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Feynman graphs and generalized eikonal approach to high energy knock-out processes
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The cross section of hard semiexclusiveA(e,e8N)(A21) reactions for fixed missing energy and momentum
is calculated within the eikonal approximation. Relativistic dynamics and kinematics of high energy processes
are unambiguously accounted for by using the analysis of appropriate Feynman diagrams. A significant de-
pendence of the final state interactions on the missing energy is found, which is important for interpretation of
forthcoming color transparency experiments. A new, more stringent kinematic restriction on the region where
the contribution of short-range nucleon correlations is enhanced in semiexclusive knock-out processes is
derived. It is also demonstrated that the use of light-cone variables leads to a considerable simplification of the
description of high energy knock-out reactions.
@S0556-2813~97!06208-0#
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I. INTRODUCTION

With the advance of high energy, high intensity electr
facilities ~see, e.g.,@1–3#! the high momentum transfe
semiexclusive reactions are becoming a practical tool for
investigation of the microscopic structure of nuclei, nucle
matter, and the color transparency phenomenon. Howe
theoretical methods which were successful in medium
ergy nuclear physics should be upgraded in order to desc
processes where energies transferred to a nuclear targe
* f ew GeV. This paper focuses on the calculation of t
influence of the final state interactions~FSI’s! on high energy
hard semiexclusiveA(e,e8N)X reactions, for energies o
knocked out nucleonEN>1 GeV and for statesX represent-
ing ground or excited states of the residual nucleus.

At energiesEN<1 GeV the final state interactions~FSI’s!
are usually evaluated in terms of interactions of knock-
nucleons with an effective potential of the residual system
the optical model approximation~see, for example, Ref.@4#!.
Parameters of the effective potential are adjusted to desc
data on elasticN2(A21) scattering for projectile energie
close toEN . Two important features of high energy FSI
make the extension of the medium energy formalism to h
energies problematic. First, the number of essential pa
waves increases rapidly with the energy of theN,(A21)
system. Second, theNN interaction, which is practically
elastic forEN<500 MeV, becomes predominantly inelast
for EN.1 GeV. Hence the problem of scattering can har
be treated as a many body quantum mechanical prob
Introducing in this situation a predominantly imaginary p
tential to account for hadron production~not only for excita-
tions of residual system as in the case of intermediate e
gies! is not a well-defined mathematical concept.
theoretical methods successful below 1 GeV become inef
tive at the energies which can be probed at Jefferson Lab@1#,
HERMES @2#, and ELFE@3#.
560556-2813/97/56~2!/1124~14!/$10.00
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FSI’s at higher energies (EN.1 GeV! are often described
within the approximation of the additivity of phases, a
quired in the sequential rescatterings of high energy pro
tiles off the target nucleons~nonrelativistic Glauber mode
@5#!. This approximation made it possible to describe t
data on elastichA scattering at hadron energies 1 Ge
,Eh,10215 GeV~cf. Refs.@6,7#!. It has also been applied
to the description of cross sections ofA(e,e8N)(A21) re-
actions @8–18# integrated over the excitation energie
(Eexc) of the residual (A21) nucleon system, for small mo

mentum of the residual systempW A21<pF . In @19,20# the
cross section ofA(e,e8N)(A21) reactions has been calcu
lated for small excitation energies that are characteristic
particular shells of a target nucleus withA*12216. Thus
the dependence of FSI’s on missing energyEm (;Eexc) was
not essential in the previous calculations. Furthermore su
dependence is not important for total cross sections, sm
angle coherent and noncoherent~summed over residua
nuclear excitations! scatterings inhA reactions. However the
dependence of FSI’s on the missing energy is part of
color transparency phenomena in high energy quasiela
processes where restrictions on the missing energy shou
imposed to suppress inelastic processes where pions are
duced@21,22#. It is also important in the studying of shor
range nucleon correlations in nuclei in semiexclusive re
tions, where large value of missing energy should
ensured.

In this paper we consider high energy semiexclus
A(e,e8N)(A21) reactions, where both missing momentu
and missing energy are fixed. We investigate the impli
tions of the nonzero value of the missing energy on the
of the knocked-out nucleon.

The linear increase with incident energy of the cohere
length of strong interactions leads to a change of the un
lying physical picture of hadron-nucleus scattering — fro
1124 © 1997 The American Physical Society
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56 1125FEYNMAN GRAPHS AND GENERALIZED EIKONAL . . .
sequential rescatterings to coherent interactions with
nucleons at a given impact parameter. The first evidence
that was obtained by Mandelstam@23# who analyzed plana
Feynman diagrams corresponding to rescattering diagram
the nonrelativistic Glauber approximation. He found that
contribution of these diagrams tends to zero in the high
ergy limit.

Later on Gribov@24# developed a quantitative theory o
high energyhA interactions and demonstrated that the sm
value of the ratio of inelastic diffractive and elastic cro
sections serves as a small parameter, justifying Glauber-
formulas. We restrict the analysis in the paper to the rang
energies where inelastic diffraction in the soft hadron p
cesses is a small correction~i.e., energies of the knocked-ou
nucleon&10 GeV!. We also restricted by the photon virtu
alities Q2;123 GeV2, where color coherent phenomen
are expected to be a small correction. At largerQ2 the de-
duced formulas can be used as a baseline model for se
ing for color coherent phenomena.~Note that the small ratio
of inelastic and elastic diffraction reflects a small dispers
of strengths of interaction for soft processes. These fluc
tions are naturally much larger in the case of hard proce
where a probe selects a rare, small size configuration in
struck nucleon. For a review of the physics of the color c
herence phenomena see Refs.@25,26#!.

At large Q2 and small struck nucleon momenta it is sa
to neglect the dependence of theeN scattering amplitude on
nucleon binding since the energy scale of the hard interac
is much larger than the nuclear energy scale. At the sa
time, when missing momenta and missing energies rele
for knock-out processes are comparable with the Fermi
menta and the nucleon binding energy, it is necessary to
them into account in the calculation of the nuclear part of
scattering amplitude. Obviously, this cannot be done un
biguously within the optical model and the Glauber-type a
proximations, which neglect nucleon Fermi momenta in
nuclei. To calculate FSI’s of the knocked-out nucleon
derive the formulas of the eikonal approximation which a
count for the nucleon Fermi motion. Our derivation is bas
on the analysis of the Feynman diagrams correspondin
the A(e,e8N)X reaction.

The method of the derivation of the formulas of the eik
nal approximation on the basis of the analysis of the relev
Feynman diagrams has been suggested long ago for ha
nucleus collisions in Refs.@27,28#. It has been shown in
Refs. @27,28# under what conditions the Feynman diagra
description of the hadron-nucleus scattering processes l
to the optical model or the Glauber-type approximation. T
main advantage of the Feynman graph approach is th
takes into account the relativistic kinematics of high ene
processes. Particularly, it accounts for an important fea
of high energy small-angle elastic~diffractive! scatterings —
the conservation of the light-cone momentump2

[Am21p22pz , where pz is the component of nucleo
Fermi momentumpW in the projectile momentum direction. I
the present paper we apply this method to calculate FSI’
A(e,e8N)(A21) reactions and extend the results of@29# for
the 2H(e,e8)(pn) process to the case of nucleon knock-o
processes off3He(3H) @Eq. ~33!#. After deriving formulas of
the impulse approximation, single and double rescatte
terms, we generalize the obtained results to the case
ll
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nucleus with arbitraryA. In the case of a deuteron target w
found significant effects of the missing energy@29# ~Fig. 3!.
We demonstrate that even larger effects are expected
knock-out of nucleons off3He,4He targets.

It follows from the formulas derived in the paper th
when missing momenta and energy are not negligible
knock-out reactions, the optical model approximation b
comes unreliable. Also, we found in this kinematics sign
cant corrections to the conventional Glauber-type formu
~Fig. 4!.

Based on the analysis of the derived formulas, we de
mine optimal kinematic conditions for the investigation
the short-range nucleon correlations in nuclei in sem
inclusive reactions. In particular, if one wants to use for su
investigations kinematicsxB j.1, it is necessary to impos
additional conditions on the recoil energy of the residu
system@Eq. ~40!#. Such conditions allow one to suppress t
contribution of the low momentum component of the nucle
wave function due to FSI’s~Sec. IV!.

We demonstrate also that light-cone kinematics of
high-energy knock-out reaction is naturally accounted fo
nucleon Fermi momenta in the nucleus are parametrize
terms of the light-cone variables.

II. SCATTERING AMPLITUDE

In this section we consider the scattering amplitude fo
knocked-out nucleon to undergon rescatterings off the
nucleons of the (A21) residual system. The casen50 cor-
responds to the impulse approximation~IA ! in which the
knocked-out nucleon does not interact with residual nucle
We systematically neglect in this paper the diffractive ex
tation of the nucleons in the intermediate states. In soft Q
processes this is a small correction for the knock-out nucl
energies&10 GeV. In the hard processes@that is whenQ2

virtuality of the photon is sufficiently large (*628
GeV2)# such an approximation cannot be justified ev
within this energy range, see, for example, discussion in R
@25#. However, our aim is to perform calculations in the k
nematics where the color transparency phenomenon is s
small correction.

The scattering amplitude can be represented by covar
Feynman diagrams of Fig. 1, in the approximation when o
elastic rescatterings are accounted for, as:

FIG. 1. n-fold rescattering diagram.
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where, for the sake of simplicity, we neglected the spin
pendent effects. HerePA andPA21 are the four-momenta o
the target nucleus and the final (A21) system,pj andpj8 are
nucleon momenta in the nucleusA and residual (A21) sys-
tem, respectively.(h in Eq. ~1! goes over virtual photon
interactions with different nucleons, whereFh

em(Q2) are
electromagnetic vertices.2D(pk)

215(pk
22m21 i e)21 is

the propagator of a nucleon with momentumpk . The
f k

NN(pk11 ,pk118 ) is the amplitude of NN scattering,
ds/dt;u f u2/sk

2 , wheresk is the total invariant energy of two
interacting nucleons.2D( l k)

21 is the propagator of the
struck nucleon in the intermediate state, with moment
l k5q1p11( i 52

k (pi2pi8) between the (k21)th and kth
rescatterings. The factorn!(A2n21)! accounts for the
combinatorics ofn rescatterings and (A2n21) spectator
nucleons. Following Ref.@27# we choose the ‘‘minus’’ sign
for the nucleon propagators to simplify the calculation of t
overall sign of the scattering amplitude — for each clos
contour one gets the factor 1/i (2p)4 with no additional sign.

The vertex functions GA(p1 , . . . ,pA) and
GA21(p28 , . . . ,pA) describe transitions of ‘‘nucleus A’’ to
‘‘A nucleons’’ with momenta$pn% and transitions of‘‘(A 21)
nucleons’’ with momenta $pn8% to ‘‘(A 21) nucleon final
state,’’ respectively. The intermediate spectator state in
diagram of Fig. 1 is expressed in terms of nucleons beca
the closure over various nuclear excitations in the interme
ate state is used~for the details see Appendix A!. After
evaluation of the intermediate state nucleon propagators
covariant amplitude will be reduced to a set of time orde
noncovariant diagrams. This will help to establish the cor
spondence between the vertex functions and the nuc
wave functions. We derive formulas for the impulse appro
mation and first two rescattering terms~i.e., single and
double rescattering!. To simplify derivations we conside
(e,e8N) reactions off a three-nucleon system~see Fig. 2! and
then generalize obtained results to an arbitraryA.

III. IMPULSE APPROXIMATION

First, we consider theA(e,e8N)(A21) reaction, where
the final state consists of a noninteracting energetic nuc
N and an (A21) residual state which can be either t
nuclear bound state or break up system of (A21) nucleons.
For the scattering off a three-nucleon system this reac
corresponds to the covariant diagram of Fig. 2~a!, which is
then50 term in the scattering amplitude of Eq.~1!. For the
n50 term of Eq. ~1!, performing the integrations overd
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functions due to the energy-momentum conservation we
tain

F ~a![FA,A21
~0! ~q,pf !

5E d4p3

GA~p1 ,p2 ,p3!F1
em~Q2!G~p2 ,p3!

D~p1!D~p2!D~p3!
, ~2!

where

p15PA2PA21 ,

p21p35PA21 . ~3!

HereGA andGA21 correspond to the nuclear vertices repr
sented in Fig. 2, by open and solid circles, respectively.
Eqs. ~2! and ~3! p1 is the momentum of the interactin
nucleon andp2, p3 are the momenta of spectator nucleon
To simplify the derivation we neglect the antisymmetrizati
of the initial and final nucleon states, which can be eas
accounted for through the corresponding wave functions~see
below!.

The scattering amplitudeF (a) is Lorenz invariant and cor-
responds to the sum of the noncovariant diagrams with
ferent time orderings between nuclearGA , GA21 and elec-
tromagnetic verticesFh

em. The impulse approximation
corresponds to the time ordered noncovariant diagram of
2~a!, where the virtual photon is absorbed by a target nucle
which does not interact in the final state. Other time ord
ings correspond to vacuum fluctuations.

We will perform a calculation in the nucleus rest frame
the kinematics where Fermi momenta of target nucleons

FIG. 2. Feynman diagrams corresponding to3He(e,e8p)pn
scattering. Dashed lines represent effectiveNN scattering, the solid
circle represents the residual interaction between spectator n
ons.
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not large. Hence we will restrict the consideration to t
range of missing momentapm and missing energiesEm :

upW mu[upW f2qW u&400 MeV/c,

a[
Ef2pf z

m
2

qo2uqW u
m

'
m2Em2pmz

m
'160.3, ~4!

wherepW f is the momentum of a final knocked-out nucleo
q0 andqW are the energy and momentum of a virtual photo
The z axis is chosen in theqW direction. The direction trans
verse toqW would be labeled byt. Em[EA211m2EA . a is
the light-cone fraction of the momentum of the target carr
by an interacting nucleon scaled to vary between 0 andA.

If we restrict by the kinematics defined in Eq.~4!, then in
the set of noncovariant diagrams, comprising the covar
diagram of Fig. 2~a!, one can neglect the diagrams whic
correspond to the vacuum fluctuations~see, e.g., Refs.@30#!.
The latter become increasingly important at larger Fermi m
menta of the target nucleons. An effective method to acco
for the diagrams with vacuum fluctuations is the light-co
approach@30–34# where for some components of the ele
tromagnetic current~‘‘good’’ components! their contribution
is suppressed and the scattering amplitude has a form ra
similar to the conventional impulse approximation. Th
physics, being interesting by itself, is beyond of the scope
this paper.

Overall in the discussed kinematics@Eq. ~4!# the relativ-
istic effects in the nuclear wave function are a small corr
tion @30,29# and the impulse approximation can be calcula
via nonrelativistic reduction of the covariant nuclear vertic
in Eq. ~2!. Such a reduction corresponds to taking the resi
overdp3

0, at the nearest nucleon pole in the spectator nucl
propagatorD(p3)21. Thus we neglect non-nucleon degre
of freedom in a nucleus. The restriction by the nearest p
in the nucleon propagators follows from the observation t
in the considered kinematics~4!, where nuclear excitation
,
.

d
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-
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-
d
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are small as compared to the scale of energies characte
for the nucleon excitations, this is the only pole not cor
sponding toNN̄ production. Neglect of discontinuities re
lated to the thresholds of pion production is justified in QC
because, for a small pion momenta, the pions are Golds
bosons of spontaneously broken chiral symmetry~see the
discussion in Ref.@31#!.

Taking residue over the spectator nucleon propagator
fectively corresponds to the replacement

E dp3
0

2p i

1

D~p3!
→

1

E3
'

1

2m
.

After this integration one is left with the time ordered di
gram corresponding to the IA, where the virtual phot
knocks out the target nucleon with momentump1, leaving
the residualA21 nucleus with a particular excitation energ
Eexc5Em2pm

2 /MA212ueAu whereeA is the binding energy
of the target nucleus. Nonrelativistic reduction allows one
define the momentum space wave function through the
tex function as~c.f. Refs.@27,28#!:

cA~p1 ,p2 , . . . ,pA!

5
1

@A~2p!32m#A21

GA~p1 ,p2 , . . . ,pA!

D~p1!
, ~5!

where wave functions are normalized as

E ucA~p1 ,p2 , . . . ,pA!u2d3p1d2p2•••d
3pA51.

We define the wave function of the final~residual nucleus1
knocked-out nucleon! state ascA21 /A2m, wherecA21 de-
fined according to Eq.~5!, with A replaced byA21 and the
additional factor 1/A2m, accounts for the normalization o
the knocked-out nucleon wave function. With these defi
tions Eq.~2! obtains the form of the conventional IA expre
sion:
tri-
T~a!5A~2p!3~2p!3E d3p3cA~pm ,p2 ,p3!F1
em~Q2!cA21

1 ~p2 ,p3!, ~6!

wherepW m5pW f2qW is the measured missing momentum, andpW 252pW 32pW m . The spin and isospin indices and antisymme
zation of wave functions are implicit in Eq.~6!.

Introducing the coordinate space wave functions forcA andcA21 as

c j~p1 ,p2 , . . . ,pj !5S 1

A~2p!3D jE d3x1d3x2 , . . . ,d3xje
2 i ~xW1•pW 11xW2•pW 21•••1xW j •pW j !fA~x1 ,x2 , . . . ,xj !, ~7!

where j [A,A21 we can represent the IA amplitude as follows:

T~a!5E d3x1d3x2d3x3fA~x1 ,x2 ,x3!F1
em~Q2!eixW1•q

W
fA21

† ~x2 ,x3!e2 ixW1•pW f

5E d3x1d3x2d3x3fA~x1 ,x2 ,x3!F1
em~Q2!e2 i ~3/2!pW m•x

W
1fA21

† ~x22x3!. ~8!



part
s

tor

section,

m,
r nucleon:

duction

.

for the

1128 56L. L. FRANKFURT, M. M. SARGSIAN, AND M. I. STRIKMAN
We definex1 as the coordinate of the struck nucleon, andx2, x3 as coordinates of the residual nuclear system. In the last
of Eq. ~8! we introduce the wave function of the residual nuclear system with separated internal and center of mas~c.m.!
motion by

fA21~y2 ,y3!5f~y22y3!ei [ ~yW21yW3!/2]•pW c.m., ~9!

with pW c.m. is the c.m. momentum of the residual two-nucleon system.
Obviously, as follows from Eqs.~6! and~8!, within the impulse approximation measuringq andpf one directly measures

the Fermi momentum of a nucleon in the nucleus:pW 15pW m5pW f2qW .

IV. SINGLE RESCATTERING AMPLITUDE

The diagrams of Figs. 2~b! and 2~c! describe the processes where the struck~fast! nucleon rescatters off one of the specta
nucleons. The general expression for the amplitude corresponding to the diagram, Fig. 2~b!, is given by then51 term of Eq.
~1! as

T~b!5E G~p1 ,p2 ,p3!

D~p1!D~p2!D~p3!
F1

em~Q2!
f NN~p282p2!

D~p11q!

G~p28 ,p3!

D~p28!

d4p2

i ~2p!4

d4p3

i ~2p!4 , ~10!

where

p15PA2p22p3 , p285PA212p3 . ~11!

Our interest is in the kinematics where the contribution of the vacuum diagram is negligible, thus as in the previous
we can perform the integration over thed0p2d0p3 by taking residues over the poles in the nucleon propagatorsD(p2)21 and
D(p3)21. The integration results in the replacement

E dp2,3
0

2p i

1

D~p2,3!
→

1

2E2,3
'

1

2m
.

After the integrations overd0p2d0p3 are performed, the diagram of Fig. 2~b! becomes the noncovariant time ordered diagra
where a virtual photon is absorbed by the target nucleon, and then the produced fast nucleon rescatters off a spectato

T~b!5
1

A2m•~2m!2E G~p1 ,p2 ,p3!

D~p1!
F1

em~Q2!
f NN~p282p2!

D~p11q!

G~p28 ,p3!

D~p28!

d3p2

~2p!3

d3p3

~2p!3 . ~12!

The definition of the momentum space wave functions is now straightforward. It corresponds to the nonrelativistic re
of the nuclear verticesGA andGA21 as given by Eq.~5!. Hence we obtain

T~b!5
A~2p!3~2p!3

2m E cA~p1 ,p2 ,p3!F1
em~Q2!

f NN~p282p2!

D~p11q!
cA21~p28 ,p3!

d3p1

~2p!3

d3p3

~2p!3 . ~13!

HereD(p11q)21 describes the struck nucleon propagator before the rescattering:

2D~p11q!5~p11q!22m21 i e5p1
212p1q1q22m21 i e'2qF2mq02Q2

2q
2p1z1 i eG , ~14!

whereq[uqW u and because of the nonrelativistic approximation for the nuclear wave function~see Appendix A! we neglect
p1

2/2m2 as compared to 1. The factor (2mq02Q2)/2q is fixed by the external kinematics, since bothq0 andQ2 are measured
It follows from (q1pA2pA21)25m2 that

2mq02Q2

2q
5pz

m1
q0

q
~m1EA212MA!1

m22m̃2

2q
'pz

m1D0 , ~15!

wherepz
m5pf z2q, m̃2[@pA2pA21#2 is the virtuality of the interacting nucleon, and

D05
q0

q
~m1EA212MA![

q0

q
Em , ~16!

whereEm5q01m2Am21pf
2 is the missing energy in the reaction. In the case of the three-body breakup kinematics

scattering off the3He targetEm5Tpn1uebu, whereTpn is the kinetic energy of the spectator~two-nucleon! system anduebu is
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the modulus of the target binding energy. On the right-hand side of Eq.~15! we neglected the term (m22m̃2)/2q related to the
virtuality of the interacting nucleon since at fixed recoil energy this factor is of the order ofO(Em /q) and its contribution
decreases with the increase of the transferred momentumq.

Inserting Eq.~15! into the expression for the propagator of a knocked-out nucleon~14! and redefining theNN scattering
amplitude asf NN/2qm5 f NN, to be in accordance with the optical theorem in the form Imf NN(t50)5s tot

NN , we obtain

T~b!52
A~2p!3~2p!3

2 E cA~p1 ,p2 ,p3!F1
em~Q2!

f NN~p282p2!

@pz
m1D02p1z1 i e#

cA21~p28 ,p3!
d3p1

~2p!3

d3p3

~2p!3 . ~17!

We can perform an integration overp1z by transforming integrals into the coordinate space representation and using th
that for the softNN scatterings, at high energies,f NN(p282p2)' f NN(p2t8 2p2t). Using the coordinate space representation
the nuclear wave functions given by Eq.~7! and the coordinate space representation of the nucleon propagators

1

@pz
m1D02p1z1 i e#

52 i E Q~z0!ei ~pm
z

1D02p1z!z0
dz0, ~18!

we obtain for the single rescattering amplitudeF (b) ~see Appendix B!:

T~b!5
i

2E d3x1d3x2d3x3fA~x1 ,x2 ,x3!Q~z22z1!ei ~bW 22bW 1!•kW tF1
em~Q2! f NN~p2t8 2p2t!e

iD0~z22z1!e2 i ~3/2!pW m•x
W

1f†~x22x3!
d2k

~2p!2 ,

~19!

wherekW t5pW 1
t 2pW m

t 5pW 82t2pW 2t is the momentum transferred in the rescattering andbW 1, bW 2 are transverse components of th

vectorsxW1, andxW2. It is convenient to introduce the generalized profile function@29#:

GNN~x,D!5
1

2i
eiDzE f NN~kt!e

ibW •kW t
d2kt

~2p!2 . ~20!

Using GNN(x,D), we can write Eq.~19! in a form resembling the Glauber theory expression for single rescattering:

T~b!52E d3x1d3x2d3x3fA~x1 ,x2 ,x3!F1
em~Q2!Q~z22z1!GNN~x22x1 ,D0!e2 i ~3/2!pW m•x

W
1f†~x22x3!. ~21!

The amplitude for the single rescatteringT(c), corresponding to Fig. 2~c!, can be obtained from Eq.~21! replacingr 2↔r 3.
Thus the whole amplitude, which includes the IA and the single rescattering contributions is

T~a!1T~b!1T~c!5E d3x1d3x2d3x3fA~x1 ,x2 ,x3!F1
em~Q2!@11T̂FSI

~1!#e2 i ~3/2!pW m•x
W

1f†~x22x3!, ~22!

where

T̂FSI
~1!5Q~z22z1!GNN~x22x1 ,D0!1Q~z32z1!GNN~x32x1 ,D0! ~23!

is the operator of the FSI corresponding to the single rescattering contribution. Equation~23! can be generalized for th
scattering off a nucleus with atomic numberA as follows:

T̂FSI~1!511(
j 52

A

Q~zj2z1!GNN~x12xj ,D0!. ~24!

The deduced operator for the FSI has the form analogous to the familiar operator deduced within the nonrelativistic
approximation@5#. The key difference is that the profile functionG is modified by the additional phase factoreiDz. This factor
accounts for the geometry of high energy processes related to the longitudinal momentum transfer in the rescattering.
similar factor is present in the expressions for the diffractive photoproduction of vector mesons@6,35#, where it accounts for
the difference between the masses of final vector mesons and the initial~virtual! photon (utminu.0). In this case it reflects finite
longitudinal distances (<RA) for photoproduction at intermediate energies. In our case the factorD0 arises from excitations in
the residual nuclear system@see Eq.~16!#.

To illustrate the importance of the derived modification of the scattering operator we calculate the cross sec
(e,e8N) scattering off the deuteron target where Eq.~24! provides the complete form for the FSI operator@29#. Figure 3
represents the ratio of the full cross section to the cross section calculated within the impulse approximation. F
momenta of a target nucleon (ps,100 MeV/c) or for small excitation energies (Em'ps

2/2m) predictions of a generalized
eikonal approximation~solid line! and conventional Glauber approximation~dashed line! coincidence. This demonstrate
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the consistency of our approach with the Glauber approximation where target nucleons are interpreted as a stationary
and their Fermi momenta have been neglected. However at larger Fermi momenta~or excitation energies! predictions of both
approaches are considerably different. For example, forps5400 MeV/c the prediction for angular dependence of the maxim
contribution from the rescattering amplitude~i.e., the position of the maximum in Fig. 3! differs by as much as 30°. Such
difference is quite dramatic and can be checked in the forthcoming experiments at Jefferson Laboratory@36,37#. Practically the
same difference arises for example in the break up of3He if one of spectators has momentump;0 @37#.

V. DOUBLE RESCATTERING AMPLITUDE

The diagrams of Figs. 2~d! and 2~e! describe the amplitude of the process where the struck nucleon rescatters sequ
off both spectator nucleons. From Eq.~1! choosingn52, for the double rescattering amplitude of Fig. 2~d!, we obtain

T~d!5E G~p1 ,p2 ,p3!

D~p1!D~p2!D~p3!
F1

em~Q2!
f NN~p282p2!

D~p11q!

f NN~p382p3!

D~p11q1p22p28!

G~p28 ,p38!

D~p28!D~p38!

3d4~pA2p22p32p1!d4~pA212p282p38!d4p1d4p2d4p3d4p28d
4p38F 1

i ~2p!4G3

5E G~p1 ,p2 ,p3!

D~p1!D~p2!D~p3!
F1

em~Q2!
f NN~p282p2!

D~p11q!

f NN~p382p3!

D~p11q1p22p28!

G~p28 ,p38!

D~p28!D~p38!

d4p2

i ~2p!4

d4p3

i ~2p!4

d4p38

i ~2p!4 , ~25!

where

p15PA2p32p2 , p285PA212p38 . ~26!

Then, using the same approximations as for the cases of IA and single rescattering amplitudes we can perform integra
d0p2, d0p3, d0p38 , which effectively results in the replacement*@d0pj /2p iD (pj )#→1/2Ej'1/2m ( j 52,3,38).

Using Eq.~26! and the definition of the initial and final state wave functions from Sec. III we obtain

T~d!5
A~2p!3~2p!3

4m2 E cA~p1 ,p2 ,p3!F1
em~Q2!

f NN~p282p2!

D~p11q!

f NN~p382p3!

D~p11q1p22p28!
cA21~p28 ,p38!

d3p1

~2p!3

d3p3

~2p!3

d3p38

~2p!3 ,

~27!

whereD(p11q) is given by Eq.~14!. Using Eq.~26! we can rewriteD(p11q1p22p28) as

2D~p11q1p22p28!52D~q1pA2pA211p382p3!5~q1pA2pA211p382p3!22m21 i e

'2qFq0

q
~E382E3!2~p3z8 2p3z!1 i eG5@D32~p3z8 2p3z!1 i e#. ~28!

In the derivation of Eq.~28! we use the kinematic condition for the quasielastic scattering: (q1pA2pA21)25m2 and define
D35(q0 /q)(E382E3). Similar to the previous section after redefining theNN amplitude asf NN/2qm→ f NN we obtain

T~d!5
A~2p!3~2p!3

4 E cA~p1 ,p2 ,p3!F1
em~Q2!

f NN~p282p2!

pz
m1D02p1z1 i e

•

f NN~p382p3!

D32~p3z8 2p3z!1 i e
cA21~p28 ,p38!

d3p1

~2p!3

d3p3

~2p!3

d3p38

~2p!3 .

~29!

Integration in Eq.~29! can be performed in the coordinate space using the Fourier transformation of the wave fun
according to Eq.~7! and nucleon propagators according to Eq.~18!. For the double rescattering amplitude,T(b), we obtain~see
Appendix B!

T~d!5
i 2

4E d3x1d3x2d3x3fA~x1 ,x2 ,x3!F1
em~Q2!FQ~z22z1! f NN~k2t!e

ikW2t•~bW 22bW 1!ei ~D02D3!~z22z1!
d2k2

~2p!2G
3FQ~z32z2! f NN~k3t!e

ikW3t•~bW 32bW 1!eiD3~z32z1!
d2k3

~2p!2Ge2 i ~3/2!xW1•pW mf†~x22x3!, ~30!

wherek2t andk3t are the momenta transferred in the first and second rescattering vertices in Fig. 2~d!.
For a complete calculation of the double rescattering term one should take into account the amplitudeF (e) too, which

corresponds to Fig. 2~e!. This amplitude can be derived from Eq.~30! by interchanging coordinates of nucleons ‘‘2’’ and ‘‘3.
Finally, using the definition of the modified profile functions from Eq.~20! we obtain forT(d)1T(e)



ck-out

ar wave
tions for

of
‘‘2,’’

ntering

56 1131FEYNMAN GRAPHS AND GENERALIZED EIKONAL . . .
T̂~2![T~d!1T~e!5E d3x1d3x2d3x3fA~x1 ,x2 ,x3!F1
em~Q2!O~2!~z1 ,z2 ,z3 ,D0 ,D2 ,D3!

3GNN~x22x1 ,D0!GNN~x32x1 ,D0!e2 i ~3/2!xW1•pW mf†~x22x3!. ~31!

Here T̂FSI
(2) is the operator of FSI describing the double rescattering contribution and we introduce theO function which

accounts for the geometry of two sequential rescatterings as

O~2!~z1 ,z2 ,z3 ,D0 ,D2 ,D3!5Q~z22z1!Q~z32z2!e2 iD3~z22z1!ei ~D32D0!~z32z1!

1Q~z32z1!Q~z22z3!e2 iD2~z32z1!ei ~D22D0!~z22z1!. ~32!

Equations~8!, ~21!, ~22!, and ~31! represent the complete set of scattering amplitudes necessary to calculate kno
reactions off the3He(3H) target:

T~a!1T~b!1T~c!1T~d!1T~e!5E d3x1d3x2d3x3fA~x1 ,x2 ,x3!F1
em~Q2!@11T̂FSI

~1!1T̂FSI
~2!#e2 i ~3/2!pW m•x

W
1f†~x22x3!. ~33!

It is worth noting that in the derivation of the above formulas no specific assumptions have been made on the nucle
functions. Therefore realistic wave functions of nuclei can be implemented to calculate the high energy knock-out reac
different configurations of the residual two-nucleon system.

Equation~31! can be generalized to calculate the double rescattering amplitude for (e,e8N) reactions off theA nucleus as
follows:

T̂FSI
~2!5 (

i , j 52;iÞ j

A

O~2!~z1 ,zi ,zj ,D0 ,D i ,D j !G
NN~xi2x1 ,D0!GNN~xj2x1 ,D0!. ~34!

Generalization of the FSI operatorT̂FSI
(2) to multiple rescatterings is straightforward:

T̂FSI
~n!5 (

i , j ,..n52;iÞ j Þ . . . n

A

O~n!~z1 ,zi ,zj , . . . ,zn ,D0 ,D i ,D j•••Dn!GNN~xi2x1 ,D0!•GNN~xj2x1 ,D0!•••GNN~xn2x1 ,D0!,

~35!

where

O~n!~z1 ,zi ,zj , . . . ,znD0 ,D i ,D j•••Dn!5 (
perm

Q~zi2z1!Q~zj2zi !•••Q~zn2zn21!ei ~D02D j 2•••Dn!~zi2z1!

3eiD j ~zj 2z1!
•••eiDn~zn2z1!e2 iD0~zi1zj 1•••zn2n3z1!. ~36!

The sum in Eq.~36! goes over all permutations betweeni , j , . . . ,n. We would like to draw attention that the contribution
diagrams, where the ejected nucleon interacts with say nucleon ‘‘2’’ then with nucleon ‘‘3’’ and then again with nucleon
is exactly zero. In coordinate representation this follows from the structure of the product ofQ functions. In the momentum
representation this follows from the possibility to close the contour of integration in the complex plane without encou
nucleon poles~see the discussion in Sec. II C of Ref.@38#!.

It is easy to check that in the case of small excitation energies, i.e., (D0, D i , D j•••Dn→0),

O~n!~z1 ,zi ,zj , . . . ,zn ,D0 ,D i ,D j , . . . ,Dn!uD0 ,D i ,k,n→0⇒Q~zi2z1!Q~zj2z1!•••Q~zn2z1!, ~37!
m
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and Eqs.~34! and~35! are reduced to the conventional for
of the Glauber approximation, with a simple product of t
Q functions. Within this particular approximation the su
over all n-fold rescattering amplitudes can be represented
the form of an optical potential.

However, usually in the high energy (e,e8N) reaction the
excitation energies are not too small. The use of theO(n)

(z1 ,zi ,zj , . . . ,zn ,D0 ,D i ,D j , . . . ,Dn), defined according to
Eq. ~36! instead of a simple product ofQ functions is the
generalization of a nonrelativistic Glauber approximation
in

the processes where comparatively large excitation ener
are important.

The practical consequence of the difference betw
O(n) and the usualQ functions is that for sufficiently large
excitation energies the sum ofn-fold rescatterings differs
substantially from the simple optical model limit. To illus
trate the deviations from the conventional Glauber appro
mation~which is expressed by using a simple product of t
Q functions! in Fig. 4 we compare the O(2)

(z1 ,z2 ,z3 ,D0 ,D1 ,D2) function with Q(z22z1)Q(z32z1)



-

a-
ha
-
lu
le
ls

x
i

tio

n

g
ve

m
a

iss-
s-

ni-
the

ed
y

e
am-
h
due

he
c-

m

er-

rd

ro-
n

s

n

y

1132 56L. L. FRANKFURT, M. M. SARGSIAN, AND M. I. STRIKMAN
for (e,e8p) scattering off the3He target. We use the kine
matics for three-body breakup in the final state. Figure
demonstrates a considerable deviation betweenO(2) and the
product ofQ functions already at comparatively low excit
tion energies. For example, the real parts differ by more t
20% already for;60 MeV, leading to a comparable differ
ence of the double rescattering amplitude calculated inc
ing effects of longitudinal momentum transfer. The detai
numerical studies of these effects will be presented e
where.

Thus we conclude that the conventional Glauber appro
mation which neglects nuclear Fermi motion is applicable
the case of small values of the residual nucleus excita
energies only.

VI. FSI AND THE STUDY OF SHORT-RANGE NUCLEON
CORRELATIONS IN NUCLEI

It is generally believed that experimental conditio
upW mu5upW f2qW u.kF ~wherekF;250 MeV/c is the momen-
tum of the Fermi surface for a given nucleus! will enhance
the contribution to the cross section from the short-ran
nucleon correlations in the nucleus wave function. Howe
the simple impulse approximation relation@Eq. ~6!# is, in
general, distorted by the FSI. Let us denote the internal
mentum of the knock-out nucleons prior to the collision
pW 1(p1z ,p1t). It follows from Eqs.~19! and ~30! that

pW 1t5pW mt2kW t , ~38!

FIG. 3. Dependence ofk, the ratio of thed(e,e8p)n cross sec-
tion calculated including the the IA and FSI terms to the cro

section which includes the IA term only, on the angleQpW sq
W[pW sqŴ

for different spectator momentaps . The solid line corresponds to
FSI’s, calculated according to Eqs.~17!–~24!, the dashed line cor-
responds to the FSI calculated according to the conventio
Glauber approximation.
4

n

d-
d
e-

i-
n
n

e
r

o-
s

wherepW mt is the transverse component of the measured m
ing momentum, andkt is the momentum transferred in re
cattering. The averagêkW t

2&;0.1 GeV2 in the integral over
kt is determined by the slope of theNN amplitude. The
longitudinal component of the nucleon momentum in the i
tial state can be evaluated through its value in the pole of
rescattered nucleon propagator@see, e.g., Eqs.~17! and~29!#:

p1z5pm
z 1D0 , ~39!

where pm
z is the longitudinal component of the measur

missing momentum andD0 represents the excitation energ
of the residual nuclear system@see Eq.~15!#. D0 is always
positive @Eq. ~16!#. Thus, if measuredpzm.kF then, p1z is
even larger, i.e., (pz1.pzm) and therefore the FSI amplitud
is as sensitive to the short-range correlations as the IA
plitude. In particular, within the approximation when hig
momentum component of the nuclear spectral function is
to two-nucleon short-range correlations@30,39# the condition
pzm.kF corresponds to projectile electron scattering off t
forward moving nucleon of the two-nucleon correlation a
companied by the emission of backward nucleon.

The situation is opposite if measured momentu
pzm,2kF . It follows from Eq. ~39! that, in this case, the
momenta in the wave function contributing to the rescatt
ing amplitude are smaller than those for the IA:up1

zu
5upm

z u2D0,upm
z u.

Experimentally, this situation corresponds to the forwa
nucleon electroproduction atQ2/2mq0[x.1. However an
important feature in this case is that in exclusive electrop
duction the value ofD0 is measured experimentally and ca

s

al

FIG. 4. Dependence ofO(2)(z1 ,z2 ,z3 ,D0 ,D1 ,D2) and
Q(z22z1)Q(z32z1) on z3 for different values of missing energ
Em for z150, z251.5 fm and D15D250. ~a! Comparison of
ReO(2)(•••) ~solid line! with ReQ(z22z1)Q(z32z1)51 ~dashed
line! and ~b! comparison of ImO(2)(•••) ~solid line! with
ImQ(z22z1)Q(z32z1)50 ~dashed line!.
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be easily chosen so that momenta entering in the gro
state wave function would be larger thankF . Therefore to
investigate the short-range correlations in the (e,e8p) reac-
tions for x.1, we have to impose an additional condition

upm
z u2D0.kF , ~40!

to suppress the contribution from large internucleon d
tances.

Overall, we observe that in order to study short-ran
nucleon correlations in (e,e8N) reactions off nuclei with
minimal distortions due the FSI effects it is advantageous
use thex,1 kinematics especially with detection of a bac
ward going nucleon.

The above results have a simple explanation in terms
the light-cone dynamics of high-energy scattering proces
Indeed, according to Eq.~16! D0 does not disappear with a
increase of energy. Hence the nonconservation of the lo
tudinal momentum of nucleons given by Eq.~39!,
p1z2pm

z 5D0, remains finite in the high-energy limit. How
ever, the rescattering of an energetic knock-out nucleon p
tically does not change the ‘‘2 ’’ component of its four-
momentump2[E2pz @p2 is the longitudinal momentum
as defined in light-cone variables, wherepm

[pm(p1 ,p2 ,pt) with p65E6pz#. Really, if we define
p125m2p1z and pm25pf 22q25m2Em2pmz, where
Em5m1EA212MA is the missing energy, then accordin
to Eq. ~39! the nonconservation of the ‘‘2 ’’ component is

p122pm2'
Q2

2q2 Em5
Em

2~11q0 /2mx!
. ~41!

It vanishes with an increase of the virtual photon ene
q0. Hence, the physical interpretation of Eq.~39! is that at
d

-

e

o

of
s.

i-

c-

y

high energies the elastic FSI does not noticeably change
light-cone ‘‘2 ’’ component of the struck nucleon momen
tum. This reasoning indicates that the description of the
in high energy processes should be simplified when trea
within the framework of the light-cone dynamics. In our pr
vious analysis ofx.1, largeQ2 data on inclusive (e,e8)
processes are consistent with this idea@40#.

The above observation helps to rewrite the deduced
mulas in the form accounting for, in the straightforward wa
high energy processes developing along the light cone.

Let us introduce light-cone momentaa i[A(pi 2 /PA2).
Herea/A is a momentum fraction of a target nucleus carri
by the nucleoni . Using the above-discussed expressions
pm2 andp12 and Eqs.~15! and~16! for the propagator of a
fast nucleon we obtain

1

@pz
m1D02p1z1 i e#

5
1

m@a12am1@~q02q!/qm#Em1 i e#

'
1

m@a12am2~Q2/2q2!~Em /m!1 i e#
.

~42!

In the kinematics where relativistic effects in the wave fun
tion of the target and residual nucleus are small a
a j'12pjz /m, there is a smooth correspondence betwe
nonrelativistic and light-cone wave functions of the nucle
@30#, i.e., fA(p1 , . . . ,pj , . . . ,pA)'fA(a1 , p1t , . . . ,a j ,
pjt , . . . ,aA ,pA)/mA/2. Therefore the amplitude of singl
rescattering, Eq.~17!, can be rewritten as
that the
one

n

T~b!52
A~2p!3~2p!3

2m E cA~a1 ,p1t ,a2 ,p2t ,a3 ,p3t!F1
em~Q2!

3
f NN

@a12am2~Q2/2q!2~Em /m!1 i e#
cA21~a28 ,p2t8 ,a3 ,p3t!

da1d2p1t

~2p!3

da3d2p3t

~2p!3
, ~43!

where according to Eq.~11! a25a28532a12a3. Equation~43! shows that in the limit when (Q2/2q2)(Em /m)→0, the
amplitudeT(b) is expressed through the light-cone variables and the light-cone wave functions of the nucleus. Note
eikonal scattering corresponds to the linear, ina1, propagator of the fast nucleon. It is instructive that regime of the light-c
dynamics is reached in Eq.~43! at relatively moderate energies. Indeed let us consider kinematics whena1 is close to unity
~which is the case in our analysis!. At q0;2 GeV, (Q2/2q2)(Em /m)5@1/2(11q0/2mx)#(Em /m);(0.0520.07)!1. For an
estimate we takex51 and for missing energyEm;0.220.3 GeV which is close to the limit of applicability of the descriptio
of nuclei as a many-nucleon system~cf. @31#!. Similar reasoning is applicable for the double rescattering amplitude in Eq.~29!.
Here we obtain

T~d!5
A~2p!3~2p!3

4m2 E cA~a1 ,p1t ,a2 ,p2t ,a3 ,p3t!F1
em~Q2!

f NN@p1t2pmt2~p3t8 2p3t!#

@a12am2~Q2/2q2!~Em /m!1 i e#

3
f NN~p3t8 2p3t!

@a32a382~Q2/2q2!~k3t
2 /2m2!1 i e#

cA21~a2 ,p2t8 ,a3 ,p3t8 !
dad2p1t

~2p!3

da3d2p3t

~2p!3

da38d
2p3t8

~2p!3
. ~44!
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Another interesting consequence of the representatio
the scattering amplitude through the light-cone variable
the simple form of the closure approximation for the su
over the residual (A21) nuclear states in theA(e,e8N)
3(A21) reaction. When summing overEm at fixedpm the
rescattering amplitudes@cf. Eq. ~17!# could not be factored
out from the sum because they depend onEm through the
D factors@cf. Eq. ~16!#. In the case of the light-cone repre
sentation@cf. Eq. ~43!# the analogous procedure@31# is to
sum overp1'm1Em1pmz at fixed am . It follows from
Eqs. ~43! and ~44! that in such a sum the scattering amp
tude is independent ofp1 and therefore the application o
closure has a simple form.

Note that the present discussion of the light-cone dyna
ics is by no means complete, since we do not consider
relativistic effects which enter into the nuclear wave fun
tions. The extension of the current analysis to the light-co
formalism will be presented elsewhere.

VII. CONCLUSIONS

The Feynman diagram approach to the calculation of fi
state interactions at high energy (e,e8N) reactions off nuclei
provides a natural framework for the generalization of
conventional nonrelativistic Glauber approximation to hig
energy processes. This approach also adequately desc
the light-cone dynamics characteristic at high-energy re
tions.

It follows from the consideration of Feynman diagram
that the formulas of the conventional Glauber approximat
are a legitimate approximation for sufficiently small valu
of the residual nuclear system’s excitation energy~missing
energy!. Beyond this kinematic region, conventional a
proximation should be modified to describe correctly relat
istic kinematics and the dynamics of FSI’s. This can be do
within the generalized eikonal approach which is develop
in the paper for (e,e8N) knock-out reactions.

The obtained formulas allow one to find a kinematic d
main preferable for the investigation of short-range nucle
correlations in nuclei. We demonstrate that scattering off f
ward moving nucleons~which corresponds to production o
backward going nucleon spectators from destruction
short-range pair correlations@30#! is preferable for the inves
tigation of short-range nucleon correlations in nuclei. W
found an additional kinematic condition:upm

z u2D0.kF for
semiexclusive reactions to enhance the contribution of sh
range nucleon correlations atx.1 and reduce FSI’s.

We demonstrate also that dominance of light-cone
namics follows directly from the analysis of the Feynm
diagrams, and that the ‘‘2 ’’ component of the target nucleo
momentum is almost conserved in FSI. Therefore, by m
suring the ‘‘2 ’’ component of the missing momenta we d
rectly tag the preexisting momenta in the light-cone nucl
wave function.
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APPENDIX A: WHY CLOSURE APPROXIMATION
IN GENERAL IS APPLICABLE IN THE LIGHT-CONE

BUT NOT IN THE NUCLEUS REST FRAME

In the calculation of then-fold rescattering amplitude o
Fig. 1 we assumed the decoupling~from the excitation ener-
gies of intermediate states! of the propagator of a high en
ergy knocked-out nucleon,D(p11q)21. Such a decoupling
allows one to use the closure over the sum over the exc
tions of intermediate nuclear states. As a result the scatte
amplitude in Eq.~1!, is calculated in terms of the propagato
of free spectator nucleons in the intermediate states.

To visualize the conditions when the decoupling of t
high energy part of the diagram of Fig. 1 from low ener
part would be valid, we consider two reference frame d
scriptions: nucleus rest frame~lab frame! and light cone.

In the lab frame the inverse propagator of energe
knocked-out nucleon,2D(p11q)5(p11q)22m21 i e, can
be written as

~p11q!22m25p1
212E1q022pW 1•qW 1q22m2

52uqW uF p1
22m2

2uqW u
1E1

q0

uqW u
2p1z2

Q2

u2W qu
G .

~A1!

It follows from the right-hand side of Eq.~A1! that only the
term E1(q0 /uqW u)2p1z survives in limit of large momentum
transfer (qW ) and fixedxB j . Thus in the high energy limit
within the lab frame description one should retain the dep
dence of propagator on the excitation energy of the interm
diate state~via E1). Therefore, unless theE1 dependence of
the propagator of knocked-out nucleon can be neglected
use of closure over the intermediate nuclear states canno
justified. In the lab frame description such a neglection
legitimate in the nonrelativistic limit only where the term
p1

2/2m2!1 is neglected everywhere in the expression of
scattering amplitude. Such a restriction on the applicabi
of the closure for the sum over the intermediate states is
crucial importance for the models where relativistic effe
are treated on the basis of the lab frame description.

The above calculation does not take into account an a
tional approximate conservation law characteristic for lig
cone dynamics. Let us introduce light-cone momenta
four-vectors aspm(p1 ,p2 ,pt), where p65E6pz . Using
these definitions, for the inverse propagator of a knocked-
nucleon, one obtains the form

~p11q!22m25p1
21p11q21p12q11q22m2

5q1Fp1
22m2

q1
1p11

q2

q1
1p122

Q2

q1
G .
~A2!

As follows from the above equation that the only term th
survives at fixedxB j and high energy transfer limit isp12 .
Therefore at fixedp2 we found effective factorization of a
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high energy propagator from a low energy intermedi
nuclear part whose excitation energy on a light cone is
fined by thep11 @30,31#. Such a decoupling applies for an
values of Fermi momenta of the target nucleon~no restric-
tion like p1

2/2m2!1 is needed!. Therefore it is possible to
extend the applicability of the closure over intermedia
states of the residual nucleus to the domain of relativi
momenta of target nucleons. The price is to introduce
light-cone wave function of the target~similar to the case of
PQCD!.

Note that the considerations in the present work are
stricted by small Fermi momenta@Eq. ~4!# since we use
p1

2/2m2!1 in the scattering amplitude. For larger Fermi m
menta a legitimate way to generalize the obtained result
e
-

c
e

-

-
is

to use a light-cone description, which is out of the scope
the present paper. Note that light-cone mechanics of the
clei is rather similar to the nonrelativistic ones@30,32#.

APPENDIX B: COORDINATE SPACE REPRESENTATION
OF THE SCATTERING AMPLITUDE

1. Single scattering amplitude

We will now transform the single scattering amplitude
Eq. ~17! to coordinate space. Inserting the configurati
space representation of ground state and residual state
functions according to Eq.~7! into Eq. ~17! and using
energy-momentum conservation of Eq.~11! for T(b) we ob-
tain
T~b!52
1

2E d3x1d3x2d3x3d3y2d3y3e2 i ~xW12xW2!•pW 1fA~x1 ,x2 ,x3!
F1

em~Q2! f NN~p2t8 2p2t!

pz
m1D02p1z1 i e

3eiyW2•pW A21e2 ipW 3•[ ~xW32xW2!2~yW32yW2!]fA21
† ~y2 ,y3!

d3p1

~2p!3

d3p3

~2p!3

52
1

2E d3x1d3x2d3x3d3y2d3y3e2 i ~xW12xW2!•pW 1fA~x1 ,x2 ,x3!
F1

em~Q2! f NN~p2t8 2p2t!

pz
m1D02p1z1 i e

3eiyW2•pW A21d3@~x32x2!2~y32y2!#fA21
† ~y2 ,y3!

d3p1

~2p!3 . ~B1!

Next, we introduce relative and c.m. coordinates as

y25
y23

2
1yc.m., y35

y23

2
2yc.m., ~B2!

and separate internal and c.m. motion of the recoilpn system:

fA21~y2 ,y3!5f~y23!e
iyc.m.~pp1pn!. ~B3!

As a result,T(b) takes the form

T~b!52
1

2E d3x1d3x2d3x3d3y2d3y3e2 i ~xW12xW2!•pW 1fA~x1 ,x2 ,x3!
F1

em~Q2! f NN~p2t8 2p2t!

pz
m1D02p1z1 i e

e2 i [ ~xW22xW3!/2] •pW mf†~x22x3!
d3p1

~2p!3 .

~B4!

To integrate overp1z we use the coordinate space representation of the nucleon propagator 1/@pz
m1D02p1z1 i e# according to

Eq. ~18!. Inserting Eq.~18! in Eq. ~B4!, one can integrate overp1z : *exp@2ip1z(z12z21z0)#dp1z52pd(z12z21z0). After
integrating overdz0 we obtain

T~b!5
i

2E d3x1d3x2d3x3ei ~bW 22bW 1!•~pW 1
t
2pW m

t
!fA~x1 ,x2 ,x3!F1

em~Q2! f NN~p2t8 2p2t!

3Q~z22z1!e2 i ~3/2!pW m•x
W

1eiD0~z22z1!f†~x22x3!
d2p1

t

~2p!2

5
i

2E d3x1d3x2d3x3fA~x1 ,x2 ,x3!Q~z22z1!ei ~bW 22bW 1!•kW tF1
em~Q2! f NN~p2t8 2p2t!

3eiD0~z22z1!e2 i ~3/2!pW m•x
W

1f†~x22x3!
d2k

~2p!2 , ~B5!
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where we define the momentum transferred in the rescattering askW t5pW t12pW tm5pW 82t2pW 2t andbW 1, bW 2 are transverse compo
nents of vectorsxW1, xW2.

2. Double scattering amplitude

Integration in Eq.~29! can be performed in the coordinate space, using the Fourier transform of the wave fun
according to Eq.~7! and by introducing theLW andkW3:

LW 5
pW 381pW 3

2
, kW35pW 382pW 3 . ~B6!

Then forT(d) we obtain

T~d!5
1

4E d3x1d3x2d3x3d3y2d3y3e2 i ~xW12xW2!•pW 1fA~x1 ,x2 ,x3!F1
em~Q2!

f NN~p282p2!

@pz
m1D02p1z1 i e#

f NN~p382p3!

@D32k3z1 i e#

3eiyW2•pW A21e2 i ~kW3/2!•[ ~xW22xW3!1~yW22yW3!]eiLW •[ ~xW22xW3!2~yW22yW3!]fA21
† ~y2 ,y3!

d3p1

~2p!3

d3L

~2p!3

d3k3

~2p!3 . ~B7!

Since we consider soft rescatterings of a high energy~knocked-out! nucleon off a slow spectator, we can use the observa
that the scattering amplitude for two-body scattering,f NN(p382p3), depends mainly on transverse components of transfe

momentumkW3t and is practically independent ofLW . Therefore we can perform an integration overd3L invoking the factor
d3@x22x32(y22y3)#. Similar to the previous section, using Eqs.~B2! and ~B3! allows one to perform the integration ove
d3yc.m.d

3y23:

T~d!5
1

4E d3x1d3x2d3x3e2 i ~xW12xW2!•pW 1e2 ikW3•~xW22xW3!fA~x1 ,x2 ,x3!F1
em~Q2!

f NN

@pz
m1D02p1z1 i e#

f NN

@D32k3z1 i e#

3e2 i [ ~xW22xW3!/2]pW mf†~x22x3!
d3p1

~2p!3

d3k3

~2p!3 . ~B8!

Furthermore we can take the integral overp1z similarly to the case of single rescattering amplitude, using Eq.~18!. The
integration byk3z can be done using the representation 1/(D32k3z1 i e)52 i *Q(zk3)expi(D32k3z)z

k3dzk3. The integration over
dp1z anddk3z leads to the factor 2pd@z02(z22z1)# and 2pd@zk32(z32z2)#, respectively. After performing an integratio
over dz0 anddzk3 and definingkW15pW 1

t 2pW m
t we obtain

T~d!5
i 2

4E d3x1d3x2d3x3fA~x1 ,x2 ,x3!F1
em~Q2!FQ~z22z1! f NN~k1t2k3t!e

ikW1t•~bW 22bW 1!eiD0~z22z1!
d2k1

~2p!2G
3FQ~z32z2! f NN~k3t!e

ikW3t•~bW 32bW 2!eiD3~z32z2!
d2k3

~2p!2Ge2 i ~3/2!xW1•pW mf†~x22x3!

5
i 2

4E d3x1d3x2d3x3fA~x1 ,x2 ,x3!F1
em~Q2!

3FQ~z22z1! f NN~k2t!e
ikW2t•~bW 22bW 1!ei ~D02D3!~z22z1!

d2k2

~2p!2G
3FQ~z32z2! f NN~k3t!e

ikW3t•~bW 32bW 1!eiD3~z32z1!
d2k3

~2p!2Ge2 i ~3/2!xW1•pW mf†~x22x3!, ~B9!

where at the last step we do the replacementkW1t→kW2t1kW3t .
tie
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