they can contribute to the Schiff  The p- and T-odd nucleon-nucleon two-body potential
moment at most 10%. _ _ can be written in the forni35,36 as

Values of the Schiff moment obtained using E25) are
about 30% less than given by the direct calculation using G
Egs. (5) and (19) (with C~27 MeV corresponding to the Wabzﬁ ﬁ[(ﬂabaa_ Mpa0b) Vad(ra—rp)
value obtained in the droplet model which includes the effect
of a neutron skin28,29). This is partly due to terms of + o o Xo — D) S(Far 29
higher orders in the deformation not included in E(X)— Tapl X Tp ] (Pa~Po). M=)}, (29
(25).

1052 - -
Both the intrinsic SM and dipole moments are seconthereGE(ljo _/m Is the Fermi constantng 'j t:e nulclet:)n K
order in nuclear deformation and may turn out to be sensitivd1@S3. @b designate a proton or neutron and the curly brack-

to details of the proton density distribution. Because of that itEtS denote the anticommutation operation. Note, #gtare

is important to take into account quantum mechanical cor!" fac'g effective ponstants. In this work we use the corre-
ponding effective one-bodyP- and T-odd potential

rections to the liquid drop model. Such correction can b

included through the Strutinsky shell correction method 18,36,31

[32,33. In this method the level density is decomposed into

a smooth averaged density and a remaining part, fluctuating b G 7

with the shell filling. The corrected expectation value of a \ :E ﬁpozi o[ Vif(ri)], (30

one-body operator, e.g., the intrinsic Schiff moméot the

similar treatment of the intrinsic dipole moment see Refs.

[19,29) is written as a sum of “macroscopic” and shell Where p(r)=pof(r)is the nuclear density. We assume

correction term$33] [35,34 that effective constantg,, and » are of the same

order in magnitude. For the deformed nuclear density we use

Sy = S+ Sohell (27)  the expansioh24]

As the “macroscopic” part one takes the liquid drop mo- dpo c , 1

ment, in the case of the Schiff momes}{, is given in lowest ~ P(1)=po(r) ~Ro— = > BiYio— EE Bi+5(r=Ro)Ro

order inB; by Eq.(22) or by approximate Eq25). The shell

correction term is given bj33,19,29 21 1, d%pg 2
X(E ﬂlVYlo) +§RS?(E ﬁlYlo) +eey

Se'= (wE-nilsh), @8 (0

Wherevi2 are the BCS quasiparticle occupation numbers anavhere po(r) has the usual Woods-Saxon forn®; are
n; — the smoothed single-particle occupation numbers, fothe nuclear deformation parameters in H46) and c
the statel. The latter are determined by the averaged level (Ry/2) (f podr/ [ pordr).
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C. Simple estimate of the Schiff moment wherer=r/r is a unit vector along, Q;i is a spherical

Let us present a simple estimate of the nuclear Schifpinor,T=2j—1, e.g.,ps» andds, orbitals.(Of course there
moment in the case there isTa, P-odd interaction and the will also be an admixture of other states having different
nucleus possess a quadrupole and octupole deformation. Orelues ofl,j. We neglect these states for simplicityf'he
needs to calculate thatrinsic moment and the mixing co- mixing coefficienty is proportional to the parameter of the
efficienta. We consider an axially symmetric nucleus which octupole deformatiorB;. To make an estimate we assume
has a sharp surface and constant nucleon depsityThe  that the single-particle potentitl(r) has the same form as
proton density can be approximated by constanthe nuclear density(r). Using the expansion in Edq31)
p=3Z/4wR3. The intrinsic electric dipole moment in this \yhere po(r')= 8(Ro—1")/(4mro3) (where 6 is the step
approximation is zero, and only the first term in E§) function we get
contributes to the intrinsic SM. Using Ed%), (16), and(17)
and keeping only the terms containifg and 85 one gets, in V3~U(0)RyB38(Ry—r")Y30. (37
accordance with E¢25),

Using Eq.(35) we then have

1 9
w=rme| przdr=eZR———=pB,8;. (32 ’
Soe= 152 » R 20m 3 = E O R R | n;vgoﬂlm"zﬂs,
1 2

Using then the deformation parametefd,=0.12 and (38)

o= 10.4e fm >, [26],  |U(0)|~50 MeV,  |E;—E,|~5 MeV, and
The rotational states of an odd-mass nucleus can be wntUQ* Y300,dQ'|=0.07 . Therefore, we have
ten in terms of intrinsic states as 2 ’

A A
1/2 a= <QD(+I2|VPT| €0(++)< 22B3<¢l|-%—|<|VPT| ¢2,+K> .

+ - +
Dk, 0, ) Lo (r )x™, E'-E E"-
(33)  Finally, we must estimate the matrix element between

spherical orbitalg ¢4 . «|VF'| #2. . k). Using Eq.(30) for the
form of VPT we get

+1 (39

812

[IM+K)=

where Dy, (¢, 9,4) is a WignerD function, y* is the
wave function of the quadrupole and octupole deforrired

; ; o 3G -
ﬂ%g)tlor) a_symmetrﬁ:nuclegr core in the |n_tr|nS|c frame,_ and VPT=— 5 ~(aT")8(Ro—1"). (40)
¢ k(r") is the wave function of the unpaired nucleon in the 8w\/§m ro
intrinsic frame, with an angular momentum projection of
+K on thez’ axis. Herery= 1.2 fm is the internucleon distance. Using E86)

Let us now present an order of magnitude estimate of thand (o1')?=1 gives
mixing coefficientae which is needed to find the magnitude
of the Schiff moment in the laboratory franheee Eq(15)]. - 3G X
K=In and VPT are bothT-, P-odd pseudoscalars. There- (Br4klV |¢2’+K>:n8w\/§mr 3R1(Ro)R2(Ro)Ro
fore, (pBIVPTe)K and  so  (e%VPTeH)) ’
= — (W |VPT o)) (this fact can be easily supported by 7
model calculations Using this fact and Eq$33) and(9) we =~ A_l/gl ev. (41)
get (¥ |VPTIw )= (oW VPTIoW). If single-particle
wave functione'®} was a good parity state this matrix ele- Using |E* —E’|=50 keV, 85=0.1 (see data in the tablgs
ment would be zero. However, due to the perturbationand Egs. (39 and (41) gives (for A=230)
caused by the static octupole deformation of the nucleusy|~ 28;A Y37 eV/|E* —E~|~7%x10 "%. This provides
(V3), it is a combination of the opposite parity orbitals the following estimate for the collective Schiff moment in

¢1+x ANd g 1 the laboratory frame:
- - 25 p2/3 3 +_ -
Pk=brikt Yb2ux (34 S S~ 0.0%05285"2 A n(1o)” eVIIET ~E']
~700%x 10 87ne fmd. (42)
(P24 Val b1,+6)
y= +é —3E e (35  We see that the collective Schiff moment is about 500 times
12 larger than the Schiff moment due to the unpaired nucleon in
, o spherical nucleuss= 1.5x 10" 8»e fm®[18,35. Note, how-
14k =Ra(r)Qj 1 +x(F',0"), ever, the strong dependence of the collective Schiff moment
on the deformation parameters.
b2+k=Ra(r Q7 k(9 ,¢") We should remark here that this is a schematic calculation

R and more detailed and realistic calculations are presented in
=—Ro(r")(or")Q;, k(9,¢"), (36) Secs. IVA, IV D, and V. Nevertheless the present estimate
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represents the essence of this theory and the order of magni-

tude estimate agrees with the detailed calculations.

D. Particle-core model for a reflection-asymmetric nucleus
and P-, T-odd mixing of parity doublets

<asi+|é|(’f)i+>:2“ii<q)i+|é|q)i_>+2; (@O ).
(47)

The matrix elements between core states are

Any nucleus, whether even or odd mass, that is reflection

asymmetric may posseg#rinsic T-, P-odd moments. Such
moments will exist in thdaboratory frame only if there is

also aT-, P-odd mixing between g.s. parity doublet levels. If o
the even-even nucleus is axially symmetric, a pseudoscal

T-, P-odd operator cannot miK=0 doublet states which
have identical intrinsic structurf38]. Besides, the energy

splitting within parity doublets is systematically much less in
odd (or odd-odd than in neighboring even-even nuclei

[39,14,4Q. So in odd(or odd-odd nuclei the mixing should

ar

(x*10Ix7)=(x,|0lx,)- (48)

ne can write the one-body operatras the sum of core
and particle term®= O+ O, and obtain

<q)i+|©|q);>:<XA|écoreJXA>(a+ia—j+b+ib—j)

+<¢i+|©p|¢j_>a+ib7j

be considerably larger. For this reason we consider odd nu-

clei in what follows.

+(p;710pl b Ya_ by (49)

We use here the particle-core model for a reflection-

asymmetric nucleul4,40. TheT-, P-odd as well a-odd
T-even mixing was studied in this model recenftf1,38.
This model involves twdk"=0" andK™=0" members of

For i=j this is just the intrinsic moment in the
reflection-asymmetric  core-particle  state®= XA,

= XA(a¢++b¢f). For closely spaced doublets ;~a_;,

a parity doublet of the even-even core with the energy Sp|itb+i%b_i and (@,;a_;+b,b_;)~8;. With respect to the

ting E.; between them. The wave functions of these stgfes
are projections of the reflection-asymmetric core state

[14]

1 ~
= (1P, 43

%

whereP is the core parity operator. The single-particle states

single-particle contribution to &-, P-odd moment in Egs.
(47) and (49) note that the admixture of the doublet level is
considerably larger than the admixtures of the other levels of
opposite parity, i.e.q;;>«;;,i #]. Neglecting these “off-
diagonal” ;; contributions one gets

(C’Br|©|a)i+>~2aii(<XA|©cor<JXA>+<‘PA|©p|‘PA>)
(508

¢ are solutions of the reflection-asymmetric single-particle
A

plus pairing HamiltoniarH s, + H oy (different forms of po-

and

tentials such as folded Yukawa, deformed Woods-Saxon or

Nilsson are used i, [14,31,42,39. The wave functions
in the model arg¢14,3§
1/2

W= [1+§2(7T)]D:\/|Kq)py

(44)

6?2

whereR,(#) denotes rotation through an angteabout the
intrinsic 2 axis. ThebP=® ~are particle-core intrinsic states
of good parityp. Denoting the good parity particle stat¢$
we write (in the matrix notatiora¢= =,a,¢,)

q)+:a+X+¢++b+X_¢_:

d =a y S +b yt o . (45)
The matrix elements of"T are given by[38]
(M VP M0 =a, b (e [VPT i)
+a_b (¢ [V7T|d). (46

(As already mentioned the pseudoscalar opeidfdrcannot
connect doublet states of an even-even cpfebecause of
the opposite rotational symmetry of these sta{@8]
Rox™=mx" ) i

The expectation value of &, P-odd operatoO in aT-,
P-admixed statab ' is

(ThilO,—ol Tii) = (IMIO[IM)(IKI O] IK)

X(D10,_0/®), (50D

wherel is the rank of the operator. For a vector operator such

as S (or d) one obtains, in accordance with Eqs0), (14),
and(15),

~ n o~ MK - .
(Taikl S Pai) = gy 20 (O] Seod )+ (0, [Sple,)-
(51)

The intrinsic SM of the evei core(XA|écor4 X, is given by
Eq. (27).

We stress again that the essential difference between the
reflection-asymmetri¢octupole deformednucleus and the
reflection symmetriqquadrupole deformedone is that the
former hasintrinsic T-, P-odd moments which are essen-
tially collectivesince they involve contributions of the core
nucleons. Note that in a nucleus which has a quadrupole
deformation but no octupole deformation the ground state
and its parity “partner” are built from a single good parity
core state, e.gx ", and therefore the coefficients in E¢5)
are thena, =1, b,=0,a_=0, b_=1. So apart from a
small core polarization contributiori8,35 there is no con-
tribution from the core.
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The parity mixing of a reflection asymmetric single- 2a;(¢7 |0, d Mayib_;+a_b.;)
particle statep = Sy +=mbmdy is conveniently ex- e e e

ressed via the expectation value of the single-particle parit A ABTIVPTle0)
e i Jierpariicle pary ~ 2] 10gl) e (1= w2). (59
peratorm, [14]: E, —E;
— - _ 2_ 2 Thus, in general, due to the enhancementinthe single-
= = a by, . 5 ; o . ! .
T <(’DA|7T’J|"DA> ; k % m 62 particle contribution of the odd proton is enhanced relatively

to the case of a quadrupole deformed but reflection symmet-
Using this quantity one can write the admixture coefficientric nucleus. In the proton-odd nuclei the single proton con-
aji as tributes to both terms of the SM operator in Ef). These
terms are of the same order and partially cancel. In the
(DT IVPT|7) neutron-odd nuclei the single neutron contribution to the SM
|aii| ~ ? V(1=). (53 operator in Eq(5) enters only through the corrections to the
P dipole moment term and therefore is very small.
+ - . . As is shown in Ref[14] the effects of BCS-like pairing
e e o s o e e o e Tl en e o o & ey oy o
) " GV ween the single-particle levels. In this case the simplest
on the strongly parity admixed|£p|<1) intrinsic state. mqgel of two opposite parity single-particle levels results in
Note, that although the form of EqS3) is analogousfor 4 exactly degenerate parity doublet. In realistic calculations
7pi=0) to the case when there is a close single-particle levehe effect of pairing correlations on single-particle levels is
of opposite parity in reflection-symmetric deformed nuclei eyealed only in somewhat altered energy splittings between
[18], there is an important difference. Namgly8], if one  mempers of parity doublets. In the calculations of matrix
neglects the spin-orbit interaction and assumes that thgiements of parity and parity and time reversal violating po-
nuclear density,(r) and the single-particle potential(r)  tentials and single-particle parts of electric moments, the ef-
have the same form then fect of pairing is more important. When one uses the BCS
VPT~ eVU(r)=i[op,Hg. (54) qgasiparticle states instead ofPsTinglg\—/particlAe states, the ma-
trix elements of the operatorg™', V" and O, are to be

and the one-body matrix elemeti*|VPT| ¢ )is propor- multiplied by pairing factorsi;u; + csynp v, Wherecgy, de-

tional to the energy difference pends on the symmetry properties of the operator under the
time reversal and Hermitian conjugati¢84,26. For Her-
(¢TIVPT| ™) ~i(dT|[op Hepll ) ~e4-—ey, mitian operators,cqy=1 if an operator isT odd and

(55  Ceym=—1 ifitis T even[26]. Thus, for theT-odd V"T, one
. _ _ has the factou;u;+vv;, whereas for th@-evenv"Y and a
wheree,+ ande,- are the single-particle energies. In the gjngle-particle matrix element of an electric operaiy the
case of a reflection symmetrie.g., qugo!rupole d_eform)_ad corresponding factor is;u;—vv;. The difference in signs
nucleuse =ey+ andE =e,-. The mixing coefficient is in the expressions for pairing correlation factors is related to
therefore enhanced only in a few cases when single-particlghe fact that matrix element 8f°V operator between mem-
deformed levels are accidentally close and the approximatiopers of a parity doublet goes to zero when the doublet be-
of Egs. (54) and (55 becomes a crude oni8]. In the  comes degenerate while the matrix elemenvBf operator
reflection-asymmetric case alwajys4,40,38 does not vanisi43,38,44.
_ E.le,+—e, -
e S e
2|<¢ |Vodd¢ >|

where Vqq is the reflection-asymmetric part of the single- The set of deformation parametegs (up to |=6) was
particle HamiltonianH,. Therefore the admixture coeffi- taken from Ref.[13] where it was calculated using a de-
cient ;; is generally enhanced relatively to that in sphericalformed Woods-Saxon single-particle potential and Strutinsky
or gquadrupole deformed nuclei. The splitting within the par-shell correction method. From the sets of deformations, cal-

<|e¢+ — eszl: (56) V. CALCULATIONS AND ESTIMATES

A. Nuclear structure calculations

ity doublet (for K#3) can be also written gsl4,40) culated in Ref[13], we have chosen those which correspond
to the experimental value &f in the g.s. This set is shown in
|E+—E7|2|Ec7rp|, (57 Table I. The particle-core wave functions were calculated

using the reflection-asymmetric particle core modef]. In
exhibiting the reduction of splitting for an odd nucleus in an attempt to be consistent we calculated both the intrinsic
comparison with the splitting of parity doublet states of theT-, P-odd moments and admixture coefficients using basi-
even-even core. In the case Kf=31 doublets the Coriolis cally the same single-particle potential and shell correction
interaction, leading to an additional splitting within doublets parameters. The computer codsBETA [42] and the “uni-
is included in the modd]138]. versal” set of parameters was used in calculations involving
Let us look now at the single-particle part of the SM deformed single-particle Woods-Saxon potential. modifi-
given by Egs.(5), (49), and (50). The “diagonal” single- cation of the code was made to include explicitly tBe
particle contribution in Eq(50a8 can be written as deformation)
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TABLE |. Intrinsic g.s. deformations and energy splittings be- admixture coefficients, as well as other properties of these

tween opposite parity core states. nuclei calculated in Ref31], are not sensitive to the pairing

strength(or gap parametet). The standard Strutinsky shell

“Ra Ra "Rn e Ac ®Pa grection calculation of the smoothed single-particle occu-
B 0.125 0.143 0.129 0.106 0122 0.138 0.176 pation numbersn was performed using parameters taken
B3 0.100 0.099 0.081 0.100 0.090 0.104 0.082 from Ref.[34].
Ba 0.076 0.082 0.078 0.069 0076 0.078 0.093 The intrinsic SM was calculated using E¢87) and(28).
Bs 0.042 0.035 0.024 0.045 0.033 0.038 0.020 The “macroscopic” termSi“,ﬁ'tr was computed directly using
Bs 0.018 0.016 0.023 0.020 0.022 0.013 0.015 Egs. (5) and (19) with C=27 MeV which is the droplet
E.(keV) 212 221 213 305 212 206 333 model valug29]. We calculated the shell correction for the

first term of the intrinsic SM operator in Eg5). This cor-
rection strongly depends on the proton number and for 86

Ta check the stability of the values of admixiure coeffi- <Z=<091 its absolute value decreases with increasing.of

cients we calculated them also using a Nilsson potential wit . . . . M
€, deformations approximately corresponding to the sam or Z<92 it has a nezgatlve sign relza;cévely By, and
nuclear surfacdsee, e.g., Refi45]). It is known [46] that ~changes from 33% fofisRn to 9% for goAAC. In case of
there are some differences in the energies and wave fun@roton-odd nuclei we calculated also tzhze5 single ggoton. con-
tions when calculated with deformed Nilsson or Woods-tibution to the SM. For the g.s. GFFr, *2°Ac, and **Pa it
Saxon potentials in the actinide region. Especially the protor@mounts to 2—5 % of the corresponding valuesiif . The
levels are different because of the fact that the Coulomb terrfesulting intrinsic Schiff moments of octupole deformed nu-

is included in the Woods-Saxon potential but is only simu-Clei are in the rang¢15—28e fm°. We estimate that when
lated in the Nilsson potential. Because of that we performedve allow for reasonable changes in the parameters used, and
calculation ofa admixtures with the Nilsson potential only When other correctionfot treated heeare introduced the

for the neutron-odd nuclei. For the Nilsson potential we usedntrinsic SM will change by 30% at most. Thus we believe,
parameters of Ref46] which are known to produce a good that the uncertainties in the evaluated values ofitiensic

fit to experimental data. See for example the reflectionSM are of the same order.

asymmetric calculations of**Ra in Ref.[47]. The co_m_puted values dxﬂ_trinsic Sphiff momeqts, admix-

The energy splittings of the core parity doublds, and  ture coefficients, and resulting Schiff moments in t_he labora-
moments of inertia were taken from RER1]. The values of tory system as well as the calculated and experimental en-
E. we used are given in Table I. The effect of the1  €rgy splitting for the g.s. parity doublets and calculated
deformation B, or €;) in the deformed single-particle po- Paritiesm of the intrinsic single-particle g.s. are all given in
tential on the energies and admixture coefficients of doubletdable II.

is small. However this deformation is important for the cal- ~ Theé main uncertainty in the entire calculation of Schiff
culation of the shell correction to the intrinsic Schiff mo- moments in the laboratory frame arises from the estimate of

ment. admixture coefficientsr, which are calculated using theoret-
For the BCS treatment of pairing we used the strengtical values of the energy splitting between members of the
parameteG,, , [48] doublets. In our calculations the first state above the Fermi
’ level which has the same value Kf as the experimentally
determined g.s. was chosen to be the g.s. level. In the work
of Leander and Chef81] the nonadiabatic Coriolis coupling
and other refinements were introduc@éd some cases also
with go=19.2 MeV, g,=7.4 MeV for neutrons and adjustments of quasiparticle energies were madaich al-
0o=22.0 MeV,g,=28.0 MeV for protons. We found that the lowed to describe properties of g.s. and excited levels. We

1
Gp,n=K< 9o+ 01

N-Zz
), (59

TABLE II. Admixture coefficientse (absolute valugsand theoretical energy splitting between the g.s. doublet leVEIsE™—E™*,
parities of the intrinsiqreflection-asymmetricsingle-particle g.s. calculated using the Woods-Sa@i®) and Nilsson(NI) potentials,
experimental energy splittingntrinsic Schiff moments and Schiff moments calculated with the Woods-Saxon potential, and induced atomic
dipole moments. The values fdP*Hg, 1?°Xe, and'%Cs from Refs[35,57,1§ are given for comparison.

223Ra 225Ra 223Rn 221|:r 223FI’ 225AC 229Pa 199Hg 129Xe 13?CS
a(W9 (10" %) 1 2 4 0.7 2 3 34
AE(WS (keV) 170 47 37 216 75 49 5
p(WS) 0.81 -0.02 0.17 -0.55 -0.34 -0.35 0.01
(N (10" ) 2 5 2
AE(NI) (keV) 171 55 137
AE gyt (keV) 50.2 55.2 234 160.5 40.1 0.22
S fm?) 24 24 15 21 20 28 25
S(108»e fmd) 400 300 1000 43 500 900 210t -1.4 1.75 3
d(at) (1¢°»e cm) 2700 2100 2000 240 2800 5.6 0.47 2.2
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did not include couplings between states with diffeiérand  nuclei have close to the g.s. levels of the same spin and
did not adjust model parameters to fit properties of individualopposite parity as the g.s., but are believed to be reflection
states. In some cases the states calculated as the lowest osggimetric.

above the Fermi surface do not have the experimentally de- The SM’s in everZ nuclei such as Xe and Hg are caused
termined values oK [13]. For example, thd =% g.s. of ~mainly by the polarization of protons in the core by ffie
223Rn which was described i[81] as arising from Coriolis P-odd field of the external nucledsee Eq(29)]. Therefore,
coupling of K=1 andK =1 states, is not the lowest state in the SM is proportional to they,, constant. It was demon-
our calculation but is 270 keV above the g.s. Thus it cannoBtrated in(35] that this “polarization” mechanism gives SM
be ruled out that in some cases some single-particle stat@d the same order of magnitude as in nuclei that have a
close to the Fermi level and different from the ones Weprotqn oyt3|de the core. Many-body corrections give also
chose, fit better the g.s. parity doublet. The absolute Valuegontnbuﬂons proportional to othdr-, P-odd constants, €.g.,

of the admixture coefficients for the doublet which was taken”n* In our calculations the interaction of the odd protqn or
) 22 neutron with the even-even core and the nuclear SM in the
as the g.s. are for all nuclei we calculatésixcept 2*Pa

. ) laborator m are expr via the effective constan
which has an exceptionally small energy splitting in the g.s.ab0 atory system are expressed via the effective constant

parity doublet in the rangg1-5)x 10~ 7 for both reflection ™" ¢y, experimental data regarding the nuclei we consider
asymmetric Woods-Saxon and Nilsson single-particle potenz o giscussed in the revie81,10-12. The 2®Ra and
tials. If we consider also admixture coefficients for the two 22535 ,clei were also considered in detail in READ,47).
parity doublets closest to the g.s. parity doublet which havg, oty 22122 isotopes thé =2 g.s. spin was determined
the sameK the range i90.15-§x 10" "7. We remark that ysing laser spectroscopy methdd®], and no data on ex-
because the one-bod3, T-odd potentiaM"T in Eq.(30)is  cited levels are presently available. The computed deforma-
proportional to the derivative of the density of nucleons andions in these two isotopes calculated in H&8] are similar.
thus is surface-peaked, its matrix elements depend on thgsing the Coriolis coupling Leander and ChE3i] were
behavior of the single particle wave functions in the nuclearable to reproduce spectroscopic characteristics of g.s. some-
surface region and hence may vary significantly from level tovhat better for??®Rn than for??’Rn. We made a calculation
level. for 22°Rn because itb=Z g.s. is easier to interpret theoreti-
The values of the Schiff moments in the laboragystem  cally [13,31].
and the resulting atomic dipole moments given in Table I The case of Fr is especially interesting in light of the
are computed using the Woods-Saxon single-particle poteriecent experiments involving trapping of Fr atofbd]. The
tial, whereas in Ref. [8] they were evaluated using the Nils-latest experimental and theoretical studies@r [52] and
son potential. The admixturese calculated here with the 22t [53,54 provide strong evidence of intrinsic reflection
Nilsson potential are only slightly differeritlue to pairing asymmetry in the g.s. The g.s éfFrisK™=3",17=3".
correction from those in Ref[8]. As already noted the main The assignment of the doubléf=3"*, 17=5"* state at 234

source of difference in the values 8fandd(at) given in ey was suggested {52). The result for the Schiff moment
Table 1l and in Ref[8] is the variation of admixture coeffi- of 221, is smaller than that 423 r because of the following
cientsa for the two potentials. factors. Firstly, the factoMK/I(I+1) in Eq. (51) is 3 for
As one sees in Table Il some of paritieg depart con- 221y \whereas fot =3, K=32 g.s. of ?¥r it is . Secondly
siderably from=1 meaning that these orbitals are strongly our calculation gives the admixture coefficiemtfor 22¥Fr
parity mixed, which is one of the reasons for large admixtureabout 3 times less than féf¥r. Because of these factors the
coefficients . Equation (57) describes well the splittings Schiff moment of??'Fr in the laboratory frame is about 12
within the doublets except for thi€=3 cases of the’”Ra  times less than that of?¥r, although in thentrinsic frame
and ?%'Fr g.s., where there is an additional Coriolis splitting the values ofS;,, are roughly equal.
[14,38. For ®Ra, 2*Fr, and??°Ac the experimental energy ~ There is a controversy regarding the g.s. spin and parity
splitting between members of the g.s. parity doublet is welidoublet in ?*Pa, which is on the border of the region of
reproduced in our calculation whereas #Fr and 22Ra  octupole deformed nuclei. Two assignmert: K=3, | =
nuclei it differs by a factor of 2 or 3. Fof¥Rn no data on 2 9-S. and 220 eV energy splitting within the parity doublet
doublets are available. We should remark here that in vieWl1,55 and(b) K=3, | =3~ g.s. and unidentified parity part-
of Eq. (55 one can expect some correlation between thener level[56,12 were made. In cas@) our calculations give
matrix element ofVFT and the energy splitting within the using the experimental value of the energy splitting the ad-
doublet. We expect therefore that the use of experimentahixture coefficienta=640x 10" and the Schiff moment
energy splittings will not necessarily lead to more precisén the laboratory frame S=230 000<10 87e cm. Note
values for the admixture coefficients however that in Table Il the results féf%a are an order of
The nuclear Schiff moments for the octupole deformedmagnitude smaller because a theoretical value of 5 keV was
nuclei calculated here are about two orders of magnitudgised for the energy splitting of the doublet.
larger that those obtained in Refd8,35 for isotopes of
12918 @ 199.20Hg and2032997|, As already mentioned the
enhancements we discuss are for nuclei with asymmetric
shapes and therefore there is also two orders of magnitude Atomic electric dipole moment can be calculated using
enhancement with respect to nuclei such By and Eq. (7). However, we do not need new complicated numeri-
Z3"Np [18] which have large quadrupole deformation. Thesecal calculations to find the EDM of interest. We can use

B. Calculation of atomic electric dipole moments
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numerous calculations for the lighter atomic analdys, (ZZRsp)Ra
Hg, C9 and introduce corresponding corrections taking into F: '
account theZ dependence of the effect to find EDM of heavy (Z°Rsplng

atoms(Rn, Ra, and Fr correspondinglyindeed, it follows (Z?R (Z?R
from the atomic calculations that atomic EDM in Eg) is SP)FV: SP)R”:7,7_
saturated by the contributions of electrons from the external (ZZRSD)CS (ZZRSP) Xe
shells which are similar in the analogous atoftie energy _ )
denominators for the transitions from these shells are smafine calculation of EDM of Hg, Xe, and Cs has been done in
and radial integrals are largeThe expression for the atomic Refs.[18,57,33. The results of our calculations for Ra, Rn,
EDM is a product of three factors: matrix elements of the@nd Fr are presented in Table II.

radius(k|r|kz), energy denominator§, — E,, and matrix

elements of theT-, P-odd nuclear electric potential

(k1] —e@®)[ky). The first two factors are determined by the | this paper we studied th&-odd, P-odd electric mo-
wave functions at large distances and they are the same {fjents in heavy nuclei with intrinsic reflection asymmetry
anaIOgOUS atoms. This fact is deduced from numerous Sern&nd induced electric d|p0|e moments in Corresponding at-
empirical and computer calculations, from experimental datgms. \We presented a detailed theory of the colleciive

for energy levels and probabilities of electromagnetic transip_gqd electric moments in reflection asymmetric odd-mass
tions, as well as from the data on atomic polarizabilities forpycjei, in particular the Schiff moment. We employed the
analogous atométhe expression for the polarizability also tyo-fluid liquid drop model, particle plus core model, and
contains radial integrals and energy denominatdfee ma-  ysed the results of Nilsson-Strutinsky mean field calculations
trix elements(ky| —e¢(®|k,) are determined by the wave for intrinsic reflection asymmetric nuclear shapes. Various
function at small distanceignore accurately, by the gradient corrections for nucleaf-odd, P-odd electric moments were

of the external electron density at the nuclewshich  eyaluated.

strongly depends on the nuclear charge. However, this de- | the calculations of induced atomic electric dipole mo-
pendence was calculated analyticdIh8]. The contribution  ments we employed the scaling relations between such mo-
of the Schiff moment is determined by the matrix elementments in heavy atoms and their lighter analogs and used the
betweens,;, and py; (or Sy, and ps;,) electron orbitals  results of the calculations for the latter to find the corre-
which is proportional t6SZ°Ry, (or SZRg;). The number  sponding moments in heavy atoms. We studied the cases of
of ps, states is two times larger than the numberpeh,  all the heavy reflection-asymmetric odd-mass nuclei for
therefore we will need linear combination of the relativistic which there is evidence of intrinsic octupole deformation in

(62)

VI. SUMMARY

factorsRsp= (Ryj2t 2Rg310) /3. the ground state and which are relatively long lived, so their
The relativistic factordRy;, and R, are given by atoms could be suitable for experiment.
N The results can be summarized in the following form.
R Ay1p [2ZRg|“172 (@ In a reflection asymmetric nucleus which has odd
12 [T(2yy+ 1)]2\ a, ' mass number or is odd-odd, enhanced collectivedd,

P-odd electric moments appear, Tfodd, P-odd terms are
48 /ZZRO Yyt v32-3 present in the nuclear Hamiltpnian. ' '
Rajp= ) _(b) The T-odd, P-odd Schiff moments in heavy nuclei
I'(2y1+ DT (27321 1) \ a with intrinsic reflection asymmetry are typically enhanced by
(60) more than 2 orders of magnitude in comparison with
reflection-symmetric deformed or spherical nuclei.
where y;=[(j+ 3)?—(Za)?]"? a_ is the Bohr radius and (c) Due to the atomic structure effects, atomic electric
Ro is the nuclear radius. In light atonR,=1, in heavy dipo!e moments in heavy atoms are e_znhanced, compared to
atomsR,,~10. Thus, we have simple estimates of the electhe lighter analogs. For atoms of nuclei witaround 90, the -
tric dipole moments of Ra, Rn, and Fr induced by the nucleatomic enhancement is of about 8 times, in comparison with

Schiff moments: analog atoms wittZ around 55. This enhancement factor is
about 2 compared to analogs witharound 80.
(SZRspra (d) The atomic electric dipole moments, induced by

d,(Ra) =d.{(Hg) T-odd, P-odd hadron-hadron interaction in the nuclei studied

2 1
(SZRspug are typically enhanced 400—-1000 times in comparison with
> Hg and Xe nuclei, for which the best experimental upper
d(Rn)=d I(Xe)(sz Rsp)rn limits on atomic electric dipole moments are obtained. These
@ @ (SZRg)xe. findings may open new experimental possibilities of studying
time reversal violation.
(SR

da(Fr)=da(Cs) (61) ACKNOWLEDGMENTS

(SZRgp)cs

We wish to thank J. D. Bowman and I. B. Khriplovich for
where only the nuclear Schiff moment contributions todiscussions. This work was supported by the U.S.-Israel Bi-
atomic EDM’sd; of Hg, Xe, and Cs are taken into account. national Science Foundation and by a grant for Basic Re-
The atomic structure ratios here are search of the Israel Academy of Science.



1368 56

V. SPEVAK, N. AUERBACH, AND V. V. FLAMBAUM

APPENDIX: SCREENED T-, P-ODD ELECTROSTATIC
POTENTIAL OF A NUCLEUS AND THE SCHIFF

It is easy to demonstrate that in the linear approximatiogh in
the interactiorVV does not produce any energy sh{f¢})=0.

THEOREM Indeed
The Hamiltonian of an atom placed in a homogeneous i
external electric fieldgy is m 2 pi ,H}= —ez Vieoo(R) +ZeE,. (A3)
e2 I I
H=2 [Ki—ego(R)—eREq]+ > m—dEo, We have taken into account that the total electron momen-
! kT tum Z;p; commutes with the electron-electron interaction
(N dPr term. Using Eq.(A2) and (n|[H,Zp;In)~ (E,—E,)=0
oo(R)=¢e R=T" (A1)  we obtain(V)=dE,— (1/eZ)eZdE,=0.
-

To find an electric dipole moment one needs to measure a

HereK; andR; are the kinetic energy and coordinate of the

electron,pq(R)) is the electrostatic nuclear potential ashds

linear energy shift in an external electric field. Sin¢eloes
not contribute to this shift we can add it to the Hamiltonian

the nuclear dipole moment. We consider the case of an infi- 2

nitely heavy nucleus. The nuclear recoil correction by itself
is not enough to generate an atomic EDM. This can easily be

seen for the limit of a pointlike nucleyg2,23. The atomic
EDM occurs due to the finite size of the nucld@8] [see

Egs.(4)—(7)]. The recaoil correction times the correction due

to finite size is extremely small. Let us addHoan auxiliary
term

1
V=dBy— 52 dVigo(R). (A2)

HEH‘FVZZi [Ki_e(p(Ri)_eRiEO]—’_iZk m,
1
<P(Ri):<Po(Ri)+e_ZdVi<Po(Ri)- (A4)

Note, that the HamiltoniarH does not contain the direct
interactiondE, between the nuclear electric dipole moment
and external fieldSchiff theorem22,23)). The dipole term

is also canceled out in the multipole expansionpgR;).
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