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Interfering doorway states and giant resonances. II. Transition strengths
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The mixing of the doorway components of a giant resonance~GR! due to the interaction via common decay
channels influences significantly the distribution of the multipole strength and the energy spectrum of the decay
products of the GR. The concept of the partial widths of a GR becomes ambiguous when the mixing is strong.
In this case, the partial widths determined in terms of theK and S matrices must be distinguished. The
photoemission turns out to be most sensitive to the overlapping of the doorway states. At high excitation
energies, the interference between the doorway states leads to a restructuring towards lower energies and
apparent quenching of the dipole strength.@S0556-2813~97!01807-4#

PACS number~s!: 24.30.Cz, 03.65.Nk, 24.60.Ky
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I. INTRODUCTION

In @1# we investigated analytically as well as numerica
the dipole giant resonance~GR! as a collective excitation in
an open quantum system. In the energy domain of the
both internal~due to the Hermitian residual interaction! and
external~due to the interaction via common decay channe!
mixings are equally important. At the first stage,k11 door-
way states are formed, withk being the number of deca
channels. These states inherit two different types of col
tivity which are called, according to their origin, internal an
external collectivity, respectively. The doorway resonan
formed in such a manner still interfere with one another d
to the external residual interaction. Finally a few resona
states with appreciable dipole strengths are formed. The
terference gives, generally, rise to an essential redistribu
of the dipole strength and shifts it towards lower energie

The investigations show further that two of the resona
states share the main part of the total dipole strength and
therefore most responsible for the manifestations of the G
The properties of these two doorway components of the
crucially depend on the degree of their overlapping. In
case of weak overlapping they have comparable esc
widths but the dipole strength of the lower lying state
small. Quite opposite, a large degree of overlapping lead
the appearence of two states with similar dipole streng
whereas the escape width of the lower lying state is dyna
cally reduced.

In the present paper, we study the cross section patte
order to elucidate the role of the external interaction and
interplay of both types of collectivity in the experimental
measurable values. Of special interest are the trans
strengths into specific channels when the interaction via
energy continuum is strong.

In Sec. II, we describe the overlapping of doorway re
nances in the context of the general resonance scatte
theory. The concept of the partial escape widths in the c
of overlapping resonances is reexamined from both ins
(K-matrix! and outside (T-matrix! viewpoints. The transition
strengths in the particle channels are analytically analyze
560556-2813/97/56~2!/1044~13!/$10.00
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Sec. III. The photoemission, which turns out to be especia
sensitive to the degree of overlapping of the doorway sta
is studied in Sec. IV. In Sec. V, we discuss the interaction
the doorway states described in@1# with the background of
complicated compound states which leads to an inte
damping of the collective exitation. We show in Sec.
some numerical results obtained in the same model~without
internal damping!, but with the restrictions being remove
which were introduced into the analytical investigation. T
numerical calculations confirm the main features of the
terference between the different types of doorway state
they follow from the analytical study. Finally, we summariz
the results in Sec. VII and draw some conclusions. Of int
est is, above all, the apparent loss of the collective dip
strength at high excitation energy.

All symbols used in this paper are the same as in@1#. We
cite an equation in@1# by writing its number in brackets with
the upper index@1#, e.g., (2.1)[1] means Eq.~2.1! in paper
@1#.

II. CROSS SECTIONS AND PARTIAL WIDTHS

In the vicinity of an isolated resonance state dw the H
mitian K matrix is represented in the form

K̂~E!5
Âdw

T Âdw

E2Edw
, ~2.1!

where the row vectorÂdw is composed of thek real decay
amplitudesAdw

c of the doorway state into the individua
channelsc51,2, . . . ,k and the superscriptT means transpo-
sition. The pole of this matrix lies on the real energy axis
the energyEdw of the doorway state. Equation~2.1! leads to
the standard single-resonance Breit-Wigner formula

T̂dw~E!5
K̂~E!

11~ i /2!K̂~E!
5

Âdw
T Âdw

E2Edw1~ i /2!Gdw
~2.2!
1044 © 1997 The American Physical Society
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56 1045INTERFERING DOORWAY STATES . . . . II. . . .
for the transition matrix. Though the pole of the transiti
matrix is shifted to the pointE5Edw5Edw2( i /2)Gdw in the
complex energy plane, both matrices have the same resid
In particular, the residuesGdw

c 5(Adw
c )2 of the diagonal ele-

ments of these matrices give the partial escape widths of
state dw relative to the channelsc. The Hermiticity of the
K matrix automatically provides the unitarity of the scatte
ing matrix Ŝ(E)5I 2 i T̂(E) implying the well-known con-
nection

Gdw5Âdw
2 5(

c
Gdw

c ~2.3!

between the total width,Gdw , and the partial widths of the
resonance dw. In what follows we omit all nonresonant
fects. They can, if necessary, be easily taken into accoun
standard methods.

Using the parametrization~2.2!, the partial widths of the
resonance state can be extracted from the experimental
Averaging the cross section of the reactionc8→c over all
initial channelsc8, one obtains, with the help of the unitarit
condition, the strength

sc~E!52
s0

p
ImTdw

cc~E!5s0

1

2p

Gdw

~E2Edw!21~1/4!Gdw
2 Gdw

c

5s0

2

p

Gdw
c

Gdw
sin2d~E! ~2.4!

of the transition into the channelc. Here,ddw(E) defined by

tanddw~E!52
1

2

Gdw

E2Edw
~2.5!

is the resonance scattering phase. The factor

s0

1

2p

Gdw

~E2Edw!21~1/4!Gdw
2

describes the total cross section of the doorway state ex
tion. Below we set the factors0 to unity measuring all cross
sections in units of this quantity. The maximal value

sc~Edw!5
2

p

Gdw
c

Gdw
[

2

p
Bdw

c ~2.6!

of the transition strength~2.4! is proportional to the branch
ing ratio of the decay into the channelc. The integration over
the whole resonance region gives the partial width itself,

E
2`

`

dEsc~E!5Gdw
c . ~2.7!

Due to Eq.~2.3! it follows from Eqs.~2.6! and ~2.7! that

p

2(
c

sc~Edw!51, (
c
E

2`

`

dEsc~E!5Gdw . ~2.8!

The above discussion implies a good separation of
different resonance states dw so that any interference
tween them can be neglected. A more careful analysi
es.

he

-

-
by

ta.

ta-

e
e-
is

however needed when the widths of the relevant doorw
states become comparable with their spacings. In this c
one has to use the formulas of the general theory of re
nance reactions@2–5#. Here, the transition matrix

T̂~E!5AT
1

E2HA ~2.9!

is composed of the three matrix factors which describe
formation of the intermediate unstable system, its propa
tion, and subsequent disintegration. If there areNdw doorway
resonance states near the excitation energyE coupled tok
decay channels, the matrix A consists of k
Ndw-dimensional column vectorsAc connecting all internal
states with each channelc. These vectors are real because
time-reversal invariance. In the following we neglect a po
sible smooth energy dependence of the componentsAn

c over
the whole energy domain considered. The validity of such
assumption is not always obvious and deserves a special
sideration. It may lead to further complications.

The evolution of the intermediate open system is d
scribed by the Green’s matrix

G~E!5
1

E2H ~2.10!

corresponding to the non-Hermitian effective Hamiltonian

H5H2
i

2
AAT5H2

i

2
W ~2.11!

which has been investigated in detail in part I of this pap
@1#. The factorized form of the interactionW via the con-
tinuum ensures the unitarity of the scattering matrix for
bitrarily overlapping resonances@4,5#. However, the simple
Breit-Wigner parametrization~2.2! loses its validity in gen-
eral.

The propagatorG(E) of the unstable system satisfies th
Dyson equation

G~E!5G~E!2
i

2
G~E!WG~E!, ~2.12!

where

G~E!5
1

E2H
~2.13!

is the resolvent of the Hermitian partH of the effective
Hamiltonian ~2.11!. Subsequent iterations in the ant
Hermitian part of the effective Hamiltonian lead@6# to

G~E!5G~E!2
i

2
G~E!A

1

11~ i /2!K̂~E!
ATG~E!

~2.14!

with

K̂~E!5AT
1

E2H
A5ATG~E!A. ~2.15!
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1046 56V. V. SOKOLOV, I. ROTTER, D. V. SAVIN, AND M. MÜLLER
The relation~2.14! casts again@compare with the first equal
ity in Eq. ~2.2!# the transition matrix~2.9! into the explicitly
unitary form

T̂~E!5
K̂~E!

11~ i /2!K̂~E!
. ~2.16!

The elements of both theK- andT-channel space matrice

Kcc8~E!5Tr@G~E!Ac~Ac8!T#, ~2.17!

Tcc8~E!5Tr@G~E!Ac~Ac8!T#, ~2.18!

being the traces in the Hilbert space of the internal moti
are independent of the choice of a basis in this space. In
eigenbasis of the intrinsic Hermitian partH of the effective
Hamiltonian~2.11!, the matrixK̂ is presented as the sum

K̂~E!5(
r

Âr
TÂr

E2« r
~2.19!

of pole terms similar to the single-resonance express
~2.1!. The row vectorsÂr consist of the real components

Ar
c5F~r !

•Ac, ~2.20!

where the eigenvectorF(r ) of the Hermitian matrixH be-
longs to the eigenenergy« r . The positive residues

G r
c5~Ar

c!2 ~2.21!

at the poles of the diagonal elements of the matrix~2.19!,
which characterize the coupling of the intrinsic stateF(r ) to
the channelsc, are the partial escape widths discussed in p
I, Eq. (2.17)[1] .

Analogously, the pole~resonance! parametrization of the
transition matrix~2.9!,

T̂~E!5(
dw

Âdw
T Âdw

E2Edw
, ~2.22!

is achieved by diagonalizing the total effective Hamiltoni
~2.11! ~rather than only the Hermitian partH as above! with
the help of a transformationC which is complex since the
HamiltonianH is not Hermitian. Its complex eigenvalues

Edw5Edw2
i

2
Gdw ~2.23!

determine the energies and total widths of the overlapp
resonance states. The decay amplitudes of these state
@compare with Eq.~2.20!#

Adw
c 5C~dw!

•Ac ~2.24!

with C (dw) being the eigenvectors of the effective Ham
tonianH. Together with these eigenvectors, the residue
the resonance poles are also complex. Therefore, the r
nances are mixed in the transition amplitudes with nonz
relative phases. In particular, the residues are equal to
,
he

n

rt

g
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at
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o

~Adw
c !25uAdw

c u2exp~2ifdw
c ! ~2.25!

in the elastic scattering amplitudes. Here, the resonance
ing phasesfdw

c are introduced.
Unlike the case of an isolated resonance described by

~2.1! and~2.2!, the residues of theK andT matrices at indi-
vidual poles do not coincide if the doorway resonance sta
overlap. One can find the connection between the decay
tors Âr and Âdw starting with the eigenvalue problem
HC (dw)5EdwC (dw) presented in the intrinsic eigenbasis
the Hermitian partH. Simple transformations lead then t
the matrix equation

F I 1
i

2
K̂~Edw!G Âdw50. ~2.26!

The determinant det@ I 1( i /2)K̂(Edw)# is equal to zero at any
resonance poleEdw of the T matrix ~2.16!. Therefore, for
each resonance dw, a nontrivial solution of the homogene
linear system~2.26! exists. The proper solutions are final
fixed by the Bell-Steinberger relation~2.31! ~see below!.

The square moduli

Gdw
c 5uAdw

c u2[uC~dw!
•Acu2 ~2.27!

are just the quantities which are usually interpreted as
partial widths of the resonance state dw. In the case of o
lapping resonances, these widths differ from the par
widths ~2.21! defined in terms of theK matrix. Therefore we
conclude that one has to distinguish between theT-matrix
partial widths~TPW’s! ~2.27! extracted from theT matrix,
and theK-matrix partial widths~KPW’s! ~2.21! drawn from
the matrixK̂.

The transformation matrixC satisfies the matrix equatio

HC5CE, ~2.28!

whereE is the diagonal matrix of resonance energiesEdw .
This transformation is complex orthogonal@6#,

CTC5CCT51. ~2.29!

However, for the Hermitian matrix

U5C†C ~2.30!

the inequalityUÞI holds so that the overlapping resonan
states are not orthogonal~for illustration see@7#!. The matrix
U appears in the well-known Bell-Steinberger relation@8#
~see also a compact matrix version of this relation in@6#!:

Âdw* •Âdw85 iU dw dw8~Edw82Edw* !. ~2.31!

Its diagonal part gives the relation

Gdw5
1

Udw
uÂdwu25

1

Udw
(

c
uAdw

c u2 ~2.32!

between the total widths and TPW~2.27!. Here

Udw5112(
n

~ ImCn
~dw!!2.1 ~2.33!



tri

iz
s

,

n

on
m

su
pe

ho
at

e
n

t
ta
c
c

n-

ong

e
s
the
h
ped

rgy
ne
the

56 1047INTERFERING DOORWAY STATES . . . . II. . . .
is the corresponding diagonal matrix element of the ma
U. Because of Eqs.~2.32! and ~2.33!, the inequality condi-
tion

Gdw,(
c

Gdw
c ~2.34!

holds in contrast to the equality~2.3! characteristic for an
isolated resonance.

As it follows from Eq. ~2.32!, the TPW can be formally
renormalized as

G̃dw
c 5

1

Udw
Gdw

c , ~2.35!

@9,7# leading to the equality

Gdw5(
c

G̃dw
c ~2.36!

also for overlapping resonances. It should be emphas
however that neither theGdw

c nor the renormalized quantitie

G̃dw
c coincide with the KPWG r

c from Eq.~2.21! in the case of
overlapping resonances. The only relation between them

~Ac!25(
r

G r
c5(

dw
Gdw

c exp~2ifdw
c !<(

dw
Gdw

c ,

~2.37!

follows from the completeness of the sets of the correspo
ing eigenvectors. Similarly, the energies« r differ from the
energiesEdw of the resonance eigenstates. In the sec
equality ~2.37! additional phase factors appear in the su
over the resonance states. The imaginary part of this
vanishes since the contributions of different resonances
fectly compensate one another.

Condition ~2.37! results in the integral sum rules

E
2`

`

dEsc~E!52
1

pE2`

`

dEImTcc~E!5~Ac!25(
r

G r
c

~2.38!

and

(
c
E

2`

`

dEsc~E!5TrW5(
dw

Gdw ~2.39!

instead of Eqs.~2.7! and~2.8! which are valid for an isolated
resonance. The integration is extended here over the w
energy region, occupied by the overlapping resonance st
Equation~2.38! leads to the sum of the KPWG r

c , Eq. ~2.21!,
rather than to the sum of the TPWGdw

c , Eq. ~2.27!. There-
fore, one cannot learn much on the latter or even on th
sum(dwGdw

c from the integral~2.38! despite the expectatio
sometimes being expressed in the scientific literature. S
less information can be drawn from the maxima of the to
cross section since their heights and positions are conne
with the widths and energies of the overlapping resonan
in a very complicated way. At last, Eq.~2.39! fixes only the
sum of the total widths of all resonances.

A useful generalization of the sum rule~2.38! reads
x

ed

d-

d

m
r-

le
es.

ir

ill
l

ted
es

2
1

pE2`

`

dEImTcc8~E!5Ac
•Ac85Xcc8, ~2.40!

where thek3k matrix @10,6#

X̂5ATA ~2.41!

of the scalar products of the real amplitude vectorsAc ap-
pears.

III. TRANSITION AMPLITUDES AND PARTIAL
TRANSITION STRENGTHS

Similar to Sec. III in@1# @see Eqs. (3.1)[1] and (3.2)[1]#,
we introduce the enlarged transition matrix

T̂~E!5ATG~E!A, ~3.1!

A5~A0[A2iD A1
•••Ak!, ~3.2!

containing along its main diagonal the function

T 00~E![2iP~E!52iDTG~E!D ~3.3!

besides thek3k block T(E), Eq. ~2.9!. The functionP(E)
together with

P~E!5DTG~E!D ~3.4!

from (3.3)[1] is closely connected to the photoemission~see
Sec. IV!.

The Green’s matrixG(E), Eq. ~2.10!, is therefore needed
for the description of the evolution of the intermediate u
stable system excited in reactions. In@1#, a special doorway
basis has been introduced which is adjusted to the str
coherent non-Hermitian interaction

H~ int!5DDT2
i

2
W ~3.5!

@Eq. (4.1)[1]# by which the GR is created. In this basis, th
(k11)3(k11) doorway block of the total Green’s matrix i
the only one which has to be calculated. The influence of
trapped states@1# is included in a self-energy matrix whic
contains the coupling between the doorway and trap
states. It manifests itself, as mentioned in@1#, in the fine
structure variations of the transition amplitudes in the ene
region of the unperturbed parental levels. Neglecting this fi
structure, one reduces the problem to the calculation of
Green’s matrixG(dw)(E) of the doorway effective Hamil-
tonian

H~dw!5SH~coll! xT

x H̃ D ~3.6!

@Eq. (4.23)[1]#.
The upper 232 block

H~coll!5S «01sin2QD2 sinQcosQD2

sinQcosQD2 «01cos2QD2D 2
i

2
^g&S 0 0

0 1D
~3.7!
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in Eq. ~3.6! contains only two states which are strong
mixed by the competing internal and external interactio
characterized by the parametersD2 and ^g&, respectively.
Here D is the N-dimensional vector of the dipole matri
elements,̂ g& is the mean value of the nonzero eigenvalu
gc of the external interaction matrixW ~or, equivalently, of
the eigenvalues of the matrixX̂), andQ stands for the angle
between the dipole vectorD and thek-dimensional Hilbert
subspace spaned by thek decay vectorAc. We mark this
block by the subscript~coll! since only its eigenstates po
sess internal collectivity when the couplingx is neglected.

The (k21)3(k21) block H̃ describes thek21 door-
way states with energies close to«0 and mean widthŝg&.
Contrary to the states of the first group, these states carr
internal collectivity.
f

e

s

s

no

The two groups of doorway states are coupled via
continuum by the anti-Hermitian interaction

x52
i

2
~0w!, ~3.8!

which can be expected to be moderately weak. Its streng
characterized by the dispersionDg of the eigenvaluesgc @see
(4.28)[1]#.

Representing the doorway Green’s matrixG(dw)(E) in the
block form complementary to Eq.~3.6!, one obtains the fol-
lowing expression:
he
G~coll!~E!5
1

E2H~coll!2Q~E!

5
1

L~E!S E2«02cos2QD21
i

2
v~E! sinQcosQD2

sinQcosQD2 E2«02sin2QD2
D ~3.9!

for its upper collective block with the functionL(E) given by

L~E![~E2«0!~E2«coll!1
i

2
v~E!~E2«02sin2QD2!50, ~3.10!

v~E!5^g&2
i

2
q~E!. ~3.11!

This result extends the formula for the Green’s function (3.11)[1] of the internal collective vibration in a closed system to t
consideration of decaying collective modes.

In the doorway picture just described the elements of the matrix~3.1! are presented as

P~E!5DTG~coll!~E!D5D2
E2«01~ i /2!sin2Qv~E!

L~E!
, ~3.12!

Tcc8~E!5Tcoll
cc8~E!1 T̃cc8~E!, ~3.13!

where

Tcoll
cc8~E!5S A1

c2
i

2
qc~E! D S A1

c82
i

2
qc8~E! DE2«02sin2QD2

L~E!
~3.14!
t-
. In-
ck

s.
and

T̃cc8~E!5(
a

Aa
c Aa

c8

E2 Ẽa

. ~3.15!

The quantitiesA1
c ,Aa

c @Eq. (4.10)[1]# are the components o
the ~real! decay vectorsAc in the doorway basis. It is worth
noting that the collective parts of the transition amplitud
vanish at the energy
s

Ev5«01sin2QD2. ~3.16!

The amplitudes~3.15!, being sums of independent Brei
Wigner terms, themselves contain no interference effects
deed, allAa

c , which connect the states inside the lower blo
of the Hamiltonian~3.6! to the continuum, are real and@as
one can easily check with the help of Eq
(4.36)[1]2(4.38)[1] ]

(
c

~Aa
c !25 g̃ a. ~3.17!
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All interference effects are included in the collective p
~3.14!. In particular, the mixing of the two different group
of the doorway resonances in Eq.~3.6! is described by the
self-energy function

q~E![24Q11~E!5(
a

w~a!2

E2 Ẽa

~3.18!

@Eq. (4.40)[1]#, and the functions

qc~E!5(
a

w~a!Aa
c

E2 Ẽa

. ~3.19!

All these functions are complex because of the comp
od

a-
t

x

doorway energiesẼa . Therefore, although the dependen
on the channel indicesc,c8 in the collective part~3.14! has
the desirable factorized form, the factors are generally co
plex and energy dependent. As a result, the locations of
maxima in the cross sections are not connected, contrar
the case of isolated resonances, with the positions and
residues of the poles of theK or T matrices in any simple
way. If however the collective resonances do not overlap
strongly, all the functionsq(E) vary slowly within the en-
ergy region of the maximum arising from the giant resonan
state and can approximately be considered as some com
constants.

The residues of the elastic reaction amplitudes are
pressed in terms of the complex energies of the doorw
resonances as
,
one can
ResTcc~Edw!5S A1
c2

i

2
qc~Edw! D 2F11

1

4
sin22Q

D4

~Edw2«02sin2QD2!2 1
1

4
q8~Edw!G21

. ~3.20!

In contrast to the real residues~2.21! of theK matrix, they are complex and carry information, hidden in the quantitiesqc, on
the transition vectorsÂr of all the overlapping resonance states. The concept of theT-matrix partial widths of GR’s, generally
becomes irrelevant when its doorway components strongly overlap. The only information on the partial widths which
extract from the experimentally observed transition strengthssc(E) is the sum rule~2.38! for the KPW.

The above formulas simplify appreciably if one neglects the couplingw between the two doorway blocks in Eq.~3.6!. In
such an approximation only the two upper collective doorway states dw50, 1, described in detail in Sec. IV C of@1#, share the
total dipole strength and contribute in the GR. The energy dependence of the corresponding collective part

scoll
c ~E!5

1

2p
~A1

c!2^g&
~E2Ev!2

~E2«0!2~E2«coll!
21~1/4!^g&2~E2Ev!2 ~3.21!
m-

rnal

or
of the total strength

sc~E!52
1

p
ImTcc~E!5scoll

c ~E!1s̃c~E! ~3.22!

of the transition into a particular decay channelc turns out to
have the same universal form as in the single-channel m
of @11#. In this respect, expression~3.21! is analogous to the
universal Breit-Wigner formula ~2.4!. According to
(4.13)[1] , the condition

(
c

~A1
c!25^g& ~3.23!

is satisfied@compare Eq.~2.3!#.
The HermitianK matrix reduces in the same approxim

tion to @1#

K̂~E!5
Âd

TÂd

E2«coll
1

X̂'

E2«0
~3.24!

with

Ad
c5~d•Ac!, X̂'5X̂2Âd

TÂd . ~3.25!

The strengths~3.21! reveal two equally high maxima
el

scoll
c ~«0!5scoll

c ~«coll!5
2

p

~A1
c!2

^g&
~3.26!

just at the poles of theK matrix ~3.24!. Taking Eq.~3.23!
into account, these relations are quite similar to Eq.~2.6!.
Further, in close analogy with the first equation in Eq.~2.8!,

p

2(
c

scoll
c ~«0!5

p

2(
c

scoll
c ~«coll!51. ~3.27!

Nevertheless, at arbitrary values of the overlapping para
eter l, the quantities (A1

c)2 coincide neither with KPW nor
with TPW. They are not the residues at the poles of theK or
T matrices and therefore cannot be ascribed to any inte
eigenstates.

It could seem that the situation is improved by writing, f
example,

scoll
c ~«coll!5

2

p

~Ad
c!2

^g&cos2Q
5

2

p

Gcoll
c

^g&cos2Q
. ~3.28!

Here,Gcoll
c [(Ad

c)25(A1
c)2cos2Q are the KPW of the intrin-

sic collective state with the energy«coll while in the denomi-
nator the sum of all the widths, Eq.~3.23!, stands. The same
is valid for the KPWG0

c5(A1
c)2sin2Q of the intrinsic eigen-
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state with the energy«0. Nevertheless, it should be stress
that the right-hand side~RHS! in Eq. ~3.28! is not the stan-
dard branching ratio since the denominator^g&cos2Q gener-
ally has nothing to do with the total width of the correspon
ing doorway state@1#. Only in the limit l!1 of a very weak
overlapping is this condition fulfilled and the maxima of th
collective transition strengths provide the ordinary branch
ratios Bdw50,1

c , Eq. ~2.6!, of the isolated doorway state
dw50, 1 (4.52)[1] .

However, the ratios of the KPW are

G r
c

G r
c8

5
scoll

c ~« r !

scoll
c8 ~« r !

, r 50,coll ~3.29!

independently of the value ofl. Thus, we conclude that th
parameters of theK matrix can be directly extracted from th
maxima of the collective part of the transition strengthssc.

The transition strengths~3.21! drop to zero at the poin
E5Ev , Eq. ~3.16!, which lies in between the two maxima
The maxima are therefore well separated and their widths
the half heights may be introduced in the two-level appro
mation. They can be explicitly found from Eq.~3.21! to be

G0;1/25
1

2F12
1

2SA11
4

l2 1
4

l
cos2Q

2A11
4

l2 2
4

l
cos2Q D G^g& ~3.30!

and

G1;1/25
1

2F11
1

2SA11
4

l2 1
4

l
cos2Q

2A11
4

l2 2
4

l
cos2Q D G^g&. ~3.31!

Although the sum

G0;1/21G1;1/25Gdw501Gdw515^g& ~3.32!

depends neither onl, nor onQ, each of the terms of the sum
does depend on the degree of overlapping. Thus, the ra

~Ad
c!2

Gdw;1/2
~3.33!

do not characterize individual resonance states and cann
interpreted as their branching ratios.

The same is valid for the TPW. In the two-level approx
mation, the residues~3.20! at the polesEdw50,1 can be pre-
sented in a very simple form:

ResTcc~Edw!5
~A1

c!2

^g&
Gdw

Edw2Edw8
*

Edw2Edw8
. ~3.34!

This gives

Gdw
c 5

~A1
c!2

^g&
GdwA11@ tanddw~Edw8!2tanddw8~Edw!#2

11@ tanddw~Edw8!1tanddw8~Edw!#2

~3.35!
-

g

n
-

s

be

for the TPW of the collective states. Here,ddw(Edw8) is the
scattering phase~2.5! on the resonance dw taken at the e
ergy of the resonance dw8. These phases vanish only whe
the resonances are well isolated.

The last factor on the RHS of Eq.~3.35! is just the diag-
onal matrix elementUdw , Eq. ~2.33!, of the Bell-Steinberger
nonorthogonality matrix~2.30!. Using the results of Sec
IV C of @1#, one can present the latter factor explicitly
terms of the mixing parametersQ andl,

Udw50,15
1

A2
F11

11 ~1/4! l2

A@12~1/4!l2#21l2cos22Q
G 1/2

.

~3.36!

In both limiting cases,l!2 andl@2, this factor goes to
unity while it is maximal in the intermediate region o
l'2. In particular, forl52

U0,155
1

A12tan2Q
, 0,Q,

p

4
,

1

A12cot2Q
,

p

4
,Q,

p

2
.

~3.37!

The quantity~3.37! becomes infinite forQ5p/4 as men-
tioned in @1#.

The factorU disappears from the ratios

Gdw
c

Gdw
c8

5
scoll

c ~« r !

scoll
c8 ~« r !

5
G r

c

G r
c8

~3.38!

of the TPW while the sum ofGdw
c

(
c

Gdw
c 5GdwUdw ~3.39!

depends, contrary to the sums of the KPW, on the degre
overlapping via the Bell-Steinberger factorU.

It has been shown in@9# that the energy spectrum of th
decay products of an arbitrary two-level unstable system
generally be expressed in terms of the resonance ene

E0,1, the T-matrix ‘‘partial widths’’ G̃dw
c , Eq. ~2.35!, which

are renormalized due to overlapping, and one additional
mixing parameter which satisfies a sum rule following fro
the Bell-Steinberger relation~2.31!. The situation is even
simpler in our quasi-single-channel case@see the remark be
low Eq. ~3.21!# where the latter parameter is easily foun
explicitly @9# as a function of the complex resonance en
gies. The resulting expression is remarkably simple,

scoll
c ~E!5

2

p

G̃dw
c

Gdw
sin2@d0~E!1d1~E!#. ~3.40!

@Note that, due to Eq.~3.35!, the ratioG̃dw
c /Gdw is really the

same for both doorway states dw50, 1.# This yields for the
transition strengths at the energy of a doorway resonanc
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FIG. 1. The transition strengths into particle~a!–~c! and photo~d! channels forl50.1 and the electromagnetic interaction streng
ael50.01. The resonance states are the same as in Fig. 2 in@1#. The dashed lines correspond to the case of parental levels fully degene
(De50).
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scoll
c ~Edw!5

2

p

G̃dw
c

Gdw
cos2ddw8~Edw! ~3.41!

instead of Eq.~2.6! for an isolated resonance. The transiti
strengths do not attain their maximal values at the resona
energies when the resonances overlap. For this reason
have, in particular, for the first sum rule in Eq.~2.8!

p

2(
c

sc~Edw!5cos2ddw8~Edw!,1. ~3.42!

One can easily convince oneself that both pha
ddw8(Edw) drop to zero whenl!2 and the resonances a
isolated. However, in the opposite case ofl@2 only the
phased0(E1) of the narrow resonance is small. The oth
phase,d1(E0), belonging to the level with the large widt
;^g& is close top/2. The cross section~3.21! has a narrow
dip at the energyE5Ev of the state dw50. In the limit of
very largel the narrow state decouples and gets invisible
the particle cross sections. At the same time, this state
quires a large dipole strength due to the external interac
@1# and brightly manifests itself in the photochannel.
ce
we

s

r

n
c-
n

IV. PHOTOEMISSION

The process of photoemission by the collective sta
turns out to be most sensitive to their interference. To ta
the electromagnetic radiation into account, one has to ad
the anti-Hermitian part of the effective HamiltonianH the
new term

2
i

2
Wel52

i

2
aelDDT ~4.1!

describing the radiation of the same multipolarity as the
ternal coupling vectorD. Therefore, the corresponding exte
nal coupling amplitude

A~rad!5AaelD ~4.2!

is proportional to this vector with the constantael character-
izing the strength of the electromagnetic interaction.

The elastic matrix element of theK matrix in the photo-
channel is equal to

Kg~E!5~A~rad!!TG~E!A~rad!5aelP~E! ~4.3!

@see Eqs.~3.3! and (3.5)[1]#. The radiation KPW are there
fore proportional to the dipole strengthsf r5(d•F(r ))2, Eq.
(3.15)[1] , of the intrinsic eigenstatesF(r ),
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FIG. 2. The same as in Fig. 1 but forl52.
otal
-

pon

tic

a-
e

G r
~rad!5aelD

2f r . ~4.4!

Since, according to Eq. (3.24)[1] ,

f 1512k2, f r;
k2

N21
~rÞ1!, ~4.5!

one can immediately see that, in the limit of smallk, the
d

internal collective state appropriates the main part of the t
radiation widthaelD

2. Whenk→0, only the pole at the en
ergy «coll survives in the radiationK-matrix element.

The photoemission from the GR depends however u
the dipole strengthsf̃ s of the unstable doorway statesC(s),
Eqs.~4.29! [1] , (4.31)[1] , and (4.32)[1] , rather than upon the
intrinsic quantities~4.5!. It is easy to see that the photoelas
scattering amplitude is obtained from the functionP(E),
@Eqs. ~3.3! and ~3.12!#, by substituting D2 by
@12( i /2)ael#D

2 when calculating the collective Green’s m
trix ~3.9!. In the two-level approximation, this leads to th
result
s~rad!~E!5
1

2p
aelD

2^g&
~E2«0!2~cos2Q1ael /l!1~1/4!aelD

2^g&sin4Q

@~E2«0!~E2«coll!2~1/4!aelD
2^g&sin2Q#21~1/4!^g&2@~11ael /l!~E2«0!2sin2QD2#2 .

~4.6!
by
For small values of the parameterl, the principal maxi-
mum of the photoemission strength lies at the energy«coll .
Near this point the expression~4.6! reduces to the standar
Breit-Wigner cross section

s~rad!~E!5
GGR

~ tot!

~E2«coll!
21~1/4!@GGR

~ tot!#2 GGR
~rad! ~4.7!
with the radiation and total widths

GGR
~rad!5aelD

2, GGR
~ tot!5^g&cos2Q1aelD

2, ~4.8!

respectively. The giant resonance is formed in this case
the sole doorway state dw51 with f 15 f̃ 151. With growing



56 1053INTERFERING DOORWAY STATES . . . . II. . . .
FIG. 3. The same as in Fig. 1 but forl55. Note the differentE scale in~d!.
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l, the radiation branching ratioB(rad)5GGR
(rad)/GGR

(tot) decreases
as long asl does not approach the critical value 2.

The picture changes noticeably for very large values
l (@2). The main maximum is displaced to the poi
E5Ev , Eq. ~3.16!, where the transition strengths into th
particle channels have an interference dip due to the nar
collective state dw50. The energy dependence is of Bre
Wigner shape but the radiation and total widths beco
equal to

G0
~rad!5aelD

2sin2Q5aelD
2 f̃ 0,

G0
~ tot!5

1

l2 ^g&sin22Q1aelD
2sin2Q. ~4.9!

The peak contains only the part sin2Q of the total radiation
transition strength. It is naturally ascribed to the collect
state dw50 which acquired the dipole strengthf̃ 05sin2Q
@see Eq. (4.55)[1]#, due to the interaction via continuum. Th
nucleon width of this state diminishes and the radiat
branching ratioB(rad) increases together withl. Therefore,
the radiation appears as a narrow line near the centroid o
broad resonance dw51 which is visible only in the particle
channels. The radiation from this broad collective state
suppressed and manifests itself only as a long tail wh
stretches towards higher energies. The radiation from
narrow state dw50 becomes therefore the brightest manife
tation of the giant resonance in the photoemission.
f

w

e

n

he
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In the most interesting intermediate domain of parame
ael!l!1/ael the photoemission strength is

s~rad!~E!'2
ael

2p
ImP~E!. ~4.10!

The interference of the radiation from the two resonance
strongest whenl'2. The frequency spectrum of the radi
tion is broad in this case, its characteristic width is;D2 and
the radiation intensity remains small even in its maximu
Generally, the shape of the spectrum is not Lorenzian w
l'2.

V. SPREADING WIDTH

We now discuss the interaction of the collective mod
with the sea of the complicated background states. The s
trum of the background states is extremely dense at h
excitations so that statistical methods are the only relev
ones to use in this case. As in@11#, we suggest that the
doorway states couple effectively toNbg@Ndw compound
states which lie in the energy domain of the GR and have
direct access to the continuum. We also assume that the
pling matrix elementsVdw bg are random Gaussian variable
with zero mean value. Then, after averaging over the ba
ground fluctuations, the doorway Green’s function chan
in the limit Nbg→` as G(dw)(E)→G(dw)@E2D1( i /2)G↓#
@11# where D and G↓ are the energy shift and spreadin
width, respectively. Neglecting their possible slow ener
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dependence in the whole domain of the GR, we can fu
incorporate the Hermitian shiftD ~which is in fact small due
to statistical reasons! into the mean position«0. The only
effect of the interaction with the background states is th
the additional shift of the poles of the transition amplitud
along the imaginary direction in the complex energy pla
Note that under such conditions the integral sum rule~2.38!
survives the transformations made.

We will not present here the rather cumbersome gen
expressions. Confining ourselves for the sake of simplicity
the two-level approximation, the shift considered does
influence the relation established in Sec. IV C of@1# between
the energy shifts and dipole strengths of the collective do
way states. We suggest further that the displacementD2 is

FIG. 4. The elastic cross section forl50.1 ~a!, l52 ~b!, and
l55 ~c!. The resonance states are the same as in Fig. 2 in@1#. Note
the differentE scale in~a!.
y

n
s
.
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t
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smaller than both the escape and spreading widths. It
then easily be shown that the transition strength correspo
ing to the particle emission in a channelc acquires the Breit-
Wigner shape

sc~E!5
~A1

c!2

2p

G tot

~E2Ecentr!
21~1/4!G tot

2 ~5.1!

with the centroidEcentr5«01cos2QD2 and the total width
G tot5^g&1G↓. Let us remind the reader that condition~3.23!
holds for the quantities (A1

c)2.

FIG. 5. The photonuclear cross section forl50.1 ~a!, l52 ~b!,
andl55 ~c!. The resonance states are the same as in Fig. 2 in@1#.
Note the differentE scale in~c!.
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The evolution of the averagedg strengths (rad)(E), when
the escape widtĥg& changes from values smaller thanG↓ to
larger ones, is appreciably richer. The strength transfo
smoothly from

s~rad!~E!5
1

2p
aelD

2
G↓

~E2«coll!
21~1/4!~G↓!2 ~5.2!

for ^g&!G↓ to

s~rad!~E!5
1

2p
aelsin2QD2

G↓

~E2Ev!21~1/4!~G↓!2

~5.3!

in the opposite limit̂ g&@G↓. In the intermediate region, th
maximum monotonously decreases and moves tow
lower energies. The shape of the radiation spectrum is
Lorentzian when both widths are of comparable value. I
worth noting that the width of theg spectrum is always
determined mainly by the spreading width. The escape w
^g& drops out not only from Eq.~5.2! but also from Eq.~5.3!.
This is due to the fact that the radiating state dw50 becomes
almost trapped.

Equation ~5.3! implies the loss of an appreciable pa
(5cos2Q) of the radiation strength if the total escape wid
of the GR noticeably exceeds the spreading width. The c
tribution of the broader collective state which is described
the right long tail in Fig. 3~d! ~see next section! is invisible in
Eq. ~5.3!. It is well known that the spreading width in fac
strongly exceeds the total escape width of giant resonanc
moderate excitation energies. However, in very hot nu
the opposite condition seems to be fulfilled. According
experimental data@12,13# as well as theoretical arguments
statistical nature@14#, the spreading width saturates with th
excitation energy whereas the escape width continue
grow.

VI. NUMERICAL RESULTS

The behavior of the dipole strengths, energies, and wid
of the interfering resonance states is reflected in the c
section pattern as shown above analytically by using ma
the two-level approximation. Below, we show the results
numerical investigations performed under less restrictive
sumptions. The~purely illustrative! calculations are per
formed with the same 10 levels and 3 channels as in@1#.
Damping is not taken into account, i.e., the results are
only for ^g&, D2@G↓ ~see the discussion in Sec. V!.

In Figs. 1–3 we show the energy dependence of the t
sition strengths into particle and photochannels for the th
values of the overlap parameterl 5 0.1, 2, and 5. As in the
figures in@1#, the energyE is measured in units of the tota
energy displacementD2. Due to the strong interference, th
pattern is noticeably different in the different final channe
One sees nicely the shift of the maximum at the higher
ergy towards lower energies which is predicted by the tw
level approximation. Moreover, the fragmentation of t
maximum at the lower energy into a number of resonan
can be seen which, of course, disappears in the limit of
generate unperturbed levelsen . At last, the growing restruc
turing of the dipole strength with increasing external co
s
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pling in favor of the lower lying components is seen in Fig
1~d!–3~d!. For example, the summed strength aboveE.0
amounts to 99%, 87%, and 85% in the case of the degene
unperturbed spectrum~dashed lines!. As to the maximum
value of the transition strength into the photochannel at
higher energy, it drops down by a factor of more than
when l increases from 0.1 to 2, while a narrow high pe
appears in agreement with the analytical consideration
lower energy whenl becomes large.

The elastic and photonuclear reaction cross sections
shown in Figs. 4 and 5. They are calculated for the sa
three valuesl50.1, 2, and 5 as the transition strengths
Figs. 1–3. Both the shift of the dipole resonance to low
energies and the loss of its dipole strength are seen
clearly also in these values.

Thus, the following scenario takes place. Provided t
the coupling~3.8! is negligible, the two collective doorway
states dw50, 1 fully exhaust the total dipole strength so th
only they can radiateg rays. The radiation pattern dete
mined by these doorway states turns out to be very sens
to their degree of overlapping: as long as the energy
placement of one of them is appreciably larger than the s
of the particle escape widths~i.e., l!1) only one of them
radiates. If, however, they overlap (l;1) the interference
leads to a strong redistribution of the dipole strength as w
as the escape width between the two states. When the de
of overlapping exceeds some critical value;2 the escape
width of one of the states starts to decrease~dynamical trap-
ping effect!. This effect is governed by the avoided crossi
of two resonances described in detail in@15#. In the limit of
strong overlapping,l@1, the nearly trapped state acquir
an appreciable dipole strength and therefore would radiate
the absence of any internal damping, a narrow electrom
netic line in the vicinity of the centroid of the broad bum
which is observed only in the particle channels. The bro
state, which also possesses noticeable dipole strengths,
tributes mostly to a long radiation tail stretched towar
larger energies.

The coupling~3.8! admixes the other doorway states a
leads to an additional restructuring of the total dipo
strength in favor of the low lying components.

VII. SUMMARY

On the basis of a phenomenological schematic model
investigated the interferences between the doorway com
nents of a giant multipole resonance. The overlapping
different components influences significatly the resona
spectrum and the cross section pattern since their interac
via the energy continuum creates, at a certain critical va
of the external coupling, strong redistributions of the widt
and dipole strengths of the doorway states. The resulting
pattern is formed mainly by two specific collective doorw
states. Both states possess comparable dipole strength
acquire essentially different escape widths. While t
broader state determines the picture in the particle chann
the brightest feature in the photoemission would be, in
absence of any internal damping, the relatively narrow rad
tion line from another nearly ‘‘trapped’’ doorway compone
which lies at somewhat lower energies.

The internal damping due to the coupling of the doorw
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states to the background of complicated states smears ou
effects of the interference as long as the spreading w
exceeds the total escape widths of the doorway compone
In very hot nuclei it is possible, however, that the esca
widths become larger than the spreading width@12,13# which
is expected to saturate with increasing excitation energy
so, the interference picture is not completely spoiled. T
internal damping only widens the line radiated by the narr
doorway state though it completely masks the tail from
broad one. Therefore, the visible bulk of the GRg emission
originates from a specific state with dynamically reduc
particle escape width but large dipole moment~the trapped
collective state! while the emission from the broader state
suppressed being spread over a wide energy range.
manifests itself as a seeming loss of a part of the dip
strength of GR and as a shift of the GR to lower energy.

Both the shift down of a part of the dipole strength a
the loss of some part of the dipole strength itself are d
cussed at present in connection with experimental results
tained for the excitation of collective modes in hot nuc
~see, e.g., the Proceedings of the Gull Lake Nuclear Phy
Conference on Giant resonances, 1993@16#!. Theg-ray mul-
tiplicity from the decay of giant dipole resonances is sho
experimentally to increase with the excitation energy
.
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agreement with the 100% sum rule strength as long as
not too high. At higher energies, however, its saturation s
nals the quenching of the multiplicity and the existence o
limiting energy for theg emission from the giant dipole
resonance. The different existing theoretical approaches
only partly explain the experimental situation observed@17#.

The results obtained in the present paper point to a n
mechanism which could possibly shed an additional light
the problem. To our mind, the saturation of theg multiplicity
observed experimentally at about 250 MeV excitation ene
in heavy nuclei@16,17# may be, at least partly, explained b
the interference phenomena discussed in the present p
Further investigations of this interesting question are nec
sary.
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