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Classical gluon radiation in ultrarelativistic nucleus-nucleus collisions

Yuri V. Kovchegov
Department of Physics, Columbia University, New York, New York 10027

Dirk H. Rischke
Department of Physics, Duke University, Box 90305, Durham, North Carolina 27708-0305
(Received 1 April 199y

The classical Yang-Mills equations are solved perturbatively in covariant gauge for a collision of two
ultrarelativistic nuclei. The nuclei are taken as ensembles of classical color charges on eikonal trajectories. The
classical gluon field is computed in coordinate space up to cubic order in the coupling candtsntonstruct
the Feynman diagrams corresponding to this field and show the equivalence of the classical and diagrammatic
approaches. An argument is given which demonstrates that at higher ordettseitlassical description of the
process breaks down. As an application, we calculate the energy, number, and multiplicity distributions of
produced soft gluons and reproduce earlier results by Gunion and Bertsch and by Kovner, McLerran, and
Weigert.[S0556-281®7)07008-§

PACS numbdss): 25.75-q, 12.38.Aw, 12.38.Bx, 24.85p

I. INTRODUCTION size of the nucleus théransverse, two-dimensionatolor
charge densityp(x) is large (i.e., in a higher-dimensional
Ultrarelativistic heavy-ion collisions(s~200A GeV) at representation of the color algebiso that in a certain kine-
the Relativistic Heavy lon CollideRHIC) at Brookhaven matic region the soft gluon field produced by these color
aim towards an understanding of the properties of nucleagharges is effectivelglassical and can thus be obtained by
matter under extreme conditiof$]. It was argued that the solving theclassical Yang-Mills equations of motion. This
extraordinarily high energy and particle number densitiegjelq can then be used to compute the gluon distribution

reached in central nuclear collisions —at = RHIC, fynction. Quantum effects can be implemented as corrections
€~10-20 GeV fm~, dN/dy~1000[2], could lead to rapid i, the classical field.

“?CED therml?ligation kOf Imatte[|3] and thus to the creation  he kinematic region for which this approximation is
8. tt Zsbo'clfl .? ?uar -9 E:O” F:atf’.m@GFé[E‘ﬂ’ ? s}a:e Pre- valid is given by the following consideratiofi7,9]: The
icted by finite temperature lattice Q calculatiors, strong coupling constanks=g?/47 should be small, and

where chiral symmetry is restored and quarks and gluons ARerefore the typical gluon transverse momenta in the prob-

deconfined. bLgm should satisfk, > A gcp. On the other hand, the gluon

In order to assess whether this state can actually hould b Hiciently “soft.” h th
formed in an ultrarelativistic nuclear collision one has to gaintransverse momenta should be sufficiently “soft,” such that

a better understanding of the initial conditions and, at thes&® 9luons do not resolve individual color charges but couple
energies predominantly hard, parton-parton scattering prot-o the classical color charge denS|ty: At very high transverse
cesses in the early stage precedilugal) thermodynamical momenta quantum effects become important. Therefore, we
equilibrium. While event generators based on individualhave to limit ourselves to the region whete< s, with
parton-parton scattering proces$6s have been developed, being the average color charge density squared. The momen-
their respective predictions for the range of accessible energym fractionx of the gluons should be small enough so that
and particle number densities differ widely. the nucleus appears coherent in the longitudinal direction.
One of the main reasons is the poor understanding of the To facilitate the inclusion of quantum corrections, the au-
initial conditions for the nuclear reaction. Recently, McLer- thors of[7] searched for the classical gluon field of such a
ran and Venugopalan have made considerable progress in&cleus in the light-cone gauge. The solution of the equa-
classical approacfi7] to construct the gluon field at small tions of motion requires one to take the longitudinal exten-
values ofx. Their treatment is somewhat similar to the ap-sion of the nucleus into account; i.e., one must not take the
proach used by Mueller for constructing the wave functionnucleus to be infinitely thin in the longitudinal direction, as
and gluon structure function of a heavy quarkonium sigle ~ Was assumed originally if7]. The classical field of a single
At small x, the nucleonic structure is dominated by gluons,ultrarelativistic nucleus is the non-Abelian Weizker-
and thus a proper description of gluon dynamics in this ki-Williams field. It was computed i#10,11. In the approach
nematic region is vital for understanding the initial condi- Pursued in11] the nucleus was assumed to be an ensemble
tions and the subsequent preequilibrium stage in nuclear coff nucleons consisting of pointlikévalence color charges.
lisions. Instead of a smooth two-dimensional color charge density
The McLerran-Venugopalan modET] considers a very p(X), this quantity is a sum o functions in[11]. The limit
large nucleus moving at ultrarelativistic velocity, which con- of applicability of the classical approximation, as well as the
sequently appears in the laboratory frame as a “pancake” istructure of the non-Abelian Weizskeer-Williams field in
the transverse plane. It is assunj&d that due to the large terms of Feynman diagrams, has been discussgi?inThat
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¢ of the corresponding Abelian problepil]. Moreover, as

+ will be shown below, for the collision of two nuclei, one can
easily relate the classical solution to that of a diagrammatic
approach in terms of the usual Feynman rules in covariant
gauge(such rules do not exist in momentum space for the
gauge chosen if9)).

The outline of the paper is as follows. In Sec. Il we dis-
cuss the lowest order solution to the Yang-Mills equations.
This is just the solution to the corresponding Abelian prob-
lem; i.e., the fields generated by the color charges in the
nuclei are simply superposed and no real gluons are pro-
duced. In Sec. Ill we find the classical field to ordgr This
is the first(and lowesk order correction to the Abelian solu-
tion. We shall derive an explicit expression for the field in
coordinate space. We establish the correspondence between
this classical result and a particular set of Feynman diagrams.

FIG. 1. The nuclear collision as envisaged h¢foe details, see  This proves that, at this order, the classical field is (fine-
texy. jor) source of soft gluon production. We shall argue that at

higher orders the classical description will fail, since already
model also allowed for an explicit calculation of the averageat orderg® nonclassical contributions to the gluon field be-
color charge density squarecf. come important. In Sec. IV we calculate energy, number, and

One of the goals of the approach of McLerran andmultiplicity distributions of the produced gluons. As ex-
Venugopalan is to obtain the Balitsky-Fadin-Kuraev-Lipatovpected, their form is similar to the one found previously in
(BFKL) equation for the structure function of soft gluons [9,14]. However, the prefactor of our result is different from
and, if possible, derive corrections to this equation whichthat in[9], while it agrees with the result ¢fl4] and[19].
account for nuclear shadowing. Recently, a first step in this Qur units are Ai=c=1, and the metric tensor is
direction has been made: The BFKL equation was obtaineg“”=diag(+,—,—,—). Light-cone coordinates are defined
via a renormalization group approagtg]. in the usual waya. =(a’+a?/\2,d-=d/dx. . The nota-

A collision of two ultrarelativistic nuclei of the type ad- tjon for transverse vectors &= (a*,aY).
vertised in[7] was considered if9]. The Yang-Mills equa- -
tions were simplified assuming that the solution for the gluon

#1 #2

field in the forward light cone is boost invariant. The equa- Il. CLASSICAL SOLUTION TO LOWEST ORDER

tions were then solved perturbatively to first order in the IN THE COUPLING CONSTANT

corrections to the Abelian solution in the gauge ] o

X_A,+x,A_=0 [where  x.=(t*2)/\2 and  We consider two nuclei with mass numbéks,A, mov-
A.=(A°+A%/\2 are the light-cone components of the ing towards each other Wlt_h ultrarelatlwstl_c velocities
glﬁon field). v1~=*1 along thez axis (cf. Fig. 1). The nuclei are taken

s ensembles of nucleoftkl]. In order to simplify the color
algebra each “nucleon” consists of a quark-antiquark pair.
el hese valence quarks and antiquarks are confined inside the
hucleons(visualized as spheres of equal radius in the rest
frame of each nuclelisin order to construct the solution,
nucleons inside the nucleus and valence charges inside the
nucleons are assumed to be “frozen”; i.e., they have definite
gght-cone(and transvergecoordinates which, due to our as-
sumption of eikonal trajectories for the individual charges,
chargex_ #X_,i #k, and similar for nucleus 2, where the will not change throughout the calculation. We label the co-

charges have fixecdk, componentsy,; (of course, all ordinates of the quarks in nucleus 13y; . x;,i=1,... Ay,

charges have different transverse coordinajey; as wel). ~ and those of nucleus 2 by, ;,y;,j=1,... A;. Antiquark
During the collision, we assume the momenta of thecoordinates follow this notation with an additional prime. As

charges to remain unchangéeikonal trajectories This is  in [11], the nuclei are supposed to be sufficiently “dilute,”

certainly justified, since we consider the initial momenta ofSuch that the distance between the nucleons is much larger

the charges to be rather lar§énot infinite). The nuclei just than the nucleon’s size. _

pass through each other and continue their motion along the The goal of this section is to solve the classical QCD

light cone(see Fig. L As in[9], we also solve the classical €duations of motion,

Yang-Mills equations perturbatively to first order in the cor-

rections to the Abelian solution and obtain the classical, ra- D EAv=J¥ (1)

diated gluon field. In contrast {®], however, we shall work " ’

exclusivelyin the covariantLorentz gauge. The advantage

of this gauge is that, for the case of a single ultrarelativistido lowest order in the strong coupling constémar conven-

nucleus, the classical gluon field is identical to the solutiortion for the covariant derivative i® ,=d,—ig[A,,-]). We

In this paper, we also focus on an ultrarelativistic nuclea
collision, but we employ the approach|dfl] to describe the
nuclei. Each nucleus is moving with the speed of light. Th
nuclei are taken to be ensembles of nucleons, consisting
pointlike color chargegvalence quarks The first nucleus is
supposed to move in the+" direction, the second in the
*“ —" direction; see Fig. 1. In contrast {,9], theydo have
a longitudinal extension; i.e., a color charge in nucleus 1 ha
a fixed x_ componentx_;, which is different for each
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shall work exclusively in the covariant gauge,&*=0). In 9 A1 X—X
this gauge, the equations of moti¢h) can be cast into the F(jjz—E Ta(T?)( O(X_—X_j)—= =
form 2mi=1 |x—xi|2
OA#*=J*+ig[A,,0"A*+F"#], 2 X=X,
—o(x_—xL)—=——=— 2), (5b)
where O is the d’Alembertian operator. In this form, it is |x=xi]
easy to solve the equations perturbatively, as will be outlined
in the following. g Az _ X—Y;
To lowest order ing, i.e., orderg, the commutator term F(_ll=2—2 TATH| X —Y+))——
on the right-hand side of Ed2) does not contribute, since =1 |)_(_YJ|
the field itself is already of this ordésee Eq(4) below]. To
this order and in covariant gauge, the classical current can be , -V’
taken as a sum of the currents for each individual nucleus, as - 5(X+_y+1')|x__ y_’-|2 ! (50
given in[11]: = 2
Ay FiP=0, i,j=xy. (5d)

IP=g, THTHS(X-—%-1) 8(x—X) _ _ _ _
=1 We note that the field strength is zero in the forward light

(X=X ) 8(x—x)] (3 cone. This is of course reasonable, because to ardeere
R A S are no interactions between the pointlike charges constituting
the nuclei. Therefore, no real gluons are produced.

Ay
IW=g> TATH[S(xs—yj)d(x—y;
- gjgl (THLOX —Y+) (X =Y)) lll. GLUON FIELD TO NEXT-TO-LOWEST ORDER
—8(X,. _y,ﬂ)‘s()_(_)_’j,)]’ (3b) A. Formal solution of the equations of motion
In this section we compute the solution of the Yang-Mills
JY=0, (30  equations to ordeg®. As we shall see, the equations of mo-

tion (2) are linear to each order, and we therefore focus first,
for the sake of simplicity, on the case of a collision of two
gingle pointlike color charges, for instance the quark from
nucleoni in nucleus 1 and the quark from nuclegnin
nucleus 2. The generalization to the nuclear collision is then
gitraightforward: The solution is a simple superposition of the
solutions emerging from each individual collisi@re., a sum

whereT? are the generators of SNf), and (T?) and ('Tf‘)
are color matrices which represent the color charge of th
quark in the color space of nucleonn the first and nucleon
j in the second nucleus, respectivébee[11]). The current
(3) takes into account that antiquarks have the opposite col

charge and thus ensures color neutrality for each nucleon. ) . X
overi andj and over the respective quark-quark, quark-

The classical gluon field satisfying the Yang-Mills equa-*-"" . . X
tions for asingle ultrarelativistic nucleus of our type was antiguark, antiquark-quark, and antiquark-antiquark scatter-

found in[11]. To lowest order in the coupling constant the N99: 5 _ _
solution of Eq.(2) for two nuclei will be just a sum of the 10 orderg” the equations of motiof?) read
solutions for single nuclei, since the equations of motion are (3)_ 1(3) L (1)w (1), (1)

: . OA® =33 4ig[ADY, g AD 4 FD), 6
Abelian (OA(M=J), and thus linear. Therefore, as one po = ol w TPl ©
readily confirms by an explicit calculation, the solution of whereA(® and J?) are the contributions to the gluon field
the Yang-Mills equations to ordey is [11] and the fermionic current to ordgf. In order to solve these
equations we have to first determia€” . The most simple
approach is to exploitnon-Abelian) current conservation

Ay
g
AN =— = TATHS(x_—x_In(|[x—x|\
* 27721 (TOL Din(lx=xild) D,J#=0. One obtains,

—8(x_ —x_pIn(|x=x/[\)], (4a) 3,3®r=ig[AY IV +ig[AY ,3V]
1 g 3 = = g—3f""bel""‘(T!D)(:I=~°)5(x —X_)0(Xy—Yi)
A== =3 TATHI80x: - In(Ix=y;IN) 2 DU O TX) O 7Y
=1 -
, , X[8(Xx—VY;)— (x—x;)]In(|x; = y;|N\). @)
— (x4 =y pIn(x—yjM], (4b) Lotx=y x=xi)JIn([xi —y;|
L The charges are assumed to be recoilless and follow eikonal
f\( '=0, (49 trajectories. Therefore, their momenta do not change in the
interaction and the transverse component of the fermionic
where\ enters as an infrared cutoff. In a sense, it acts as surrent is zero. The 4+ and *“ —” components will still be

gauge parameter that sets the scale of the gauge potentialfunctions on the light cone and in the transverse direction,
The associated field strength tensor is independeit of as was the case at ordgrThe only effect of the collision on
W the valence charges is a “rotation” of their color, as soon as
Fy1=0, (58 a charge “hits” the field of the other charge at the collision



56 CLASSICAL GLUON RADIATION IN ... 1087

point. This consideration leads us to the conclusionplete solution by summing over all possible collisions be-
J(f’)fv5()(7—xii)a(x+—yﬂ-)5(x—xi) and J®~6(x_ tween color chargeglt was explained above how the corre-
—X_)8(Xs =Y+ )) 8(X—Y;). The correct coefficients are sponding sum over andj and over quarks and antiquarks
found from Eq.(7): - - appears in the ferm|on|c gurrent; for the commutator term, its
presence is obviousThe linearity of Eqs(9) also allows us

g3 _ to compute the solution simply by the method of Green func-
Jf)z — Z—famTa(Tib)(ch) S(X_—=X_i) O(X4—Y+j) tions. Since the classical solution obeys causality, we have to
. use the retarded Green function:
X 8(x=x)In(|xi = yj| M), (8a)
(3) — 4y,r N1 '
g3 _ A, (x)—f d*' G (x—x")J ,(x), (10
I = F2OTA(TR)(T) 00X = X-) (X4 = Y4))
X S(x=ypIn(|x;—y;IN), @b whereJ, =30 +ig[AM",9, AN+ F()] is given explicitly
- B by the right-hand side of Eq9). The retarded Green func-
1®=0. (8c)  tion reads, in coordinate and momentum spidd,

It can be shown that this current is consistent with the eiko- 1 1

nal scattering limit of either the lowest order QCD diagrams G/(X)=z— g(t)g(x2),'ér(k)= - (12)
for gluon radiation from two colliding color chargésf. also 2m k?+ieko

Sec. Il B below or Wong's equation§l5] for the collision
of two classical color charges.

- Je Formulas(9)—(11) provide the classical gluon field to order
For one charge, say, “hitting” an ensemble of charges

. o Y R \ g°. Note that the above perturbative solution scheme renders
j, the color of charge “rotates™” each time it hits the field of 4 equations of motion linear &ach successive order in

one of the chargeﬁsin the ensemble. The rgsulting current is g. In principle, one can therefore use the method of Green
simply the sum ovey of the terms on the right-hand side of f,nctions to construct the classical solution to arbitrary order
Eq. (8). Similarly, the collision of an ensemble with an en- i, g "we shall argue below, however, that already at order
semble simply adds another summation oweirhe actual 45 g antum effects become important and the classical ap-
nuclear collision in our approach is only slightly more com- proach breaks down. Before we compute the solution to or-

plex in that one has to account for the presence of antiquarkge, 43 expiicitly, let us draw a connection to the perturbative

as well. _ _ solution via Feynman diagrams.
The equations of motion for the next-to-lowest order

gluon field are now obtained by inserting the lowest order
results together with the curre(®) into the right-hand side B. Connection to Feynman diagrams

of Eq. (6): Let us write the right-hand side of E€LO) in momentum
g° representation,
(3)a_ by T _ _
DAY a_Wfabc(Ti)(T]p)[ 27In([x;i—yjIN) g eikx
A [Tk, a2
X E(X_—=X_i) O(X1 —y+j) 6(x— %) +In(|x—x{|\) (2m)* ke+iekg
XIn(|)_(_yj|7\)5'+5(xf_X—i)g(x+_y+j)]y (93
- where
g® ~
DA(_3)3=(277)2fabc(Tik’)(Tf)[ZW'n(b_(i—)_/j|7\)0(X——X—i) g° _
ji(k): 2fabC(TP)('f}:)el(ker,i+k,y+j—|_<.¥j)
X 8(x+ =Y +) 8(x—yj) ~In(|x—Xi|\) (2m)
XIn(|x=yjIN) o(x-=x_)d_8(x+ —y+j], (9b) dezqefig»qify,-) ! I__Ik_+
: (k=g k-Fie g2
g° = ) )
DA = S AT (T A X)X~ 1)) (139
X | In(|x—y;|\) A In(|x—x|\) XY ) g° b
—V; — —X; = . Ta abe/ by Ty mi(kyx_j+k_y,i—k-yj)
20 Y |)_(_)_(i|2 A |)_(_3_/j|2 J2 (k) (27T)Zf (TP (Ty)e iKY
(99)

. . . . . . ><fd2qe‘iq'<>_<i‘yi>i
Equations(9) are linear differential equations, which jus- ST T2

tifies why we were able to focus on one single collision -
between two valence quarks first and later obtain the com- (13b

i ik_
k++ie_(|(_q)2 '
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P A pq X p B p-q p c pq D E
?g\;?( %\k}\}( B3 a" . . FIG. 2. Diagrams contributing to the gluon
Bk ol o0 x k field at orderg®.
,kCl ¢ : Y : ‘ Pfx
P p-k+q PPk P Pk
B g° b e internal line. Therefore, for graphB—E this difference is
J2(k) = —— F9TP)(Terxithysimion) proportional to those parts of the diagrams where the fermion
(27) line is on shell. But these parts do not contribute to real
_ gluon production, since once we put the outgoing gluon on-
XJ d2ge 9 Yy 1(29-k) _ (139 shell, they vanish. The regularization of the internal gluon
- i g%(k—q)2 lines of the diagrams in Fig. 2 turns out to be of no impor-

tance for the actual calculation.
After clarifying the regularization of the propagators, we

In order to derive this, we have made repeated use of . .
compute the diagrams according to the usual Feynman rules

d2q in covariant gauge. Let us denote thhn component of the

j — id-x 1 __ 1 In(|x|\) (14) gluon field from a diagram X by X|,, where
27" g 2 _ — i i

(2m) q ™ X=A, B, C, D, or E. DiagramA is nonzero for all values

of p, while for B andC only the “+” component and for
and, for Eq.(130¢), of the transverse gradient of this equation.D andE only the “—" component are nonvanishing. After a
The diagrams giving the classical gluon fi¢ldl| at order  lengthy, but straightforward calculation we compare with
g are shown in Fig. 2. The cross at the end of the gluon liné€Egs. (12) and(13) to obtain the identities
denotes the space-time potwhere we measure the field. @a
The upper quark line corresponds to the first chafged AP (X)=(A+B+C)l,= 4, (153
coordinatesx_;,x;), and the lower one corresponds to the

(3)a —
second chargéat fixedy, ;,y;). Therefore, the momentum AZR(X)=(A+D+E)[,-, (150

on the upper line has a larget+" component, and the mo- A<3>a(x)=A|p=L . (150
mentum on the lower line has a large-"" component. The -

gluon field to orderg® also includes graphs where the two e see that the calculation of the diagrams yields exactly the
quarks do not interact. These diagrams are not shown in Figylyon field (12) obtained from the classical solution of the
2, since they are not part of the classical gluon field and doyang-Mmills equations. That proves the correspondence of the
not contribute to gluon productioithey vanish once we take ¢|assical field to the diagrams in Fig. 2. The diagrararises

the emitted gluon line to be on shell from the commutator term on the right-hand side of &),

We take the gluon-fermion vertices in the eikonal ap-whereas graphB-E arise from the fermionic current.
proximation. In the standard calculation of the diagrams, the Tpe orderg?® is the limit of applicability of the classical
emitted gluon line corresponds to a glufeynman propa-  approach to the problem of gluon production. At orggr
gator —i/(k*+ie) times a phase™™** (since we shall ulti-  one can construct diagrams which contribute to gluon pro-
mately transform the diagrams into coordinate spathis  guction, but cannot be obtained classically. An example of
term is common to all diagrams in Fig. 2. However, as aig type is shown in Fig. 3.
result of the regularization of the Feynman propagator, all The two-gluon exchange contributidfig. 3 calculated
diagrams corresponding to gluoabsorption (instead of  sing the traditional Feynman regularization of the propaga-
emission are automatically included in this calculation. That 1ors cannot be obtained from the classical equations of mo-
means that the usual Feynman diagrams yield an acausghn. The classical approach would give the part of the dia-
result. In order to establish correspondence to the classicgl(am where the two exchanged gluons are in a color singlet
result, where there is only gluon emission, we replace thetate. That corresponds to the internal fermion lines between
Feynman propagator by theretarded propagator the exchanged gluons being on shell. This is what one would
—i/(k*+ieko) for the gluon field measured at obtain by iterating the procedure for the determination of the

Similarly, as a result of the Feynman regularization of theg|assical field outlined above to higher orders in the cou-

fermion propagator, all diagranB-E contain contributions  pjing. The color octet combination of the two gluons, being
where the gluon is emittegrior to the one-gluon exchange.

To ensure causality, we have to useretarded fermion

propagator when calculating the diagraBisand D and an q \,\_>< ! ? L\9<
advancedfermion propagator in diagram@ and E which

renders the emission of the gluon causal.

We have the freedom to change the regularization of
propagators. Different choices of regularization do not influ-
ence the physics. The difference between the retatded
advanceg propagators and the usual Feynman propagator is FIG. 3. Graphs contributing to the gluon production at order
just a § function of the square of the four-momentum of the g®.
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the lowest order correction to the gluon’s Regge trajectory, igAfter all, it would be quite surprising if the gluon’s Regge
a pure “quantum” effect. A different regularization of the trajectory turns out to be a classical concept.

propagators cannot make this contribution “classical.” One
can see that by a direct calculation of the two-gluon ex-
change diagrams in the octet channel. The resulting contri-
bution is proportional to Iis, wheres is the center-of-mass ~ Let us now explicitly compute the gluon field0) in co-
energy of the colliding quark&ee[17] and references men- ordinate space. We decompose th¢ ™ component of the
tioned therg That is, it depends on the longitudinal mo- field as
menta of the quarks. However, the classical calculation is

just an iteration of the one-gluon exchange diagram and thus

not able to provide such a logarithmic longitudinal depen-
dence. Therefore, the diagrams in Fig. 3 are not classicalvherea, is straightforwardly computed:

C. Classical gluon field in coordinate space

APR=3a, +a,, (16)

3
ay=— o ST TE) [ % G, O x in( =y, M) 3K = ) 00X =) 3¢ —x)

g° be by (FC 1 x—x;?
_2(277)2fa (T 0(X- = %) 0 X+ Y S —x)) In([x;i—yjIN). 17

The second term can be written in the form

3

a2=(2gw)2fabC<TF>ﬁf)f d*' Gy (x=x")In(|x" =i M)In(|x" = yjN) L 8X = X_) (X}~ Y- j)
g3
Fam2 | TDTDIL00 =X 0(x: = y) T, (18)

with

d2qd2 1
7= f S 3 ), (19

wherer= \/2(x_—x_i)(x+—y+j). The explicit evaluation of the integral is referred to Appendix A. The final result is

1 ia§<77< ia§<77<

j=|n(§>)\)ln(7;>)\)+ §>77> §>77>

+Li,| e

(20

where¢. ()= max(min)(x—Xx|,7), 7~ <y=max(min)(x—y;|,7), and« is the angle betweex—x; andx—y;. \ plays the
same role as in Ed4). Li»(2) is the dilogarithm(also known as Spence’s functioiwVith the final expression fa, we obtain

3

2(2m)?

(3)a _ | - '|2
AR (x)=—

£2bS(TP)(T¢) ! A(x_—X -)a(x —yi— )In(|x-—y-|)\)
i 1 x —X_j - =i + +] 2 )

2()2,—x,i)

= (X==X_) O(x4 =y PIN([X=Xi M) In([x=yj|N) = O(x - —X_) O(X 1 =Y+ )) @+ [IN(§=N)In( - \)]

1
+Z0(x_—x_i)0(x+—y+j)(a+ln rin(1—2rcose+r?) |, (21)
wherer =(£-7)/(£-7-).
The integrations foA®)? are done similarly with the result
AR3(x)= 3 fabe(T )(T) ! O(X.—Yy.i) 0| Xx_—x -——l)‘(_wz In(|x;—y;|\)
- 2(2m)? ' —Yip " Vi - 2(X+—Y4j) Y
= (X4 =Y+ j) 00X = X_pIn([x= XM In([x=yj|N) = 0= —Xx_i) O(X 1 =y +))d-[In(£=N)In(7-\) ]
1
7 0= =X ) 0(x, —y.;)(9-In r)in(1—2rcosx+r?)|. (22)
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For A®)2 we find

3

AD2(X) = = 552 (AT (TN O —x-) 00—y LV = V) )
93 b by Fc 1
“5az DTN =x) 00 =y )| (Vi= VpIIN(ENIN(2-0) 1= Z[(Vi=V)in r]
><|n(1—2rc05a+r2)—Al—l[(Vi—Vj)a]ln<ll__r—:a:”. (23

As expected, the solution to ordegf is causal; i.e., it is The radiated gluon field arises from the poles of the retarded

nonvanishingonly in the forward light cone. propagator in Eq(12); i.e., it corresponds to on-shell gluons,
To obtain the complete solution for the nucleus-nucleusas one would expect:

collision we simply sum over all charges in the nuclei; i.e.,

as discussed above, we sum over all nucleoasdj and

(3aryy— gt —t.. *rija —iwt+ik-x
over quarks and antiquarks inside the nucleons. If we denote Aurad X) = 0t t”)f dk[iJ,(wk)e +ecl,

the solution of the scattering problem of two single charges (26)
with coordinatesx; andy; found above byA®%(x,x;,y;), , _ »
we obtain wheretijz(x_~i+y+j)/\/§ is the time when the collision
happens and k=dk/[ (27)%2w], with o=|Kk| [16]. Obvi-
ArA7 ously, this field vanishes prior to the collision.
AD2(x) = i’]Z:l [AR20x,%;,y)) = AP, X! y;) The (stationary part of theradiated field energy igL6]
— AR xx YDA YD (24 H=f K[ T%(w.k)- T (0,k) = T2 (0,k) T (0,k)
The antiquark coordinates are marked with a prime. The rela- ~T% (0,k)T* (w,k)]. (27)

tive signs emerge from the fact that antiquarks have the same

color charge as quarks, but with opposite sign. In the case of a nuclear coIIisi0~mZ(k), Eqg. (13), becomes

more complicated: There is an additional sum over nucleons
IV. RADIATED FIELD ENERGY, NUMBER, i andj and over quarks and antiquarks inside these nucleons.
AND MULTIPLICITY DISTRIBUTIONS Inserting the resulting expression, for timafter the last

In order to determine the radiated field energy we Starparton-parton collision we arrive at
from Eq.(12), and, for simplicity, discuss the case of a single 6 1
collision first. Note that a part of the solution corresponds 4,4 9 faDCfadeJ dKo—
just to a change of the field carried by the charge due to the (2m) k2
collision (the color “rotation”), and not to the radiated gluon B
field. That part is most easily isolated by a contour integra- 5 91~92|_<2+gig§—9ﬂ_<- gz—gﬁl_«gl
tion in the complexk, plane in Eq.(12); it arises from the Xf d 91d 92 202(k— 1) 2(K— Q)2
polek, =—ie in Eq. (13): N9AE A e

AL A
3 ~ O (T (THY(TEP(K, ,qy:X;

A(-%—gc):ﬁargéx):(zg )2fabC(TP)(T}:)ln(b_(i_yj'p\) Xi,élj,lzl( |)( ])( k)( I)P( 91 Xi)
T e

XIn(x=% M) 3X_ =X )00, =Y. ), Pk k= aiy) PG 2 X P UK o).

(28)
(253
where nowk. =(w=*k?/2 and
3
Al frargd ) =~ 2 )2fabC(Tib)(=ch)|n(|)_(i_le)\) Plky qix)=elkex-im1ax_gkox'i=iax|  (o9)
v - _
XIn([x—yj[N) O(x-—x_i) (X+ =Y 4j), In order to achieve color neutrality in the initial state, we

have to average over all possible color orientations in the
(250  color space of the individual nucleons. With
@ t[(T(T(TD(TH 1= 6,698 6°%4,  and  fapefabe
'?‘chargegx)zo- (250) = NC(NE— 1) this yields
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1 g° N2—1( _w collision. (The longitudinal extension of the nucleons is not
—Ztr[H]z(z—)4 ;\I j d kPJ d?q,d2q, important; it will drop out in the following anyway With
c T c K - -
alV2 AX_i\ . simk, y2a/
01+ 02k + 003~ gfk- 0, — g3k gy lj ’ d(—') e'k+AX—i=”[+—M—>1(y—m),
X e =Pk 1%),  2a)-wiy | 2 k. v2aly
9192(5_91)2(5_92)2 (34)

(30 and an analogous relation for the average okgr, ;, the
longitudinal momentum dependence vanishes from the phase

where factor.
Ay Let us now average over the transverse positkiny; of
P(K,G1,02)= 2, P(Ky ,q2:%) P* (Ks 023 ;) the nucleons inside a nuclear transverse area. For a cylindri-
oot ) ) cal nucleus, the transverse area which we average over is
Az independent of the longitudinal position of the individual
X -21 P(k_ k=qg;y)P* (k- k=dzy)). nucleon and equal teer(z), Ry (2) being the transverse ra-
= 3 N

dius of nucleus 12). Let us take nucleus 1 to be the larger of
(31 the two nuclei. SinceR; is by far larger than théinverse

] ) momentum scales we are interested in, we may take to good
For further evaluation we introduce the center-of-mass coorapproximationR, — e, and obtain

dinates of nucleom, (X_;,X;), and nucleorj,(Y.;,Y;), and

relative coordinateax_; ,Ax;,Ay,:,Ay;, such that 1 _ 4
e — | dXe N s -g,). (39

2
X, AX_; Ry 1
X_j X_i+T, —i T Ty . . .
With this result, they; averaggover the transverse positions
Ay, Ay, of nucleons in nucleus)z_s trivial. The_ ass_,l_Jmption of infi-
Y=Y +TJ’ y’ﬂ. =Y.~ T‘ (329 nite transverse nuclear size greatly simplifies the subsequent
discussion. However, we are then no longer able to study
A A collisions at finite impact parameter.
X=X + i, X/ =X — j, Finally, we average over the transverse dimension of the
-2t 2 nucleons. That integral is formally the same as @B§), only
thatR; is replaced bya and the momentum dependences of
Ay, Ay the various terms i are different. Now, however, d/is
Y=Yt 7 Y=Y~ 2 (320 5t small on the momentum scale of interest. In fact,ahe

integrations in Eq(30) are logarithmically divergent, such

Here we assumed that the positions of quark and antiquark ithat the treatment of the small momentum region is of some
a nucleon are symmetric with respect to the center of thémportance. As we shall see, treating the average over the
nucleon. This assumption is not crucial. The calculations catransverse dimensions of the nucleons correctly leads to an
also be done for the general case of arbitrary positions oihfrared regularization of these divergences via nucleonic
guarks and antiquarks in the nucleons. For the “symmetric”form factors. The physical interpretation is that on lafgjea-
case the phase factor becomes tial) scales individual nucleons appear colorless and do not
emit gluons.

The average over the transverse dimension of a nucleon
involves typically integrals of the typll8]

Ay
5(k,q1 d2) = 2 e_i(?l_‘_h)'%i[e_i(gl_(_h)'mfi/z
- =

— @ik Ax_=i(Qr+a) AXif2 4 o o
] 1 Axi)
: —) d| o=
XE ei(91_92)~Yj[ei(91—92)~A)_/j/2 mTa
=1

2J3,(|qla)
lgla

(36)

_ ik Ay ik Ay i a0 A2 4 ¢ o], For the average phase factor we thus obtain

(33 - 47 2J31(2|q4]a)
_ (P(K,01,92)) =4A1A; — 5(d1—0>) 1_W
We shall now first averag® over the longitudinal positions R 9
of quarks and antiquarks inside the nucleons. The nuclei are 23,(2|k—q4|a)
highly Lorentz contracted in the longitudinal direction. To x| 1— ;) (37)
simplify the subsequent discussion, we take them and the 2||_<—91|a

nucleons inside to be cylindrical. Each nucleon is then a
cylinder of radiusa and length /vy, oriented along the  Our final result for the invariant distribution of the average
axis, wherey is the Lorentz factor in the c.m. frame of the energy is
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d(H) g® NI-14AA; o 02 oo (O
=T - — ‘ c —— el =X
dyd2|_< (277)6 NC WR% |_(2 (2,”_)2(-“ )(Tj)f q2 eV i, (41)
F(lala) F(lk—gla) Similar to the above, after averaging the modulus squared of
X 2 = = (39 . . o .
q 9 (k-q)? this amplitude over the positions of the quarks and anti-

quarks inside the nucleons and nucleons in the nucleus, as

) S o well as over quark colors in the initial state, we obtain
with the (longitudina) gluon rapidityy=In[k, /k_]/2 and the

“form factor” F(x)=1-2J,(2x)/2x. For smallg or k—q, Cr 4A2 F(|lgla) 2
F regularizes the infrared divergence of the integral. If we do Mot:4a§m ey d°q > : (42
not assume that the quark and antiquark are symmetric with cm q

respect to the nucleon’s center and allow them to be any- i o
where in the nucleon, the “form factor” becomes The final answer for the gluomultiplicity distribution is
F(x)=1-[2J3,(x)/x]?.

We now compare our result to that [d]. In that work, dn 1 dV _ NcasJ , Fdla) F(k—qgla)
the number distributiorof radiated gluons was related to the  gy2k Mot dyd?k  m2k? 2 (k—q)2
average energy distribution via - - - - -

, [Fdala)\ ]
J ol =
AN

Expanding the form factofin the “symmetric” case for
As in [9], we consider a central collision of equal nuclei, small a, F(x)=x%/(2+x?/3) for x—0, and choosing

A1=A,=A. According to[11], the average transverse color m2=24/a?, this result coincides with that ¢1.4] [Eq. (21)],
charge density is given by?=CgA/(N.mR?) (for our case  sinceC,=N_=3.

ANV 1 d(H) x

(43)
dyd’k @ dyd’k (39

of a “cylindrical” nucleus), where Cg=(NZ—1)/(2N,). For the case of a nucleon in which the positions of quark
Then, with the transverse ar&a=7R?, and antiquark are symmetric with respect to its center one
can explicitly perform the integration in E43). The result
dN m 29%u’ 5 1 reads
Tvde otz e Ne(No=1) 73
dydk  Cg(2m)°m K dn Neas12) 1+(ka)?
o 225 - ————[1-Jo(2[k|a)]
d’q F(lgla) F(lk—gla) dydk 7%k (ka)
xf — ——- 0
(2m* q (k—q) 2+ (ka)?

Ja(2[Kla)+,F3(1,1;2,2,2-k%a?) | .

4
This has(apart from the form factojshe same momentum (ka)
dependence as the result [&] [Eqg. (49)]. The prefactor, (44
though different fron{9], agrees with recent results obtained . ) . ) ] )
by Gyulassy and McLerrafL9]. Note that as a result of the The details of the -|nte.grat|on are given in Appendix B. For
form factors, our result behaves likekdffor small|k|~1/a. ~ K—0, the expression in large parentheses becomes 5/12, as

The residual infrared divergence stems from our approximagxpected from Eq(43).

tion of an infinitely large nucleus in Eq35). This diver-

gence is actually cut off by the finitenverse size of the V. CONCLUSIONS
nucleus(i.e., by the nuclear form factprin this range of
momenta, however, our treatment ceases to be valid anyway

since thgn||_<|~1/R< La~Aqcp, while one of our initial ;o imes the nuclei to have the form useld i and the
assumptions wagk|> A qcp- color charges to follow eikonal trajectories during the colli-
The gluonnumberdistribution (40) is not directly acces-  sjon. The solution is constructed perturbatively in covariant
sible in the experiment. Experimentally, one measures the orentz gauge to lowest ordgbelian limit, orderg) and
(invariand differential cross section for detecting a radiatednext-to-lowest orderd®). Via Feynman diagrams we have
gluon,do.q/dydPk, divided by the total cross section of the clarified the connection between the classical and quantum
collision. Equivalently, one can divide the gluaomberdis-  solution to orderg?.
tribution (40) by the total number of scattering events with  We have established a limit for the classical description of
one-gluon exchange between the color charges(teatra) gluon production. From the discussion of the diagrams in
A+ A collision. This humber can be obtained quite analo-Sec. Il B follows that the limit for the field is one gluon per
gously to the above derivation of the number distribution fornucleon, unless the second gluon is the outgoing gluon. That
radiated gluons. Instead of E(8) we start with the square means that in the diagrammatic formulation of the problem
of the one-gluon exchange amplitude. This amplitude for twahere should be no more than one gluon leaving each
chargeswhose coordinates are specified as in Seg.isll nucleon. In nuclear collisions, different from the case of a

In this paper we have solved the classical Yang-Mills
fuations for a collision of ultrarelativistic nuclei. Our solu-
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single nucleug12], we cannot require the final states of the with o being the angle betweer-y; andx—X; . All angles
nucleons to be color singlets. Therefore, here we cannot aRye taken clockwise. Integratiﬁg 6v¢r1 and $, we obtain,
ply color averaging which cancels quantum correcti(as
described iM12]) and puts internal fermion lines of graphs ° =dq
like in Fig. 3 on shell, allowing for a classical description. J= E e“‘“(f —Jk(q|x—yj|)Jk(qT))
That way the limit of the classical approach is reduced to one k=—c oq T
gluon per nucleon.
We have given explicit expressions for the gluon field in X
coordinate spackEqs.(21)—(23)] and calculated the energy,
number, and multiplicity distributions of radiated gluons to
orderg? [Egs.(38), (40), and(43)]. Our result for the num- For nonzerck we can use the formulesee[22])
ber distribution agrees witfil9] and the form factors of the
individual nucleons can be cast into a form such that the f i(§_<
multiplicity distribution agrees with the result $14]. 0 2kl &~
The resulting gluon number and multiplicity distributions
are boost invariant, a property which wagriori assumed in  where£.. ()=max(min)(x—Xx;|,7), to obtain the series
[9]. Boost invariance is also assumed in popular hydrody- T

=d|
fo |_Jk(||)_(_)_(i|)‘]k(|7))- (A5)

©

dl K
=31 x=xi) Il 7)= ) . k>0, (A6)

namic modeld20] to describe the evolution of ultrarelativ- o 1 (é-po\¥
istic nuclear collisions afteflocal) thermalization is estab- > (et e“k“)—z( = <) , (A7)
lished. To answer the question whether thermalization k=1 4Kk2\ €1

actually happens and what the respective time scales are, it is _ ] o
planned to utilize the solution found here to study screeningvith 7 (<y=max(min)(x—y;|,7). Using the definition of
and damping in the radiation-produced gluonic medj@ti.  the dilogarithm,

k
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APPENDIX A f T Io(x=%iDIo(17)==In §>2,u -y, (A10)
m

In this appendix we explicitly calculate the integral
with y being the Euler constant, this term can be rewritten as

d?qd?l g=ia- 0y =il - (xxp)
j:J : Jo(lg+1]7). (A1)

(2m)? 1% IN(€=N)In(7-0), (A11)

Using the addition theorem for Bessel functions is the ~Where the cutoffa includes the previous cutoft and all

angle betweem and) other numerical prefactors. We finally obtain the answer,
o 1 Eam<
. J=In(é-N)In(p-N)+ —| Li (e‘“—)
Jo(lg+1n= 2 (=Dke 23 (|aln)I(|l]7), (A2) (&M)in(7-2)% g] Uz S/
20 o i -
. oo
—la
we obtain +Li,| e o)l (A12)
0 2 2 —ig - —v:)—il - —X;
J= 2 (1 d°qd?l gia-Cxmyp—il-(x=x) APPENDIX B
KE o (2m)? 12g2 ) o _ )
- - The goal of this appendix is to perform the integration
x e 3 (|alm) (1] 7). (A3) ,
d°q / Ji(2|qla) Ji(2lk—gla)
If ¢, is the angle betweehandx—x; and ¢ is the angle :J qz(k—q)z\ 1= |g|a 1- |I_<—g|a
betweeng and>_<—)_/j , We can expresg as - T (B1)

d=d,— P+ a, (A4)  Definingg= |g| andp=|k— gl we rewrite the integral as



1094

|

where the Jacobiad(p,q) is given by(see[8,22))

J(p.q)dpdq
oa?p? |

J.(2
1- 1(2qa)
qa

J.(2
1- 1(2pa)
pa

(B2)

J(D.OI)=ZWPQJ:bdbJo(bk)Jo(bQ)Jo(bp), (B3)

with k=|k|. Inserting Eq.(B3) into Eq. (B2) we obtain

Ji(2qa)|]?

ga

= N wd_q _
7z 27rf0 bdb.]o(bk)[fo 9 Jo(bq)(l
(B4)

The integration ovep in Eq. (B2) is identical to the integra-
tion overq, which allowed us to square thigintegral in Eq.

(B4). Performing the integral in the square brackets we get

(see[8,22))

*dq J1(2qa) 2a) 1
fo EJO(bQ)(l—T)ZG(Za—b) |n(?)—§
b2
—, BS
82 (B5)

which vyields, for the original integral,

YURI V. KOVCHEGOV AND DIRK H. RISCHKE

IZ":l +
)72 g2

1
= 277(2a)2J tdtJo(2akt)
0

I=2wfozabdeo(bk)

1 2
Int+ E(1—t2)) , (B6)

with t=Db/2a. The integral in Eq(B6) can be calculated by
expanding the Bessel function in a power series, performing
the integration in each term, and finally resumming the se-
ries. The result is

1+ (ka)? 2+ (ka)?
E——— a

I=27Ta2( - WJZ(Zka)

+2F3(l,1;2,2,2;—k2a2)). (B7)

This expression is used to obtain E44). Taking thek—0
limit of formula (B7) we obtain the integral appearing in the
number of elastic scattering eveisq. (42)]:

[ e/
(@2

(B8)

Ji(2|qla) 5
"6

_- 2
|9|a ma”.
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