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Classical gluon radiation in ultrarelativistic nucleus-nucleus collisions
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The classical Yang-Mills equations are solved perturbatively in covariant gauge for a collision of two
ultrarelativistic nuclei. The nuclei are taken as ensembles of classical color charges on eikonal trajectories. The
classical gluon field is computed in coordinate space up to cubic order in the coupling constantg. We construct
the Feynman diagrams corresponding to this field and show the equivalence of the classical and diagrammatic
approaches. An argument is given which demonstrates that at higher orders ing the classical description of the
process breaks down. As an application, we calculate the energy, number, and multiplicity distributions of
produced soft gluons and reproduce earlier results by Gunion and Bertsch and by Kovner, McLerran, and
Weigert.@S0556-2813~97!07008-8#

PACS number~s!: 25.75.2q, 12.38.Aw, 12.38.Bx, 24.85.1p
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I. INTRODUCTION

Ultrarelativistic heavy-ion collisions (As;200A GeV! at
the Relativistic Heavy Ion Collider~RHIC! at Brookhaven
aim towards an understanding of the properties of nuc
matter under extreme conditions@1#. It was argued that the
extraordinarily high energy and particle number densit
reached in central nuclear collisions at RHI
e;10–20 GeV fm23, dN/dy;1000@2#, could lead to rapid
~local! thermalization of matter@3# and thus to the creation
of the so-called quark-gluon plasma~QGP! @4#, a state pre-
dicted by finite temperature lattice QCD calculations@5#,
where chiral symmetry is restored and quarks and gluons
deconfined.

In order to assess whether this state can actually
formed in an ultrarelativistic nuclear collision one has to g
a better understanding of the initial conditions and, at th
energies predominantly hard, parton-parton scattering
cesses in the early stage preceding~local! thermodynamical
equilibrium. While event generators based on individu
parton-parton scattering processes@6# have been developed
their respective predictions for the range of accessible en
and particle number densities differ widely.

One of the main reasons is the poor understanding of
initial conditions for the nuclear reaction. Recently, McLe
ran and Venugopalan have made considerable progress
classical approach@7# to construct the gluon field at sma
values ofx. Their treatment is somewhat similar to the a
proach used by Mueller for constructing the wave funct
and gluon structure function of a heavy quarkonium state@8#.
At small x, the nucleonic structure is dominated by gluon
and thus a proper description of gluon dynamics in this
nematic region is vital for understanding the initial cond
tions and the subsequent preequilibrium stage in nuclear
lisions.

The McLerran-Venugopalan model@7# considers a very
large nucleus moving at ultrarelativistic velocity, which co
sequently appears in the laboratory frame as a ‘‘pancake
the transverse plane. It is assumed@7# that due to the large
560556-2813/97/56~2!/1084~11!/$10.00
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size of the nucleus the~transverse, two-dimensional! color
charge densityr(xI ) is large ~i.e., in a higher-dimensiona
representation of the color algebra! so that in a certain kine-
matic region the soft gluon field produced by these co
charges is effectivelyclassical, and can thus be obtained b
solving theclassicalYang-Mills equations of motion. This
field can then be used to compute the gluon distribut
function. Quantum effects can be implemented as correct
to the classical field.

The kinematic region for which this approximation
valid is given by the following consideration@7,9#: The
strong coupling constantaS[g2/4p should be small, and
therefore the typical gluon transverse momenta in the pr
lem should satisfyk'@LQCD. On the other hand, the gluo
transverse momenta should be sufficiently ‘‘soft,’’ such th
the gluons do not resolve individual color charges but cou
to the classical color charge density. At very high transve
momenta quantum effects become important. Therefore,
have to limit ourselves to the region wherek'!m, with m2

being the average color charge density squared. The mom
tum fractionx of the gluons should be small enough so th
the nucleus appears coherent in the longitudinal direction

To facilitate the inclusion of quantum corrections, the a
thors of @7# searched for the classical gluon field of such
nucleus in the light-cone gauge. The solution of the eq
tions of motion requires one to take the longitudinal exte
sion of the nucleus into account; i.e., one must not take
nucleus to be infinitely thin in the longitudinal direction, a
was assumed originally in@7#. The classical field of a single
ultrarelativistic nucleus is the non-Abelian Weizsa¨cker-
Williams field. It was computed in@10,11#. In the approach
pursued in@11# the nucleus was assumed to be an ensem
of nucleons consisting of pointlike~valence! color charges.
Instead of a smooth two-dimensional color charge den
r(xI ), this quantity is a sum ofd functions in@11#. The limit
of applicability of the classical approximation, as well as t
structure of the non-Abelian Weizsa¨cker-Williams field in
terms of Feynman diagrams, has been discussed in@12#. That
1084 © 1997 The American Physical Society
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model also allowed for an explicit calculation of the avera
color charge density squaredm2.

One of the goals of the approach of McLerran a
Venugopalan is to obtain the Balitsky-Fadin-Kuraev-Lipat
~BFKL! equation for the structure function of soft gluon
and, if possible, derive corrections to this equation wh
account for nuclear shadowing. Recently, a first step in
direction has been made: The BFKL equation was obtai
via a renormalization group approach@13#.

A collision of two ultrarelativistic nuclei of the type ad
vertised in@7# was considered in@9#. The Yang-Mills equa-
tions were simplified assuming that the solution for the glu
field in the forward light cone is boost invariant. The equ
tions were then solved perturbatively to first order in t
corrections to the Abelian solution in the gau
x2A11x1A250 @where x65(t6z)/A2 and
A65(A06Az)/A2 are the light-cone components of th
gluon field#.

In this paper, we also focus on an ultrarelativistic nucle
collision, but we employ the approach of@11# to describe the
nuclei. Each nucleus is moving with the speed of light. T
nuclei are taken to be ensembles of nucleons, consistin
pointlike color charges~valence quarks!. The first nucleus is
supposed to move in the ‘‘1’’ direction, the second in the
‘‘ 2 ’’ direction; see Fig. 1. In contrast to@7,9#, theydo have
a longitudinal extension; i.e., a color charge in nucleus 1
a fixed x2 componentx2 i , which is different for each
charge,x2 iÞx2k ,iÞk, and similar for nucleus 2, where th
charges have fixedx1 componentsy1 j ~of course, all
charges have different transverse coordinatesxI i ,yI j as well!.

During the collision, we assume the momenta of t
charges to remain unchanged~eikonal trajectories!. This is
certainly justified, since we consider the initial momenta
the charges to be rather large~if not infinite!. The nuclei just
pass through each other and continue their motion along
light cone~see Fig. 1!. As in @9#, we also solve the classica
Yang-Mills equations perturbatively to first order in the co
rections to the Abelian solution and obtain the classical,
diated gluon field. In contrast to@9#, however, we shall work
exclusivelyin the covariant~Lorentz! gauge. The advantag
of this gauge is that, for the case of a single ultrarelativis
nucleus, the classical gluon field is identical to the solut

FIG. 1. The nuclear collision as envisaged here~for details, see
text!.
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of the corresponding Abelian problem@11#. Moreover, as
will be shown below, for the collision of two nuclei, one ca
easily relate the classical solution to that of a diagramm
approach in terms of the usual Feynman rules in covar
gauge~such rules do not exist in momentum space for
gauge chosen in@9#!.

The outline of the paper is as follows. In Sec. II we d
cuss the lowest order solution to the Yang-Mills equatio
This is just the solution to the corresponding Abelian pro
lem; i.e., the fields generated by the color charges in
nuclei are simply superposed and no real gluons are
duced. In Sec. III we find the classical field to orderg3. This
is the first~and lowest! order correction to the Abelian solu
tion. We shall derive an explicit expression for the field
coordinate space. We establish the correspondence bet
this classical result and a particular set of Feynman diagra
This proves that, at this order, the classical field is the~ma-
jor! source of soft gluon production. We shall argue that
higher orders the classical description will fail, since alrea
at orderg5 nonclassical contributions to the gluon field b
come important. In Sec. IV we calculate energy, number,
multiplicity distributions of the produced gluons. As ex
pected, their form is similar to the one found previously
@9,14#. However, the prefactor of our result is different fro
that in @9#, while it agrees with the result of@14# and @19#.

Our units are \5c51, and the metric tensor is
gmn5diag(1,2,2,2). Light-cone coordinates are define
in the usual way,a6[(a06az)/A2,]7[]/]x6 . The nota-
tion for transverse vectors isaI 5(ax,ay).

II. CLASSICAL SOLUTION TO LOWEST ORDER
IN THE COUPLING CONSTANT

We consider two nuclei with mass numbersA1 ,A2 mov-
ing towards each other with ultrarelativistic velocitie
v1,2.61 along thez axis ~cf. Fig. 1!. The nuclei are taken
as ensembles of nucleons@11#. In order to simplify the color
algebra each ‘‘nucleon’’ consists of a quark-antiquark pa
These valence quarks and antiquarks are confined inside
nucleons~visualized as spheres of equal radius in the r
frame of each nucleus!. In order to construct the solution
nucleons inside the nucleus and valence charges inside
nucleons are assumed to be ‘‘frozen’’; i.e., they have defin
light-cone~and transverse! coordinates which, due to our as
sumption of eikonal trajectories for the individual charge
will not change throughout the calculation. We label the c
ordinates of the quarks in nucleus 1 byx2 i ,xI i ,i 51, . . . ,A1,
and those of nucleus 2 byy1 j ,yI j , j 51, . . . ,A2. Antiquark

coordinates follow this notation with an additional prime. A
in @11#, the nuclei are supposed to be sufficiently ‘‘dilute
such that the distance between the nucleons is much la
than the nucleon’s size.

The goal of this section is to solve the classical QC
equations of motion,

DmFmn5Jn, ~1!

to lowest order in the strong coupling constant~our conven-
tion for the covariant derivative isDm[]m2 ig@Am ,•#). We
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shall work exclusively in the covariant gauge (]mAm50). In
this gauge, the equations of motion~1! can be cast into the
form

hAm5Jm1 ig@An ,]nAm1Fnm#, ~2!

where h is the d’Alembertian operator. In this form, it i
easy to solve the equations perturbatively, as will be outlin
in the following.

To lowest order ing, i.e., orderg, the commutator term
on the right-hand side of Eq.~2! does not contribute, sinc
the field itself is already of this order@see Eq.~4! below#. To
this order and in covariant gauge, the classical current ca
taken as a sum of the currents for each individual nucleus
given in @11#:

J1
~1!5g(

i 51

A1

Ta~Ti
a!@d~x22x2 i !d~xI 2xI i !

2d~x22x2 i8 !d~xI 2xI i8!#, ~3a!

J2
~1!5g(

j 51

A2

Ta~ T̃ j
a!@d~x12y1 j !d~xI 2yI j !

2d~x12y1 j8 !d~xI 2yI j8!#, ~3b!

JI
~1!50, ~3c!

whereTa are the generators of SU(Nc), and (Ti
a) and (T̃ j

a)
are color matrices which represent the color charge of
quark in the color space of nucleoni in the first and nucleon
j in the second nucleus, respectively~see@11#!. The current
~3! takes into account that antiquarks have the opposite c
charge and thus ensures color neutrality for each nucleo

The classical gluon field satisfying the Yang-Mills equ
tions for a single ultrarelativistic nucleus of our type wa
found in @11#. To lowest order in the coupling constant th
solution of Eq.~2! for two nuclei will be just a sum of the
solutions for single nuclei, since the equations of motion
Abelian (hAm

(1)5Jm
(1)), and thus linear. Therefore, as on

readily confirms by an explicit calculation, the solution
the Yang-Mills equations to orderg is @11#

A1
~1!52

g

2p(
i 51

A1

Ta~Ti
a!@d~x22x2 i !ln~ uxI 2xI i ul!

2d~x22x2 i8 !ln~ uxI 2xI i8ul!#, ~4a!

A2
~1!52

g

2p(
j 51

A2

Ta~ T̃ j
a!@d~x12y1 j !ln~ uxI 2yI j ul!

2d~x12y1 j8 !ln~ uxI 2yI j8ul!#, ~4b!

AI
~1!50, ~4c!

wherel enters as an infrared cutoff. In a sense, it acts a
gauge parameter that sets the scale of the gauge pote
The associated field strength tensor is independent ofl,

F12
~1! 50, ~5a!
d

be
as

e

or
.

e

a
ial.

F1'
~1! 5

g

2p(
i 51

A1

Ta~Ti
a!S d~x22x2 i !

xI 2xI i

uxI 2xI i u2

2d~x22x2 i8 !
xI 2xI 8 i

uxI 2xI 8 i u2D , ~5b!

F2'
~1! 5

g

2p(
j 51

A2

Ta~ T̃ j
a!S d~x12y1 j !

xI 2yI j

uxI 2yI j u2

2d~x12y1 j8 !
xI 2yI 8 j

uxI 2yI 8 j u2
D , ~5c!

Fi j
~1!50, i , j 5x,y. ~5d!

We note that the field strength is zero in the forward lig
cone. This is of course reasonable, because to orderg there
are no interactions between the pointlike charges constitu
the nuclei. Therefore, no real gluons are produced.

III. GLUON FIELD TO NEXT-TO-LOWEST ORDER

A. Formal solution of the equations of motion

In this section we compute the solution of the Yang-Mi
equations to orderg3. As we shall see, the equations of m
tion ~2! are linear to each order, and we therefore focus fi
for the sake of simplicity, on the case of a collision of tw
single pointlike color charges, for instance the quark fro
nucleon i in nucleus 1 and the quark from nucleonj in
nucleus 2. The generalization to the nuclear collision is th
straightforward: The solution is a simple superposition of
solutions emerging from each individual collision~i.e., a sum
over i and j and over the respective quark-quark, qua
antiquark, antiquark-quark, and antiquark-antiquark scat
ings!.

To orderg3 the equations of motion~2! read

hAm
~3!5Jm

~3!1 ig@A~1!n,]nAm
~1!1Fnm

~1!#, ~6!

whereAm
(3) and Jm

(3) are the contributions to the gluon fiel
and the fermionic current to orderg3. In order to solve these
equations we have to first determineJm

(3) . The most simple
approach is to exploit~non-Abelian! current conservation
DmJm50. One obtains,

]mJ~3!m5 ig@A1
~1! ,J2

~1!#1 ig@A2
~1! ,J1

~1!#

5
g3

2p
f abcTa~Ti

b!~ T̃ j
c!d~x22x2 i !d~x12y1 j !

3@d~xI 2yI j !2d~xI 2xI i !# ln~ uxI i2yI j ul!. ~7!

The charges are assumed to be recoilless and follow eik
trajectories. Therefore, their momenta do not change in
interaction and the transverse component of the fermio
current is zero. The ‘‘1’’ and ‘‘ 2 ’’ components will still be
d functions on the light cone and in the transverse directi
as was the case at orderg. The only effect of the collision on
the valence charges is a ‘‘rotation’’ of their color, as soon
a charge ‘‘hits’’ the field of the other charge at the collisio



io

e

ko
m

is
f

n-

-
ar

e
e

-
on
om

e-
-
s
its

nc-
e to

-

r
ers

en
der
der
ap-
or-

ve

56 1087CLASSICAL GLUON RADIATION IN . . .
point. This consideration leads us to the conclus
J1

(3);d(x22x2 i)u(x12y1 j )d(xI 2xI i) and J2
(3);u(x2

2x2 i)d(x12y1 j )d(xI 2yI j ). The correct coefficients ar

found from Eq.~7!:

J1
~3!52

g3

2p
f abcTa~Ti

b!~ T̃ j
c!d~x22x2 i !u~x12y1 j !

3d~xI 2xI i !ln~ uxI i2yI j ul!, ~8a!

J2
~3!5

g3

2p
f abcTa~Ti

b!~ T̃ j
c!u~x22x2 i !d~x12y1 j !

3d~xI 2yI j !ln~ uxI i2yI j ul!, ~8b!

JI
~3!50. ~8c!

It can be shown that this current is consistent with the ei
nal scattering limit of either the lowest order QCD diagra
for gluon radiation from two colliding color charges~cf. also
Sec. III B below! or Wong’s equations@15# for the collision
of two classical color charges.

For one charge, say,i , ‘‘hitting’’ an ensemble of charges
j , the color of chargei ‘‘rotates’’ each time it hits the field of
one of the chargesj in the ensemble. The resulting current
simply the sum overj of the terms on the right-hand side o
Eq. ~8!. Similarly, the collision of an ensemble with an e
semble simply adds another summation overi . The actual
nuclear collision in our approach is only slightly more com
plex in that one has to account for the presence of antiqu
as well.

The equations of motion for the next-to-lowest ord
gluon field are now obtained by inserting the lowest ord
results together with the current~8! into the right-hand side
of Eq. ~6!:

hA1
~3!a5

g3

~2p!2 f abc~Ti
b!~ T̃ j

c!@22p ln~ uxI i2yI j ul!

3d~x22x2 i !u~x12y1 j !d~xI 2xI i !1 ln~ uxI 2xI i ul!

3 ln~ uxI 2yI j ul!]1d~x22x2 i !d~x12y1 j !#, ~9a!

hA2
~3!a5

g3

~2p!2 f abc~Ti
b!~ T̃ j

c!@2p ln~ uxI i2yI j ul!u~x22x2 i !

3d~x12y1 j !d~xI 2yI j !2 ln~ uxI 2xI i ul!

3 ln~ uxI 2yI j ul!d~x22x2 i !]2d~x12y1 j !#, ~9b!

hAI
~3!a5

g3

~2p!2 f abc~Ti
b!~ T̃ j

c!d~x22x2 i !d~x12y1 j !

3S ln~ uxI 2yI j ul!
xI 2xI i

uxI 2xI i u2
2 ln~ uxI 2xI i ul!

xI 2yI j

uxI 2yI j u2D .

~9c!

Equations~9! are linear differential equations, which jus
tifies why we were able to focus on one single collisi
between two valence quarks first and later obtain the c
n

-
s

ks

r
r

-

plete solution by summing over all possible collisions b
tween color charges.~It was explained above how the corre
sponding sum overi and j and over quarks and antiquark
appears in the fermionic current; for the commutator term,
presence is obvious.! The linearity of Eqs.~9! also allows us
to compute the solution simply by the method of Green fu
tions. Since the classical solution obeys causality, we hav
use the retarded Green function:

Am
~3!~x!5E d4x8Gr~x2x8! J̃m~x8!, ~10!

where J̃m[Jm
(3)1 ig@A(1)n,]nAm

(1)1Fnm
(1)# is given explicitly

by the right-hand side of Eq.~9!. The retarded Green func
tion reads, in coordinate and momentum space@16#,

Gr~x!5
1

2p
u~ t !d~x2!,G̃r~k!52

1

k21 i ek0

. ~11!

Formulas~9!–~11! provide the classical gluon field to orde
g3. Note that the above perturbative solution scheme rend
the equations of motion linear ateach successive order in
g. In principle, one can therefore use the method of Gre
functions to construct the classical solution to arbitrary or
in g. We shall argue below, however, that already at or
g5 quantum effects become important and the classical
proach breaks down. Before we compute the solution to
derg3 explicitly, let us draw a connection to the perturbati
solution via Feynman diagrams.

B. Connection to Feynman diagrams

Let us write the right-hand side of Eq.~10! in momentum
representation,

Am
~3!a~x!52E d4k

~2p!4

e2 ik•x

k21 i ek0

J̃m
a ~k!, ~12!

where

J̃ 1
a ~k!5

g3

~2p!2
f abc~Ti

b!~ T̃ j
c!ei ~k1x2 i1k2y1 j 2kI •yI j !

3E d2qI e2 iqI •~xI i2yI j !
1

~kI 2qI !2F i

k21 i e
2

ik1

qI
2 G ,

~13a!

J̃ 2
a ~k!52

g3

~2p!2
f abc~Ti

b!~ T̃ j
c!ei ~k1x2 i1k2y1 j 2kI •yI j !

3E d2qI e2 iqI •~xI i2yI j !
1

qI
2F i

k11 i e
2

ik2

~kI 2qI !2G ,

~13b!
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FIG. 2. Diagrams contributing to the gluo
field at orderg3.
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J̃I
a~k!5

g3

~2p!2
f abc~Ti

b!~ T̃ j
c!ei ~k1x2 i1k2y1 j 2kI •yI j !

3E d2qI e2 iqI •~xI i2yI j !
i ~2qI 2kI !

qI
2~kI 2qI !2

. ~13c!

In order to derive this, we have made repeated use of

E d2qI

~2p!2
eiqI •xI

1

qI
2 52

1

2p
ln~ uxI ul! ~14!

and, for Eq.~13c!, of the transverse gradient of this equatio
The diagrams giving the classical gluon field@11# at order

g3 are shown in Fig. 2. The cross at the end of the gluon
denotes the space-time pointx where we measure the field
The upper quark line corresponds to the first charge~fixed
coordinatesx2 i ,xI i), and the lower one corresponds to t
second charge~at fixed y1 j ,yI j ). Therefore, the momentum

on the upper line has a large ‘‘1’’ component, and the mo-
mentum on the lower line has a large ‘‘2 ’’ component. The
gluon field to orderg3 also includes graphs where the tw
quarks do not interact. These diagrams are not shown in
2, since they are not part of the classical gluon field and
not contribute to gluon production~they vanish once we tak
the emitted gluon line to be on shell!.

We take the gluon-fermion vertices in the eikonal a
proximation. In the standard calculation of the diagrams,
emitted gluon line corresponds to a gluon~Feynman! propa-
gator2 i /(k21 i e) times a phasee2 ik•x ~since we shall ulti-
mately transform the diagrams into coordinate space!. This
term is common to all diagrams in Fig. 2. However, as
result of the regularization of the Feynman propagator,
diagrams corresponding to gluonabsorption ~instead of
emission! are automatically included in this calculation. Th
means that the usual Feynman diagrams yield an aca
result. In order to establish correspondence to the class
result, where there is only gluon emission, we replace
Feynman propagator by the retarded propagator
2 i /(k21 i ek0) for the gluon field measured atx.

Similarly, as a result of the Feynman regularization of t
fermion propagator, all diagramsB–E contain contributions
where the gluon is emittedprior to the one-gluon exchange
To ensure causality, we have to use aretarded fermion
propagator when calculating the diagramsB and D and an
advancedfermion propagator in diagramsC and E which
renders the emission of the gluon causal.

We have the freedom to change the regularization
propagators. Different choices of regularization do not infl
ence the physics. The difference between the retarded~or
advanced! propagators and the usual Feynman propagato
just ad function of the square of the four-momentum of t
.

e

ig.
o

-
e

a
ll

sal
al
e

e

f
-

is

internal line. Therefore, for graphsB–E this difference is
proportional to those parts of the diagrams where the ferm
line is on shell. But these parts do not contribute to r
gluon production, since once we put the outgoing gluon
shell, they vanish. The regularization of the internal glu
lines of the diagrams in Fig. 2 turns out to be of no impo
tance for the actual calculation.

After clarifying the regularization of the propagators, w
compute the diagrams according to the usual Feynman r
in covariant gauge. Let us denote therth component of the
gluon field from a diagram X by Xur , where
X5A, B, C, D, or E. DiagramA is nonzero for all values
of r, while for B and C only the ‘‘1’’ component and for
D andE only the ‘‘2 ’’ component are nonvanishing. After
lengthy, but straightforward calculation we compare w
Eqs.~12! and ~13! to obtain the identities

A1
~3!a~x!5~A1B1C!ur51 , ~15a!

A2
~3!a~x!5~A1D1E!ur52 , ~15b!

AI
~3!a~x!5Aur5' . ~15c!

We see that the calculation of the diagrams yields exactly
gluon field ~12! obtained from the classical solution of th
Yang-Mills equations. That proves the correspondence of
classical field to the diagrams in Fig. 2. The diagramA arises
from the commutator term on the right-hand side of Eq.~6!,
whereas graphsB–E arise from the fermionic current.

The orderg3 is the limit of applicability of the classica
approach to the problem of gluon production. At orderg5

one can construct diagrams which contribute to gluon p
duction, but cannot be obtained classically. An example
this type is shown in Fig. 3.

The two-gluon exchange contribution~Fig. 3! calculated
using the traditional Feynman regularization of the propa
tors cannot be obtained from the classical equations of
tion. The classical approach would give the part of the d
gram where the two exchanged gluons are in a color sin
state. That corresponds to the internal fermion lines betw
the exchanged gluons being on shell. This is what one wo
obtain by iterating the procedure for the determination of
classical field outlined above to higher orders in the co
pling. The color octet combination of the two gluons, bei

FIG. 3. Graphs contributing to the gluon production at ord
g5.
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the lowest order correction to the gluon’s Regge trajectory
a pure ‘‘quantum’’ effect. A different regularization of th
propagators cannot make this contribution ‘‘classical.’’ O
can see that by a direct calculation of the two-gluon
change diagrams in the octet channel. The resulting co
bution is proportional to lns, wheres is the center-of-mass
energy of the colliding quarks~see@17# and references men
tioned there!. That is, it depends on the longitudinal m
menta of the quarks. However, the classical calculation
just an iteration of the one-gluon exchange diagram and
not able to provide such a logarithmic longitudinal depe
dence. Therefore, the diagrams in Fig. 3 are not class
is

-
ri-

is
us
-
l.

~After all, it would be quite surprising if the gluon’s Regg
trajectory turns out to be a classical concept.!

C. Classical gluon field in coordinate space

Let us now explicitly compute the gluon field~10! in co-
ordinate space. We decompose the ‘‘1’’ component of the
field as

A1
~3!a5a11a2 , ~16!

wherea1 is straightforwardly computed:
a152
g3

2p
f abc~Ti

b!~ T̃ j
c!E d4x8Gr~x2x8!ln~ uxI i2yI j ul!d~x28 2x2 i !u~x18 2y1 j !d~xI 82xI i !

52
g3

2~2p!2 f abc~Ti
b!~ T̃ j

c!
1

x22x2 i
u~x22x2 i !uS x12y1 j2

uxI 2xI i u2

2~x22x2 i !
D ln~ uxI i2yI j ul!. ~17!

The second term can be written in the form

a25
g3

~2p!2 f abc~Ti
b!~ T̃ j

c!E d4x8Gr~x2x8!ln~ uxI 82xI i ul!ln~ uxI 82yI j ul!]18 d~x28 2x2 i !d~x18 2y1 j !

5
g3

2~2p!2 f abc~Ti
b!~ T̃ j

c!]1@u~x22x2 i !u~x12y1 j !J#, ~18!

with

J[E d2qI d2lI

~2p!2 e2 iqI •~xI 2yI j !2 i lI•~xI 2xI i !
1

lI
2qI

2
J0~ uqI 1 lIut!, ~19!

wheret5A2(x22x2 i)(x12y1 j ). The explicit evaluation of the integralJ is referred to Appendix A. The final result is

J5 ln~j.l!ln~h.l!1
1

4FLi2S eia
j,h,

j.h.
D1Li2S e2 ia

j,h,

j.h.
D G , ~20!

wherej.(,)5max(min)(uxI 2xI i u,t),h.(,)5max(min)(uxI 2yI j u,t), anda is the angle betweenxI 2xI i andxI 2yI j . l plays the

same role as in Eq.~4!. Li2(z) is the dilogarithm~also known as Spence’s function!. With the final expression fora2 we obtain

A1
~3!a~x!52

g3

2~2p!2 f abc~Ti
b!~ T̃ j

c!F 1

x22x2 i
u~x22x2 i !uS x12y1 j2

uxI 2xI i u2

2~x22x2 i !
D ln~ uxI i2yI j ul!

2d~x22x2 i !u~x12y1 j !ln~ uxI 2xI i ul!ln~ uxI 2yI j ul!2u~x22x2 i !u~x12y1 j !]1@ ln~j.l!ln~h.l!#

1
1

4
u~x22x2 i !u~x12y1 j !~]1ln r !ln~122rcosa1r 2!G , ~21!

wherer 5(j,h,)/(j.h.).
The integrations forA2

(3)a are done similarly with the result

A2
~3!a~x!5

g3

2~2p!2 f abc~Ti
b!~ T̃ j

c!F 1

x12y1 j
u~x12y1 j !uS x22x2 i2

uxI 2yI j u2

2~x12y1 j !
D ln~ uxI i2yI j ul!

2d~x12y1 j !u~x22x2 i !ln~ uxI 2xI i ul!ln~ uxI 2yI j ul!2u~x22x2 i !u~x12y1 j !]2@ ln~j.l!ln~h.l!#

1
1

4
u~x22x2 i !u~x12y1 j !~]2ln r !ln~122rcosa1r 2!G . ~22!
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For AI
(3)a we find

AI
~3!a~x!52

g3

2~2p!2 f abc~Ti
b!~ T̃ j

c!u~x22x2 i !u~x12y1 j !@~¹ i2¹ j !J#

52
g3

2~2p!2 f abc~Ti
b!~ T̃ j

c!u~x22x2 i !u~x12y1 j !F ~¹ i2¹ j !@ ln~j.l!ln~h.l!#2
1

4
@~¹ i2¹ j !ln r #

3 ln~122rcosa1r 2!2
i

4
@~¹ i2¹ j !a# lnS 12reia

12re2 iaD G . ~23!
u
e.

o
e

el
am

ta
le
d
th

n
ra

ded
s,

ons
ons.

e
the
h

As expected, the solution to orderg3 is causal; i.e., it is
nonvanishingonly in the forward light cone.

To obtain the complete solution for the nucleus-nucle
collision we simply sum over all charges in the nuclei; i.
as discussed above, we sum over all nucleonsi and j and
over quarks and antiquarks inside the nucleons. If we den
the solution of the scattering problem of two single charg
with coordinatesxi and yj found above byAm

(3)a(x,xi ,yj ),
we obtain

Am
~3!a~x!5 (

i , j 51

A1 ,A2

@Am
~3!a~x,xi ,yj !2Am

~3!a~x,xi8 ,yj !

2Am
~3!a~x,xi ,yj8!1Am

~3!a~x,xi8 ,yj8!#. ~24!

The antiquark coordinates are marked with a prime. The r
tive signs emerge from the fact that antiquarks have the s
color charge as quarks, but with opposite sign.

IV. RADIATED FIELD ENERGY, NUMBER,
AND MULTIPLICITY DISTRIBUTIONS

In order to determine the radiated field energy we s
from Eq.~12!, and, for simplicity, discuss the case of a sing
collision first. Note that a part of the solution correspon
just to a change of the field carried by the charge due to
collision ~the color ‘‘rotation’’!, and not to the radiated gluo
field. That part is most easily isolated by a contour integ
tion in the complexk0 plane in Eq.~12!; it arises from the
pole k652 i e in Eq. ~13!:

A1charge
~3!a ~x!5

g3

~2p!2
f abc~Ti

b!~ T̃ j
c!ln~ uxI i2yI j ul!

3 ln~ uxI 2xI i ul!d~x22x2 i !u~x12y1 j !,

~25a!

A2charge
~3!a ~x!52

g3

~2p!2
f abc~Ti

b!~ T̃ j
c!ln~ uxI i2yI j ul!

3 ln~ uxI 2yI j ul!u~x22x2 i !d~x12y1 j !,

~25b!

AI charge
~3!a ~x!50. ~25c!
s
,

te
s

a-
e

rt

s
e

-

The radiated gluon field arises from the poles of the retar
propagator in Eq.~12!; i.e., it corresponds to on-shell gluon
as one would expect:

Amrad
~3!a~x!5u~ t2t i j !E d k̃@ i J̃ m

a ~v,k!e2 ivt1 ik•x1c.c.#,

~26!

where t i j [(x2 i1y1 j )/A2 is the time when the collision
happens andd k̃[d3k/@(2p)32v#, with v5uku @16#. Obvi-
ously, this field vanishes prior to the collision.

The ~stationary part of the! radiated field energy is@16#

H5E d k̃v@ J̃I
a~v,k!• J̃I

a* ~v,k!2 J̃ 1
a ~v,k! J̃ 2

a* ~v,k!

2 J̃ 2
a ~v,k! J̃ 1

a* ~v,k!#. ~27!

In the case of a nuclear collisionJ̃m
a (k), Eq. ~13!, becomes

more complicated: There is an additional sum over nucle
i and j and over quarks and antiquarks inside these nucle
Inserting the resulting expression, for timesafter the last
parton-parton collision we arrive at

H54
g6

~2p!4
f abcf adeE d k̃v

1

kI
2

3E d2qI 1d2qI 2

qI 1•qI 2kI
21qI 1

2qI 2
22qI 1

2kI •qI 22qI 2
2kI •qI 1

qI 1
2qI 2

2~kI 2qI 1!2~kI 2qI 2!2

3 (
i ,k51

A1

(
j ,l 51

A2

~Ti
b!~ T̃ j

c!~Tk
d!~ T̃l

e!P~k1 ,qI 1 ;xi !

P~k2 ,kI 2qI 1 ;yj !P* ~k1 ,qI 2 ;xk!P* ~k2 ,kI 2qI 2 ;yl !,

~28!

where nowk6[(v6kz)/A2 and

P~k1 ,qI ;xi ![eik1x2 i2 iqI •xI i2eik1x2 i8 2 iqI •xI i8. ~29!

In order to achieve color neutrality in the initial state, w
have to average over all possible color orientations in
color space of the individual nucleons. Wit
tr@(Ti

b)( T̃ j
c)(Tk

d)( T̃l
e)#5d ikdbdd j l d

ce/4, and f abcf abc

5Nc(Nc
221) this yields
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1

Nc
2
tr@H#5

g6

~2p!4

Nc
221

Nc
E d k̃

v

kI
2E d2qI 1d2qI 2

3
qI 1•qI 2kI

21qI 1
2qI 2

22qI 1
2kI •qI 22qI 2

2kI •qI 1

qI 1
2qI 2

2~kI 2qI 1!2~kI 2qI 2!2
P̃~k,qI 1 ,qI 2!,

~30!

where

P̃~k,qI 1 ,qI 2![(
i 51

A1

P~k1 ,qI 1 ;xi !P* ~k1 ,qI 2 ;xi !

3(
j 51

A2

P~k2 ,kI 2qI 1 ;yj !P* ~k2 ,kI 2qI 2 ;yj !.

~31!

For further evaluation we introduce the center-of-mass co
dinates of nucleoni ,(X2 i ,XI i), and nucleonj ,(Y1 j ,YI j ), and

relative coordinatesDx2 i ,DxI i ,Dy1 j ,DyI j , such that

x2 i5X2 i1
Dx2 i

2
, x2 i8 5X2 i2

Dx2 i

2
,

y1 j5Y1 j1
Dy1 j

2
, y1 j8 5Y1 j2

Dy1 j

2
, ~32a!

xI i5XI i1
DxI i

2
, xI i85XI i2

DxI i

2
,

yI j5YI j1
DyI j

2
, yI j85YI j2

DyI j

2
. ~32b!

Here we assumed that the positions of quark and antiqua
a nucleon are symmetric with respect to the center of
nucleon. This assumption is not crucial. The calculations
also be done for the general case of arbitrary positions
quarks and antiquarks in the nucleons. For the ‘‘symmetr
case the phase factor becomes

P̃~k,qI 1 ,qI 2!5(
i 51

A1

e2 i ~qI 12qI 2!•XI i@e2 i ~qI 12qI 2!•DxI i /2

2eik1Dx2 i2 i ~qI 11qI 2!•DxI i /21c.c.#

3(
j 51

A2

ei ~qI 12qI 2!•YI j@ei ~qI 12qI 2!•DyI j /2

2eik2Dy1 j 2 ikI •DyI j 1 i ~qI 11qI 2!•DyI j /21c.c.#.

~33!

We shall now first averageP̃ over the longitudinal positions
of quarks and antiquarks inside the nucleons. The nuclei
highly Lorentz contracted in the longitudinal direction. T
simplify the subsequent discussion, we take them and
nucleons inside to be cylindrical. Each nucleon is then
cylinder of radiusa and length 2a/g, oriented along thez
axis, whereg is the Lorentz factor in the c.m. frame of th
r-

in
e
n

of
’’

re

e
a

collision. ~The longitudinal extension of the nucleons is n
important; it will drop out in the following anyway.! With

g

A2a
E

2a/A2g

a/A2g
dS Dx2 i

2 Deik1Dx2 i5
sin@k1A2a/g#

k1A2a/g
→1~g→`!,

~34!

and an analogous relation for the average overDy1 j , the
longitudinal momentum dependence vanishes from the ph
factor.

Let us now average over the transverse positionsXI i ,YI j of

the nucleons inside a nuclear transverse area. For a cylin
cal nucleus, the transverse area which we average ove
independent of the longitudinal position of the individu
nucleon and equal topR1(2)

2 , R1(2) being the transverse ra
dius of nucleus 1~2!. Let us take nucleus 1 to be the larger
the two nuclei. SinceR1 is by far larger than the~inverse!
momentum scales we are interested in, we may take to g
approximationR1→`, and obtain

1

pR1
2E d2XI ie

2 i ~qI 12qI 2!•XI i.
4p

R1
2

d~qI 12qI 2!. ~35!

With this result, theYI j average~over the transverse position

of nucleons in nucleus 2! is trivial. The assumption of infi-
nite transverse nuclear size greatly simplifies the subseq
discussion. However, we are then no longer able to st
collisions at finite impact parameter.

Finally, we average over the transverse dimension of
nucleons. That integral is formally the same as Eq.~35!, only
that R1 is replaced bya and the momentum dependences
the various terms inP̃ are different. Now, however, 1/a is
not small on the momentum scale of interest. In fact, theqI 1,2

integrations in Eq.~30! are logarithmically divergent, such
that the treatment of the small momentum region is of so
importance. As we shall see, treating the average over
transverse dimensions of the nucleons correctly leads to
infrared regularization of these divergences via nucleo
form factors. The physical interpretation is that on large~spa-
tial! scales individual nucleons appear colorless and do
emit gluons.

The average over the transverse dimension of a nuc
involves typically integrals of the type@18#

1

pa2E d2S DxI i

2 DeiqI •DxI i /25
2J1~ uqI ua!

uqI ua
. ~36!

For the average phase factor we thus obtain

^P̃~k,qI 1 ,qI 2!&54A1A2

4p

R1
2

d~qI 12qI 2!S 12
2J1~2uqI 1ua!

2uqI 1ua D
3S 12

2J1~2ukI 2qI 1ua!

2ukI 2qI 1ua D . ~37!

Our final result for the invariant distribution of the avera
energy is
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d^H&

dyd2kI
5p

g6

~2p!6

Nc
221

Nc

4A1A2

pR1
2

v

kI
2

3E d2qI
F~ uqI ua!

qI
2

F~ ukI 2qI ua!

~kI 2qI !2
, ~38!

with the~longitudinal! gluon rapidityy[ ln@k1 /k2#/2 and the
‘‘form factor’’ F(x)5122J1(2x)/2x. For smallqI or kI 2qI ,

F regularizes the infrared divergence of the integral. If we
not assume that the quark and antiquark are symmetric
respect to the nucleon’s center and allow them to be a
where in the nucleon, the ‘‘form factor’’ become
F(x)512@2J1(x)/x#2.

We now compare our result to that of@9#. In that work,
thenumber distributionof radiated gluons was related to th
average energy distribution via

dN
dyd2kI

[
1

v

d^H&

dyd2kI
. ~39!

As in @9#, we consider a central collision of equal nucle
A15A25A. According to@11#, the average transverse col
charge density is given bym25CFA/(NcpR2) ~for our case
of a ‘‘cylindrical’’ nucleus!, where CF[(Nc

221)/(2Nc).
Then, with the transverse areaS'[pR2,

dN
dyd2kI

5S'

p

CF
2

2g6m4

~2p!3p
Nc~Nc

221!
1

kI
2

3E d2qI

~2p!2

F~ uqI ua!

qI
2

F~ ukI 2qI ua!

~kI 2qI !2
. ~40!

This has~apart from the form factors! the same momentum
dependence as the result of@9# @Eq. ~49!#. The prefactor,
though different from@9#, agrees with recent results obtaine
by Gyulassy and McLerran@19#. Note that as a result of th
form factors, our result behaves like 1/kI

2 for small ukI u;1/a.
The residual infrared divergence stems from our approxim
tion of an infinitely large nucleus in Eq.~35!. This diver-
gence is actually cut off by the finite~inverse! size of the
nucleus~i.e., by the nuclear form factor!. In this range of
momenta, however, our treatment ceases to be valid any
since thenukI u;1/R!1/a;LQCD, while one of our initial
assumptions wasukI u@LQCD.

The gluonnumberdistribution ~40! is not directly acces-
sible in the experiment. Experimentally, one measures
~invariant! differential cross section for detecting a radiat
gluon,ds rad/dyd2kI , divided by the total cross section of th
collision. Equivalently, one can divide the gluonnumberdis-
tribution ~40! by the total number of scattering events wi
one-gluon exchange between the color charges in a~central!
A1A collision. This number can be obtained quite ana
gously to the above derivation of the number distribution
radiated gluons. Instead of Eq.~28! we start with the square
of the one-gluon exchange amplitude. This amplitude for t
charges~whose coordinates are specified as in Sec. III! is
o
th
y-

-

y,

e

-
r

o

2
ig2

~2p!2
~Ti

a!~ T̃ j
a!E d2qI

qI
2

eiqI •~yI j 2xI i !. ~41!

Similar to the above, after averaging the modulus square
this amplitude over the positions of the quarks and a
quarks inside the nucleons and nucleons in the nucleus
well as over quark colors in the initial state, we obtain

Ntot54aS
2 CF

2Nc

4A2

pR2E d2qI S F~ uqI ua!

qI
2 D 2

. ~42!

The final answer for the gluonmultiplicity distribution is

dn

dyd2kI
5

1

Ntot

dN
dyd2kI

5
NcaS

p2kI
2E d2qI

F~ uqI ua!

qI
2

F~ ukI 2qI ua!

~kI 2qI !2

3F E d2qI S F~ uqI ua!

qI
2 D 2G21

. ~43!

Expanding the form factor~in the ‘‘symmetric’’ case! for
small a, F(x).x2/(21x2/3) for x→0, and choosing
mr

2[24/a2, this result coincides with that of@14# @Eq. ~21!#,
sinceCA[Nc53.

For the case of a nucleon in which the positions of qu
and antiquark are symmetric with respect to its center
can explicitly perform the integration in Eq.~43!. The result
reads

dn

dyd2kI
5

NcaS

p2kI
2

12

5 S 2
11~kI a!2

~kI a!4
@12J0~2ukI ua!#

1
21~kI a!2

~kI a!4
J2~2ukI ua!12F3~1,1;2,2,2;2kI

2a2!D .

~44!

The details of the integration are given in Appendix B. F
kI→0, the expression in large parentheses becomes 5/1
expected from Eq.~43!.

V. CONCLUSIONS

In this paper we have solved the classical Yang-M
equations for a collision of ultrarelativistic nuclei. Our sol
tion assumes the nuclei to have the form used in@11# and the
color charges to follow eikonal trajectories during the co
sion. The solution is constructed perturbatively in covaria
~Lorentz! gauge to lowest order~Abelian limit, orderg) and
next-to-lowest order (g3). Via Feynman diagrams we hav
clarified the connection between the classical and quan
solution to orderg3.

We have established a limit for the classical description
gluon production. From the discussion of the diagrams
Sec. III B follows that the limit for the field is one gluon pe
nucleon, unless the second gluon is the outgoing gluon. T
means that in the diagrammatic formulation of the probl
there should be no more than one gluon leaving e
nucleon. In nuclear collisions, different from the case o
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single nucleus@12#, we cannot require the final states of th
nucleons to be color singlets. Therefore, here we cannot
ply color averaging which cancels quantum corrections~as
described in@12#! and puts internal fermion lines of graph
like in Fig. 3 on shell, allowing for a classical descriptio
That way the limit of the classical approach is reduced to
gluon per nucleon.

We have given explicit expressions for the gluon field
coordinate space@Eqs.~21!–~23!# and calculated the energy
number, and multiplicity distributions of radiated gluons
orderg3 @Eqs.~38!, ~40!, and~43!#. Our result for the num-
ber distribution agrees with@19# and the form factors of the
individual nucleons can be cast into a form such that
multiplicity distribution agrees with the result of@14#.

The resulting gluon number and multiplicity distribution
are boost invariant, a property which wasa priori assumed in
@9#. Boost invariance is also assumed in popular hydro
namic models@20# to describe the evolution of ultrarelativ
istic nuclear collisions after~local! thermalization is estab
lished. To answer the question whether thermalizat
actually happens and what the respective time scales are
planned to utilize the solution found here to study screen
and damping in the radiation-produced gluonic medium@21#.
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APPENDIX A

In this appendix we explicitly calculate the integral

J5E d2qI d2lI

~2p!2

e2 iqI •~xI 2yI j !2 i lI•~xI 2xI i !

lI
2qI

2 J0~ uqI 1 lIut!. ~A1!

Using the addition theorem for Bessel functions (f is the
angle betweenqI and lI),

J0~ uqI 1 lIut!5 (
k52`

`

~21!keikfJk~ uqI ut!Jk~ u lIut!, ~A2!

we obtain

J5 (
k52`

`

~21!kE d2qI d2lI

~2p!2

e2 iqI •~xI 2yI j !2 i lI•~xI 2xI i !

lI
2qI

2

3eikfJk~ uqI ut!Jk~ u lIut!. ~A3!

If f1 is the angle betweenlI andxI 2xI i andf2 is the angle

betweenqI andxI 2yI j , we can expressf as

f5f22f11a, ~A4!
p-

e

e

-

n
t is
g

,

e.
.
-

-

with a being the angle betweenxI 2yI j andxI 2xI i . All angles

are taken clockwise. Integrating overf1 andf2 we obtain,

J5 (
k52`

`

eikaS E
0

`dq

q
Jk~quxI 2yI j u!Jk~qt! D

3S E
0

`dl

l
Jk~ l uxI 2xI i u!Jk~ l t! D . ~A5!

For nonzerok we can use the formula~see@22#!

E
0

`dl

l
Jk~ l uxI 2xI i u!Jk~ l t!5

1

2kS j,

j.
D k

, k.0, ~A6!

wherej.(,)5max(min)(uxI 2xI i u,t), to obtain the series

(
k51

`

~eika1e2 ika!
1

4k2S j,h,

j.h.
D k

, ~A7!

with h.(,)5max(min)(uxI 2yI j u,t). Using the definition of

the dilogarithm,

Li2~z![(
k51

`
zk

k2 , ~A8!

we can rewrite this series as

1

4FLi2S eia
j,h,

j.h.
D1Li2S e2 ia

j,h,

j.h.
D G . ~A9!

For the (k50) term in Eq.~A5! one can show that since

E
m

`dl

l
J0~ l uxI 2xI i u!J0~ l t!52 lnS j.m

2 D2g, ~A10!

with g being the Euler constant, this term can be rewritten

ln~j.l!ln~h.l!, ~A11!

where the cutoffl includes the previous cutoffm and all
other numerical prefactors. We finally obtain the answer,

J5 ln~j.l!ln~h.l!1
1

4FLi2S eia
j,h,

j.h.
D

1Li2S e2 ia
j,h,

j.h.
D G . ~A12!

APPENDIX B

The goal of this appendix is to perform the integration

I5E d2qI

qI
2~kI 2qI !2S 12

J1~2uqI ua!

uqI ua D S 12
J1~2ukI 2qI ua!

ukI 2qI ua D .

~B1!

Defining q[uqI u andp[ukI 2qI u we rewrite the integral as



ge

ing
se-

e
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I5E J~p,q!dpdq

q2p2 S 12
J1~2qa!

qa D S 12
J1~2pa!

pa D ,

~B2!

where the JacobianJ(p,q) is given by~see@8,22#!

J~p,q!52ppqE
0

`

bdbJ0~bk!J0~bq!J0~bp!, ~B3!

with k5ukI u. Inserting Eq.~B3! into Eq. ~B2! we obtain

I52pE
0

`

bdbJ0~bk!F E
0

`dq

q
J0~bq!S 12

J1~2qa!

qa D G2

.

~B4!

The integration overp in Eq. ~B2! is identical to the integra-
tion overq, which allowed us to square theq integral in Eq.
~B4!. Performing the integral in the square brackets we
~see@8,22#!

E
0

`dq

q
J0~bq!S 12

J1~2qa!

qa D5u~2a2b!F lnS 2a

b D2
1

2

1
b2

8a2G , ~B5!

which yields, for the original integral,
t,
t

I52pE
0

2a

bdbJ0~bk!F lnS 2a

b D2
1

2
1

b2

8a2G 2

52p~2a!2E
0

1

tdtJ0~2akt!S lnt1
1

2
~12t2! D 2

, ~B6!

with t5b/2a. The integral in Eq.~B6! can be calculated by
expanding the Bessel function in a power series, perform
the integration in each term, and finally resumming the
ries. The result is

I52pa2S 2
11~ka!2

~ka!4
@12J0~2ka!#1

21~ka!2

~ka!4
J2~2ka!

12F3~1,1;2,2,2;2k2a2!D . ~B7!

This expression is used to obtain Eq.~44!. Taking thek→0
limit of formula ~B7! we obtain the integral appearing in th
number of elastic scattering events@Eq. ~42!#:

E d2qI

~qI
2!2S 12

J1~2uqI ua!

uqI ua D 2

5
5

6
pa2. ~B8!
t,

,
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