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The mixing of the doorway components of a giant resond@¢® due to the interaction via common decay
channels influences significantly the distribution of the multipole strength and the energy spectrum of the decay
products of the GR. The concept of the partial widths of a GR becomes ambiguous when the mixing is strong.
In this case, the partial widths determined in terms of khend S matrices must be distinguished. The
photoemission turns out to be most sensitive to the overlapping of the doorway states. At high excitation
energies, the interference between the doorway states leads to a restructuring towards lower energies and
apparent quenching of the dipole strend®0556-281®7)01807-4

PACS numbe(s): 24.30.Cz, 03.65.Nk, 24.60.Ky

I. INTRODUCTION Sec. lll. The photoemission, which turns out to be especially
sensitive to the degree of overlapping of the doorway states,
In [1] we investigated analytically as well as numerically is studied in Sec. IV. In Sec. V, we discuss the interaction of
the dipole giant resonand&R) as a collective excitation in  the doorway states described[ibj with the background of
an open quantum system. In the energy domain of the GReomplicated compound states which leads to an internal
both internal(due to the Hermitian residual interactioand ~ damping of the collective exitation. We show in Sec. VI
external(due to the interaction via common decay channels Some numerical results obtained in the same maaithout
mixings are equally important. At the first stadger 1 door-  internal damping but with the restrictions being removed
way states are formed, witk being the number of decay Which were introduced into the analytical investigation. The
channels. These states inherit two different types of collechumerical calculations confirm the main features of the in-
tivity which are called, according to their origin, internal and terference between the different types of doorway states as
external collectivity, respectively. The doorway resonanceghey follow from the analytical study. Finally, we summarize
formed in such a manner still interfere with one another duéhe results in Sec. VII and draw some conclusions. Of inter-
to the external residual interaction. Finally a few resonanc&st is, above all, the apparent loss of the collective dipole
states with appreciable dipole strengths are formed. The irstrength at high excitation energy.
terference gives, generally, rise to an essential redistribution All symbols used in this paper are the same aslinWe
of the dipole strength and shifts it towards lower energies. Cite an equation ifil] by writing its number in brackets with
The investigations show further that two of the resonancéhe upper index1], e.g., (2.1)") means Eq(2.1) in paper
states share the main part of the total dipole strength and até]-
therefore most responsible for the manifestations of the GR.
The properties of these two doorway components of the GR
crucially depend on the degree of their overlapping. In the
case of weak overlapping they have comparable escape In the vicinity of an isolated resonance state dw the Her-
widths but the dipole strength of the lower lying state ismitian K matrix is represented in the form
small. Quite opposite, a large degree of overlapping leads to
the appearence of two states with similar dipole strengths ~oa
whereas the escape width of the lower lying state is dynami- R(E)= AgnAdw
cally reduced. E—Eqn’
In the present paper, we study the cross section pattern in
order to elucidate the role of the external interaction and the ~
interplay of both types of collectivity in the experimentally Where the row vectoAy, is composed of thé real decay
measurable values. Of special interest are the transitioAmplitudesAg,, of the doorway state into the individual
strengths into specific channels when the interaction via theéhannelx=1,2,... k and the superscrigt means transpo-
energy continuum is strong. sition. The pole of this matrix lies on the real energy axis at
In Sec. ll, we describe the overlapping of doorway resothe energyEy, of the doorway state. Equatid@.1) leads to
nances in the context of the general resonance scatteririje standard single-resonance Breit-Wigner formula
theory. The concept of the partial escape widths in the case
of overlapping resonances is reexamined from both inside R(E) ATWA
(K-matrix) and outside T-matrix) viewpoints. The transition To(E)= A dw? “dw (2.2
strengths in the particle channels are analytically analyzed in " 1+(i/2)K(E) E—Eawt+ (/2T gy

Il. CROSS SECTIONS AND PARTIAL WIDTHS

(2.1
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for the transition matrix. Though the pole of the transitionhowever needed when the widths of the relevant doorway
matrix is shifted to the poinE=&y,=Ey,— (i/2)['y, in the  states become comparable with their spacings. In this case
complex energy plane, both matrices have the same residuame has to use the formulas of the general theory of reso-
In particular, the residueE§, = (AS,)? of the diagonal ele- nance reactiong2—5]. Here, the transition matrix

ments of these matrices give the partial escape widths of the

state dw relative to the channeds The Hermiticity of the 'T(E)ZAT 1 A 2.9

K matrix automatically provides the unitarity of the scatter- E-H '

ing matrix S(E)=1—iT(E) implying the well-known con- _ _ _
nection is composed of the three matrix factors which describe the

formation of the intermediate unstable system, its propaga-
< c tion, and subsequent disintegration. If there[dgg doorway
Fgw= Adw:%: TG (23 resonance states near the excitation enérgyoupled tok
decay channels, the matrixA consists of k
between the total width[y,,, and the partial widths of the Ngw-dimensional column vector&® connecting all internal
resonance dw. In what follows we omit all nonresonant ef-states with each channel These vectors are real because of
fects. They can, if necessary, be easily taken into account bjme-reversal invariance. In the following we neglect a pos-
standard methods. sible smooth energy dependence of the componghtsver
Using the parametrizatio(®.2), the partial widths of the the whole energy domain considered. The validity of such an
resonance state can be extracted from the experimental daggsumption is not always obvious and deserves a special con-
Averaging the cross section of the reactioh—c over all ~ sideration. It may lead to further complications.
initial channelsc’, one obtains, with the help of the unitarity ~ The evolution of the intermediate open system is de-
condition, the strength scribed by the Green’s matrix

1 g
o F
027 (E—Eqw)?+ (142,

o(E) = — %Ing\‘fV(E) _ G(E) = (2.10

E-H

_ 4 F—smza(E) (2.4 corresponding to the non-Hermitian effective Hamiltonian
dw

of the transition into the channel Here, 84,(E) defined by H=H- zAAT H— EW (2.19

tand,(E)= — E T qw (2.5 which has been investigated in detalil in part | of this paper

2E-Egy [1]. The factorized form of the interactiow via the con-
tinuum ensures the unitarity of the scattering matrix for ar-
bitrarily overlapping resonancegg,5]. However, the simple
1 r Breit-Wigner parametrizatiof2.2) loses its validity in gen-
dw
To5— eral.
2m (E~Eg)*+ (14T, The propagatog(E) of the unstable system satisfies the

Dyson equation
describes the total cross section of the doorway state excita-

tion. Below we set the factar to unity measuring all cross

is the resonance scattering phase. The factor

i
sections in units of this quantity. The maximal value G(E)=G(E)— EG(E)WQ(E), (2.12
2T, 2
0%(Egy) = — F_dzz ;ng (2.6)  where
1
of the transition strengtkR.4) is proportional to the branch- GE)= —— £ h (2.13

ing ratio of the decay into the chanrelThe integration over

the whole resonance region gives the partial width itself, is the resolvent of the Hermitian paH of the effective

w Hamiltonian (2.11). Subsequent iterations in the anti-
J dEc%(E)=Tg,- (2.7 Hermitian part of the effective Hamiltonian led6l] to
Due to Eq.(2.9 it follows from Egs.(2.6) and(2.7) that G(E)=G(E)— i—G(E)A 1 _ ATG(E)
1+ (i/2)K(E)
7T o
73 o(Ea=1, 3 | dE0B)-Te. (9 (214
‘ o with
The above discussion implies a good separation of the

different resonance states dw so that any interference be- R(E)=AT 1 A=ATG(E)A 2.19
tween them can be neglected. A more careful analysis is E—H ' '
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The relation(2.14) casts agaificompare with the first equal- (AS,)2=|AS,2exp(2i ¢5,) (2.25
ity in Eq. (2.2)] the transition matrix2.9) into the explicitly
unitary form in the elastic scattering amplitudes. Here, the resonance mix-
R ing phasespg,, are introduced.
- K(E) Unlike the case of an isolated resonance described by Egs.
T(E)= 1+ (i/2)R(E) ' (2.1 (2.1 and(2.2), the residues of th& andT matrices at indi-

vidual poles do not coincide if the doorway resonance states
The elements of both thHé- andT-channel space matrices ©verlap. One can find the connection between the decay vec-
tors Ar and Adw starting with the eigenvalue problem

K (E)=TI[G(E)A%(A®)T], (217 HYW=g,, ¥ presented in the intrinsic eigenbasis of
the Hermitian partd. Simple transformations lead then to
T (E) =TI G(E)AS(A®)T], (2.19  the matrix equation

being the traces in the Hilbert space of the internal motion,
are independent of the choice of a basis in this space. In the
eigenbasis of the intrinsic Hermitian pait of the effective )
Hamiltonian(2.11), the matrixK is presented as the sum  The determinant dit+(i/2)K(&qy) ] is equal to zero at any
resonance pol&y,, of the T matrix (2.16. Therefore, for
R ATA, each resonance dw, a nontrivial solution of the homogeneous
K(E)=E E_ (2.19 linear system(2.26) exists. The proper solutions are finally
r er fixed by the Bell-Steinberger relatid.31) (see below

The square moduli

|+ 'Ek(z:dw)}Adfo. (2.26

of pole terms similar to the single-resonance expression
(2.1). The row vectorsA, consist of the real components = |A3W|ZE|\p(dW>.AC|2 (2.27)

Ar=@". A, (2.20 are just the quantities which are usually interpreted as the
_ - . partial widths of the resonance state dw. In the case of over-
where the eigenvectob(") of the Hermitian matrixd be-  |apping resonances, these widths differ from the partial

longs to the eigenenergy; . The positive residues widths (2.21) defined in terms of th& matrix. Therefore we
. - conclude that one has to distinguish between Thmatrix

Ir=(A7) (2.2)  partial widths(TPW's) (2.27) extracted from thél matrix,

and theK-matrix partial widths(KPW’s) (2.21) drawn from

at the poles of the diagonal elements of the matéx9),
which characterize the coupling of the intrinsic stdt&) to
the channels, are the partial escape widths discussed in part

the matrixK.
The transformation matri¥ satisfies the matrix equation

l, Eq. (2.17}Y. HY=VE, (2.28
Analogously, the poléresonanceparametrization of the
transition matrix(2.9), where& is the diagonal matrix of resonance energfag.
. This transformation is complex orthogorj&l],
. ALA
T(E)=2 =2, (2.22 YTy ==, (2.29
w E—&w

. . . . . . However, for the Hermitian matrix
is achieved by diagonalizing the total effective Hamiltonian

(2.12 (rather than only the Hermitian patt as abovgwith Uu=vw (2.30

the help of a transformatio which is complex since the

Hamiltonian is not Hermitian. Its complex eigenvalues  the inequalityU #1 holds so that the overlapping resonance
states are not orthogondor illustration seq7]). The matrix
U appears in the well-known Bell-Steinberger relati@j

i

Eaw=Eaw™ Erdw (2.23 (see also a compact matrix version of this relatiof@:
determine the energies and total widths of the overlapping A Adw =1U g aw (Eqw — Eiw) - (2.31
resonance states. The decay amplitudes of these states are ) )
[compare with Eq(2.20)] Its diagonal part gives the relation

C _qp(dw) AcC 1 ~ 1
Adu =W A (2.24 Fdw:U_|Adw|2:U_2 |AGul? (2.32
dw dw C

with W@ being the eigenvectors of the effective Hamil- .

tonian H. Together with these eigenvectors, the residues deetween the total widths and TPV&.27). Here

the resonance poles are also complex. Therefore, the reso-

nances are mixed in th_e transition a_mplitudes with nonzero wa:1+22 (|m\P§1dW))2>1 (2.33
relative phases. In particular, the residues are equal to n
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is the corresponding diagonal matrix element of the matrix 1 (= ) ) )
U. Because of Eqg2.32 and (2.33), the inequality condi- - dEIMT®® (E)=A°-A® =X,  (2.40
tion -

where thek X k matrix [10,6]

Cgu<> TS, (2.34 A
C X=ATA (2.41)

holds in contrast to the equalit{2.3) characteristic for an
isolated resonance.

As it follows from Eq.(2.32, the TPW can be formally
renormalized as

of the scalar products of the real amplitude vectafsap-
pears.

Ill. TRANSITION AMPLITUDES AND PARTIAL
TRANSITION STRENGTHS

Similar to Sec. Il in[1] [see Egs. (3.1} and (3.2)!1],
we introduce the enlarged transition matrix

gW:U_dW gw* (2'35)
[9,7] leading to the equality
S 7 TE)=ATG(E) A, (3.)
FdW: Fgw (23@
¢ A=(A%=22iD Al...A¥), (3.2
also for overlapping resonances. It should be emphasiz
however that neither thE§,, nor the renormalized quantities
TS, coincide with the KPWES from Eq.(2.21) in the case of T°(E)=2iP(E)=2iD"G(E)D 3.3
overlapping resonances. The only relation between them,

eéjontaining along its main diagonal the function

besides thé&Xx k block T(E), Eq. (2.9). The functionP(E)

. together with
(A9?=2, TP=2, T4,exp(2i )< 2 T,

(2.37
l] . .
follows from the completeness of the sets of the corresponcgce)g] I(\:ZS)[ is closely connected to the photoemissisae

ing eigenvectors. Similarly, the energies differ from the The Green’s matrig(E), Eq. (2.10, is therefore needed
energiesEqy of th(_e' resonance eigenstates. In .the secongor the description of the evolution of the intermediate un-
equality (2.37 additional phase factors appear in the SUMable system excited in reactions.[[], a special doorway

over the resonance states. _The Imaginary part of this SUNasis has been introduced which is adjusted to the strong
vanishes since the contributions of different resonances per- L .

coherent non-Hermitian interaction
fectly compensate one another.

Condition (2.37) results in the integral sum rules

P(E)=D'G(E)D (3.9

. i

w 1 (= H™=DD"~ W @9

f dEaC(E)=—;f dEIMTSY(E)=(A%)%=>, I'¢
— 00 r

- [Eq. (4.1J*1] by which the GR is created. In this basis, the
(2.39 (k+1)X (k+1) doorway block of the total Green’s matrix is
the only one which has to be calculated. The influence of the
trapped statefl] is included in a self-energy matrix which
o contains the coupling between the doorway and trapped
2 J dEUC(E):TrW=E | Y (2.39 states. It manifests itself, as mentioned[id, in the fine
€ I dw structure variations of the transition amplitudes in the energy

region of the unperturbed parental levels. Neglecting this fine

resonance. The integration is extended here over the Whorc,tructu,re, or;e_ rge(%vtd)c eEs thf tﬁroﬂem to theﬁcaltt_:ulat||_|on c.)lf the
energy region, occupied by the overlapping resonance state reens matrix (E) of the doorway effective Hanil-

Equation(2.38 leads to the sum of the KP\IV?, Eq. (2.21), tonian

rather than to the sum of the TPW,,, Eq. (2.27). There-

fore, one cannot learn much on the latter or even on their H (W) —

sumz 4,15, from the integra2.38 despite the expectation

sometimes being expressed in the scientific literature. Still 1

less information can be drawn from the maxima of the total Ed- (4.23)4].

cross section since their heights and positions are connected 1he upper 2 block

with the widths and energies of the overlapping resonances . . ,

in a very complicated way. At last, E.39 fixes only the J(col) — sotsiPOD?  sindcosd D ) _ '_< >< 0 0)
sinBco®D? g,+cofOD?] 20 1

and

instead of Eqs(2.7) and(2.8) which are valid for an isolated

N 7 (3.6

H(coll) XT)

sum of the total widths of all resonances.
A useful generalization of the sum rul2.38 reads (3.7
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in Eq. (3.6) contains only two states which are strongly The two groups of doorway states are coupled via the
mixed by the competing internal and external interactionsontinuum by the anti-Hermitian interaction

characterized by the parametdd$ and (y), respectively.

Here D is the N-dimensional vector of the dipole matrix

elements{y) is the mean value of the nonzero eigenvalues i

¥ of the external interaction matriw (or, equivalently, of x=—5(0w), (3.9

the eigenvalues of the matri), and® stands for the angle
between the dipole vectdd and thek-dimensional Hilbert

subspace spaned by thedecay vectorA®. We mark this  which can be expected to be moderately weak. Its strength is
block by the subscriptcoll) since only its eigenstates pos- :nparacterized by the dispersian, of the eigenvalues® [see
sess internal collectivity when the couplingis neglected. (4.28y417.

The (k—1)x(k—1) block H describes th&k—1 door- Representing the doorway Green's ma@i#*)(E) in the

way states with energies close 4§ and mean widthgy).  plock form complementary to E¢3.6), one obtains the fol-
Contrary to the states of the first group, these states carry NBwing expression:

internal collectivity.

(coll) — 1
g (E)_ E_H(COII)_Q(E)

2 I H 2
1 | E—gy—cogOD?+ -w(E)  sin®@coddD

= 2 (3.9
A(E
(E) sin®cow® D? E—go—Sirf®D?
for its upper collective block with the functioA (E) given by
i
A(E)=(E—go)(E—&con) + zw(E)(E—aO—sinz(aoz)zo, (3.10
i
w(&)=(y)—5a(&). (3.12)

This result extends the formula for the Green’s function (34.1f the internal collective vibration in a closed system to the
consideration of decaying collective modes.
In the doorway picture just described the elements of the médriy are presented as

E—eo+(i/2)siPOw(E)

— T (coll) — N2
P(E)=D'G'**”(E)D=D AE) , (3.12
T (E)=Tea(E)+ T° (E), (3.13
where
o’ o b o | . _ |\E—go—sinfOD?
coll(E)=| A1~ 50%(E) || A; =50 (E) —AE) (3.19
|
and E,=go+sinP®D. (3.16
) The amplitudeg3.15, being sums of independent Breit-
Foo' (£)= 3 AGAG Wigner terms, themselves contain no interference effects. In-
™ (E)= = E-F (3.15 deed, allA® , which connect the states inside the lower block

of the Hamiltonian(3.6) to the continuum, are real arlds
one can easily check with the help of Egs.
The quantitiesAS,AS [Eq. (4.10§*'] are the components of (4.36) — (4.38)4]]
the (real) decay vector#\® in the doorway basis. It is worth
notipg that the collective parts of the transition amplitudes D (AZ)ZZ',;a. (3.17
vanish at the energy c
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All interference effects are included in the collective partdoorway energies, . Therefore, although the dependence

(3.14. In particular, the mixing of the.two diff(_arent groups on the channel indices,c’ in the collective par{3.14) has

of the doorway resonances in E®.6) is described by the ¢ gesirable factorized form, the factors are generally com-

self-energy function plex and energy dependent. As a result, the locations of the
maxima in the cross sections are not connected, contrary to

w(@)?2 the case of isolated resonances, with the positions and the
q(E)=—4Q44(E)=2>, EF (3.189  residues of the poles of th¢ or T matrices in any simple
@ E"Ca way. If however the collective resonances do not overlap too
[Eq. (4.40§11], and the functions strongly, all the functiong)(E) vary slowly within the en-

ergy region of the maximum arising from the giant resonance
state and can approximately be considered as some complex

W(a)AC
¢(E)= * constants.
A(E)=2 ——=" (3.19 . R _
a E-E&, The residues of the elastic reaction amplitudes are ex-

pressed in terms of the complex energies of the doorway
All these functions are complex because of the complexesonances as

1 1‘n22® D ! (&, - 3.2
T 720 (g, —eo—siopz F g% (Ca | (329

i 2
ReST*(Ea) = ( A Eq%edW))

In contrast to the real residué®.2) of the K matrix, they are complex and carry information, hidden in the quantifiesn
the transition vectord, of all the overlapping resonance states. The concept of tmatrix partial widths of GR’s, generally,
becomes irrelevant when its doorway components strongly overlap. The only information on the partial widths which one can
extract from the experimentally observed transition strengft{&€) is the sum rulg2.38 for the KPW.

The above formulas simplify appreciably if one neglects the couplirzgetween the two doorway blocks in E@.6). In
such an approximation only the two upper collective doorway statesiju, described in detail in Sec. IV C fif], share the
total dipole strength and contribute in the GR. The energy dependence of the corresponding collective part

(E-E)?
)A(E~zon) >+ (1/4)(y)*(E~E,)? (3.2

C 1 Cc\2
UCOII(E)zz(Al) <7> (E_SO

of the total strength 2 (AS)2
C Cc
1 N O-CO”(SO):O-CO"(SCO"):; (y) (3.26
0%(E)=—=ImT°YE)=0i,(E)+0o%E) (3.22
& just at the poles of th& matrix (3.24). Taking Eq.(3.23

o . into account, these relations are quite similar to EQ6).
of the transition into a particular decay chanoéirns out to Further, in close analogy with the first equation in E28).

have the same universal form as in the single-channel model
of [11]. In this respect, expressidB.2]) is analogous to the - -

universal Breit-Wigner formula (2.4). According to = oSu(e0) =52 0So(Econ)=1. (3.27
(4.13fH, the condition 2% 2%

Nevertheless, at arbitrary values of the overlapping param-

g (AD?=(7) (323  eter\, the quantities A%)? coincide neither with KPW nor
with TPW. They are not the residues at the poles ofkher
is satisfied compare Eq(2.3)]. T matrices and therefore cannot be ascribed to any internal
The HermitianK matrix reduces in the same approxima- €l9enstates. S N
tion to[1] It could seem that the situation is improved by writing, for
example,
X AlA;, X
R(E)=———+=— (3.24 2 (AY? 2 Ty

_E_Scoll E—ep

UEOII(SCOII):; (y)0052® :; <’}/>COSZ® : (328)
with
Here,I'S=(AJ)%=(A%)%cos® are the KPW of the intrin-
AS=(d-A°), X, :)“(_AgAd_ (3.2 sic collective state with the energy,,, while in the denomi-
nator the sum of all the widths, E(B.23, stands. The same
The strength¢3.2]) reveal two equally high maxima is valid for the KPWI'§= (A$)2sir?® of the intrinsic eigen-
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state with the energy,. Nevertheless, it should be stressedfor the TPW of the collective states. Hei®,;,(Eq,) is the
that the right-hand sidéRHS) in Eq. (3.28 is not the stan- scattering phas€.5) on the resonance dw taken at the en-
dard branching ratio since the denominatpfco€® gener-  ergy of the resonance dwThese phases vanish only when
ally has nothing to do with the total width of the correspond-the resonances are well isolated.

ing doorway stat¢l]. Only in the limitA<1 of a very weak The last factor on the RHS of E3.39 is just the diag-
overlapping is this condition fulfilled and the maxima of the onal matrix element)y,,, Eq.(2.33, of the Bell-Steinberger
collective transition strengths provide the ordinary branchingnonorthogonality matrix(2.30. Using the results of Sec.
ratios Bg,—o1, EQ. (2.6), of the isolated doorway states IV C of [1], one can present the latter factor explicitly in
dw=0, 1 (4.52§1. terms of the mixing parametef3 and\,

However, the ratios of the KPW are

1+ (1/4)\2 vz

Ugeo1=—=| 1+
—=———, r=0col (3.29 MO Rl T [1— (UANTP+ N 2c0220
FI’ O-COH(SV) (336)

l_‘(r: . Ugoll(sr)

independently of the value of. Thus, we conclude that the
parameters of thE matrix can be directly extracted from the
maxima of the collective part of the transition strengits
The transition strength&3.21) drop to zero at the point
E=E,, Eg.(3.16), which lies in between the two maxima.

In both limiting casesh<2 and\>2, this factor goes to
unity while it is maximal in the intermediate region of
A=~2. In particular, forA=2

The maxima are therefore well separated and their widths on 1 0<®<z

the half heights may be introduced in the two-level approxi- J1-tarf®’ 4’
mation. They can be explicitly found from E€B.21) to be Up1= 3.39

' 1 T T

1 1 4 4 —, <0<5.

Fo;1/2=§[1—§( \/1+ y2 T 5cosd yl-cof® 4 2

The quantity(3.37) becomes infinite fol® =7/4 as men-
() (3.30 tioned in[1].
The factorU disappears from the ratios

4 4
—\/1+ F—XCOSZ@

and
ﬂv:agou(sr) _ Ff

1+§ \/1+ F-ﬁ-xCOSZ@ gw Ugoll(sr) 1_‘(r:

\/1 i y.Q)
— + F — xCOS
Although the sum

o2t T'1:00= Taw=0F Taw=1=(7) (3.3 depends, contrary to the sums of the KPW, on the degree of

depends neither ok, nor on®, each of the terms of the sum OVverlapping via the Bell-Steinberger factdr

does depend on the degree of overlapping. Thus, the ratios |t has been shown if@] that the energy spectrum of the
decay products of an arbitrary two-level unstable system can

(AJ)? generally be expressed in terms of the resonance energies

(3.33 o1, the T-matrix “partial widths” I'§,,, Eq. (2.35, which
are renormalized due to overlapping, and one additional real
do not characterize individual resonance states and cannot Ingixing parameter which satisfies a sum rule following from
interpreted as their branching ratios. the Bell-Steinberger relatiof2.31). The situation is even
The same is valid for the TPW. In the two-level approxi- simpler in our quasi-single-channel cdsee the remark be-
mation, the residueg3.20 at the polesty,—o, can be pre- low Eq. (3.21)] where the latter parameter is easily found

1
1ﬂ1;1/2:§

of the TPW while the sum of §,,
(»- (33D

2 I WU (3.39

l_‘dw; 1/2

sented in a very simple form: explicitly [9] as a function of the complex resonance ener-
gies. The resulting expression is remarkably simple,
(A2  Equ—Equ
ResT“(Equ) = dw . (3.39 =
()~ MEawEaw 2T, .
ool E)=— F—Sir[8(E) + 61(E)]. (340
This gives 1 dw
. (AD? \/1+[tafﬁdw(Ede)—taf‘lsdwf(Edw)]2 [Note that, due to Eq3.35), the ratiol'5,/T 4y is really the
Wy MW N 1+ tangu( Equ ) + tandgy (Egw) 12 same for both doorway states e\d, 1] This yields for the
(3.35 transition strengths at the energy of a doorway resonance
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FIG. 1. The transition strengths into partidi@—(c) and photo(d) channels forx=0.1 and the electromagnetic interaction strength
ae=0.01. The resonance states are the same as in Fid.12 ifihe dashed lines correspond to the case of parental levels fully degenerated
(Ae=0).

2 =c IV. PHOTOEMISSION
dw
‘Tgoll(Edw):; mcosz Saw (Eaw) (3.4 The process of photoemission by the collective states

turns out to be most sensitive to their interference. To take
the electromagnetic radiation into account, one has to add to

instead of Eq(2.6) for an isolated resonance. The transition the anti-Hermitian part of the effective Hamiltoniatd the
strengths do not attain their maximal values at the resonand&W term
energies when the resonances overlap. For this reason we

have, in particular, for the first sum rule in E@.8 : :

- EWe,: - EozepDT

4.7
describing the radiation of the same multipolarity as the in-
ternal coupling vectob. Therefore, the corresponding exter-
nal coupling amplitude

A= [0 D

One can easily convince oneself that both phases
Saw (Egw) drop to zero whem\ <2 and the resonances are is proportional to this vector with the constany, character-
isolated. However, in the opposite case)f2 only the izing the strength of the electromagnetic interaction.
phasedy(E;) of the narrow resonance is small. The other The elastic matrix element of th€ matrix in the photo-
phase,d;(Eg), belonging to the level with the large width channel is equal to
~(y) is close tow/2. The cross sectio8.21) has a narrow
dip at the energlfe=E, of the state dwO0. In the limit of
very large\ the narrow state decouples and gets invisible in
the particle cross sections. At the same time, this state a¢see Eqs(3.3 and (3.5)!1]. The radiation KPW are there-
quires a large dipole strength due to the external interactiofore proportional to the dipole strengtlis=(d-®(")2, Eq.
[1] and brightly manifests itself in the photochannel. (3.15)4, of the intrinsic eigenstate®(",

gg 0(Eqy) = CoL04y (Eq)<1.  (3.42

4.2

KY(E)=(ANTG(E)A(™d= o P(E) 4.3
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FIG. 2. The same as in Fig. 1 but far=2.

internal collective state appropriates the main part of the total
radiation widthaD2. Whenk—0, only the pole at the en-
ergy eqo Survives in the radiatiok-matrix element.

The photoemission from the GR depends however upon

the dipole strengths$ s of the unstable doorway stat&s(®),
Egs.(4.29™, (4.31)*, and (4.32)], rather than upon the
2 intrinsic quantitieg4.5). It is easy to see that the photoelastic
(r+1), (4.5 scattering amplitude is obtained from the functi®E),
N—-1 [Egs. (3.3 and (3.12], by substituting D> by
[1— (i/2)ae]D? when calculating the collective Green’s ma-
trix (3.9). In the two-level approximation, this leads to the
one can immediately see that, in the limit of smallthe  result

r{ad= o D" (4.9

Since, according to Eq. (3.24),

fl=1—x2, '~

(E—£0)%(COLO + ag/\) + (1/4) ag DX y)sint®

D) [(E—e0)(E—&con) — (1/8) agD*( y)Sirf® 12+ (L4 { y)’[(1+ ag/\)(E—go) — SIPOD?]?"
(4.6

1
(rad) -
a'"(E) oy

For small values of the parameter the principal maxi- with the radiation and total widths
mum of the photoemission strength lies at the energy.
Near this point the expressidqd.6) reduces to the standard (rad) _ 2 (tot) _ 2
Breit-Wigner cross section IgR' =aeD? Tgr'=(7)co$0+aeD? (4.9
re

(E—gcon) 2+ (L/4[TED

oI (E) = ]Zl—w(rad) 4.7) respectively. The giant resonance is formed in this case by

the sole doorway state dwl with f*=*=1. With growing
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FIG. 3. The same as in Fig. 1 but far=5. Note the differenE scale in(d).

A, the radiation branching ratiB™®= T (% decreases In the most interesting intermediate domain of parameters
as long as\ does not approach the critical value 2. ag <\ <1/ag the photoemission strength is

The picture changes noticeably for very large values of o
N (>2). The main maximum is displaced to the point oI(E)~ — Z—:ImP(E). (4.10

E=E,, Eq. (3.16, where the transition strengths into the
particle channels have an interference dip due to the narro
collective state dw0. The energy dependence is of Breit-
Wigner shape but the radiation and total widths becom

Vilhe interference of the radiation from the two resonances is
Strongest when~2. The frequency spectrum of the radia-
fion is broad in this case, its characteristic width-i®? and

equal to S ) . o .
the radiation intensity remains small even in its maximum.
Fgad)=ae|Dzsin2®= DO Generally, the shape of the spectrum is not Lorenzian when
' A=2.
1
ey =32¢ Y)SirP20 + ao D?sirfo. (4.9 V. SPREADING WIDTH

We now discuss the interaction of the collective modes
The peak contains only the part 8 of the total radiation  with the sea of the complicated background states. The spec-
transition strength. It is naturally ascribed to the collectivetrum of the background states is extremely dense at high
state dw=0 which acquired the dipole strengti’=sir’® excitations so that statistical methods are the only relevant
[see Eq. (4.55}!], due to the interaction via continuum. The ones to use in this case. As [A1], we suggest that the
nucleon width of this state diminishes and the radiationdoorway states couple effectively fd,5>Ng, compound
branching ratioB(™® increases together with. Therefore,  states which lie in the energy domain of the GR and have no
the radiation appears as a narrow line near the centroid of thdirect access to the continuum. We also assume that the cou-
broad resonance dwl which is visible only in the particle pling matrix elements/y,, g are random Gaussian variables
channels. The radiation from this broad collective state isvith zero mean value. Then, after averaging over the back-
suppressed and manifests itself only as a long tail whiclground fluctuations, the doorway Green’s function changes
stretches towards higher energies. The radiation from thi the limit Npz— as G(E)—GMW[E—-A+(i/2)['!]
narrow state dw0 becomes therefore the brightest manifes{11] where A andI'' are the energy shift and spreading
tation of the giant resonance in the photoemission. width, respectively. Neglecting their possible slow energy
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FIG. 4. The elastic cross section far=0.1 (a), A=2 (b), and FIG. 5. The photonuclear cross section fo# 0.1 (a), A =2 (b),
A=5 (c). The resonance states are the same as in FigiD.iNote ~ and\=5 (). The resonance states are the same as in Fig[2.in
the differentE scale in(a). Note the differen scale in(c).

dependence in the whole domain of the GR, we can fullygyjer than both the escape and spreading widths. It can
incorporate the Hermitian shift (which is in fact small due  yhepy easily be shown that the transition strength correspond-

to statistical reasonsnto the mean positior,. The only  jnq 16 the particle emission in a chanmehcquires the Breit-
effect of the interaction with the background states is therWIgner shape

the additional shift of the poles of the transition amplitudes
along the imaginary direction in the complex energy plane.

Note that under such conditions the integral sum (al88 AC)2
. . I — ( 1) 1-‘Io’(
survives the transformations made. o%(E)= 5 (5.1
We will not present here the rather cumbersome general 271 (E—Egeny)®+ (14T

expressions. Confining ourselves for the sake of simplicity to

the two-level approximation, the shift considered does not

influence the relation established in Sec. IV dbfbetween  with the centroidE cen=€o+ co€®D? and the total width
the energy shifts and dipole strengths of the collective door¥ o= (y)+T"'. Let us remind the reader that conditi$123
way states. We suggest further that the displacer®@nis  holds for the quantitiesA$)?2.
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The evolution of the averageg strengtho(™Y(E), when  pling in favor of the lower lying components is seen in Figs.
the escape widtlly) changes from values smaller thBhto ~ 1(d)-3(d). For example, the summed strength ab&e0

larger ones, is appreciably richer. The strength transformgmounts to 99%, 87%, and 85% in the case of the degenerate
smoothly from unperturbed spectrurfdashed lings As to the maximum

value of the transition strength into the photochannel at the

—rad 1 ) rt higher energy, it drops down by a factor of more than 10
o "(B)=5—aeD (E— )2+ (1/4)(T1)2 (52 when\ increases from 0.1 to 2, while a narrow high peak
coll appears in agreement with the analytical consideration at

for (y)<T' to lower energy whem. becomes large. _
The elastic and photonuclear reaction cross sections are
— = 1 oD r! shown in Figs. 4 and 5. They are calculated for the same
ra - ; _ .. .
o "HE) = 5 aeSITOD (E_E,)2+ (UA)(T1))? three values\=0.1, 2, and 5 as the transition strengths in

(5.3 Figs. 1-3. Both the shift of the dipole resonance to lower
' energies and the loss of its dipole strength are seen very

in the opposite limit y)>T''. In the intermediate region, the Cléarly also in these values. _
maximum monotonously decreases and moves towards Thus, Fhe foIonvmg scenario takes place..Prowded that
lower energies. The shape of the radiation spectrum is ndf'® coupling(3.8) is negligible, the two collective doorway
Lorentzian when both widths are of comparable value. It isStates dw=0, 1 fully exhaust the total dipole strength so that
worth noting that the width of they spectrum is always only they can radiatey rays. The radiation pattern deter—_
determined mainly by the spreading width. The escape widtflined by these doorway states turns out to be very sensitive
() drops out not only from Eq(5.2) but also from Eq(5.3.  © their degree of overlapping: as long as the energy dis-
This is due to the fact that the radiating state-evoecomes ~ Placement of one of them is appreciably larger than the sum
almost trapped. of the particle escape widthge., A<1) only one of them
Equation (5.3 implies the loss of an appreciable part radiates. If, however_, th_ey _overlapx(vl_) the interference
(=co£0) of the radiation strength if the total escape width leads to a strong redistribution of the dipole strength as well
of the GR noticeably exceeds the spreading width. The cor®S the escape width between the.t\_/vo states. When the degree
tribution of the broader collective state which is described by Overlapping exceeds some critical valu€2 the escape
the right long tail in Fig. 8d) (see next sectioris invisible in ~ Width of one of the states starts to decre@hmamical trap-
Eq. (5.3. It is well known that the spreading width in fact Ping effect. This effect is governed by the avoided crossing
strongly exceeds the total escape width of giant resonances & tWo resonances described in detail 5] In the limit of
moderate excitation energies. However, in very hot nuclefrong overlappingh>1, the nearly trapped state acquires
the opposite condition seems to be fulfilled. According to@" appreciable dlpole_ strength and_therefore would radiate, in
experimental datfl2,13 as well as theoretical arguments of the absence of any internal damping, a narrow electromag-
statistical natur14], the spreading width saturates with the N€tic line in the vicinity of the centroid of the broad bump

excitation energy whereas the escape width continues tWhich is observed only in the particle channels. The broad
grow. state, which also possesses noticeable dipole strengths, con-

tributes mostly to a long radiation tail stretched towards
larger energies.
The coupling(3.8) admixes the other doorway states and

The behavior of the dipole strengths, energies, and widthi¢ads to an additional restructuring of the total dipole
of the interfering resonance states is reflected in the crosgrength in favor of the low lying components.
section pattern as shown above analytically by using mainly
the two-level approximation. Below, we show the results of
numerical investigations performed under less restrictive as-
sumptions. The(purely illustrative calculations are per- On the basis of a phenomenological schematic model we
formed with the same 10 levels and 3 channels aflin investigated the interferences between the doorway compo-
Damping is not taken into account, i.e., the results are tru@ents of a giant multipole resonance. The overlapping of
only for {y), D?>>T'! (see the discussion in Sec).V different components influences significatly the resonance

In Figs. 1-3 we show the energy dependence of the trarspectrum and the cross section pattern since their interaction
sition strengths into particle and photochannels for the thregia the energy continuum creates, at a certain critical value
values of the overlap parameter= 0.1, 2, and 5. As in the of the external coupling, strong redistributions of the widths
figures in[1], the energ\E is measured in units of the total and dipole strengths of the doorway states. The resulting GR
energy displacemer?. Due to the strong interference, the pattern is formed mainly by two specific collective doorway
pattern is noticeably different in the different final channels.states. Both states possess comparable dipole strengths but
One sees nicely the shift of the maximum at the higher enacquire essentially different escape widths. While the
ergy towards lower energies which is predicted by the two-broader state determines the picture in the particle channels,
level approximation. Moreover, the fragmentation of thethe brightest feature in the photoemission would be, in the
maximum at the lower energy into a number of resonanceabsence of any internal damping, the relatively narrow radia-
can be seen which, of course, disappears in the limit of detion line from another nearly “trapped” doorway component
generate unperturbed leveds. At last, the growing restruc- which lies at somewhat lower energies.
turing of the dipole strength with increasing external cou- The internal damping due to the coupling of the doorway

VI. NUMERICAL RESULTS

VIl. SUMMARY



1056 V. V. SOKOLOV, I. ROTTER, D. V. SAVIN, AND M. MULLER 56

states to the background of complicated states smears out tagreement with the 100% sum rule strength as long as it is
effects of the interference as long as the spreading widthot too high. At higher energies, however, its saturation sig-
exceeds the total escape widths of the doorway componentsals the quenching of the multiplicity and the existence of a
In very hot nuclei it is possible, however, that the escapgimiting energy for they emission from the giant dipole
widths become larger than the spreading width,13 which  resonance. The different existing theoretical approaches can
is expected to saturate with increasing excitation energy. Ipnly partly explain the experimental situation obser{/&d|.

so, the interference picture is not completely spoiled. The The results obtained in the present paper point to a new
internal damping only widens the line radiated by the narrowyechanism which could possibly shed an additional light on
doorway state though it completely masks the tail from thene problem. To our mind, the saturation of thenultiplicity
broad one. Therefore, the visible bulk of the GRemission  gpserved experimentally at about 250 MeV excitation energy
originates from a specific state with dynamically reducedj, heavy nucle{16,17 may be, at least partly, explained by
particle escape width but large dipole mométfie trapped  the interference phenomena discussed in the present paper.

collective statpwhile the emission from the broader state is Fyrther investigations of this interesting question are neces-
suppressed being spread over a wide energy range. Thﬁry_

manifests itself as a seeming loss of a part of the dipole
strength of GR and as a shift of the GR to lower energy.
Both the shift down of a part of the dipole strength and
the loss of some part of the dipole strength itself are dis-
cussed at present in connection with experimental results ob- We are grateful to E. Kolomeizew and E. Persson for their
tained for the excitation of collective modes in hot nucleiinterest in this work. One of ugV.V.S. thanks V. G.
(see, e.g., the Proceedings of the Gull Lake Nuclear Physic&elevinsky for discussion of the results. The present investi-
Conference on Giant resonances, 19B8). The y-ray mul-  gations are supported by the Deutsche Forschungsgemein-
tiplicity from the decay of giant dipole resonances is shownschaft(Ro 922/1,8, by Grant No. 94-2058 from INTAS and
experimentally to increase with the excitation energy inby the Deutscher Akademischer Austauschdienst.
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