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Partial-wave amplitudes have been extracted from accurate dzﬁp@m’ «*, combined with earlier data
on ﬁ)ﬂ m07°, by a method which incorporates the theoretical constraints of analyticity and crossing sym-
metry. The resulting solution gives a good fit to the annihilation data and is also consistent with the wealth of
information in the crossed channeN— 7N. The partial-wave amplitudes show evidence for resonances in all
partial waves with)<5, at least one of which, 3=0" state(and possibly another with=1"), is unlikely
to have a simpleqq_structure.[80556-281(97)01808-6

PACS numbg(s): 13.75.Cs, 11.80.Et, 14.40.Cs, 2548.

I. INTRODUCTION — aN. Subsequentlj10] we showed that the structure in the
invariant amplitudes, which reflects that seen directly in the
There have been a number of attempts to obtain informaexperimental data, was due to the existence of resonances in
tion on meson resonances from data on the reactiothe partial-wave amplitudes and we presented evidence for
resonance activity in four states with spins 1, 2, 3, and 4.
Since our earlier work, new differential cross-section and
mmetry data have been obtained ondher™ channel at
20 center-of-mass energies in the range 1.91 to 2.27 MeV
the main, are in strong disagreement with lat¥=° data [11] using the LEAR facility at CERN. These data are con-
05|stent with the earlier datg2], but are more accurate and

[3]. An alternative approach is to use the Barrelet zer | tend ¢ s o | ¢
method[4] to translate the dips observed in the angular dis &S0 €xtend asymmelry measurements 1o lower momenta

tributions (cross sections and asymmetfiago complex ze- than previous experiments. However, the new experiments
ros of the scattering amplitudes. This method requires over a slightly smaller range of energy. Here we present an

number of assumptions to obtain smooth zero trajectorieémaIySIS of_the new data’ plus the_ oldetr da_ta[S], using
as constraints the invariant amplitudes obtaine{8ih thus

and to fix the overall phase of the solution. The latter is.> ; . _ .
crucial, because in the absence of an optical theorem th'@dlreCtIy imposing analyticity and crossing symmetry on the

method only determines the moduli anelative phases of solution. We compare our results with other recent analyses

the amplitudes at each energy. One choice is to assume[g;lz_lzl] at the end of this paper.
Breit-Wigner form for a particular partial wave, but different

NN— 7r7r. Earlier work[ 1] was restricted to testing the com-
patibility of data with assumed combinations of Breit-
Wigner resonances and smooth backgrounds. These analy
used data only on the channel’ 7™ [2] and the results, in

choices of input phases, however plausible, lead to different Il. PARTIAL-WAVE AMPLITUDES
solutions for the partial waves, as can be seen by comparing ) ]
the results of Refd5] and[6]. The analysis of8] was performed in terms of the usual

An alternative method of obtaining amplitudes which 7N invariant amplitudesA and B. In the t channel,
overcomes the objections to earlier work, is to exploit anaNN— 7, it is more convenient to work witB and
Iyticity via dispersion relations and determine the overall
phase by using crossing symmetry to relate the annihilation
data to knownrN— 7N elastic scattering amplitudes. This C=-A+M
in principle overcomes the problem of the absence of an
optical theorem and ensures that the resulting amplitudes not _ _
only fit the annihilation data, but are also consistent with thevhere q(p) is the center-of-mass momentum in the
wealth of information on the crossed chana®l— 7N. Dis- 77 (NN) channelM is the nucleon mass, ar@ is the scat-
persion relations at fixetor fixed u are unsuitable because tering angle in thé channel. In the helicity basis, these two
of the need to have information in unphysical regions, buinvariant amplitudes may be expressed in terms of partial-
this can be avoided by writing dispersion relations alongwave amplitudes by the expansions
hyperbolae in the Mandelstam plap@. In a previous paper
[8] we presented a largely model-independent set of invari- 8 2]

. . . . L T +1
ant amplitudes, which by construction satisfy analyticity and B'(t,cos,) = _2 —Pj(coset)F'J(t) 2)
crossing symmetry and simultaneously give an excellent fit P VII+1)
to all pp— a7 data(both in charged and neutral channels
existing at the time[2,3,9 and to amplitudes foraN and

g) co%¥;B, (1)
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\/— Ill. FITS TO DATA AND AMPLITUDES

4yt
I _ [
C(t,co%,) p ; (23+1)Py(coBINy (D). (3) The data fitted consistedif experimental differential cross

sections and asymmetries fpp— 7~ 7" at 20 momenta in
In these reIationsN'J and F'J are the partial-wave helicity the range 360 to 1550 Me¥/[11] and, at each momentum,
amplitudes for definite-channel isospin corresponding to the invariant amplitudes from Reff8] at a grid of ¢ values
t-channel helicity nonflip and flip, respectively, ahdis the  (or equivalently, a grid of values of c8%. In addition, dif-
square Of_ the center-of-mass energy in thehannel. By  ferential cross sections fqgp— 7°#° were included by in-
Bose statistics, terpolating the measured data of RgH] to the momenta of
the charged channel data. At each momentum we minimized
Nj()=F}(t)=0, forJeven (4)  the sum of the values foy? per data point for each type of
data. The parameters are, at eackalue, the complex am-
and plitudesN}, andF!. The number of amplitudes used in the
partial-wave expansions is dictated by the form of the invari-
N3()=F$(t)=0, forJ odd. (5  ant amplitudes and the need to ensure a good representation
of them, and not by criteria such as polynomial fits to the
In addition,FSEO. The helicity amplitudes are normalized measured angular distributions, which are often truncated
such that the integrated cross section fiN— m for a  Where the highest partial wave is still quite large. This is an
definite isospinl is important difference between our method and others
[5,6,12,13 which use observables in the form of Legendre
q series truncated at a point where the size of the highest co-
' =27-r(—) > (23+ D){INY2+|FY3. (6) efficient is actually large. Our interpolation of thehannel
P/ data used a method that makes no assumption about the
) ) ) . number of partial waves which are importaaee Appendix
An alternative, but qulvalgnt, way Qf expressing the partialc of Ref. [8]), although we would expect higher partial
wave content of the invariant amplitudes is to use '\ 5yes to be progressively less important at lower momenta.
basis. If we label the new amplitudes By, i.e.,H,_, then, At eacht value, sufficient terms were used to obtain a
for a fixed value of isospi, they are related tdl, andF; oo fit to each amplitude and to ensure reasonable smooth-
by ness of the resulting helicity amplitudes from dnealue to
2 the nex;[. In plre'lcticte, g—? vﬂﬁeshyv?]re tusle'c:' a}t th? IO\;ves'[]c
e _ momentum, rising to 6—7 at the highest. Initial estimates o
(VI +1F5= INy) @ N! andF! were obtained froni8] and used as starting values
in a simultaneous fit to all the data at a given momentum. In
and Table | we show values of? per data point for the differ-
h en':jie:cl cr(;]ss sec:ior:js and asyrrrn;e;[wries in the charged char;]nel
_— and for the amplitudes at each of the twenty momenta. At the
{\/3F3+ J+ 1IN}, (8) higher momenta we also show valuesydfper data point for
the neutral data. In Figs. 1 and 2 we show the fits and/or
with predictions for ther™ 7~ and #°#° data at three represen-
tative momenta. To give some idea of the quality of the fits
q to the invariant amplitudes, we show in Fig. 3 the fits to the
U:TF(—) X (23+ D{Hye 2+ [Hy |3, (99 real and imaginary parts & andC™ as functions of at a
P fixed value of the hyperbolic parametef=—0.04572

HJ,L:Jfl:

2
2J+1

1
HJ,L=J+1:

2
2J+1

whereH;.=H;, _;.,. We will use both sets of amplitudes
in the following discussion.

In [8], the invariant amplitudes were obtained along fami- IV. RESONANCES
lies of hyperbolic curves in the Mandelstam plane defined by The extraction of *

hard” information on resonances from
a parameter

partial-wave amplitudes is a notoriously difficult problem,

2 o2 which has not been solved in a rigorous way even for elastic
(MT—m9)"—s(X—s—t) (10)  two-body reactions, and ultimately one has to resort to plau-
t—4m? ’ sible models. We will use criteria which have proved suc-

cessful in analyzing reactions such adl— 7N. Thus, we

wherem is the pion masss is the square of the center-of- will use combinations of Breit-Wigner resonances and flex-
mass energy in thes channel wN—=N, and ible nonresonant backgrounds with initial parameters sug-
> =2(M2+m?). Values of¢ were chosen so that the hyper- gested by loops in Argand diagrams, enhancements in the
bolae covered theé-channel region being analyzed while integrated partial cross sections, maxima in amplitude speed
staying almost entirely within the physical channel. To plots, etc., not by fitting the original experimental data. Be-
obtain amplitudes at the experimental energies, those frorfore doing that, however, it is useful to see to what extent the
Ref.[8] were linearly interpolated ih along the hyperbolae ‘“continuity” of the partial-wave amplitudes, which were ob-

at fixed €. tained by a series of fits at fixed values of the energy, is

gz
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TABLE I. Values of x? per data point obtained in fits to differ- havior. We do not attempt to impose the correct behavior at

ential cross-section and asymmetry datapgq— =~ =", differen-
tial cross-section data fqpp— 7°#°, and amplitude data.

Momentum(MeV/c) ot w070 Amplitudes
360 1.89 0.03
404 1.29 0.03
467 1.76 0.05
497 2.32 0.04
523 1.68 0.05
585 1.96 0.05
679 1.70 0.04
783 1.49 0.03
886 1.05 0.03
988 1.40 0.07
1089 1.40 0.10
1190 1.64 0.28 0.09
1291 1.76 0.66 0.15
1351 2.16 0.12 0.22
1400 1.91 0.18 0.18
1416 1.69 0.36 0.17
1449 1.80 0.23 0.26
1467 1.75 0.20 0.31
1500 1.46 0.41 0.38
1550 1.66 0.35 0.35

compatible with partial-wave analyticity. To test this we
have fitted the “raw” amplitudes with the following para-
metric forms constructed by analogy with the work of Ref.

[8]:

Hyr=gx1=(1-z) (1+2.)?
N_ Ny Nu
x| D ag"+ > bzl + > cnZyl, (11
n=0 n=1 n=1

where the variableg_, z,, andz, are given by

a_—(t—t)¥
T A tm) ™ (12
a, —(4M2—)1?
Z+=;2—)m, (13
a, +(4M2-1)

and

_a,— (4m*—t)1? 14
2= 5, T M- 19
Here we use the values. =a,=1 GeV anda, =2 GeV for
the mapping constants. In E€L2) t, is given by

2

m
=-m2| a—
" m(4 us) 15

The three terms in Eq1l) ensure thatH;, _;.; has the
correct analyticity properties as a function tofThe factor

(1-z,)" ensures the correct behavior at tR&l threshold

the 7w pseudothreshold since this is very far away from the
energy region in which we are interested. The advantage in

using such a representation in the basis is that theNN
threshold behavior can be easily imposed, whereas in the
helicity basis this is more difficult since the threshold behav-
iors of the two helicity states are correlated. The price for
this decoupling is a correlation between the tdio basis
amplitudes att=0 to avoid a spurious singularity at this
point. However, this is again so far from the energy region in
which we are interested that we ignore this problem.

The coefficientsa,,, b,, andc, in Eg. (11) are deter-
mined by fitting the values oH;, _;., at the differentt
values using the Pietarinen technique as described in Ref.
[8]. In these fits we us&l_=N,=10 andN, =15 and are
able to achieve good fits; it should be remarked that in these
fits we take no account of correlations, neither between dif-
ferent amplitudes nor between the real and imaginary parts in
the same amplitude. The results of these fits are shown as the
solid curves in Fig. 4 fod<5 where we show the dimen-
sionless amplitudes

hye (W) =(pq)2H; = y:1(W).

TheJ=6 amplitudes are small and featureless and so are not
shown. We conclude that, in the main, the single-energy am-
plitudes are compatible with partial-wave analyticity within
plausible errors. In what follows, we have used these smooth
amplitudes as the starting point for our extraction of reso-
nance information. This is done for convenience, and it is
worth remarking that no extra structure is introduced by the
smoothing procedure and that we have checked that our con-
clusions are unaltered when the “raw” amplitudes are fitted.
In Fig. 4 we also show the contributions of each partial-
wave helicity amplitude to the integrated partial cross sec-
tion. Some systematic features are immediately apparent.
First, in a given energy region odHeontributions are larger
than those with eved. This is of course directly related to
the experimental observation that thd° cross section is
approximately 1/3 of ther~ =" cross section over the whole
of the energy range we consider. We also note the increasing
importance of partial waves with lowér as the energy de-
creases. Many partial waves show counterclockwise loops,
with the amplitude moving rapidly over some part of the
energy range; the classic signal of resonance activity. To
obtain resonance parameters, we have fitted the dimension-
less amplitudes with the parametric forms

(16)

n
ay+ 5

- Y= pAL+2 (n)y,n—1
hye (W)= iy TP 2, AT (D)

whereW=/t and

2W— Wmin_ Wmax
Wmax_ Wmin

X (18
In the background term the coefficieng") are complex
parameters, and to ensure the correct behavior aiNte

threshold we sep=p/pg, wherepg is a suitable momen-
tum, in practice taken to correspond\ié=2.1 GeV. In the

while the factor (#z_)? ensures a suitable high-energy be- resonance term, the parameters are the rivgss the width
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FIG. 1. Fits to the measured differential cross-section and asymmetry daﬁafemﬁﬁ. Our results are shown by solid lines and
those of solution A of Ref{13] by dashed linegsolution B is very similar. (a) 404 MeVk, (b) 1190 MeVE, (c) 1500 MeVE.
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FIG. 2. Predictions and/or fits to the measured differential cross-section and asymmetry d?ma#arowo. Our results are shown by
solid lines and those of Reff13] by dashed linesia) 404 MeVEk, (b) 1190 MeVE, (c) 1500 MeVEk.
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FIG. 4. Results of fitting thelL basis partial-wave helicity amplitudes as functions of energy with parametric forms incorporating
partial-wave analyticity based on E{.1) shown by the solid lines, and with simple resonance plus background form&l Bgshown by
the dashed lines. The solid circles show the results of the single energy anaysés:OL=1, (b) J=1L=0, (c) J=1L=2, (d)
J=2L=1,(e J=2L=3,(f)J=3L=2,(g) J=3L=4,(h)J=4L=3,(i)) J=4L=5,(j) J=5L=4, (k) J=5L=6.

I', and the complex residue;.. . To ensure the correct be- The J=0 amplitude shows a clear resonance loop corre-

havior at theNN threshold, we set sponding to a mass of 1.95 Ge¥/and a width 0.16 GeV.
The resonance dominates the real part at low energies, but
p\tt12 there is a large background at the upper end of the range. The
ENE VJt(@) » P<Pr=7s=, P>Pr, (19 imaginary part has significant contributions from both reso-

nance and background terms throughout the entire energy

wherepg is the value ofp atW=Mpg andy;. is a complex fange. In the case of th&=1 amplitudes, there is a clear
constant. Both amplitudes for a givénwere fitted simulta- resonance signal in the=0 amplitude corresponding to a
neously, and in the absence of a realistic error analysis equatass of 1.97 Ge\¢? and a width of 0.14 GeV. This is ac-
weights were assigned to each point. The results obtained lsompanied by a substantial background contribution. The
fitting the amplitudes as functions of energy, and the associk =2 amplitude is by comparison much smaller. Ber 2,
ated Argand diagrams, are shown as dashed lines in Fig. #pothh,_ andh,, amplitudes have resonance behavior. The
where it will be seen that the fits are as good as those usingass is 1.93 Ge¥f and the width is 0.15 GeV. Thaé=3

the more general parametrization of Ef1). state has a resonance in thg amplitude with a mass of
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FIG. 4 (Continued.

2.02 GeVt? and a width of 0.22 GeV. The width in the case  The resonance masses and widths are summarized in
of the raw amplitudes is slightly larger at 0.26 GeV. TheTable Il, where two values are given, the first corresponds to
hs; amplitude is very small. The resonance in the4 fitting the raw amplitudes and the second to fitting the
wave, which again is more prominent in the=J—1 ampli-  smoothed amplitudes. In the other cases both values are the
tude, has a mass of 2.02 Ge¥/and a width of 0.14 GeV, same. Table Il also gives the values of the product of the
which rises to 0.26 GeV in the case of the raw amplitudesbranching ratios

The mass is in good agreement with that of the well-
established ,(2050 resonance, and the values for the width
span the accepted value of 0.21 GeV. The fact that this state
emerges clearly from our analysis lends weight to the valid-

ity of our procedures and the parameters of the other pre- )
dicted resonances. In the=5 wave there is evidence for a calculated from the values of the residue parametgts.

state at 2.19 Ge¢? with a width of 0.22 GeV, again cou- The only case where there is a well-established resonance is
pling stronger to the.=J—1 amplitude. Finally, there is the J°=4" statef,(2050 with a measured mass of 2.044
some evidence for a broad resonancdin6, but as this is +0.011 GeVt? and a width of 0.2080.013 GeV. If we

just outside the range of the analysis, and the raw amplituddgentify our J=4 state with this, we can use the known
show much more scatter, we do not comment on this possiz ™ branching ratio of the',(2050 of 17% to estimate the
bility further and it is therefore not shown. NN branching ratio to be between 2 and 8 %, which is not

B,=B(R— @ m)B(R—NN), (20)
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FIG. 4 (Continued.

inconsistent with a conventionalq resonance. If we assume from Table Il that the other predicted resonances with
that 777 branching ratios in the range 10—20 % are also typi-J=2, 3, and 5 hav&NN branching ratios similar to that of
cal of daughter states in this mass range, then we can sé¢ee f,(2050. However, the states with=0 and 1 are dif-
ferent and have far larger branching ratios. Indeed for the
TABLE Il. Resonance masses and widths in units of GeV, ob-J=0 state the coupling is probably unreasonably large, but
tained from fitting partial-wave amplitudes as functions of energy,in this case there is a very large background accompanying
together with the values of the product of branching ratiosthe resonance and in this situation our simple parametriza-

B,=B(R— mm)B(R—NN). tion may not be appropriate to extract accurate resonance
: parameters. Such states are unlikely to be conventiqoal

J Mass Width B, mesons, but are more likely to have a multiquargqq

0 1.94, 1.95 0.16 0.18, 0.19 structure[15].

1 1.96, 1.97 0.13, 0.14 0.053, 0.056

2 1.93 0.15 0.013 V. OTHER ANALYSES AND CONCLUSIONS

3 2.02 0.26, 0.22 0.013, 0.028

4 2.02, 2.00 0.26, 0.14 0.013, 0.004 Three other analysg42—14 of the accurater” =" data

5 2.19 0.22 0.004, 0.001 [11] have been published. In R¢.2] it is assumed from the

outset that the data can be fitted by partial-wave amplitudes
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each of which is parametrized in terms of towers of nearlys=—0.04572 Ge¥ together with our own fit to these am-
degenerate resonances. The analysis then fits all the daigtudes. It is clear, that despite the considerable errors on the
[2,3,11] simultaneously. The motivation for this assumptioninyariant amplitudes, they do provide important constraints
is based on qualitative features of the data, such as the p&fich are not satisfied by either of the solutions of R&8].
sistence of a very large polarization over a wide energy Nevertheless, there are some common results found in
range, but nevertheless is really only testing the compatibilygth analyses. Both find a clear signal for th¢2050, and

ity of the data with an assumed parametric form, such agh find its coupling to thé =3 amplitude is much stronger
analyses of earlier dafd]. The resulting speed plots show han 1oL =5. Also, both analyses yield a low-lying=0

little evidence for resonancelike behavior and only thegiate with a suggestion of abnormally large coupling to the

J=4 and 5 amplitudes shpw clear peaks. This iI.Iustrates .th?\l_l\l channel. Agreement for other waves is much less good
strong correlations that exist between the states in the varioys - example ford=1 Ref.[13] finds a resonance only in ’

towers and makes it difficult to ascribe much reliability to lution B and i | v th h ha—1
the parameters of individual resonances. This is further illus>° ution B and it corp_es mla;wn y thlf h W ere_?s the=
trated by the predicted values &, which, with the sole resonance in our solution, although it has similar parameters,

. . couples mainly tch; _ . Likewise, there are substantial dif-
exception of thel=4 state, where the mass and width Werefererrices in mg\/ssesl widths, and couplings forthe and 3
fixed from experiment, all indicate very large branching ra- ' '

waves.

tios to theNN channel. One place where it may be possible to decide between the
The analysis of Ref.13] is based on the Barrelet method _ _ . . o 0.0 .
yarious solutions is in thep— -7~ channel where differ-

[4] and therefore has the usual problems intrinsic to thaential cross-section data exist for only a limited momentum

method associated with the unresolved phase. The initia"¥ange. We show in Fig. 2 our predictions together with those

very large number of possible solutions is reduced by usin%f . . .
. . Ref. [13] for the differential cross section and asymmetr
the m° data[3] and further reduced by imposing threshold in this [ch;nnel at a lower momentum where the?/e are rx:o

behavior on the way zeros appear, leaving just two SOIUtiOn%easurements. In the same figure we also show similar pre-

(A and B), both of which exhibit resonances which ) dictions at two higher momenta where measurements of the

areFli:]naalllII W; \g?r?] chem;]r: ?ittl?d\(]e:aiel sis has been mgidg differential cross section exig8].
y: P P y In conclusion, we summarize our overall findings. We

which finds no compelling evidence for any resonances, — . i
However, the analysis only used data in the restricted moP@ve analyzed +data opp—m, including very accurate
mentum range of 360 to 988 Me/and is therefore not data in thewr™ 7™ channel, using constraints from crossing
strictly comparable with the other analyses reported here. SYmmetry and analyticity to impose consistency of the solu-

The work of Ref.[13] is the most complete of the pub- tion with information on data in therN— N channel.
lished analyses, but it is difficult to make a meaningful com-Overall, we have found evidence for a rich spectrum of reso-
parison with our own because of the significant difference i'@nces whose couplings, with one or two exceptions, are in
the input data to these two analyses, i.e., our inclusion of’€ range expected for normal daughter meson states with a
invariant amplitudes and, via these, the requirement that th@d structure. The exceptions are in lalstates and have
solution should be consistent with information in the couplings far larger than expected. This may indicate the
wN— 7N channel. To see the importance of thiS, we showPresence of more CompleX mUlthuark structures with Iarge
in Fig. 3 the prediction of the solutions of R¢fL3] for the  couplings to theNN channel as expected in some models
invariant amplitudes as functions ofat the fixed value of [15].
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