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Interaction between deformed nuclei at finite temperature

M. Rashdan
Department of Mathematics and Theoretical Physics, Atomic Energy Authority, Cairo, Egypt

~Received 15 December 1995; revised manuscript received 20 March 1997!

Within a complex free-energy density functional, derived from a realistic nucleon-nucleon interaction, the
dependence on temperature of the real and imaginary parts of the free interaction energy of the deformed
system U-U is investigated. It is found that the potentials strongly depend on orientations and temperature,
where at zero orientation angle (b50°) the potentials acquire repulsion, with increasing temperature, up to a
critical value (T;3 MeV), where shell effects become very small; beyond this value the potentials inverse this
behavior. For large values ofb the potentials become more and more attractive with increasing temperature. At
much higher excitation (T;5 MeV) the potentials become insensitive to orientations, due to the disappearance
of shell corrections. The dependence of the relative momentum per nucleon on the internuclear distance is also
investigated.@S0556-2813~97!05208-4#

PACS number~s!: 25.70.Jj, 21.10.Gv, 24.10.Pa, 25.70.Lm
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I. INTRODUCTION

The deformation degrees of freedom play an import
role in deep inelastic scattering as well as in fusion reacti
@1–6#. The deformation of fragments was phenomenolo
cally studied by different groups. For example, Siwe
Wilczynska and Wilcznski@1# showed that the distribution
of the final total kinetic energy versus the scattering an
depends strongly on the deformation degrees of freedom
deep inelastic collisions. They modified the potential in t
exit channel due to deformations.

Schmidt, Toreev, and Wolschin and Froebrich, Stra
and Durand@3# have investigated the reaction between d
formed nuclei through classical transport theory based on
solution of the Fokker-Planck equation. But, as indicated
Froebrich, Strack, and Durand@3#, many effects such a
quantal effects, deformations, and neck formations nee
be included in their models. Indeed, the interactions~nuclear
and Coulomb! that have been used in those calculations~e.g.,
in the determination of the friction forces and in the classi
transport equations! have to be modified to be depend o
orientations.

Muenchow and Scheid@4# have introduced a classica
model with frictional forces to investigate deep inelas
scattering of deformed nuclei. The model has been applie
the heavy system U-U. The effect of temperature on
quadrupole deformation of theU nucleus has been consid
ered. The interaction potential, which has been considere
those calculations, has been calculated~only at zero tempera
ture! in the framework of the double-folding model, where
simple phenomenological two-body effective interaction
Gaussian type has been used. Although the model gene
has reproduced the cross sections for deep inelastic sca
ing, a great difficulty to reproduce the large-energy los
observed in the double differential cross section has b
found. This has been interpreted@4# to be due to the neck
degree of freedom, which can be simulated with an inter
clear potential in the exit channel. The potential in the e
channel should depend on temperature. Thus these app
tions @3,4# indicate the need for an accurate determination
the interaction between deformed nuclei that depends on
560556-2813/97/56~2!/1019~6!/$10.00
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entations and temperature. This interaction can be use
both classical and quantum theories to describe the reac
of deformed nuclei.

The interaction potential between deformed nuclei h
been calculated by many authors@2,6,7#. For example, in a
previous work@6# we have calculated the optical potenti
between deformed nuclei, but at zero temperature, whe
has been found that the potential strongly depends on de
mations. We have also calculated the potential at finite te
perature but between spherical nuclei@8#. Thus it is impor-
tant to extend this later work@8# to the case of deformed
nuclei. The temperature is expected to affect the interac
strongly because in deep inelastic scattering the nuclei
heated up during the reaction and might greatly change t
initial configuration. Furthermore, the deformation of th
nucleus decreases with increasing temperature, due to
decreases in shell effects, which are also expected to a
the interactions between deformed nuclei strongly.

In this work we consider the collision between two238U
nuclei at finite temperature and we use the hot Breuck
G-matrix approach@8,9#. In this approach the kinetic- an
potential-energy densities and the entropy density of
combined system are calculated in the momentum space
figuration of two colliding nuclear entities separated by t
relative momentum per nucleonKr @9#. This approach for
calculating the heavy-ion interactions is important since i
derived from the solution of the many-body problem in t
framework of Brueckner theory, using a realistic nucleo
nucleon interaction, which is taken to be the Reid potent
Indeed, the collision dynamics~in each volume element in
space! is approximated as a collision between two nucle
entities described by two Fermi spheres in momentum sp
This is more appropriate for heavy-ion collisions than t
single-nuclear-entity picture used by many authors. Furth
more, it is a density- and energy-dependent approach
thus it can be used to describe any colliding system wh
the inputs are the incident energy and the density distribu
of the colliding nuclei.

The dependence ofKr on the real potentials and on th
excitation energy, at each separation distance between
colliding nuclei, is investigated in detail. This was not co
1019 © 1997 The American Physical Society
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1020 56M. RASHDAN
sidered in Refs.@8,9#. Section II presents the theoretical d
scription. The calculations are presented and discusse
Sec. III.

It is obvious that initially the two nuclei have temperatu
zero because they are in their ground state. During the c
sions they get excited and increase in temperature. The
namical process of the excitation goes beyond the opt
potential as in the case of the transfer reaction. Similarly,
would use in a deep inelastic scattering in the entrance c
nel the zero-temperature optical potential and in the e
channel a potential for a finite temperature as calculated h
The excitation mechanism is beyond the optical potentia
in the transfer mechanism.

It is also worth noting that theoretical information o
finite-temperature nuclei usually stems from a description
the nucleus either as a nuclear liquid in equilibrium with
vapor or as a heated finite metastable system in the vacu
For temperatures below about one-half of the Maxwell cr
cal temperature the thermostatic properties of nuclear
tems derived from these two descriptions, however, do
differ much @10–12#. Since we are mainly interested in th
work with low-energy nuclear collisions, where the tempe
ture in the exit channel is expected to be small, one can
the thermodynamic relations. This approximation is wide
adopted in the calculations of the interaction potential at
nite temperatures@5,10,13,9#.

II. THEORETICAL DESCRIPTION

As in Refs.@5,9,10,13#, the interaction potential~free in-
teraction energy! between two colliding nuclei separated b
a distanceR is defined at finite temperatureT by the differ-
ence between the free energy of the combined system ca
lated atR andT and that calculated at infinity andT, i.e.,

VF~Kr ;R;T!5F~Kr ;R;T!2F~Kr ;`;T!, ~1!

where Kr is the relative momentum per nucleon given
infinite separation by

Kr~R![Kr~`!5A2m

\2

Elab

AP
. ~2!

Here m is the nucleon mass andAP is the projectile mass
The free energy of the systemF is obtained from the com
plex energyE and the entropyS as

F~Kr ;R;T!5E~Kr ;R;T!2TS~Kr ;R;T!, ~3!

where the entropyS(Kr ;R;T) of the system is obtained from
the entropy densitys(rP ,rT ;R;Kr ;T) through

S~Kr ;R;T!5E d3k

~2p!3 s~rP ,rT ;R;Kr ;T!, ~4!

where

s52gE d3k

~2p!3 $n~k,T!ln@n~k,T!#

1@12n~k,T!# ln@12n~k,T!#%. ~5!
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Hereg is a spin-isospin degeneracy factor. For a system
two colliding nuclear matters in which one nuclear entity
density rP with average momentum per nucleonKr along
thez axis in momentum space is colliding on another nucl
matter of densityrT at rest, the following form is assume
for the occupation probabilityn @9#:

n~k,T!55
1

11expS \2k2

2mT
2hTD for kz<k0

1

11expS \2~k2K r !
2

2mT
2hPD for kz.k0,

~6!

wherek05@Kr
21(2mT/\2)(hP2hT)#/2Kr . Theh’s are de-

termined by the normalization condition for the densities.
the definition~6! of the occupation probability the bare ma
approximation is used. Obviously, in a more realistic situ
tion one should use the effective mass instead of the b
mass in order to account for the momentum dependenc
the single-particle~or the mean-field! potential in the nuclear
medium @14#. However, this is important for intermediate
and high-energy nuclear collisions, where the density is h
@14#. But for the case of direct nuclear reactions, the reg
of low-density overlap~the surface and tail regions of th
potential! is the more important region. Thus one can use
bare mass approximation since the bare mass does not d
much from the effective mass at low density. Several auth
used this approximation in their calculations of interacti
potential at finite temperature@8,9,13,15,16#.

The total energy of the systemE is obtained from the
complex energy density functionalH through the relation

E~Kr ;R;T!5E d3r H ~r ,R;Kr ;T!, ~7!

where

H~r ,R;Kr ;T!5t~rP ,rT ;Kr ;T!1P~rP ,rT ;Kr ;T!1Hcor.
~8!

The first term in Eq.~8! is the kinetic-energy density, which
is calculated, in momentum space, from@9#

t~rP ,rT ;Kr ;T!5
\2

2m FgE d3k

~2p!3 k2n~k,T!G . ~9!

The second term in Eq.~8! is the complex potential-
energy densityP(rP ,rT ;Kr), which is calculated, at zero
temperature, from theG matrix

P~rP ,rT ;Kr !5
1

2 (
spin

(
isospin

E
F

d3k

~2p!3

3E
F

d3k8

~2p!3 ^kk8uGukk8&. ~10!

The reaction matrixG is the solution of the Bethe-Goldston
equation
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56 1021INTERACTION BETWEEN DEFORMED NUCLEI AT . . .
G~W!5V1V
Q

W2H01 i e
G~W!, ~11!

whereW is the starting energy andQ is the Pauli projection
operator restricting the two nucleon intermediate states to
outside the Fermi sea.V denotes the bare nucleon-nucle
interaction taken to be the Reid soft-core potential. T
equation is solved in momentum space for two collidi
nuclear entities. The potential-energy density depends
temperature, indirectly, through its dependence on the
nuclear densities. This is again a reasonable approximatio
low temperature and it is widely used in most of the fini
temperature calculations@5,8,9,13,15,16#. The reason can be
understand as follows: Finite nuclei disintegrate at tempe
tures around 6 MeV@4,16#, which is smaller than the critica
temperature of nuclear matter~;15– 20 MeV@17#!, mainly
due to surface effects. Thus one expects~at these small tem
peratures! that the contributions from the volume potentia
energy part to the excitation energy is smaller than t
which comes from the other parts~kinetic, surface, etc.!.
This has been predicted also for the case of a single nuc
matter, where the increases in the kinetic energy per par
with increasing temperature is larger than the increases in
potential energy per particle, especially at low densities
temperatures@18#. Thus one can neglect the modification
the potential-energy density due to temperature and simu
its temperature dependence through its dependence on
hot nuclear densities, at least at low temperatures, like
considered here (<5 MeV).

It is worth noting that the free energy~which is the ad-
equate potential for isothermal process!, as defined through
Eqs.~1!–~11!, develops an imaginary part as a result of t
microscopic treatment of the collisions between nuc
through the solution of the Bethe-Goldstone equation, e
at zero temperature~as it has been done here! due to 2p-2h
real excitations. The hot imaginary part is particularly impo
tant to get a reliable quantum-mechanical description of d
inelastic scattering. It is also important to describe the te
perature dependence of the nucleon mean free path@19# and
other, preequilibrium and equilibrium, finite-temperature a
sorption process@20#.

The last term in Eq.~8! is a correction term due to surfac
and symmetry energies

Hcor5
\2

8m
x~¹r!21D~rn2rp!2rn, n52

1

3
, ~12!

wherex andD are two parameters determined by minim
ing the total binding energy of the238U nucleus with respec
to the parameters of the density distribution in order to
good agreement for the binding energy and rms radiu
zero temperature with the experimental values@16#.

III. NUMERICAL CALCULATIONS AND DISCUSSION

The density distributions of238U is described by the de
formed Fermi shape

rT,P5
r0

11exp$@r 2C~u!#/a%
, ~13!
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wherer0 is the central density determined by normalizatio
C(u) is given by

C~u!5C0@11b2Y20~u!#. ~14!

The parameterC0 is taken from electron scattering exper
ments@21# for the proton density distribution, while for th
neutron densityC0 is increased by 0.2 fm more than that
the proton density@16#.

The static deformation of the238U nucleus has its origin
in shell effects. At high intrinsic excitation energies the sh
effects vanish and the static deformation approaches
@4,9,16,22#. This effect is simulated by taken the deformatio
parameterb2 to be temperature dependent through the re
tion @4,16#

b2~T!5b2~0!e2T/T0, ~15!

whereb2(0)50.26 andT0 ~51.5 MeV @4#! is the tempera-
ture of the nucleus at which the shell effects start to van
This choice of the deformation parameterb2 and its depen-
dence on temperature is consistent with experiments at
temperature@21# and is also compatible with the excitatio
energies predicted by ourG-matrix calculations@16#. The
diffuseness parametera is determined by minimizing the to
tal ~nucleus plus Coulomb! free energy of the238U nucleus,
at each temperatureT, with respect toa @16#.

Figure 1 shows the real part of the free interaction ene
of the U-U system calculated againstR at orientation angle
b50°, relative momentum per nucleonKr51 fm21 and at
temperatureT50 ~solid curve!, 3 ~dashed curve!, and 5~dot-
ted curve! MeV. The orientation angleb is the angle be-
tween the principal axes~which are taken to be parallel! and
the line joining the two centers of masses of the nuclei. F
ure 2 is the same as Fig. 1, but for the imaginary part. T
total ~real nuclear plus Coulomb! potential is shown in Fig.
3. The Coulomb potential is calculated using the double fo
ing model of deformed nuclei@2#. The Coulomb potential
depends on temperature through the hot nuclear densitie

FIG. 1. Real part of the free interaction energy of the U
system calculated againstR at orientation angleb50°, relative
momentum per nucleonKr51 fm21, and T50 ~solid curve!, 3
~dashed curve!, and 5~dotted curve! MeV.
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1022 56M. RASHDAN
As shown in Figs. 1 and 2 atb50° by increasing the
temperature both the real and imaginary parts of the inte
tion potential are repulsed up to temperature around 3 M
where shell effects nearly vanish and then the potentials
attracted with increasing temperature. The interaction bar
increases with increasing temperature up toT;3 MeV; it
decreases with increasing temperature, as shown in Fig
This potential behavior atb50° changes with increasingb.
Figures 4 and 5 show the real and imaginary parts of
interaction potential calculated atb545° ~curves with
squares! in comparison with that calculated atb50° ~curves
without squares!. Similar results forb590° are shown in
Figs. 6 and 7. As shown in these figures, at zero tempera
by increasingb the potential is repulsed due to the reducti
in the overlap region. Increasing the temperature, the nu
tend to the spherical shapes, due to the disappearance of
effects, which decreases the deformations and thus red
the overlap atb50°, but increases the overlap with increa
ing b. Thus, increasing the temperature reduces the repul

FIG. 3. Same as Fig. 1, but for the total~real nuclear plus Cou-
lomb! potential.

FIG. 2. Same as Fig. 1, but for the imaginary part.
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occurring in the potentials with increasingb. At much higher
excitations shell effects vanish and the nuclei nearly take
spherical shapes and thus the potentials become insens
to orientations, as shown in Figs. 4–7, whereT55 MeV the
potentials calculated at different orientation angles are v
close together.

The effect of the change in the relative momentum p
nucleon at each separation due to the real potentials and
excitation energies is also investigated in this work. The c
culations shown in Figs. 1–7 are carried out for a fixed va
of Kr at all distances, whereKr(R)[Kr(`)51 fm21. This
value corresponds to the incident laboratory energy
nucleon,;20.7 MeV. However, during the collisionsKr(R)
should be changed due to the attractive real nuclear pote
Re(VF), the repulsive Coulomb potentialVC , and the excita-
tion energies. In order to consider these effects,Kr(R) is
calculated at each separation from

FIG. 5. Same as Fig. 4, but for the imaginary part.

FIG. 4. Real part of the free interaction energy calculated ab
545° ~curves with squares! in comparison with that calculated a
b50° ~curves without squares!.
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\2

2m
Kr

2~R!5
\2

2m
Kr

2~`!22
Re@VF„Kr~R!;R;T…#

AP

22
VC~R;T!

AP
24ã T2. ~16!

A similar relation for the case of zero temperature is found
Ref. @7#. The level density parameterã is taken to be
0.1 MeV21 @16#. Although the energy-level density param
eter depends, in principle, on the shell, pairing, and defor
tion effects as well as on the model used for the ene
density, the value used here is already deduced from
previousG-matrix calculation@16# for the 238U nucleus~see
Table 2 in Ref.@16#!. Moreover, this value of the energy
level density is, in general, consistent with other theoret
calculations and also with experiments@23–25#.

Equation~16! is solved by iteration since the nuclear p
tential depends onKr(R). Figures 8, 9, and 10 show the rea
imaginary, and total potentials, respectively, calculated ab
50°, and atT50, and 3 MeV for relative momentum pe
nucleon determined from Eq.~16! ~dashed curves! in com-

FIG. 6. Same as Fig. 4, but atb590°.

FIG. 7. Same as Fig. 5, but atb590°.
n

a-
y
ur

l

parison with that calculated with fixedKr(R)[Kr(`)
51 fm21 ~solid curves!. As shown in Figs. 8 and 9 the
nuclear potentials calculated with nonfixedKr @i.e., with
Kr(R) as determined from Eq.~16!# are less attractive in
comparison to that calculated with fixedKr ~i.e., with Kr
51 fm21!, especially in the surface region. At large sepa
tions the potentials calculated with nonfixed and with fix
Kr close together, as expected. The reason for the repul
that occurs in the potentials calculated with nonfixedKr(R)
~which increases when decreasing the internuclear dista
R! is mainly due to the increase in the repulsive Coulom
potential, which overcomes the increase in the attrac
nuclear potential and thus reduces the value ofKr . Obvi-
ously, the reduction inKr presents less attractive nucle
potentials.

In summary, we investigate the effect of temperature
the free interaction energy of the deformed U-U system. T

FIG. 8. Real part of the free interaction energy calculated ab
50° and atT50 and 3 MeV for the relative momentum pe
nucleon as calculated from Eq.~16! ~dashed curves! in comparison
with that calculated with fixedKr(R)5Kr(`)51 fm21 ~solid
curves!.

FIG. 9. Same as Fig. 8, but for the imaginary part.
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1024 56M. RASHDAN
free interaction energy is described in a realistic mann
where the entropy, kinetic-energy, and potential-energy d
sities of the composite system are calculated in the mom
tum space configuration of two colliding nuclear matters.
this procedure the free interaction energy depends on
bombarding energy. Furthermore, this approach yields

FIG. 10. Same as Fig. 8, but for the total potential.
W
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cl
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c
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imaginary part of the interaction, which is important for th
quantum-mechanical description of the inelastic proces
This is different from other calculations@5,10,13,15#, in
which the free interaction energy has been calculated wi
the single-nuclear-entity picture, which may not be approp
ate for heavy-ion collisions.

It is also important to note that shell effects, which ha
been simulated in this work through the deformation para
eters of the colliding nuclei, have been found to affect t
interactions between deformed nuclei strongly. This is
cause the interactions strongly affected by deformations
orientations that strongly depend on shell effects. The dep
dence of the interactions on shell effects decreases with
creasing temperature due to the decrease in the static d
mation of the colliding nucleus. For much higher excitati
(T.5 MeV) the nuclei become unstable and fragment in
many particles. Finally, it is worth mentioning that th
present interactions~real, imaginary, and total!, which
strongly depend on deformation, orientations, and temp
ture, are expected to be important in the investigations of
reactions between deformed nuclei.
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