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Possible deviation of the sum of strengths for the double giant dipole resonance
from the harmonic oscillator limit

N. Dinh Dang,1,* A. Arima,1 V. G. Soloviev,2 and S. Yamaji1
1Cyclotron Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-01, Japan

2Bogolyubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
~Received 14 April 1997!

It is shown that the part of the nuclear Hamiltonian which contains the products ofpp andhh pair operators
~the scattering terms! and which has been usually neglected in the calculations of the giant dipole resonance
turns out to be definitely important in the study of the double giant dipole resonance~DGDR!. The complete
energy-weighted sum of strengths~EWSS! for the DGDR and a possible deviation from its value in the
harmonic oscillators’ limit are derived for the first time with the full nuclear Hamiltonian taken into account.
The numerical calculations within a schematic model show an example where this deviation turns to a strong
enhancement of the EWSS for the DGDR at various particle numbers.@S0556-2813~97!00509-8#

PACS number~s!: 21.60.Jz, 24.30.Cz
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I. INTRODUCTION

The recent observation of the double giant dipo
~DGDR! in relativistic heavy-ion reactions of a wide rang
of nuclei @1–6# has attracted considerable attention. The
served excitation energy of the DGDR is about twice
much compared to the energy of the giant dipole resona
~GDR!. Its width is larger than the GDR width by 1.6 time
@1,2,5,6#. While these parameters of the DGDR are in a go
agreement with the representation of the multiphonon g
resonance, which is formed by noninteracting harmonic
cillators ~phonons!, the most striking point is that its strengt
has been found to be strongly enhanced as compared to
theoretical estimations available so far@7–10#. Recently,
making use of a sum rule approach, Kurasawa and Su
@11# have demonstrated that, if the mean energy of
DGDR is twice as much compared to the GDR energy,
DGDR strength is 2 times square of that of the GDR. Th
there is a discrepancy between the strength of the DG
determined by the sum rules and the experimental data.

In the previous work@12#, taking into account the mul
tiphonon structure of the wave function of the GDR a
DGDR, we have shown that there is a possibility for t
enhancement of theE1 decay as well as excitation of th
DGDR in a two-step process. The aim of the present pap
to study the deviation of the DGDR sum rule from the valu
defined in the harmonic oscillators’~independent phonons!
limit, when the full multiphonon structure of the nucle
Hamiltonian is adequately included. It is our hope that t
effort will serve as a further step in improving our prese
understanding of the quenching of the DGDR strength
theoretical calculations as compared to the experimental
tematics.

The paper is organized as follows. In Sec. II the compl
sum rule for the DGDR is derived, making use of a mod
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Hamiltonian with a two-body separable residual interactio
The formalism is tested in a solvable model in Sec. III f
several systems with different mass numbers. Conclus
are given in the last section, where the paper is summari

II. MODEL HAMILTONIAN AND SUM RULE FOR DGDR

In this section we will derive for the first time the com
plete energy-weighted sum of the strengths~EWSS! for the
DGDR taking into account the full structure of the nucle
Hamiltonian.

The EWSSS1
(2) for DGDR is defined in a similar way a

that for GDR according to Ref.@11# as

S1
~2!5 1

2 ^0u@D2,@H,D2##u0&, ~1!

where D is the standard electric dipole operator of nuc
@13#, H denotes the nuclear Hamitonian and the expecta
value is taken over the ground stateu0& of the system. A
simple algebraic derivation of the right-hand side~RHS! of
Eq. ~1! leads to

S1
~2!5^0uD@D,@H,D##Du0&1 1

2 ^0u@D,@H,D##D2u0&

1 1
2 ^0uD2@D,@H,D##u0&. ~2!

If we now apply an approximation, which replaces all t
double commutators@D,@H,D## on the RHS of Eq.~2! with
their expectation values over the ground stateu0&, where

S1
~1![ 1

2 ^0u@D,@H,D##u0&, ~3!

which is nothing but the EWSS for the GDR, we obta
easily the model-independent relation between the sums
DGDR and GDR strengths in Ref.@11#, namely,

~S1
~2!!har54S1

~1!S0
~1! , ~4!

with

S0
~1!5^0uD2u0& ~5!

d
-
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56 1351POSSIBLE DEVIATION OF THE SUM OF STRENGTHS . . .
being the non-energy-weighted strength for the GDR. T
approximated decoupling scheme used in deriving Eq.~4!,
which is well known in the theory of the electron-phono
interaction in the lattice@14#, is fairly course. In particular, it
is insufficient to take into account the correlations betwe
multiphonon configurations, which form the DGDR. As w
be seen later, this approximation means that the DGDR
constructed from noninteracting phonons~or independent
harmonic oscillators!.

A complete relation for the EWSSS1
(2) , including the

contribution which arises from the multiphonon structure
the DGDR, can be derived considering a general nuc
Hamiltonian with two-body interaction. For simplicity, with
out reducing the generality of the results, we consider a t
body interaction in the separable form

H5
1

2(s
es~Bss

† 1Bss!2
1

4
k (

kk8 l l 8
f kl f k8 l 8~Bkl

† 1Bkl!

3~Bk8 l 8
†

1Bk8 l 8!. ~6!

The subscriptsk,k8,l ,l 8 in Eq. ~6! run over all particle (p)
and hole (h) configurations. Hence the pair operato
Bkl

† [ak
†al represent theph, pp, andhh pairs accordingly.

The phonon operator, which generates the collectiveph
excitation, is introduced in a standard way as

Qa
†5(

ph
~Xph

a Bph
† 2Yph

a Bph!. ~7!

Equation~7! and its adjoint can be inverted to give

Bph
† 5(

a
~Xph

a Qa
†1Yph

a Qa!. ~8!

Using Eq.~8!, any one-body operator, including the dipo
oneD, can be expressed in terms of the phonon operatorsQa

†

andQa as

D5(
a
Ma~Qa

†1Qa!, ~9!

Ma5(
ph

Fph~Xph
a 1Yph

a !,

where Fph is the matrix element for the electric transitio
from the ground state to the state with multipolarityl and
parity p. For theE1 transitions one haslp512. Equation
~8! also allows us to transform all theph pair operatorsBph

†

andBph in the two-body interaction part of the Hamiltonia
in Eq. ~6! into the phonon onesQa

† and Qa . The Hamil-
tonian can be then expressed in terms of three partsHQ ,
HQB , andHBB , which we are going to analyze below.

The partHQ consists of only phonon operators and can
diagonalized within the random-phase approximation~RPA!.
The RPA solution yields the phonon energyva , and the
RPA amplitudesXph

a andYph
a of theph excitation, generated

by the phonon operatorQa
† in Eq. ~7!, when it acts on the

ground stateu0& of an even-even nucleus, which serves
the phonon vacuum:
e

n

is

f
ar

-

e

s

Qau0&50. ~10!

Therefore the partHQ can be represented as

HQ5(
a

vaQa
†Qa , ~11!

which is a sum of independent harmonic oscillators w
frequenciesva .

The partHQB is a sum of terms, which are proportional
(Qa

†1Qa)(Bss8
†

1Bss8)1H.c., where$ss8% denotes the indi-
ces of a particle-particle or a hole-hole pair:$ss8%5$pp8%
and$hh8%. Using the exact commutation relations

@Qa ,Bpp8
†

#5(
bh1

@Uph1p8h1

ab Qb1Vph1p8h1

ab Qb
† #, ~12!

@Qa ,Bhh8
†

#52(
bp1

@Up1h8p1h
ab Qb1Vp1h8p1h

ab Qb
† #, ~13!

with

Uphp8h8
ab

5Xph
a Xp8h8

b
1Yph

b Yp8h8
a ,

Vphp8h8
ab

52~Xph
a Yp8h8

b
1Xph

b Yp8h8
a

!, ~14!

and their adjoints, it is easy to see that

^0u@D,@HQB ,D##u0&50, ~15!

^0u@D2,@HQB ,D2##u0&50. ~16!

Equations~15! and ~16! can also be obtained using the e
pansion ofBss8

† in terms of products of even numbers
ph pair operatorsBph

† and Bph . The lowest-order terms o
this expansion can be found in Ref.@15#. Therefore, the LHS
of Eqs.~15! and~16! is always the expectation value of od
numbers of phonon operators over the phonon vacuum
hence, always vanishes.

The last partHBB can rewritten as

HBB5 (
pp8hh8

V̄pp8,hh8Bpp8
† Bhh8

†

1 (
p1p18p2p28

Vp1p
18 ,p2p

28
Bp1p

18
†

Bp2p
28

†

1 (
h1h18h2h28

Vh1h
18 ,h2h

28
Bh1h

18
†

Bh2h
28

†
, ~17!

where

Vp1p
18 ,p2p

28
5 1

4 f p1p
18
f p2p

28
, Vh1h

18 ,h2h
28
5 1

4 f h1h
18
f h2h

28
,

Vpp8,hh85
1
4 f pp8 f hh8, V̄kl,k8 l 85Vkl,k8 l 81Vk8 l 8,kl .

~18!
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Applying the exact commutation relations in Eqs.~12! and
~13!, we calculate the expectation value of the double co
mutator^0u@D,@HBB ,D##u0& as

^0u@D,@HBB ,D##u0&5^0u@D,@HBB
~1! ,D##u0&

1^0u@D,@HBB
~2! ,D##u0&. ~19!

The first term on the RHS of Eq.~19! is equal to
to

le

he

A
m

-
^0u@D,@HBB

~1! ,D##u0&

52(
aa8
MaMa8 (

pp8hh8b
FFphp8h

ab (
p1p18

Vpp8,p1p
18
Fp

18h8p1h8
a8b

1Fph8ph
ab (

h1h18
Vhh8,h1h

18
Fp8h1p8h

18
a8b

2 V̄pp8,hh8 (
p1h1

Fph1p8h1

ab Fp1hp1h8
a8b G , ~20!

while the double commutator in the second term is
@D,@HBB
~2! ,D##5(

ab
MaMbH (

pp8hh8
V̄pp8,hh8F(

h1

~Fp8h1ph1

ab
1Fph1p8h1

ab
!Bhh8

†
2(

p1

~Fp1hp1h8
ab

1Fph1p8h1

ab
!Bpp8

† G
1 (

pp8p1p18
Vpp8,p1p

18(h1

@~Fp8h1ph1

ab
1Fph1p8h1

ab
!Bp1p

18
†

1~Fp
18h1p1h8

ab
1Fp1h1p

18h1

ab
!Bpp8

†
#

2 (
hh8h1h18

Vhh8,h1h
18(p1

@~Fp1hp1h8
ab

1Fp1h8p1h
ab

!Bh1h
18

†
1~Fp1h1p1h

18
ab

1Fp1h
18p1h1

ab
!Bhh8

†
#J . ~21!
i,
e-
c-

e
es
In Eqs.~20! and ~21! we introduce the shorthand notation

Fph,p8h8
ab

5Uphp8h8
ab

1Vp8h8ph
ab , ~22!

with Uphp8h8
ab andVp8h8ph

ab defined in Eqs.~14!.
We now see that Eq.~20! can be combined with

the expectation value of the double commuta
^0u@D,@HQ ,D##u0& for the harmonic oscillators’ partHQ in
Eq. ~11! in calculating the EWSS as

^0u@D,@HQ1HBB
~1! ,D##u0&

52(
aa8
MaMa8Fvadaa8

1 (
pp8p1p18

Vpp8,p1p
18 (
bhh8
Fphp8h

ab Fp
18h8p1h8

a8b

1 (
hh8h1h18

Vhh8,h1h
18 (
bpp8

Fph8ph
ab Fp8h1p8h

18
a8b

2 (
pp8,hh8

V̄pp8,hh8 (
bp1h1

Fph1p8h1

ab Fp1hp1h8
a8b G . ~23!

It is well known that the expectation value of the doub
commutator on the LHS of Eq.~23! for the electric dipole
operatorD is model independent and equal to twice of t
Thomas-Reich-Kuhn~TRK! sum ruleNZ/A @13#. Thus, the
partHBB

(1) of the Hamiltonian is included to improve the RP
energy. This can be clearly seen in the diagonal approxi
tion of Eq. ~23! (a5a8),
r

a-

^0u@D,@HQ1HBB
~1! ,D##u0&52(

a
Ma

2ṽa , ~24!

where the renormalized phonon energyṽa is

ṽa5va1Dva ,

Dva5 (
pp8hh8

F (
p1p18

Vpp8,p1p
18
Fphp8h

ab Fp
18h8p1h8

ab

1 (
h1h18

Vhh8,h1h
18
Fph8ph

ab Fp8h1p8h
18

ab

2 V̄pp8,hh8 (
p1h1

Fph1p8h1

ab Fp1hp1h8
ab G . ~25!

The estimation within the perturbation theory in Ref.@16#
has shown that the correctionDva due to the partHBB

(1) is
noticeable only for low-lying collective states in nucle
which belong to the transitional region form spherical to d
formed nuclei. In the region of GDR and DGDR this corre
tion is expected to be small.

The most important part, which will be shown in th
present paper to affect strongly the DGDR sum rule, com
from HBB

(2) in Eqs. ~19! and ~21!. In the RPA, assuming the
validity of the quasiboson approximation~QBA!

^0uBpp8
† u0&.0, ^0uBhh8

† u0&.0, ~26!
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the expectation value of the double commutator in Eq.~21!
over the ground state in Eq.~10! @the second term at the RH
of Eq. ~19!# vanishes. This feature together with the sm
contribution of the partHBB

(1) , mentioned above, is the reaso
why the partHBB of the Hamiltonian was usually neglecte
in all the calculations of the GDR and other single-phon
giant resonances such as giant quadrupole resonances
@18#. Doing so and taking into account Eq.~15!, one would
have, in this approximation,

^0u@D,@D,H##u0&.^0u@D,@D,HQ##u0&,

^0u@D2,@D2,H##u0&.^0u@D2,@D2,HQ##u0&, ~27!

and the sum rule constraint in Eq.~4! would hold. This
would mean that the effects given by the total nuclear Ham
tonian on the EWSS for the DGDR were the same as th
given by its harmonic part. However, while in studying t
GDR the partHBB could be neglected also because it co
sists of terms of higher order in the number of phonon
erators~four and higher! as compared toHQ andHQB in the
boson expansion, it must be taken into account in the st
of the DGDR and other multiphonon resonances. The rea
is in studying the DGDR the contribution of three-phon
~and higher! terms and their interference with one- and tw
phonon terms in the wave function of the DGDR state
come decisively important@12#. These terms have the sam
order of phonon numbers as compared to the partHBB , and
hence the effect of the latter can be no more neglecte
fo
s

t
ff

ng

t
e
u

l

n
etc.

l-
se

-
-

y
on

-

in

principle. The renormalized RPA, which includes th
ground-state correlations beyond the RPA~see, e.g., Ref.
@15#!, allows an evaluation of the expectation values on
LHS of Eqs.~26! in the diagonal approximation, but not fo
the expectation value of the double commuta
^0u@D2,@HBB

(2) ,D2##u0&. We shall show in the following tha
^0u@D2,@HBB

(2) ,D2##u0& is not zero even within the QBA.
Taking into account the renormalization in Eqs.~23!–

~25!, together with Eqs.~4! and~16!, we can write the com-
plete EWSS for the DGDR in Eq.~1! in the form

S1
~2!5~ S̃1

~2!!har1DS1
~2! , ~28!

where the tilde means that in the sum (S1
(2))har in the har-

monic limit @Eq. ~4!# is evaluated with the renormalized pho
non energyṽa @Eqs. ~23!–~25!#. The deviationDS1

(2) from

the value (S̃1
(2))har is equal to

DS1
~2!5^0u@D2,@HBB

~2! ,D2##u0&5^0uD@D,@HBB
~2! ,D##Du0&

1^0uD2@D,@HBB
~2! ,D##u0&

1^0u@D,@HBB
~2! ,D##D2u0&. ~29!

Using Eqs.~9! and~21!, it follows that the last two terms on
the RHS of Eq.~29! vanish in the QBA@Eq. ~26!#, while the
first term can be calculated exactly, applying the commu
tion relations in Eqs.~12! and ~13!. The result yields
DS1
~2!5 (

aa8bb8
MaMa8MbMb8H (

p1p18h1h18
F(

pp8
V̄pp8,p1p

18
~Fp8h1ph1

ab
1Fph1p8h1

ab
!Up1h

18p
18h

18
a8b8 1(

hh8
V̄hh8,h1h

18
~Fp1hp1h8

ab

1Fp1h8p1h
ab

!Up
18h

18p
18h1

a8b8 G2 (
pp8hh8

(
p1h1

V̄pp8,hh8@~Fp8h1ph1

ab
1Fph1p8h1

ab
!Up1h8p

18h
a8b8 1~Fp1hp1h8

ab
1Fp1h8p1h

ab
!Uph1p8h1

a8b8 #J .

~30!
im-
ea-
ill

-
yti-

in
er-

ting
Thus, we have shown that there is a finite deviationDS1
(2)

from the value in the harmonic limit (S̃1
(2))har for the EWSS

of the DGDR, and this deviation arises from the partHBB
(2) ,

even though the latter does not contribute in the EWSS
the GDR. It is worth noticing that, although the three la
terms on the RHS of Eqs.~23!, ~25!, and~30! are noncoher-
ent sums, Eq.~30! contains the interactionV̄ instead ofV.
Numerical calculations in Ref.@17# showed that noncoheren
sums can be small in several cases, depending on the e
tive interaction. In the next section we will see how varyi
the interaction parameter can affect the quantity in Eq.~30!
in a simplified schematic model.

III. RESULTS IN SCHEMATIC MODEL

The advantage of using the sum rule approach to study
collective properties of complex nuclear systems is w
known. As the sum rules do not depend on the detail str
r
t

ec-

he
ll
c-

ture of the single-particle levels and interactions, even s
plified schematic models are able to reveal important f
tures when applied to the sum rules. In this section we w
estimate the deviationDS1

(2) in Eq. ~30! of the EWSS for the
DGDR from its value in the harmonic limit within the frame
work of a schematic model, where the RPA has the anal
cal solution.

We notice that the RPA solution for the Hamiltonian
Eq. ~6! is already rather simple as it comes from the disp
sion relation@13,18#

122k(
ph

f ph
2 ~ep2eh!

~ep2eh!22v2
50. ~31!

Let us study it more closely in the degenerate case, put
all (ep2eh)5e and all the matrix elementsf ph5 f ,
f pp85 f 1, and f hh85 f 2 with a degeneracyV5N, whereN is
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TABLE I. Parameters of the schematic model at severalV.

V TRK sum rule e ~MeV! F ~MeV! V12V ~MeV!

40 5.0 10.0 0.11 5.031023

136 16.28 7.0 0.13 4.031023

208 24.84 6.0 0.14 1.031023
ic

th

in

i

fo
d

an

y
r

e

c-

in
ted

eter
r-

s’
n

ic

the
the particle number. TheX andY amplitudes of the phonon
operator in Eq.~7! have a very simple form in this schemat
model:

X5
1

2

~e1v!

AVev
, Y5

1

2

~e2v!

AVev
. ~32!

The phonon energy and its renormalized value in Eq.~25!
are

v5eA118
VVph

e
, ~33!

whereVph52 1
4 k f2 and

ṽ5v12V2~V12V!~X1Y!2, ~34!

where V152 1
8 k( f 1

21 f 2
2) and V52 1

4 k f1f 2, respectively.

The differenceV12V is equal to2 1
8 k( f 12 f 2)2. Therefore

V12V is always positive providedf 1Þ f 2 sincek,0 for the
GDR. Here the completeness relations of theX and Y am-
plitudes give aV2 factor instead ofV3 in this case, but this
is not the case for the complete sum of the DGDR streng
below due to different indices in Eq.~30!.

The EWSS for the DGDR in the harmonic limit defined
Eq. ~4! becomes

~S1
~2!!har54vM4, ~35!

with the EWSS, for the GDR,

S1
~1!5vM2. ~36!

The complete EWSS for the DGDR in Eq.~28! becomes

S1
~2!54M4$v12V2~X1Y!2~V12V!@11V~X21Y2!#%.

~37!

This sum is greater than its value in the harmonic lim
(S1

(2))har if V1.V, which is always the case whenf 1Þ f 2.
Thus we have found in this schematic model a possibility
the enhancement of the EWSS for the DGDR as compare
the harmonic limit.

We calculated the energies and EWSS for the GDR
DGDR in Eqs. ~33!–~37! as a function of the interaction
parameterVV/e> 0 at various values ofV. The parameters
e and the matrix elementF of the dipole operatorD in Eq.
~9! are adjusted to fulfill the TRK sum rule. For simplicit
we also putVph5V. The pp and hh interaction paramete
V1 is chosen so that the renormalized phonon energyṽ does
not deviate appreciably from the RPA valuev to secure the
s

t

r
to

d

small contribution of the partHBB
(1) @16#. The values of these

parameters forV5 40, 136, and 208, which imitate40Ca,
136Xe, and 208Pb using the TRK sum rules, are listed in th
Table I.

The energyv in Eq. ~33! ~dotted curves! and its renor-
malized valueṽ in Eq. ~34! ~solid curve! are displayed in
Fig. 1 for V5 40 and 208 as a function of unitless intera
tion parameterVV/e. The correction due to the termHBB

(1)

@Eq. ~24!# is small thanks to the parameters selected as
Table I. As a consequence the EWSS for the GDR calcula
with the renormalized phonon energyṽ is slightly greater as
compared to that calculated with the energyv and the dif-
ference increases with increasing the interaction param
~Fig. 2!. The EWSS for the DGDR calculated with the reno
malized phonon energyṽ and with the partHBB

(2) taken into
account in Eq.~37! ~top solid curves in Fig. 2!, however,
strongly differ from its value in the harmonic oscillator
limit ~top dotted curves! especially as a stronger interactio
parameter. At the value ofVV/e.0.4, wherev is about the
GDR energy the complete EWSSS1

(2) is about 2.4 times
larger than the value (S1

(2))har in the harmonic limit forV5
208 @Fig. 2~b!#. ForV5 40 this ratio is about 1.6@Fig. 2~a!#.
From Eq.~37! it is seen that the deviation from the harmon
limit is a linear function ofV12V. Therefore the larger the
difference f 12 f 2 betweenpp and hh matrix elements, the
stronger the enhancement will be for the EWSS of

FIG. 1. Phonon energyv ~dotted line! and its renormalized

value ṽ due to the partHBB
(1) ~solid line! as a function of the inter-

action parameterVV/e.
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DGDR as compared to its value in the harmonic limit. Th
feature is clearly seen in Fig. 3, which displays the deviat
from the harmonic limit as a function of the differenc
V(V12V)/e for V5 40.

IV. CONCLUSIONS

In the present paper we have shown the importance of
part containing the products of thepp andhh pair operators
~the so-called scattering terms! of the nuclear Hamiltonian in
calculating the EWSS for the DGDR. This part is known
have a little influence on the phonon energy within the R
except for only the lowest levels in transitional and deform
nuclei @16#. In the region of the GDR the contribution of th
part is negligible. Therefore it has been neglected in all

FIG. 2. EWSSS1
(1) for GDR andS1

(2) for DGDR atV5 40 ~a!
and 208~b!. For theS1

(1) the notation is as in Fig. 1. ForS1
(2) the

dotted curves denote the values (S1
(2))har in the harmonic limit while

the solid curves represent the completeS1
(2) .
n

he

d

i-

croscopic calculations of the GDR so far. It is shown in t
present paper that it is no more true in the study of
DGDR. Even though thepp andhh pair operators cannot b
expressed exactly in term ofph phonon operators, one ca
use the exact commutation relations of the former and
latter. The complete EWSS for the DGDR has been deri
here for the first time and a possible deviation from the va
of this EWSS in the harmonic limit has been found. T
formalism has been tested within a framework of a degen
ate two-level model, where the RPA has the simplest ana
cal solution. We found an example when this deviation
quite large and enhances strongly the EWSS for the DG
at various particle numbers, while the EWSS for the GD
and the GDR energy change only slightly.

The present study, even though with the numerical cal
lations within a schematic model, shows that it is decisiv
important to include the full nuclear Hamiltonian in the stu
of the DGDR because some part of the Hamiltonian, wh
having a small influence on the GDR, may affect strongly
DGDR characteristics. It also shows that the DGDR is no
superposition of independent harmonic oscillators, bu
complex of interacting multiphonon configurations. The la
ter makes the DGDR properties strongly deviated from
harmonic picture.
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FIG. 3. DeviationDS1
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