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Feynman graphs and generalized eikonal approach to high energy knock-out processes
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The cross section of hard semiexclusivge,e’N) (A—1) reactions for fixed missing energy and momentum

is calculated within the eikonal approximation. Relativistic dynamics and kinematics of high energy processes
are unambiguously accounted for by using the analysis of appropriate Feynman diagrams. A significant de-
pendence of the final state interactions on the missing energy is found, which is important for interpretation of
forthcoming color transparency experiments. A new, more stringent kinematic restriction on the region where
the contribution of short-range nucleon correlations is enhanced in semiexclusive knock-out processes is
derived. It is also demonstrated that the use of light-cone variables leads to a considerable simplification of the
description of high energy knock-out reactions.
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I. INTRODUCTION FSI's at higher energieE>1 GeV) are often described
within the approximation of the additivity of phases, ac-
With the advance of high energy, high intensity electronquired in the sequential rescatterings of high energy projec-
facilities (see, e.g.,[1-3]) the high momentum transfer tiles off the target nucleongonrelativistic Glauber model
semiexclusive reactions are becoming a practical tool for th€s]). This approximation made it possible to describe the
investigation of the microscopic structure of nuclei, nucleargata on elastichA scattering at hadron energies 1 GeV
matter, and the color transparency phenomenon. However, E,,<10- 15 GeV(cf. Refs.[6,7)). It has also been applied
theoretical methods which were successful in medium eng the description of cross sections Afe,e’N)(A—1) re-
ergy nuclear physics should be upgraded in order to describgions [8—18 integrated over the excitation energies

processes where energies transferred to a nuclear target € 3 of the residual A—1) nucleon svstem. for small mo-
=few GeV. This paper focuses on the calculation of the? exd A-1) y :

influence of the final state interactiof@SI's) on high energy Mmentum of the residual systep, _,<pg. In [19,20 the
hard semiexclusiveA(e,e’N)X reactions, for energies of Cross section oA(e,e’N)(A—1) reactions has been calcu-
knocked out nucleoEy=1 GeV and for stateX represent- lated for small excitation energies that are characteristic for
ing ground or excited states of the residual nucleus. particular shells of a target nucleus wit=12—16. Thus

At energiesEy<1 GeV the final state interactiofSl'sy ~ the dependence of FSI's on missing enegy(~Eey) was
are usually evaluated in terms of interactions of knock-outot essential in the previous calculations. Furthermore such a
nucleons with an effective potential of the residual system —dependence is not important for total cross sections, small
the optical model approximatiofsee, for example, Ref4]). angle coherent and noncoherefsummed over residual
Parameters of the effective potential are adjusted to describmuclear excitationsscatterings i A reactions. However the
data on elastitN— (A—1) scattering for projectile energies dependence of FSI's on the missing energy is part of the
close toEy. Two important features of high energy FSI's color transparency phenomena in high energy quasielastic
make the extension of the medium energy formalism to higlprocesses where restrictions on the missing energy should be
energies problematic. First, the number of essential partismposed to suppress inelastic processes where pions are pro-
waves increases rapidly with the energy of tNg(A—1) duced[21,27. It is also important in the studying of short-
system. Second, th&IN interaction, which is practically range nucleon correlations in nuclei in semiexclusive reac-
elastic forEy<500 MeV, becomes predominantly inelastic tions, where large value of missing energy should be
for ENy>1 GeV. Hence the problem of scattering can hardlyensured.
be treated as a many body quantum mechanical problem. In this paper we consider high energy semiexclusive
Introducing in this situation a predominantly imaginary po- A(e,e’N)(A—1) reactions, where both missing momentum
tential to account for hadron productigmot only for excita- and missing energy are fixed. We investigate the implica-
tions of residual system as in the case of intermediate enetions of the nonzero value of the missing energy on the FSI
gies is not a well-defined mathematical concept. Soof the knocked-out nucleon.
theoretical methods successful below 1 GeV become ineffec- The linear increase with incident energy of the coherence
tive at the energies which can be probed at JeffersorfLhb length of strong interactions leads to a change of the under-
HERMES|2], and ELFE[3]. lying physical picture of hadron-nucleus scattering — from
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sequential rescatterings to coherent interactions with all q

nucleons at a given impact parameter. The first evidence for N
that was obtained by Mandelstdi23] who analyzed planar \pﬁ_q fy
Feynman diagrams corresponding to rescattering diagrams of
the nonrelativistic Glauber approximation. He found that the
contribution of these diagrams tends to zero in the high en-
ergy limit.

Later on Gribov[24] developed a quantitative theory of Pa-1
high energyh A interactions and demonstrated that the small
value of the ratio of inelastic diffractive and elastic cross PA
sections serves as a small parameter, justifying Glauber-type
formulas. We restrict the analysis in the paper to the range of FIG. 1. n-fold rescattering diagram.

energies where inelastic diffraction in the soft hadron pro-
cesses is a small correctidre., energies of the knocked-out
nucleon<10 Ge\). We also restricted by the photon virtu-

alities Q>~1—3 Ge\?, where color coherent phenomena nycleus with arbitraryA. In the case of a deuteron target we
are expected to be a small correction. At lar@r the de- found significant effects of the missing enel@g] (Fig. 3.

duced formulas can be used as a baseline model for searofjre gemonstrate that even larger effects are expected for
ing for color coherent phenomen@ote that the small ratio | \hock-out of nucleons offHe 4He targets.

of inelastic and elastic diffraction reflects a small dispersion It follows from the formulas derived in the paper that

Avhen missing momenta and energy are not negligible in

tions are naturally much larger in the case of _hard Processed ock-out reactions, the optical model approximation be-
where a probe selects a rare, small size configuration in thgomes unreliable. Also, we found in this kinematics signifi-

struck nucleon. For a review of the physics of the color co-., i corrections to the conventional Glauber-type formulas
herence phenomena see R¢25,26)). (Fig. 4)

2 - -
t At I?rgtet(k? gnd srgall strufclt;;uclect)tn r.“ome”t?t't dls safe Based on the analysis of the derived formulas, we deter-
0 neglect in€ dependence o scattering amplitude on ;5 optimal kinematic conditions for the investigation of

nucleon binding since the energy scale of the hard interactioH1e short-range nucleon correlations in nuclei in semi-
is much larger than the nuclear energy scale. At the samg, ., iye reactions. In particular, if one wants to use for such

time, when missing momenta and missing Energies rel.evari\tlvestigations kinematicgg;>1, it is necessary to impose
for knock-out processes are comparable with the Fermi moz 4

. o additional conditions on the recoil energy of the residual
menta and the nucleon binding energy, it is necessary to ta g9y

. . . stem Eq. (40)]. Such conditions allow one to suppress the
them Into account in the calculatlon_of the nuclear part of thecontribution of the low momentum component of the nuclear
scattering amplitude. Obviously, this cannot be done una

. M : Muave function due to FSI'€Sec. I\).
biguously within the optical model and the Glauber-type ap- We demonstrate also that light-cone kinematics of the

proximations, which neglect nucleon Fermi momenta in thenigh—energy knock-out reaction is naturally accounted for if

Suqlel.t:]'o fcalcullate ':?rlls q]l‘(thelknockeq-om:'t nuclﬁorr: Wehucleon Fermi momenta in the nucleus are parametrized in
erive the formulas of the eikonal approximation whic aC&erms of the light-cone variables.

count for the nucleon Fermi motion. Our derivation is base
on the analysis of the Feynman diagrams corresponding to
the A(e,e’N) X reaction.

The method of the derivation of the formulas of the eiko-
nal approximation on the basis of the analysis of the relevant Il. SCATTERING AMPLITUDE
Feynman diagrams has been suggested long ago for hadron-n this section we consider the scattering amplitude for a
nucleus collisions in Refg27,28. It has been shown in gnocked-out nucleon to undergo rescatterings off the
Refs.[27,28 under what conditions the Feynman diagrampcleons of the A— 1) residual system. The case=0 cor-
description of the hadron-nucleus scattering processes |ea¢§sponds to the impulse approximatii) in which the
to the optical model or the Glauber-type approximation. Thengcked-out nucleon does not interact with residual nucleus.
main advantage of the Feynman graph approach is that {lye systematically neglect in this paper the diffractive exci-
takes into account the relativistic kinematics of high energyation of the nucleons in the intermediate states. In soft QCD
processes. Particularly, it accounts for an important featurgrocesses this is a small correction for the knock-out nucleon
of high energy small-angle elas_lﬁdiffractive) scatterings — energies<10 GeV. In the hard processfthat is whenQ?
the conservation of the light-cone momentum_  yirtuality of the photon is sufficiently large =%6—8
=\m"+p°—p,, wherep, is the component of nucleon Ge\?)] such an approximation cannot be justified even
Fermi momentunp in the projectile momentum direction. In within this energy range, see, for example, discussion in Ref.
the present paper we apply this method to calculate FSI's ifi25]. However, our aim is to perform calculations in the ki-
A(e,e’N)(A—1) reactions and extend the resultd 28] for ~ nematics where the color transparency phenomenon is still a
the 2H(e,e’)(pn) process to the case of nucleon knock-outsmall correction.
processes offHe(®H) [Eq. (33)]. After deriving formulas of The scattering amplitude can be represented by covariant
the impulse approximation, single and double rescatteringreynman diagrams of Fig. 1, in the approximation when only
terms, we generalize the obtained results to the case of elastic rescatterings are accounted for, as:
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Fla-a(ap)=2 Gra—pmpill 11 f d*pid*p| o 2 pi—PA)é“(]ZZ p,—’—PAl)

=1

[i(27T)4:|n+l

Ca(P1y -+ 5PA)
D(p1)D(p2) - - -D(Pn+1)D(Pn+2)- - -D(pa)

FENQ?) f1Np2.p3) - TN (Pns1.Prs1) Taca(Py - Pheas - - -Prsa---.Pa)
D(pi+q) D(ly)---D(lp)---D(ln-1) D(p5)---D(phyiq)

A
X mﬂu 8*(Pm—Pr)

@

where, for the sake of simplicity, we neglected the spin defunctions due to the energy-momentum conservation we ob-
pendent effects. HerB, andP,_; are the four-momenta of tain

the target nucleus and the fin# { 1) systemp; andpj’ are (@) (0)

nucleon momenta in the nucledsand residual A—1) sys- F¥=Faa-1(9.p¢)

tem, respectively>,, in Eq. (1) goes over virtual photon _f » T A(P1,P2.Pa) FE(QAT(Py,Pa)
= 3

interactions with different nucleons, wheiigi"(Q?) are . @
electromagnetic vertices—D(py) “*=(p2—m?+ie) ! is D(p1)D(p2)D(ps)

the propagator of a nucleon with momentum. The where

fNN(pys1.Prs1) is the amplitude of NN scattering,

do/dt~|f|%/s;, wheres is the total invariant energy of two P1=Par—Pa_1,

interacting nucleons—D(l,) ! is the propagator of the

struck nucleon in the intermediate state, with momentum pPo+pP3=Pa-1. 3

l=q+p;+=F,(pi—p/) between the K—1)th and kth .
rescatterings. The facton!(A—n—1)! accounts for the Herel'aandl’y_; correspond to the nuclear vertices repre-
combinatorics ofn rescatterings andA(—n—1) spectator Sented in Fig. 2, by open and solid circles, respectively. In
nucleons. Following Ref.27] we choose the “minus” sign Eds. (2) and (3) p; is the momentum of the interacting
for the nucleon propagators to simplify the calculation of thenucleon andd,, p; are the momenta of spectator nucleons.
overall sign of the scattering amplitude — for each closed!© Simplify the derivation we neglect the antisymmetrization
contour one gets the factori (2)* with no additional sign.  Of the initial and final nucleon states, which can be easily

The vertex functions Ta(pi, . ..,Pa) and accounted for through the corresponding wave functises
Ta_1(p, ... .pa) describe transitions of rucleus A to  Pelow. . . _ o
“A nucleons” with momentap,} and transitions of(A —1) The scattering amplitude® is Lorenz invariant and cor-

responds to the sum of the noncovariant diagrams with dif-

state,” respectively. The intermediate spectator state in théerent time orderings between nucldag, I's—, and elec-

; ) om . L
diagram of Fig. 1 is expressed in terms of nucleons becaudg&omagnetic verticesF,”. The impulse approximation
the closure over various nuclear excitations in the intermedic0rresponds to the time ordered noncovariant diagram of Fig.

ate state is usedfor the details see Appendix )A After 2(a_),where the v_irtual phpton is gbsorbed byatarget nucleon
evaluation of the intermediate state nucleon propagators, tﬁ@hlch does not interact in the fmal_state. Other time order-
covariant amplitude will be reduced to a set of time orderedNdS corréspond to vacuum fluctuations. _
noncovariant diagrams. This will help to establish the corre- e Will perform a calculation in the nucleus rest frame in

spondence between the vertex functions and the nucledpe kinematics where Fermi momenta of target nucleons are
wave functions. We derive formulas for the impulse approxi-

mation and first two rescattering tern{ge., single and a Pr ot P ot P
double rescattering To simplify derivations we consider Y b e D b2t By Yoo b
(e,e’N) reactions off a three-nucleon systésee Fig. 2and Pz Pa Ps  Pa Ps Ps Pa
then generalize obtained results to an arbitrary

nucleons” with momenta{p/} to “(A —1) nucleon final

(a) (b) ()

I1l. IMPULSE APPROXIMATION q pr q pr
First, we consider thé\(e,e’N)(A—1) reaction, where pAEé P2 1Ph Pp Eé P2l D Py
the final state consists of a noninteracting energetic nucleon Ps P3P Ps Pz Pn
N and an A—1) residual state which can be either the
nuclear bound state or break up systemaf-(1) nucleons.
For the scattering off a three-nucleon system this reaction FiG. 2. Feynman diagrams corresponding dde(e,e’p)pn
corresponds to the covariant diagram of Fige)2which is  scattering. Dashed lines represent effectilhé scattering, the solid

then=0 term in the scattering amplitude of E@). For the  circle represents the residual interaction between spectator nucle-
n=0 term of Eq.(1), performing the integrations ove¥  ons.

n

(d) (e)
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not large. Hence we will restrict the consideration to theare small as compared to the scale of energies characteristic

range of missing momenta,, and missing energieis,,,: for the nucleon excitations, this is the only pole not corre-
- I sponding toNN production. Neglect of discontinuities re-
|Pml=|Ps—q|=400 MeVL, lated to the thresholds of pion production is justified in QCD

R because, for a small pion momenta, the pions are Goldstone

Ei—Prz Go— 1] M—Epn—Pm, bosons of spontaneously broken chiral symmesge the
- ~ ~1+0.3, (4 di L
m m m iscussion in Ref[31]).
Taking residue over the spectator nucleon propagator ef-
whereps is the momentum of a final knocked-out nucleon, fectively corresponds to the replacement
do andﬁ are the energy and momentum of a virtual photon. dpg 1 1 1
The z axis is chosen in thé direction. The direction trans- f ~
verse toq would be labeled by. E,=Ex_;+M—EA. ais
the light-cone fraction of the momentum of the target carriedAfter this integration one is left with the time ordered dia-
by an interacting nucleon scaled to vary between 0And gram corresponding to the IA, where the virtual photon
If we restrict by the kinematics defined in Eg), then in ~ knocks out the target nucleon with momenty, leaving

the set of noncovariant diagrams, comprising the covarianthe residuaA—1 nucleus with a particular excitation energy
diagram of Fig. 23), one can neglect the diagrams which Ee=En—p2/Ma_1—|€a| Wheree, is the binding energy
correspond to the vacuum fluctuatiofsee, e.g., Ref$30]). of the target nucleus. Nonrelativistic reduction allows one to
The latter become increasingly important at larger Fermi modefine the momentum space wave function through the ver-
menta of the target nucleons. An effective method to accourtex function agc.f. Refs.[27,28):
for the diagrams with vacuum fluctuations is the light-cone
approach 30—-34 where for some components of the elec- ¥a(P1.P2, - - - Pa)
tromagnetic current‘good” components their contribution

a=

27 D(ps) Es 2m’

is suppressed and the scattering amplitude has a form rather = ! Ta(P1,P2, - - .P) )
similar to the conventional impulse approximation. This [V(2m)32m]A-t D(p1)
Fhr;gs;;s;ebremg interesting by itself, is beyond of the scope o{N here wave functions are normalized as

Overall in the discussed kinematifgqg. (4)] the relativ- i o .
istic effects in the nuclear wave function are a small correc- f |a(P1,P2, - - - PA)|“d°p1d®py- - - dpa=1.

tion 30,29 and the impulse approximation can be calculated

via nonrelativistic reduction of the covariant nuclear verticesWe define the wave function of the fin@esidual nucleus-

in Eq. (2). Such a reduction corresponds to taking the residu&nocked-out nucleonstate asy,_,/v2m, wherey,_, de-
overd pg, at the nearest nucleon pole in the spectator nucleofined according to Eq.5), with A replaced byA—1 and the
propagator (ps) ~1. Thus we neglect non-nucleon degreesadditional factor 1J2m, accounts for the normalization of
of freedom in a nucleus. The restriction by the nearest poléhe knocked-out nucleon wave function. With these defini-
in the nucleon propagators follows from the observation thations Eq.(2) obtains the form of the conventional IA expres-
in the considered kinematid4), where nuclear excitations sion:

T@= V(27T)3(27T)3f d*patha(Pm.P2,P3) FI(Q?) ha_1(P2.P3), (6)

wherep,,=p—q is the measured missing momentum, ané- —ps—p,,. The spin and isospin indices and antisymmetri-
zation of wave functions are implicit in Eg6).
Introducing the coordinate space wave functionsifgrand s, _, as

i
f dBx,d%%,, . A% eI PIT P2 R g (X X, LX), (7

1
lr/lj(plvp21 s 1p]):(m

wherej=A,A—1 we can represent the I1A amplitude as follows:

1= [ @t % X PRI )y x50 4P

:J ;02X 03 Xs Ba(X1 Xo X3) FEM(Q2) e F2Pm X1 gl (x,— ). ®
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We definex; as the coordinate of the struck nucleon, apdx; as coordinates of the residual nuclear system. In the last part
of Eq. (8) we introduce the wave function of the residual nuclear system with separated internal and center @.rmpass
motion by

ba_1(Y2.Y3) = b(yo—yz)ellV2+¥a/2] -Pem, @

with 5cm is the c.m. momentum of the residual two-nucleon system.
Obviously, as follows from Eqg6) and(8), within the |mpulse approximation measuriggand p; one directly measures

the Fermi momentum of a nucleon in the nuclep@t pm pf q

IV. SINGLE RESCATTERING AMPLITUDE

The diagrams of Figs.(B) and Zc) describe the processes where the stifi@kt) nucleon rescatters off one of the spectator
nucleons. The general expression for the amplitude corresponding to the diagranibFig @iven by then=1 term of Eq.
(1) as

L(p1.p2, f™(p;—p2) [(p5.p5) d*p, d*
b _ f (P1,P2,P3) FomQ?) (P2—P2) I'(p; !os) P2 dps 10
D(p1)D(p2)D(ps) D(pi+a)  D(py) i(2m)"i(2m)
where
P1=Pa—P2—P3, P;=Pa-1—P3. 11

Our interest is in the kinematics where the contribution of the vacuum diagram is negligible, thus as in the previous section,
we can perform the integration over ti&p,d°p5 by taking residues over the poles in the nucleon propagatops) * and
D(p3) L. The integration results in the replacement

f dpd; 1 1 1
- — ~—,
27T| D(p2‘3) 2E2v3 2m

After the integrations ovei®p,d°p; are performed, the diagram of Figli2 becomes the noncovariant time ordered diagram,
where a virtual photon is absorbed by the target nucleon, and then the produced fast nucleon rescatters off a spectator nucleon:

NN’ ! 3 3
Tt fF(pl,pz,pa) em 2l (P2—P2) T'(p2.p3) d’p, d°ps 1

Emzm?)  Dlpy 1@V Bpra) Dpy 2w 2m

The definition of the momentum space wave functions is now straightforward. It corresponds to the nonrelativistic reduction
of the nuclear verticef , andI'4_; as given by Eq(5). Hence we obtain

\/(2 277)3 fNN(py—p2) d®p; d°ps
T = j ’ = - = 13
a(P1,P2,P3) 1m(Q) D(p.+Q) Pa-1(p2, ps)( 3 (2 77) (13
HereD(p,+q) ! describes the struck nucleon propagator before the rescattering:
2ma,— Q?
—D(py+q)=(py+q)*—m’+ie=pi+2p;q+g°—m’*+ie~2q qzo—qQ—plee : (14)

Whereq—|(i| and because of the nonrelativistic approximation for the nuclear wave funsgenAppendix A we neglect
pl/2m as comparedto 1. The factorr(ﬁ]o Q?)/2q is fixed by the external kinematics, since batghandQ? are measured.
It follows from (q+ pa—Pa_1)%=m? that
2mg—-Q?  _ do m?—m?
T Pt (MEEa M)+ o

~p;+ Ao, (19

wherep'=p;,—q, m?=[pa—pa_1]? is the virtuality of the interacting nucleon, and

Ao=%<m+EA_1—MA>E%Em, (16

whereE,=qo+m—\m’+ pf2 is the missing energy in the reaction. In the case of the three-body breakup kinematics for the
scattering off the’He targetE,=T,,+|€,|, WhereT,, is the kinetic energy of the spectai@wo-nucleon system andey| is
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the modulus of the target binding energy. On the right-hand side ofiBgwe neglected the termmZ—m?)/2q related to the
virtuality of the interacting nucleon since at fixed recoil energy this factor is of the ord&(Bf,/q) and its contribution
decreases with the increase of the transferred momegtum

Inserting Eq.(15) into the expression for the propagator of a knocked-out nuc{édnand redefining th& N scattering
amplitude asf"NN/2qm=f\N, to be in accordance with the optical theorem in the forniNNft=0)= o', we obtain

fNN(ps—p2) , d%; d
2 2 ‘/’Afl(p21p3)##- (17)

T = — P1,P2,P3)FIQ?) .
LT P+ Ag—py,tie]

2m)%(2m)3
Ty,

We can perform an integration ovpy, by transforming integrals into the coordinate space representation and using the fact
that for the softNN scatterings, at high energied!N(p,— p,)~fNN(p,,— p,1). Using the coordinate space representation of
the nuclear wave functions given by ET) and the coordinate space representation of the nucleon propagators

1

[Py +Ag—py,tie]

=—i f O(20)€ (Pt 80~ P12’ 2, (18)

we obtain for the single rescattering amplitug® (see Appendix B

d%k
(2m)*’
(19

T(b>:§f 03x,03%, 03X 3P A( X1, X2, X3) O (25— 27) €' P2~ P SN Q2) FNN( ) — pyy) €' 0lZ2m 2@~ 1(312Pm X1 T (0, — x5)

Wherelzt= 5&— ﬂn: 5’2t— 52t is the momentum transferred in the rescattering ﬁ{]d32 are transverse components of the
vectorsil, andiz. It is convenient to introduce the generalized profile funcfi@y:

2

1 = dok
FNN(X,A):ZGIAZJ fNN(kt)elb'k‘ t (20)

(2m)*

UsingI"NN(x,A), we can write Eq(19) in a form resembling the Glauber theory expression for single rescattering:
T(b):_J d3X1d3X2d3X3¢A(X1:X21X3)F(1em(Q2)(Zz—Zl)FNN(Xz_XlaAo)e_i(slz)ﬁm'iWT(Xz—X3)- (21)

The amplitude for the single rescatterifiéf’, corresponding to Fig.(2), can be obtained from E@21) replacingr <.
Thus the whole amplitude, which includes the 1A and the single rescattering contributions is

T(@) 4 T0) 4 T f A%, 0¥% 0% (X1 Xz Xa) Q) [1+ TH Je 32Pm X1 4T (3, x3), (22
where

TE=0(2,— 29) TNN(Xo—X1,A0) + O (23— 29) TNN(x3— X3, A ) (23)

is the operator of the FSI corresponding to the single rescattering contribution. Eq(2@)ocan be generalized for the
scattering off a nucleus with atomic numb#&ras follows:

A
TFSD=1+> O(z—z)"Nx =} ,A). (24)
=2

The deduced operator for the FSI has the form analogous to the familiar operator deduced within the nonrelativistic Glauber
approximatior[5]. The key difference is that the profile functibhis modified by the additional phase fac&f?. This factor

accounts for the geometry of high energy processes related to the longitudinal momentum transfer in the rescattering. Note that
similar factor is present in the expressions for the diffractive photoproduction of vector ni&s88s where it accounts for

the difference between the masses of final vector mesons and the(iiitiadl) photon (t,»|>0). In this case it reflects finite
longitudinal distances<tR,) for photoproduction at intermediate energies. In our case the fAgtarises from excitations in

the residual nuclear systefsee Eq(16)].

To illustrate the importance of the derived modification of the scattering operator we calculate the cross section of
(e,e'N) scattering off the deuteron target where E2¢) provides the complete form for the FSI operaf@8]. Figure 3
represents the ratio of the full cross section to the cross section calculated within the impulse approximation. For small
momenta of a target nucleopd<100 MeV/c) or for small excitation energieE(,~ p§/2m) predictions of a generalized
eikonal approximation(solid line) and conventional Glauber approximatiggashed ling coincidence. This demonstrates
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the consistency of our approach with the Glauber approximation where target nucleons are interpreted as a stationary scatterer
and their Fermi momenta have been neglected. However at larger Fermi mdoreexaitation energiggredictions of both
approaches are considerably different. For examplgyfer400 MeV/c the prediction for angular dependence of the maximal
contribution from the rescattering amplitudies., the position of the maximum in Fig) 8liffers by as much as 30°. Such a

difference is quite dramatic and can be checked in the forthcoming experiments at Jefferson Lap®8e8@fyPractically the
same difference arises for example in the break uprbé if one of spectators has momentuyn-0 [37].

V. DOUBLE RESCATTERING AMPLITUDE

The diagrams of Figs.(d) and Ze) describe the amplitude of the process where the struck nucleon rescatters sequentially
off both spectator nucleons. From E@) choosingn=2, for the double rescattering amplitude of Figd)2 we obtain

T<d>=f I'(p1,P2.P3) Fom 0?) f"%py—p2)  M(p3—ps)  T(p5.p3)
D(p1)D(p2)D(p3) * D(P1+d) D(p;+q+p,—ps) D(P2)D(P3)

1 3
X 84 (Pa—P2—P3—P1) ' (Pa-1— py— p3)d4pld4p2d4p3d4p2d4p3[ (27 )}

f I'(py1,p2,P3) Fem02) fNN(ps—po)  fNN(pi—ps)  T(ps,ps)  d*p, d%ps  dips 29
D(p1)D(p2)D(ps) * D(p1+Q) D(py+q+p,—py) D(P2)D(p3) i(2m)* i(2m)*i(2m)*’
where

P1=Pa—P3— P2, P>=Pa_1—P3- (26)

Then, using the same approximations as for the cases of IA and single rescattering amplitudes we can perform integration over
dp,, d%p3, d°p5, which effectively results in the replacemefftd®p;/27iD (p;)]— 1/2E;~1/2m (j=2,3,3).
Using Eq.(26) and the definition of the initial and final state wave functions from Sec. Il we obtain

V(2m)®(2m)® fNN(p;—p2)  fNN(p3—pa) d®p; d®p; d°ps
(=77 =77 e
T 2 f (//A(plvavp3)F1m(Q ) D(p +q) D(pl+q+p2 pz) lr//A l(p21p3)(2ﬂ_)3 (27T)3 (271_)31

(27)
whereD(p;+q) is given by Eq.(14). Using Eq.(26) we can rewriteD(p,+q-+p,—p3) as
—D(py+0+p,—ps)=—D(q+pa—Pa-1+ P53~ P3)=(q+Pa—Pa-1+P3—P3)°—m+ie
do

~2q ( 3~ E3)—(P3,— P3a) tie|=[A3—(p3,— P3) tiel. (29)

In the derivation of Eq(28) we use the kinematic condition for the quasielastic scatterigg:s— pa_1)>=m? and define
A3=(0o/q)(E3—E3). Similar to the previous section after redefining tidl amplitude astNN/2gm— fNN we obtain

V(2 (277)3 fNN(ps—py) fNN(p3—p3) d®p; d3ps dp;
(d) — 2
T f‘ﬂA(pl P2,P3)FIM(Q%)— o Ay p1z+|€ Ay (P p32)+|6¢A 1(p2, p3)(2 2 (2m)3 (2m)%
(29

Integration in Eq.(29) can be performed in the coordinate space using the Fourier transformation of the wave functions
according to Eq(7) and nucleon propagators according to B@). For the double rescattering amplitudé?, we obtain(see
Appendix B

i2 . e e 2k
T<d>zzf 3% 0°%,0%X3Pa(X1 X2, X3) FTT(Q?) ®(Zz—21)fNN(k2t)e"‘2t'(bfbl)e'(AO’A@(Zz’zl)(277)22
NN iKa- (Ba—b1) aiAa(za—21) d*ks —i(312%y-pm 4T
X | O(z3—2p) F (kg '3 P37 Pr)gl B3tz 4 2m e 1PmpT(X—X3), (30

wherek,; andks, are the momenta transferred in the first and second rescattering vertices iidFig. 2

For a complete calculation of the double rescattering term one should take into account the anfgftude, which
corresponds to Fig.(8). This amplitude can be derived from E&Q) by interchanging coordinates of nucleons “2” and “3.”
Finally, using the definition of the modified profile functions from E20) we obtain forT(®+ T(®



56 FEYNMAN GRAPHS AND GENERALIZED EIKONAL ... 1131

TO=T@TO= f 3%, X0 X3P a(X1 X2, X3) FE(QH) OP(24,2,,25,A0,A,,A3)

XTNN(X,—Xg , A o) TNN(X3— Xg , A g)e™ (3271 PmghT(x,— X3). (31)

Here T(3), is the operator of FSI describing the double rescattering contribution and we introduc? filnection which
accounts for the geometry of two sequential rescatterings as

02(2y,25,23,00,05,03) =0 (2,—21) O (23— 2,)e 4322~ 2)g! (A3~ Ro)(z3720)
+0(23—21)0(z,—z5)e A2z~ 2)l(B2~80)(Z2721) (32

Equations(8), (21), (22), and(31) represent the complete set of scattering amplitudes necessary to calculate knock-out
reactions off the’He(®H) target:

T@ 4+ TO L TOL T TE= f A3, 033X ha(Xs X Xa) FSTQ[ 1+ T+ T2 e (32PmXaghT(x,—x5).  (33)

It is worth noting that in the derivation of the above formulas no specific assumptions have been made on the nuclear wave
functions. Therefore realistic wave functions of nuclei can be implemented to calculate the high energy knock-out reactions for
different configurations of the residual two-nucleon system.

Equation(31) can be generalized to calculate the double rescattering amplitude,&8iN) reactions off theA nucleus as
follows:

A

?;Zg,:i jgiﬂ 0(z1,2,2; Mg, A, A)TNNXG = %1, A0) TNN(X; = X1, ). (34)

Generalization of the FSI operat@ézs), to multiple rescatterings is straightforward:

A
Toe 2, 0@ 2 e A AT, 80) TN =g, 80) - TN =0, 80),
(35
where
0'™(z1,2,7), ... Zs0o,Aj A - 'An):,gm@(zi_zl)@(zj_zi)' O(2y— 2y q)€ P08 A& )
XeiAj(zjle)_ . .eiAn(znle)efiAO(zi+zj+~»-znanzl)' (36)
The sum in Eq(36) goes over all permutations betweip, . . . ,n. We would like to draw attention that the contribution of

diagrams, where the ejected nucleon interacts with say nucleon “2” then with nucleon “3” and then again with nucleon “2,”
is exactly zero. In coordinate representation this follows from the structure of the prod@cfwfctions. In the momentum
representation this follows from the possibility to close the contour of integration in the complex plane without encountering
nucleon polegsee the discussion in Sec. Il C of RE38]).

It is easy to check that in the case of small excitation energies, Ag,,X;, Aj---A;,—0),

O™(21,2,2j, ... Zn, A0, Ai A, - A sy s, 0= O(Zi—21)O (2= 21) - O (29— 29), 37

and Egs(34) and(35) are reduced to the conventional form the processes where comparatively large excitation energies
of the Glauber approximation, with a simple product of theare important.
functions. Within this particular approximation the sum The practical consequence of the difference between
over alln-fold rescattering amplitudes can be represented O™ and the usua® functions is that for sufficiently large
the form of an optical potential. excitation energies the sum aof-fold rescatterings differs
However, usually in the high energe,e’N) reaction the  substantially from the simple optical model limit. To illus-
excitation energies are not too small. The use of tH¢) trate the deviations from the conventional Glauber approxi-
(21.2,7), ... Zq,80,A1,4, ... A), defined according to  mation(which is expressed by using a simple product of the
Eq. (36) instead of a simple product @ functions is the ©® functiond in Fig. 4 we compare the O
generalization of a nonrelativistic Glauber approximation to(z,,z,,z3,Aq,A1,A5) function with ©(z,—2,)0(z3—12;)
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FIG. 3. Dependence o, the ratio of thed(e,e’p)n cross sec- FIG. 4. Dependence ofO0®?(z,,2,,25,A0,A;,A,) and
tion calculated including the the IA and FSI terms to the cross®(zz_zl)®(23_zl) on z, for different values of missing energy

section which includes the IA term only, on the an@lg ;= pd E, for z,=0, z,=1.5 fm andA,=A,=0. (@ Comparison of
for different spectator momenia,. The solid line corresponds to  ReO®)(- - ) (solid line) with Re® (z,~2,)®(z3—2;)=1 (dashed
FSI's, calculated according to Eqe7)—(24), the dashed line cor- line) and (b) comparison of MW@ (--.) (solid line with
responds to the FSI calculated according to the conventiondm® (z;—2;)®(z;—2,)=0 (dashed ling

Glauber approximation.

whereﬁrnt is the transverse component of the measured miss-
for (e,e’p) scattering off the®He target. We use the kine- ing momentum, andk, i§ the momentum transferred in res-
matics for three-body breakup in the final state. Figure 4cattering. The averaggk?)~0.1 Ge\# in the integral over
demonstrates a considerable deviation betw@€n and the  k; is determined by the slope of theN amplitude. The
product of® functions already at comparatively low excita- longitudinal component of the nucleon momentum in the ini-
tion energies. For example, the real parts differ by more thatial state can be evaluated through its value in the pole of the
20% already for~60 MeV, leading to a comparable differ- rescattered nucleon propagafsee, e.g., Eq$17) and(29)]:
ence of the double rescattering amplitude calculated includ-

—nZ
ing effects of longitudinal momentum transfer. The detailed P1z=Pm+ Ao, (39
numerical studies of these effects will be presented else- 7 -
where. where py, is the longitudinal component of the measured

Thus we conclude that the conventional Glauber approxiMiSSing momentum and, represents the excitation energy
mation which neglects nuclear Fermi motion is applicable in®f the residual nuclear systefsee Eq.(15)]. A, is always
the case of small values of the residual nucleus excitatioR©Sitive [EQ. (16)]. Thus, if measureg, >k then, py, is
energies only. even Iarge_r,_ i.e.,@;1>p,m and therefore the FSI amplitude
is as sensitive to the short-range correlations as the IA am-
plitude. In particular, within the approximation when high
VI. FSI AND THE STUDY OF SHORT-RANGE NUCLEON momentum component of the nuclear spectral function is due

CORRELATIONS IN NUCLEI to two-nucleon short-range correlatioi@9,39 the condition

It is generally believed that experimental condition P, Ke corrgsponds to projectile electron scattering. off the
> > - . forward moving nucleon of the two-nucleon correlation ac-
|Pml=|ps—al>ke (Wherekg~250 MeVic is the momen-

i . . companied by the emission of backward nucleon.
tum of the Fermi surface for a given nuclgwsgill enhance The situation is opposite if measured momentum
the contribution to the cross section from the short-rang

. : X m<—kg. It follows from Eq. (39) that, in this case, the
Phuedzmp?grﬁgﬂggs ;T)gr]gxinnﬁ;ltie:r? \rlé?;/tieQESCEg]LisHomeve omenta in the wave function contributing to the rescatter-

; P z
general, distorted by the FSI. Let us denote the internal mo'—fg amplitide are smaller than those for the lip3|

zZ|_ z

mentum of the knock-out nucleons prior to the collision as_|pm| 4°<|pm|' S

- Experimentally, this situation corresponds to the forward
P1(P1z,Pay). It follows from Egs.(19) and (30) that nucleon electroproduction &@2/2mg,=x>1. However an

L ) important feature in this case is that in exclusive electropro-
P1t=Pmi— Kt (38)  duction the value oA, is measured experimentally and can
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be easily chosen so that momenta entering in the grountdigh energies the elastic FSI does not noticeably change the

state wave function would be larger thép. Therefore to light-cone “—" component of the struck nucleon momen-

investigate the short-range correlations in tieee(p) reac- tum. This reasoning indicates that the description of the FSI

tions forx>1, we have to impose an additional condition, in high energy processes should be simplified when treated
within the framework of the light-cone dynamics. In our pre-

|Pml —Ao>Ke, (400 vious analysis ofx>1, large Q? data on inclusive &,e’)
I _ ._processes are consistent with this idiégl.
to suppress the contribution from large internucleon dis- The above observation helps to rewrite the deduced for-

tances. mulas in the form accounting for, in the straightforward way,

Overall, we o_bser\{e that in orde_r to study Sh‘?rt'rang%igh energy processes developing along the light cone.
nucleon correlations ing;e’N) reactions off nuclei with Let us introduce light-cone momenta=A(p;_/Px_)
i—1Pa_).

minimal distortions due the FSI effects it is advantageous t%erea/A is a momentum fraction of a target nucleus carried
use thex<1 kinematics especially with detection of a back- 1y, ie nycleori. Using the above-discussed expressions for

ward going nucleon.
. L m— andp;_ and Egs(15) and(16) for the propagator of a
The above results have a simple explanation in terms st nucleon we obtain

the light-cone dynamics of high-energy scattering processes.

Indeed, according to Eq16) A, does not disappear with an

increase of energy. Hence the nonconservation of the longi-

tudinal momentum of nucleons given by EJ39), 1 1
P1.— PH= Ao, remains finite in the high-energy limit. How- ~——; _ T Ml —at —a)/amlE—+i
ever, the rescattering of an energetic knock-out nucleon praé-pz TR0~ P tie] Lo~ am®[(Go=a)/amEn +ie]

tically does not change the " component of its four- 1

momentump_=E—p, [p_ is the longitudinal momentum ~ )
as defined in light-cone variables, wherep# M@y~ am—(Q*/20%)(Ep/m) +ie]
=p“(p4+.,p_.,py) with p.=E=*p,]. Really, if we define (42)

Pi-=m—py; and pp-=p;-—q-=m—Ey—pn,, where
En=m+E5_;— M, is the missing energy, then according

to Eq. (39 the nonconservation of the-" componentis | the kinematics where relativistic effects in the wave func-
tion of the target and residual nucleus are small and

Q? En a;~1—p;,/m, there is a smooth correspondence between
P1-—=Pm-~ ﬁZEm:—Z(lJrqO/ZmX) - (41 nonrelativistic and light-cone wave functions of the nucleus
[30], i.e., ¢a(P1, ... Pj, ... .PA)~daler, P1t, ... e,
It vanishes with an increase of the virtual photon energyp;;, .. .,ap,pa)/m2. Therefore the amplitude of single

go. Hence, the physical interpretation of E9) is that at  rescattering, Eq(17), can be rewritten as

J2m)32m?
T(b):_TJ palay,P1e,az,Por, a3, P30 FE(Q?)
fNN da,d%py, dagd?p
X Ya-1(ay,Py,a3,P30) oo (43

[a1— an—(Q%2Q)*(Ep/m) +ie] (2m)?®  (2m)®

where according to Eq11) a,=a)=3—a;— a3 Equation(43) shows that in the limit when@?/29?)(E,/m)—0, the
amplitudeT® is expressed through the light-cone variables and the light-cone wave functions of the nucleus. Note that the
eikonal scattering corresponds to the lineargin propagator of the fast nucleon. It is instructive that regime of the light-cone
dynamics is reached in E43) at relatively moderate energies. Indeed let us consider kinematics ashenclose to unity

(which is the case in our analysisAt go~2 GeV, Q%/29%)(En/m)=[1/2(1+ qo/2mx) ](E,/m)~(0.05-0.07)<1. For an
estimate we takg=1 and for missing energlf,~0.2— 0.3 GeV which is close to the limit of applicability of the description

of nuclei as a many-nucleon systéai. [31]). Similar reasoning is applicable for the double rescattering amplitude it2Bqg.

Here we obtain

V(2m)¥(2m)? fNN Py — Pmi— (P2~ Pa)]
T(d):— Fe 2
A’ f Yalay,p1t,@z,Par,@3,P3) FT(Q )[al—am—(QZ/Zqz)(Em/m)-i—ie]

f*N(p3—par) dad?p;, dazd?ps dajd?ps

_ N J O 1 . 44
X L ai—(Qu2q) (G 2m)+ie] A1 2Pt P G L T (2my? 4
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Another interesting consequence of the representation c#2000126 and by the U.S. Department of Energy under Con-
the scattering amplitude through the light-cone variables isract No. DE-FG02-93ER40771.
the simple form of the closure approximation for the sum

over the residual A—1) nuclear states in thé(e,e’N) APPENDIX A: WHY CLOSURE APPROXIMATION
X(A—1) reaction. When summing ové, at fixedpn, the IN GENERAL IS APPLICABLE IN THE LIGHT-CONE
rescattering amplitudef. Eq. (17)] could not be factored BUT NOT IN THE NUCLEUS REST FRAME

out from the sum because they dependEp through the ) ) )

A factors[cf. Eq. (16)]. In the case of the light-cone repre- In the calculation of thea-fold rescattering amplitude of

sentation[cf. Eq. (43)] the analogous proceduf&1] is to ~ Fig. 1 we assumed the decouplitfgom the excitation ener-
sum overp,~m-+E+pm, at fixed a,. It follows from  9i€s of intermediate statesf the propagator of a high en-
Eqs. (43 and (44) that in such a sum the scattering ampli- €rgy knocked-out nucleod (p;+q) ~*. Such a decoupling
tude is independent gb,. and therefore the application of allows one to use the closure over the sum over the excita-
closure has a simple form. tions of intermediate nuclear states. As a result the scattering
Note that the present discussion of the light-cone dynamamplitude in Eq(1), is calculated in terms of the propagators
ics is by no means complete, since we do not consider thef free spectator nucleons in the intermediate states.
relativistic effects which enter into the nuclear wave func- 1O Visualize the conditions when the decoupling of the

tions. The extension of the current analysis to the light-condligh energy part of the diagram of Fig. 1 from low energy
formalism will be presented elsewhere. part would be valid, we consider two reference frame de-

scriptions: nucleus rest fran{ab frame and light cone.
In the lab frame the inverse propagator of energetic
VIl. CONCLUSIONS knocked-out nucleon;- D(p; +0)=(p;+0)*~m*+ie, can

) _ ~ be written as
The Feynman diagram approach to the calculation of final

state interactions at high energy,€’N) reactions off nuclei (p1+0)2—m?=p2+2E,qo— 2p;-q+ 02— m?

provides a natural framework for the generalization of the

conventional nonrelativistic Glauber approximation to high- . pf—mz do Q?
energy processes. This approach also adequately describes =2|q|| —=—+E; = —P1,— = |
the light-cone dynamics characteristic at high-energy reac- 2]ql al |24
tions. (A1)

It follows from the consideration of Feynman diagrams

that the formulas of the conventional Glauber approximatiorit follows from the right-hand side of EGA1) that only the

are a legitimate approximation for sufficiently small valuesterm El(qo/|§|)_ p1, survives in limit of large momentum

of the residual nuclear system’s excitation ene@@yssing  yransfer ) and fixedxg;. Thus in the high energy limit
energy. Beyond this kinematic region, conventional ap-ithin the lab frame description one should retain the depen-
proximation should be modified to describe correctly relativ-gence of propagator on the excitation energy of the interme-
istic kinematics and the dynamics of FSI's. This can be dongji5ie statgvia E,). Therefore, unless thg; dependence of
within the generalized eikonal approach which is developeg},q propagator of knocked-out nucleon can be neglected the

in the paper for ¢,e’'N) knock-out reactions. , use of closure over the intermediate nuclear states cannot be
The obtained formulas allow one to find a kinematic do-j stified. In the lab frame description such a neglection is

main preferable for the investigation of short-range nucleoflegiiimate in the nonrelativistic limit only where the term
correlations in nuclei. We demonstrate that scattering off for-p2/2mz<1 is neglected everywhere in the expression of the
. . . 1
‘t’;’arg mo(;/mg pucleonfwhlch cor:efpon(:s to pdrodtucnto_n of cattering amplitude. Such a restriction on the applicability
ackward going nucieon sSpectalors from destruction Ol yhe closure for the sum over the intermediate states is of
sfhor't-range pair correlatiofi80]) is preferqble fqr the INVES"  crucial importance for the models where relativistic effects
tigation of short-range nucleon correlations in nuclei. We, e treated on the basis of the lab frame description
e . . -y Z _ N A . .
found an additional kinematic conditiofiof| —Ao>ke for The above calculation does not take into account an addi-

semiexclusive reactions to enhance the contribut,ion of shorfjgnal approximate conservation law characteristic for light-
range nucleon correlations &at-1 and reduce FSI's. cone dynamics. Let us introduce light-cone momenta for
We demonstrate also that dominance of light-cone dy’four-vectors asp“(p. ,p_ ,py), wherep.=E=*p,. Using

namics follows directly from the analysis of the Feynmaniese definitions, for the inverse propagator of a knocked-out

(131}

diagrams, and that the-*" component of the target nucleon ,cleon. one obtains the form
momentum is almost conserved in FSI. Therefore, by mea-

suring the “—"” component of the missing momenta we di- (p1+Q)2—m?=p2+p;,q_+p;_q.+g>—m?
rectly tag the preexisting momenta in the light-cone nuclear
wave function. pZ—m? P 2
q+ q. P+ q. P1- q. 0
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high energy propagator from a low energy intermediateto use a light-cone description, which is out of the scope of
nuclear part whose excitation energy on a light cone is dethe present paper. Note that light-cone mechanics of the nu-
fined by thep, ., [30,31. Such a decoupling applies for any clei is rather similar to the nonrelativistic ong&0,32.

values of Fermi momenta of the target nucldoo restric-

tion like p2/2m?<1 is needell Therefore it is possible to APPENDIX B: COORDINATE SPACE REPRESENTATION

extend the applicability of the closure over intermediate OF THE SCATTERING AMPLITUDE

states of the residual nucleus to the domain of relativistic ) _ _

momenta of target nucleons. The price is to introduce the 1. Single scattering amplitude

light-cone wave function of the targé&imilar to the case of We will now transform the single scattering amplitude of
PQCD. Eq. (17) to coordinate space. Inserting the configuration

Note that the considerations in the present work are respace representation of ground state and residual state wave
stricted by small Fermi momentgEq. (4)] since we use functions according to Eq(7) into Eq. (17) and using
pa/2m?<1 in the scattering amplitude. For larger Fermi mo- energy-momentum conservation of Ea1) for T® we ob-
menta a legitimate way to generalize the obtained results iin

FSMQ?) fNN(pj—par)
Py +Ag—pi tie

1 L
T®=— EJ' d%%1 0%, 0% 3%y o d%y 37 17X PLep (X1, X, X3)

.. . L L d3 d3
Xelyz'pA—1e*|P3'[(X3*X2)*(YB*Y2)]¢L71(y2,yg)i Ps

(2m)° (2m)°

FSM(QA) FNN(pj—pay)
Py +Ag—pi tie

1 Rei)f
=— EJ’ 3%, d3x,d3x3d3y ,d3y g0 (17 %2 Pagp (X1, X5, X3)

Vo5 d°p;
X eY2PA 1% (Xs—xo) ~ (Y3~ Y2) 16a-1(Y2Y3) 3 (B)
Next, we introduce relative and c.m. coordinates as
Y2:y723+yc.m.: y3:y723_)’c.m.a (B2
and separate internal and c.m. motion of the repailsystem:
Ba-1(Y2,Y3) = (Yo eYem Pt Pn), (B3)

As a result,T® takes the form

1 R Feljm(Qz)fNN(pét_pm) L - d*p;
T<b>=——f d3x,d3%,03x5d%y ,d3y 58 117X 1 (X3, X5, X3) e 10e=xa)2] PmepT(x, — x5)——.
> 107X207X3d7YL07Y 3 Da(X1,X2,X3 DT Ag—ppotie (X2 3(277)
(B4)

To integrate ovep,, we use the coordinate space representation of the nucleon propa§pfb+ IV, — p,,+i €] according to
Eq. (18). Inserting Eq.(18) in Eq. (B4), one can integrate ovesy,: [exd—ipizi—2z+2)|dp,=278z—2,+2°). After
integrating overdz® we obtain

[ CE Rttt ,
T(b)ZEJ d®10%x,0xg€! P22 (P17Pm) b\ (%3, %5, %5) FE(Q) FNN(p 2y — Pa)

) - . d2t
x ®(ZZ_Zl)e—|(3/2)pm-xlelAO(Zz—zl)¢T(X2_Xs)(z:)lz

i .
- EJ' A3, AB3Xod3X3Pa(Xq X2, X3) O (25— 27) €' (P27 PV KEN Q) FNN(p) — pyy)
2k

> eiAO(zz—zl)e—i(3/2)§m.£1¢f(xz_ X3)——
(2m)*’

(B5)
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where we define the momentum transferred in the rescatteriﬁgzq%‘l— f)‘mz P o— §2t andb;, 62 are transverse compo-
nents of vectorx,, X.

2. Double scattering amplitude

Integration in Eq.(29) can be performed in the coordinate space, using the Fourier transform of the wave functions
according to Eq(7) and by introducing thé. andks:

- P3tPs ., -
[==%5—, Ks=p;~Ps. (B6)

Then forT(@ we obtain

fNN(ps—p2)  fNN(pi—ps)
[P+ Ag—pr t+ie] [Az—Kat+ie]
d®p; d3L  d%k,
(2m)3 (2m)3 (2m)*

1 L
T(d):ZJ 3%, 0%, 03x3d3y ,d3y g8~ 1742 Pigh (X1, X, X3) FTM(Q?)

X glY2-Pa-1g1(Ks2) [(xa=X) + (Y2~ V)l gL (X2 %e) = (V2 Ya T (y, y4) (B7)

Since we consider soft rescatterings of a high enékgpcked-ouk nucleon off a slow spectator, we can use the observation
that the scattering amplitude for two-body scatteriflyy(ps— ps), depends mainly on transverse components of transferred

momentumks, and is practically independent &f Therefore we can perform an integration ogét. invoking the factor
83 x,—x3— (Y2—Y3)]. Similar to the previous section, using E¢B2) and (B3) allows one to perform the integration over

d3Yc.md?’Y233

NN fNN

1 ... e e .
T(d):_f d3x,d3x,d3x,e "1 (X1 %2) P13 (X2=X3) o (%, X, ,X5) FEM(Q? -
4 1= 72R s PalX1 Xz Xs) 1m(Q)pg“+A0—plz+ie] [Ag—kg,+ie]
d*p;  d%ks

x @ 1l0e=Xa)2Pmep T (x, — X3)(27)3 @m?

(B8)

Furthermore we can take the integral oymr, similarly to the case of single rescattering amplitude, using (E§.. The
integration byks, can be done using the representatiol\}A kg, +i€) = —i [ @ (2*3) expi (A3 —ks,)Z3dZ%. The integration over
dp;, anddks, leads to the factor 28] 2°— (z,—z;)] and 27 8[ Z¢— (z3—2,)], respectively. After performing an integration

overdz® anddZ and definingk, = p! — pl, we obtain
d%,
(2m)?

0 (25— 27) F¥N(ky e~ kst)eilzl"(Bzisl)emo(zzizl)

i2
T@ :Zf d3X1d3X2d3X3¢A(X1 1X2,X3) Fim(Qz)

2k3

« e—i(slz)il-ﬁm tx,—x
71_)2 ¢ ( 2 3)

O(z3—2,) NN kst)eiga'(63762)em3(z3722) (Czi

i2
= Zf d3X1d3X2d3X3¢A(X1,X2,X3)F§m(Q2)

X

o (B By d2k
@(zz—z1>fNN(km)e'ka<b2-bl>e'<A0‘A3><zz‘Z”—zmz?}

e e d%k
®(23—Zz)fNN(k3t)e'k3t‘(b3_bl)e'A3(Z3_Zl)—2(2 3

X =

o325 5m¢T(x2— X3), (B9)

where at the last step we do the replacengpt Ko+ Kz, .

[1] CEBAF Conceptual design report, Southeastern Universities[3] The ELFE Project edited by J. Arvieux and E. De Sanctis
Research Association, Newport News, 1990. (Italian Physical Society, Bologna, 1993). Arvieux and B.
[2] Technical report of the HERMES Experiment, DESY, 1991 Pire, Prog. Part. Nucl. Phy80, 299 (1995.
(unpublished [4] C. D. Epp and T. A. Griffy, Phys. Rev. C, 1633(1970; F.



Cannata, J. P. Dedonder, and F. Lenz, Ann. Ptysy.) 143
84 (1982.
[5] R. J. Glauber, Phys. Re00, 242 (1955; Lectures in Theo-
retical Physics edited by W. Brittain and L. G. Dunhain-
terscience, New York, 1959Vol. 1.
[6] D. R. Yennie, inHadronic Interactions of Electrons and Pho-
tons edited by J. Cummings and D. Osbd@cademic, New
York, 1972, p. 321.
[7] E. J. Moniz and G. D. Nixon, Ann. Phy&\.Y.) 67, 58(1971).
[8] G. R. Farrar, L. L. Frankfurt, H. Liu, and M. I. Strikman, Phys.
Rev. Lett.61, 686(1988.
[9] T.-S. H. Lee and G. A. Miller, Phys. Rev. 45, 1863(1992.
[10] B. K. Jennings, and G. A. Miller, Phys. Lett. 88 7 (1993.
[11] A. Kohama, K. Yazaki, and R. Seki, Nucl. Phys551, 687
(1993.

[12] L. L. Frankfurt, M. I. Strikman, and M. Zhalov, Phys. Rev. C
50, 2189(19949.

[13] O. Benharet al,, Phys. Rev. Lett69, 881(1992.

[14] A. S. Rinat and M. F. Taragin, Phys. Rev.52, 28 (1995.

[15] N. N. Nikolaev, et al,, Phys. Lett. B317, 287 (1993.

[16] S. Frankel, W. Frati, and N. R. Walet, Nucl. Phy&80, 595
(19949.

[17] A. Bianconi, S. Boffi, and D. E. Kharzeev, Phys. Lett3B5
294 (1994.

[18] E. J. Moniz, summary talk in PANIC-XIII, Perugia, ltaly,
1993.

[19] L. L. Frankfurt, M. I. Strikman, and M. Zhalov, Nucl. Phys.
A515, 599 (1990.

[20] L. L. Frankfurt, E. J. Moniz, M. M. Sargsyan, and M. I. Strik-
man, Phys. Rev. G1, 3435(1995.

FEYNMAN GRAPHS AND GENERALIZED EIKONAL ...

1137

posium on Multiparticle Dynamicsedited by W. Kittel, W.
Metzegar, and A. StergiouWorld Scientific, Singapore,
1982, p. 963.

[23] A. Mandelstam, Nuovo Ciment80, 1113(1963.

[24] V. N. Gribov, Sov. Phys. JETRY, 483(1969.

[25] L. L. Frankfurt, G. A. Miller, and M. I. Strikman, Annu. Rev.
Nucl. Part. Sci44, 501 (1994).

[26] P. Jain, B. Pire, and J. P. Ralston, Phys. R&fi, 67 (1996.

[27] V. N. Gribov, Sov. Phys. JETBO, 709 (1970.

[28] L. Bertocchi, Nuovo Cimento A1, 45(1972.

[29] L. L. Frankfurt, W. R. Greenberg, G. A. Miller, M. M. Sarg-
syan, and M. |. Strikman, Z. Phys. 352, 97 (1995.

[30] L. L. Frankfurt and M. I. Strikman, Phys. Rep6, 215(1981).

[31] L. L. Frankfurt and M. I. Strikman, Phys. Ref.60, 235
(1988.

[32] L. L. Frankfurt and M. I. Strikman, itModern Topics in Elec-
tron Scattering edited by B. Frois and I. SickWorld Scien-
tific, Singapore, 1991 p. 645.

[33] B. D. Keister and W. N. Polyzou, ildvances in Nuclear
Physics edited by J. W. Negele and E. Vo@lenum, New
York, 1991, Vol. 20, p. 225.

[34] L. A. Kondratyuk, J. Vogelzang, and M. S. Franchenko, Phys.
Lett. 98B, 405(1981).

[35] T. H. Bauer, R. D. Spital, D. R. Yennie, and F. M. Pipkin, Rev.
Mod. Phys.50, 261 (1978.

[36] S. Kuhn and K. Griffieon, CEBAF Report PR-102-94, 1994,

[37] K. Egiyan, K. Griffieon, and M. Strikman, CEBAF Report
PR-94-019-94, 1995.

[38] L. Frankfurt, E. Piasetzky, M. Sargsian, and M. Strikman,
TAUP-2356-96, hep-ph/9607395, 1996.

[21] A. H. Mueller, in Proceedings of Seventeenth Rencontre d€39] C. Ciofi degli Atti, L. Frankfurt, S. Simula, and M. Strikman,

Moriond, edited by J. Tran Thanh VatEditions Frontieres,
Gif-sur-Yvette, France, 1982p. 13.

[22] S. J. Brodsky, irProceedings of Thirteenth International Sym-

Phys. Rev. (44, 7 (199).
[40] L. Frankfurt, M. I. Strikman, D. B. Day, and M. M. Sargsyan,
Phys. Rev. (48, 2451(1993.



