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Possible deviation of the sum of strengths for the double giant dipole resonance
from the harmonic oscillator limit
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It is shown that the part of the nuclear Hamiltonian which contains the produgts ahdhh pair operators
(the scattering termsand which has been usually neglected in the calculations of the giant dipole resonance
turns out to be definitely important in the study of the double giant dipole resoriBx@BR). The complete
energy-weighted sum of strengtlEWSS for the DGDR and a possible deviation from its value in the
harmonic oscillators’ limit are derived for the first time with the full nuclear Hamiltonian taken into account.
The numerical calculations within a schematic model show an example where this deviation turns to a strong
enhancement of the EWSS for the DGDR at various particle numi#0556-28137)00509-§

PACS numbd(s): 21.60.Jz, 24.30.Cz

[. INTRODUCTION Hamiltonian with a two-body separable residual interaction.
The formalism is tested in a solvable model in Sec. Il for
The recent observation of the double giant dipoleseveral systems with different mass numbers. Conclusions
(DGDR) in relativistic heavy-ion reactions of a wide range are given in the last section, where the paper is summarized.
of nuclei[1-6] has attracted considerable attention. The ob-
served excitation energy of the DGDR is about twice as Il. MODEL HAMILTONIAN AND SUM RULE FOR DGDR
much compared to the energy of the giant dipole resonance
(GDR). Its width is larger than the GDR width by 1.6 times
[1,2,5,8. While these parameters of the DGDR are in a goo
agreement with the representation of the multiphonon gian
resonance, which is formed b_y noninteracting harmonlc 95" The EWSSS{?) for DGDR is defined in a similar way as
cillators (phonong, the most striking point is that its strength .
that for GDR according to Refl11] as
has been found to be strongly enhanced as compared to any
theo_rencal estimations available so faf—10. Recently, _ S<12>=%<0|[D2,[H,D2]]|0>, (1)
making use of a sum rule approach, Kurasawa and Suzuki

[11] have demonstrated that, if the mean energy of thgyhere D is the standard electric dipole operator of nuclei
DGDR is twice as much compared to the GDR energy, th¢13] H denotes the nuclear Hamitonian and the expectation
DGDR strength is 2 times square of that of the GDR. Thusyajye is taken over the ground std@) of the system. A

there is a discrepancy between the strength of the DGDRjmple algebraic derivation of the right-hand sidHS) of
determined by the sum rules and the experimental data. Eq. (1) leads to

In the previous worK12], taking into account the mul-
tiphonon structure of the wave function of the GDR and  S{=(0|D[D,[H,D]]D|0)+ %(0|[D,[H,D]]D?0)
DGDR, we have shown that there is a possibility for the L 5
enhancement of th&1l decay as well as excitation of the +3(0|D?D,[H,D]]|0). 2
DGDR in a two-step process. The aim of the present paper is S )
to study the deviation of the DGDR sum rule from the value,If Weé now apply an approximation, which replaces all the
defined in the harmonic oscillatoréindependent phonops double commutatorED,[H,D]] on the RHS of Eq(2) with
limit, when the full multiphonon structure of the nuclear their expectation values over the ground s{ée where
Hamiltonian is adequately included. It is our hope that this 1)
effort will serve as a further step in improving our present S{’=3(0|[D,[H,D]]|0), ()
understanding of the quenching of the DGDR strength in . ]
theoretical calculations as compared to the experimental sy¥hich is nothing but the EWSS for the GDR, we obtain
tematics. easily the model-independent relation between the sums for
The paper is organized as follows. In Sec. Il the completd?GDR and GDR strengths in Refl1], namely,
sum rule for the DGDR is derived, making use of a model

In this section we will derive for the first time the com-
lete energy-weighted sum of the strengtB%VSS for the
fﬁGDR taking into account the full structure of the nuclear

amiltonian.

( S(12))har= 48(11)881) ) 4
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being the non-energy-weighted strength for the GDR. The Q,|0)y=0. (10)
approximated decoupling scheme used in deriving &y.

Wh|Ch iS We" knOWn in the theory Of the e|ectr0n—ph0n0n Therefore the par’HQ can be represented as

interaction in the lattic§14], is fairly course. In particular, it

is insufficient to take into account the correlations between

multiphonon configurations, which form the DGDR. As will Ho= E waQZQa, (11

be seen later, this approximation means that the DGDR is “«

constructed from noninteracting phonofar independent o . ) . .
harmonic oscillators which is a sum of independent harmonic oscillators with

A complete relation for the EWSS{?, including the [requencieso,. . .
contribution which arises from the multiphonon structure of Ihe partHTQB is a sum of terms, which are proportional to
the DGDR, can be derived considering a general nucleakQaT Qa)(Bsy +Bsy) +H.C., where{ss'} denotes the indi-
Hamiltonian with two-body interaction. For simplicity, with- ces of a particle-particle or a hole-hole paiss'}={pp’}
out reducing the generality of the results, we consider a twoand{hh’}. Using the exact commutation relations
body interaction in the separable form

o B 8 T
1 1 [Qu.By, 1= [Ush n Qe+ Vab 0 QR (12)
HZEE es(Blst Bss)_Zk > fufer (Bh+By) Bhy i v
s Kk'II
T T
X By +Biorr)- 6) [Qu.Bpy]= _szl [ugfh'pthBJrngh’pthg]’ (13
The subscriptk,k’,l,I" in Eq. (6) run over all particle p)

and hole h) configurations. Hence the pair operatorswith
Bl =aja, represent theph, pp, andhh pairs accordingly.

Thel phqnqn operator, which generates the collectitie U‘;ﬁp,h,=XShXﬁ,h,+Y5hY;,h,,
excitation, is introduced in a standard way as

t r Voo =~ XnY o+ XanY o), (14
Ql=2 (XpBhn—YpBon)- (7)
ph and their adjoints, it is easy to see that
Equation(7) and its adjoint can be inverted to give
? ) ? (0l[D,[Hgs .D1110)=0, (15
T _ a ~T a
Bph—g (XphQet YprQa)- 8 (0|[D?,[Hqg,D?1]|0)y=0. (16)

Using Eq.(8), any one-body operator, including the dipole Equations(15) and (16) can also be obtained using the ex-
oneD, can be expressed in terms of the phonon oper@grs pansion ofBly in terms of products of even numbers of
andQ, as ph pair operatorngh andB,. The lowest-order terms of

this expansion can be found in Rgf5]. Therefore, the LHS

of Egs.(15) and(16) is always the expectation value of odd

Dz; M“(QL+QQ)’ ©) num%ers of phonon operat())/rs over tr;]e phonon vacuum and,
hence, always vanishes.
The last parHgg can rewritten as

MQ=§ Fon(Xgn+ Yo,

_ IVE T T
Heg= > VppnnBloBhy

where F,;, is the matrix element for the electric transition pp'hh’

from the ground state to the state with multipolarityand

parity . For theE1 transitions one has™=1". Equation + >V, 8" BT |,

(8) also allows us to transform all theh pair operator8]), DLpLPoP) PP1 P22 " p1py P2,

andB,y, in the two-body interactioTn part of the Hamiltonian

in Eq. (6) into the phonon one®, and Q.. The Hamil- . gt t

tonian can be then expressed in terms of three gags +h1hiEh2hé Vhlhl’hZhZBhlhiBhZhé, 9

Hog, andHgg, which we are going to analyze below.

The partHq consists of only phonon operators and can beWhere
diagonalized within the random-phase approximatiRRA).
The RPA solution yields the phonon energy,, and the Ve o,
RPA amplitudes<gy, andY];’h of the ph excitation, generated P1Py:P2P;
by the phonon operatd®,, in Eq. (7), when it acts on the o
ground statg0) of an even-even nucleus, which serves as Vi, nn=3fpp frn, Vi = Vi + Vi i -
the phonon vacuum: (18

1 1
=aToipiToopy Viunghgny = afhn; frpny,
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Applying the exact commutation relations in Eq$2) and  (o|[D,[H,D]]/0)

(13), we calculate the expectation value of the double com-
_ B 'B
mutator(0|[D,[Hgg,D]]|0) as —22, MMy ,E, [fghp'h E, Vpp/,plpifgihrplh,
aa pp'hh'B P1P;
+FE S FOE
(0I[D [Hga D11/0) =(0I[D [HE3 D11/0) TR
(2) — ,
+<0|[D![HBB’D]]|O> (19) _Vpp/,hh’z fgﬁlp/hlfglfplhll, (20)
pihy

The first term on the RHS of Eq19) is equal to while the double commutator in the second term is

B B T _ B B t
E (}g’hlphl—i_fgmp'hl)th, p21 (f§1hplh’+‘7:ghlp’h1)Bppl

hy

[D,[ngé,D]]=a2ﬂ MaMB[ > Vop

pp’hh’

, B 8 t 8 8 i
+ 2 Vpp'vplplhEl [(F o hyon, T Fonypng) Bppr t (Forhpin 7o )Bpp]

~ P1hyphy
PP P1Py
_ , B B t B B t
hh%h, th’,hlhIpE:L [(f(pylhplh’+‘7:31h’p1h)Bh1hi+(f(slhlplhi-‘rfglhiplhl)th,]]. (21)
1"

In Egs.(20) and(21) we introduce the shorthand notation " o~
(O|[D,[Ho+HgE,D1N[0)=2 Miw,, (24

B —7/2B B
fgh’prhr_z/{ghprh/+vgrhrpha (22)
with sz”fp,h, and Vg,ﬁh, , defined in Eqs(14). where the renormalized phonon energy is
We now see that Eq(20) can be combined with
the expectation value of the double commutator w,=w,TAw,,

(0|[D,[Hq,D11/0) for the harmonic oscillators’ patiq in
Eqg. (11) in calculating the EWSS as

_ B B
Aw,= 2 Z, Vpp’,plpifghp'h]:gih'plh'

(0l[D,[Hqo+HE3,D11/0) pp'hh’ | pyp]
:zg M Mer| ©8aa + 2 Vi ngn P pnFormgprnd
hihg
+pp/2plp1 Vo oup; 2, Foon T Vo S, FhonFonoge |- @9
+hh’2hlhi th"hlhiﬁ%), fgﬁfphfg:flp'hi The estimation within the perturbation theory in REE6]

has shown that the correctiakw,, due to the parH$y is

_ , noticeable only for low-lying collective states in nuclei,

- > Vppr b > f‘;ﬁlp/hlfﬁlfplh, . (23)  which belong to the transitional region form spherical to de-
pp’.hh’ Apahy formed nuclei. In the region of GDR and DGDR this correc-

) ) tion is expected to be small.

commutator on the LHS of Eq23) for the electric dipole  present paper to affect strongly the DGDR sum rule, comes
operatorD is model independent and equal to twice of thego, H(BZI% in Egs. (19) and (21). In the RPA, assuming the
Thomas-Reich-KuhfTRK) sum ruleNZ/A [13]. Thus, the validity of the quasiboson approximatid@BA)

partH{ of the Hamiltonian is included to improve the RPA

energy. This can be clearly seen in the diagonal approxima- T N
tion of Eq.(23) (a=a'), (0[B,,[0)=0, (0[|B,,[0)=0, (26)
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the expectation value of the double commutator in &4) principle. The renormalized RPA, which includes the
over the ground state in E¢LO) [the second term at the RHS ground-state correlations beyond the RPgee, e.g., Ref.
of Eqg. (19)] vanishes. This feature together with the small[15]), allows an evaluation of the expectation values on the
contribution of the parH{), mentioned above, is the reason LHS of Eqgs.(26) in the diagonal approximation, but not for
why the partHgg of the Hamiltonian was usually neglected the —expectation value of the double commutator
in all the calculations of the GDR and other single-phonor(0|[D2,[H,D?]]|0). We shall show in the following that
giant resonances such as giant quadrupole resonances, €@|[D?,[H{Z),D?]]|0) is not zero even within the QBA.
[18]. Doing so and taking into account EA.5), one would Taking into account the renormalization in Eq&3)—
have, in this approximation, (25), together with Eqs(4) and(16), we can write the com-
plete EWSS for the DGDR in Ed1) in the form
(0|[D,[D,H11|0)=(0]|[D,[D,Hg]1|0),

(2) _ '&(2) (2)
(0|[D2,[D2,H]1|0)=(0|[DZ[DZ HolI[0),  (27) U= (S hart ASS @8
and the sum rule constraint in E¢4) would hold. This where the tilde means that in the sug?),, in the har-
would mean that the effects given by the total nuclear Hamil-monic limit [Eq. (4)] is evaluated with the renormalized pho-
tonian on the EWSS for the DGDR were the same as thosgon energyw,, [Eqs. (23)—(25)]. The deviationAS(lz) from
given by its harmonic part. However, while in studying the
GDR the partHgg could be neglected also because it con-
sists of terms of higher order in the number of phonon op- (2)_ 2 (2 N2 _ (2)
erators(four and higheras compared tbl andHqg in the AS;”=(0|[D*,[Hgg,D?]]|0)=(0|D[D.[H5g,D]ID|0)

the value (%) is equal to

boson expansion, it must be taken into account in the study +(0|D?[D,[H,D]1/0)
of the DGDR and other multiphonon resonances. The reason
is in studying the DGDR the contribution of three-phonon +(0|[D,[H&),D]]1D?|0). (29)

(and higher terms and their interference with one- and two-

phonon terms in the wave function of the DGDR state be-Using Eqgs.(9) and(21), it follows that the last two terms on
come decisively importaritLl2]. These terms have the same the RHS of Eq(29) vanish in the QBAEq. (26)], while the
order of phonon numbers as compared to the Hag, and  first term can be calculated exactly, applying the commuta-
hence the effect of the latter can be no more neglected ition relations in Eqs(12) and(13). The result yields

ASP= > MM, MgMyg

VAN E B ‘B’ VA E oL
aa' BB’ 2 [E Vpp"plpl(fg’hlphl-kfghlp'hl)uglhipihi+hEhr th"hlhl(]:glhplh’

pipghihy | PP’

’ﬁ/ ﬁ ﬁ /B/
)Z/lglh’pih—‘r (fglhplh’ + fglh’plh)zjshlp’hl] '

!BV —
+ Fohro ) Up }— > 2 Vo [ (Fh on, t Foh

’ ’ !
1h1Pihy pp'hh’ PR phyp’hy

(30

Thus, we have shown that there is a finite deviatlo®?  ture of the single-particle levels and interactions, even sim-
from the value in the harmonic limit§{?),, for the EWSS plified schematic models are able to reveal important fea-

of the DGDR. and this deviation arises from the ﬂﬂﬁf) tures when applied to the sum rules. In this section we will
’ B . . - (2) ;

even though the latter does not contribute in the EWSS fofStimate the deviatiod Sy in Eq. (30) of the EWSS for the

the GDR. It is worth noticing that, although the three lastDGDPR from its value in the harmonic limit within the frame-

terms on the RHS of Eq$23), (25), and(30) are noncoher- work of a schematic model, where the RPA has the analyti-

. . L cal solution.

Em sur_ns,l Eq|(3(|)) tg:onta}lnsRt?j(-aﬁntﬁractlgi:’h||:stead ?]fv' ¢ We notice that the RPA solution for the Hamiltonian in

umerical cajcuiations In Re showed that nonconheren Eq. (6) is already rather simple as it comes from the disper-
sums can be small in several cases, depending on the effeéz- ;
o ) ; X . jon relation[13,18§
tive interaction. In the next section we will see how varying
the interaction parameter can affect the quantity in @)
in a simplified schematic model. fgh(ep_ €n)
1—2k% mzo. (31)

Ill. RESULTS IN SCHEMATIC MODEL

The advantage of using the sum rule approach to study thieet us study it more closely in the degenerate case, putting

collective properties of complex nuclear systems is wellall (e,—€y)=¢ and all the matrix elementsf,,=f,
known. As the sum rules do not depend on the detail struct,, =f,, andf,, = f, with a degeneracf) =N, whereN is
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TABLE |. Parameters of the schematic model at sevéral

Q TRK sum rule € (MeV) F (MeV) V;—V (MeV)
40 5.0 10.0 0.11 50103
136 16.28 7.0 0.13 4103
208 24.84 6.0 0.14 10102

the particle number. Th¥ andY amplitudes of the phonon small contribution of the parlt-lgls) [16]. The values of these
operator in Eq(7) have a very simple form in this schematic parameters fof)= 40, 136, and 208, which imitaté’Ca,

model: 136xe, and ?%®Pb using the TRK sum rules, are listed in the
Table 1.
_1(etow) _1(e-w) The energyw in Eq. (33) (dotted curvesand its renor-
X Y . (32 oo
2 JQew 2 JQew malized valuew in Eq. (34) (solid curve are displayed in

Fig. 1 for Q= 40 and 208 as a function of unitless interac-
tion paramete)V/e. The correction due to the terid{)

[Eqg. (24)] is small thanks to the parameters selected as in
Qv Table I. As a consequence the EWSS for the GDR calculated

w=€ 1+ST, (33 with the renormalized phonon energyis slightly greater as
compared to that calculated with the energyand the dif-
— k2 and ference increases with increasing the interaction parameter
(Fig. 2. The EWSS for the DGDR calculated with the renor-

=0+ 202V~ V)(X+Y)?, 39y  malized phonon energy and with the partH{] taken into
account in Eq.(37) (top solid curves in Fig. 2 however,
where V= — tk(f2+f2) and V=—ikf;f,, respectively. strongly differ from its value in the harmonic oscillators’
. : limit (top dotted curvesespecially as a stronger interaction
_ _1 —£.)2
The differenceV, —V is equal to—gk(f; —f5)". Therefore parameter. At the value d2V/e=0.4, wherew is about the

V,—V is always positive providefl, # f, sincek<<0 for the 2) .
GDR. Here the completeness relations of ¥i@ndY am- GDR energy the com;z))lete.Ewsgl 'S apogt .2'4 times
larger than the valuesf1 )har IN the harmonic limit forQ)=

plitudes give a)? factor instead of2? in this case, but this _ ~ L= )
is not the case for the complete sum of the DGDR strength€08[Fig- 2b)]. For 2= 40 this ratio is about 1.fFig. 2@].

are

whereV,,=

below due to different indices in E¢30). From Eq.(37) it is seen that the deviation from the harmonic
The EWSS for the DGDR in the harmonic limit defined in liMit is @ linear function ofV,—V. Therefore the larger the
Eq. (4) becomes differencef,—f, betweenpp and hh matrix elements, the
stronger the enhancement will be for the EWSS of the
(SP)har= 4 M?, (35
40 T T T T
with the EWSS, for the GDR,
35 - -
SH=wM? (36)
30
The complete EWSS for the DGDR in E®8) becomes
SP =4 M w+202(X+Y)2(Vy = V)[ 1+ QX2+ Y2)]). R 25
(37 E 20
This sum is greater than its value in the harmonic limit 3
(S if V1>V, which is always the case when # f,. 15

Thus we have found in this schematic model a possibility for

the enhancement of the EWSS for the DGDR as compared to 10
the harmonic limit.
We calculated the energies and EWSS for the GDR and 5
DGDR in Egs.(33—(37) as a function of the interaction . ' . .
parametef)V/e= 0 at various values df). The parameters » 0 0 0.2 0.4 0.6 0.8 1

e and the matrix elemer of the dipole operatob in Eg.
(9) are adjusted to fulfill the TRK sum rule. For simplicity QVie
we also putV,,=V. The pp and hh interaction parameter FIG. 1. Phonon energy (dotted ling and its renormalized

V, is chosen so that the renormalized phonon energipes  value due to the part( (solid line) as a function of the inter-
not deviate appreciably from the RPA valweto secure the action parametef)V/e.
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50 T ) T T 50 T T T ¥ T 1 T 1 1
45 L @Q=40 . 4 0=40 i
40 - S - 40 - v
35 | R 35 | -
a0 | o © 30 -
1) g o5 L J
© 25 . 5
E (81(2))har %
20 L ] 20 + .
15 | : 5 1
10 i 10 | -
5 5t 1
0 | . . . ) 0 1 1 1 [ 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.010.020.030.04 0.05 0.06 0.07 0.08 0.09 0.1
OV/e Q(V4-Vie
2000 — 1 FIG. 3. DeviationAS{ from the harmonic limit (= 40).
(b) Q=208
s,@
1500 1 croscopic calculations of the GDR so far. It is shown in the
present paper that it is no more true in the study of the
DGDR. Even though thep andhh pair operators cannot be
@ 1000 expressed exactly in term @fh phonon operators, one can
= i (,®) ' use the exact commutation relations of the former and the
u __‘_,_,_'.“:'T --------- latter. The complete EWSS for the DGDR has been derived
S S here for the first time and a possible deviation from the value
e of this EWSS in the harmonic limit has been found. The
500 ... - . L
formalism has been tested within a framework of a degener-
ate two-level model, where the RPA has the simplest analyti-
s,m cal solution. We found an example when this deviation is
0 L= ) quite large and enhances strongly the EWSS for the DGDR
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 at various particle numbers, while the EWSS for the GDR
OVie and the GDR energy change only slightly.

The present study, even though with the numerical calcu-
FIG. 2. EWSSS{Y for GDR ands{? for DGDR at)= 40(a) lations within a schematic model, shows that it is decisively
and 208(h). For theS{! the notation is as in Fig. 1. F&? the  important to include the full nuclear Hamiltonian in the study
dotted curves denote the valueg?) .. in the harmonic limit while  of the DGDR because some part of the Hamiltonian, while
the solid curves represent the complei@ . having a small influence on the GDR, may affect strongly the
DGDR characteristics. It also shows that the DGDR is not a
superposition of independent harmonic oscillators, but a
complex of interacting multiphonon configurations. The lat-
ter makes the DGDR properties strongly deviated from the
Tharmonic picture.

DGDR as compared to its value in the harmonic limit. This
feature is clearly seen in Fig. 3, which displays the deviatio
from the harmonic limit as a function of the difference
Q(Vi—V)le for Q= 40.
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