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Interaction between deformed nuclei at finite temperature
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Within a complex free-energy density functional, derived from a realistic nucleon-nucleon interaction, the
dependence on temperature of the real and imaginary parts of the free interaction energy of the deformed
system U-U is investigated. It is found that the potentials strongly depend on orientations and temperature,
where at zero orientation angl@€ 0°) the potentials acquire repulsion, with increasing temperature, up to a
critical value (T~ 3 MeV), where shell effects become very small; beyond this value the potentials inverse this
behavior. For large values @fthe potentials become more and more attractive with increasing temperature. At
much higher excitationT~5 MeV) the potentials become insensitive to orientations, due to the disappearance
of shell corrections. The dependence of the relative momentum per nucleon on the internuclear distance is also
investigated[S0556-281®7)05208-4

PACS numbgs): 25.70.Jj, 21.10.Gv, 24.10.Pa, 25.70.Lm

[. INTRODUCTION entations and temperature. This interaction can be used in
both classical and quantum theories to describe the reactions
The deformation degrees of freedom play an importanbf deformed nuclei.
role in deep inelastic scattering as well as in fusion reactions The interaction potential between deformed nuclei has
[1-6]. The deformation of fragments was phenomenologi-been calculated by many authd6,7]. For example, in a
cally studied by different groups. For example, Siwek-previous work[6] we have calculated the optical potential
Wilczynska and Wilcznsk[1] showed that the distribution between deformed nuclei, but at zero temperature, where it
of the final total kinetic energy versus the scattering angléas been found that the potential strongly depends on defor-
depends strongly on the deformation degrees of freedom imations. We have also calculated the potential at finite tem-
deep inelastic collisions. They modified the potential in theperature but between spherical nudl@]. Thus it is impor-
exit channel due to deformations. tant to extend this later work8] to the case of deformed
Schmidt, Toreev, and Wolschin and Froebrich, Stracknuclei. The temperature is expected to affect the interaction
and Durand 3] have investigated the reaction between de-strongly because in deep inelastic scattering the nuclei are
formed nuclei through classical transport theory based on theeated up during the reaction and might greatly change their
solution of the Fokker-Planck equation. But, as indicated bynitial configuration. Furthermore, the deformation of the
Froebrich, Strack, and Duran@], many effects such as nucleus decreases with increasing temperature, due to the
guantal effects, deformations, and neck formations need tdecreases in shell effects, which are also expected to affect
be included in their models. Indeed, the interactitmsclear  the interactions between deformed nuclei strongly.
and Coulombthat have been used in those calculatiteg., In this work we consider the collision between tv&U
in the determination of the friction forces and in the classicalnuclei at finite temperature and we use the hot Breuckner
transport equationshave to be modified to be depend on G-matrix approact{8,9]. In this approach the kinetic- and
orientations. potential-energy densities and the entropy density of the
Muenchow and Scheid4] have introduced a classical combined system are calculated in the momentum space con-
model with frictional forces to investigate deep inelasticfiguration of two colliding nuclear entities separated by the
scattering of deformed nuclei. The model has been applied teelative momentum per nucledf, [9]. This approach for
the heavy system U-U. The effect of temperature on thecalculating the heavy-ion interactions is important since it is
qguadrupole deformation of the nucleus has been consid- derived from the solution of the many-body problem in the
ered. The interaction potential, which has been considered iftamework of Brueckner theory, using a realistic nucleon-
those calculations, has been calculdiguly at zero tempera- nucleon interaction, which is taken to be the Reid potential.
ture) in the framework of the double-folding model, where a Indeed, the collision dynamicén each volume element in
simple phenomenological two-body effective interaction ofspace is approximated as a collision between two nuclear
Gaussian type has been used. Although the model generalgntities described by two Fermi spheres in momentum space.
has reproduced the cross sections for deep inelastic scattérhis is more appropriate for heavy-ion collisions than the
ing, a great difficulty to reproduce the large-energy lossesingle-nuclear-entity picture used by many authors. Further-
observed in the double differential cross section has beemore, it is a density- and energy-dependent approach and
found. This has been interpretédl] to be due to the neck thus it can be used to describe any colliding system where
degree of freedom, which can be simulated with an internuthe inputs are the incident energy and the density distribution
clear potential in the exit channel. The potential in the exitof the colliding nuclei.
channel should depend on temperature. Thus these applica- The dependence df, on the real potentials and on the
tions[3,4] indicate the need for an accurate determination ofxcitation energy, at each separation distance between the
the interaction between deformed nuclei that depends on oreolliding nuclei, is investigated in detail. This was not con-
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sidered in Refs[8,9]. Section Il presents the theoretical de- Hereg is a spin-isospin degeneracy factor. For a system of
scription. The calculations are presented and discussed two colliding nuclear matters in which one nuclear entity of
Sec. Il density pp with average momentum per nucleén along

It is obvious that initially the two nuclei have temperature the z axis in momentum space is colliding on another nuclear
zero because they are in their ground state. During the collimatter of densityp; at rest, the following form is assumed
sions they get excited and increase in temperature. The dyer the occupation probabilitp [9]:
namical process of the excitation goes beyond the optical

potential as in the case of the transfer reaction. Similarly, one ( 1
would use in a deep inelastic scattering in the entrance chan- 42K2 for k,<kq
nel the zero-temperature optical potential and in the exit 1+exy{ mT 7]T)
channel a potential for a finite temperature as calculated here. n(k, T)={
The excitation mechanism is beyond the optical potential as 1
in the transfer mechanism. 72(k—K,)? for k,>ko,
It is also worth noting that theoretical information on 1+9XD(W— 77P)
finite-temperature nuclei usually stems from a description of . 6)

the nucleus either as a nuclear liquid in equilibrium with its

vapor or as a heated finite metastable system in the Vac‘!‘%%herekoz[KfﬂL (2mT/%2) (np— n7)]/12K, . The 7/'s are de-

For temperatures below about one-half of the Maxwell criti-termined by the normalization condition for the densities. In
cal temperature the thermostatic properties of nuclear sysne definition(6) of the occupation probability the bare mass
tems derived from these two descriptions, however, do No§pnroximation is used. Obviously, in a more realistic situa-
differ much[10-132. Since we are mainly interested in this {jon one should use the effective mass instead of the bare
WOI‘k.WIth Iow_—energy nu.clear collisions, where the tempera-mass in order to account for the momentum dependence of
ture in the exit channel is expected to be small, one can usge single-particléor the mean-fielpotential in the nuclear
the thermodynamic relations. This approximation is Wldelymedium[14]_ However, this is important for intermediate-
adopted in the calculations of the interaction potential at fi-5q high-energy nuclear collisions, where the density is high

nite temperaturef5,10,13,9. [14]. But for the case of direct nuclear reactions, the region
of low-density overlap(the surface and tail regions of the
Il. THEORETICAL DESCRIPTION potentia) is the more important region. Thus one can use the

bare mass approximation since the bare mass does not differ

As in Refs.[5,9,10,13, the interaction potentidfree in- 1,0 from the effective mass at low density. Several authors
teraction energybetween two colliding nuclei separated by \,seq this approximation in their calculations of interaction
a distanceR is defined at finite temperatuie by the differ- Botential at finite temperatuf@,9,13,15,16

ence between the free energy of the cqm_bined sys.tem calcl- The total energy of the syste is obtained from the
lated atR and T and that calculated at infinity ang, i.e., complex energy density functiontd through the relation

Ve(K R T) =F(K R T) = F (K, 503 T), D
E(Kr;R;T)=f dr H(r,RiK;T), (7
where K, is the relative momentum per nucleon given at
infinite separation by where
[2m Ejap H(r RK,;T)=7(pp,p1:K: ;T) + 11 (pp o1 K, s T) + Heor-
Kr(R)EKr(OO): ?A_laa (2) ( r ) (pP PT r ) (PP PT r ) cc()r8)

The first term in Eq(8) is the kinetic-energy density, which

Here m is the nucleon mass amil; is the projectile mass. . )
is calculated, in momentum space, fr¢#i

The free energy of the systemis obtained from the com-
plex energyE and the entropys as

(pppriKyiT) hz[ f Ik enk T)} ©
PT KR )= 5= — KN(K, .
F(K RT)=E(K, :RT)-TSK RT), (3 TiPePT 2m %) 2w

where the entrop$(K, ;R;T) of the system is obtained from  The second term in Eq(8) is the complex potential-
the entropy densitg(pp,p7;R;K, ;T) through energy densitI(pp,pt;K;), which is calculated, at zero
temperature, from th& matrix

d3k
K.:RT)=| ——=3s(pp.pr:RK,;T), 4 1 d3k
S( ) f (277_)3 (pP Pt ) ( ) H(pp,pT,Kr)ZEZ fF W

spin isospin

where d3k’

& fo 2m)? (kk'|G|kk"). (10

s= —gf (27)3 {n(k,T)In[n(k,T)]
The reaction matrixG is the solution of the Bethe-Goldstone

+[1—-n(k,T)]In[1—n(k,T)]}. (5) equation
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CWI=VHY Wh,Tie

G(W), (17

whereW is the starting energy an@ is the Pauli projection
operator restricting the two nucleon intermediate states to be
outside the Fermi sed/ denotes the bare nucleon-nucleon
interaction taken to be the Reid soft-core potential. This
equation is solved in momentum space for two colliding
nuclear entities. The potential-energy density depends on
temperature, indirectly, through its dependence on the hot ,;/’ T TNy
nuclear densities. This is again a reasonable approximation al TR T=5MeV
low temperature and it is widely used in most of the finite- 400~
temperature calculation$,8,9,13,15,16 The reason can be
understand as follows: Finite nuclei disintegrate at tempera-
tures around 6 MeV4,16], which is smaller than the critical -500 — : P :
. 10 12 14 16 18 20

temperature of nuclear mattér 15—20 MeV[17]), mainly Distance R (fm)
due to surface effects. Thus one expdatsthese small tem-
peraturey that the contributi_ons from th_e volume potential-  £5 1 Real part of the free interaction energy of the U-U
energy part to the excitation energy is smaller than thagygiem calculated againg at orientation anglgd=0°, relative
which comes from the other part&inetic, surface, etf.  momentum per nucleoi,=1fm™% and T=0 (solid curve, 3
This has been predicted also for the case of a single nucle@jashed curve and 5(dotted curvi MeV.
matter, where the increases in the kinetic energy per particle
with increasing temperature is larger than the increases in thghere,, is the central density determined by normalization.
potential energy per particle, especially at low densities angt(¢) is given by
temperature$§18]. Thus one can neglect the modification of
the potential-energy density due to temperature and simulate C(0)=Cqy[1+B,Y ¢ 0)]. (149
its temperature dependence through its dependence on the
hot nuclear densities, at least at low temperatures, like thathe parameteC, is taken from electron scattering experi-
considered here<5 MeV). ments[21] for the proton density distribution, while for the

It is worth noting that the free enerdgyhich is the ad- neutron densityCy is increased by 0.2 fm more than that of
equate potential for isothermal procgsas defined through the proton density16].
Egs.(1)—(11), develops an imaginary part as a result of the The static deformation of thé*®U nucleus has its origin
microscopic treatment of the collisions between nucleiin shell effects. At high intrinsic excitation energies the shell
through the solution of the Bethe-Goldstone equation, eveeffects vanish and the static deformation approaches zero
at zero temperatur@s it has been done h¢mue to 2-2h [4,9,16,22. This effect is simulated by taken the deformation
real excitations. The hot imaginary part is particularly impor-parameter, to be temperature dependent through the rela-
tant to get a reliable guantum-mechanical description of deefion [4,16]
inelastic scattering. It is also important to describe the tem-

g
]

Real part (MeV)
g
T

perature dependence of the nucleon mean free [i&hand Ba(T)=Bo(0)e™ T'To, (19
other, preequilibrium and equilibrium, finite-temperature ab- .
sorption procesg20]. where 8,(0)=0.26 andT, (=1.5 MeV [4]) is the tempera-
The last term in Eq(8) is a correction term due to surface ture of the nucleus at which the shell effects start to vanish.
and symmetry energies This choice of the deformation paramejgs and its depen-
dence on temperature is consistent with experiments at zero
2 1 temperaturd21] and is also compatible with the excitation

(12 energies predicted by ouB-matrix calculationg16]. The
diffuseness parameteris determined by minimizing the to-

h q q ined by minimi tal (nucleus plus Coulombree energy of the’*U nucleus,
where andD are two parameters determined by minimiz- ot cach temperatur®, with respect tea [16].

ing the total binding energy of th€U nucleus with respect Figure 1 shows the real part of the free interaction energy

to the parameters of the density distribution in order to gets \ha .U system calculated agairRtat orientation angle
good agreement for the binding energy and rms radius aﬁ:oo, relative momentum per nucledy=1fm * and at
zero temperature with the experimental val{§]. temperaturd =0 (solid curve, 3 (dashed curve and 5(dot-
ted curve MeV. The orientation angle is the angle be-
I1l. NUMERICAL CALCULATIONS AND DISCUSSION tween the principal axe@vhich are taken to be paraljednd
the line joining the two centers of masses of the nuclei. Fig-
ure 2 is the same as Fig. 1, but for the imaginary part. The
total (real nuclear plus Coulomtpotential is shown in Fig.
3. The Coulomb potential is calculated using the double fold-
_ Po (13 ing model of deformed nucldi2]. The Coulomb potential
PT.p 1+exp[r—C(0)]/a}’ depends on temperature through the hot nuclear densities.

Heorm g X(VP)Z"'D(Pn_Pp)ZPV! v=-

8m 3’

The density distributions of*% is described by the de-
formed Fermi shape
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FIG. 2. Same as Fig. 1, but for the imaginary part. FIG. 4. Real part of the free interaction energy calculateg at

=45° (curves with squargesn comparison with that calculated at

As shown in Figs. 1 and 2 g8=0° by increasing the B=0° (curves without squargs
temperature both the real and imaginary parts of the interac-
tion potential are repulsed up to temperature around 3 MeVgccurring in the potentials with increasiygy At much higher
where shell effects nearly vanish and then the potentials arexcitations shell effects vanish and the nuclei nearly take the
attracted with increasing temperature. The interaction barriespherical shapes and thus the potentials become insensitive
increases with increasing temperature upTte 3 MeV; it  to orientations, as shown in Figs. 4—7, whére 5 MeV the
decreases with increasing temperature, as shown in Fig. potentials calculated at different orientation angles are very
This potential behavior g8=0° changes with increasing close together.
Figures 4 and 5 show the real and imaginary parts of the The effect of the change in the relative momentum per
interaction potential calculated g8=45° (curves with  nucleon at each separation due to the real potentials and the
sqguaresin comparison with that calculated g=0° (curves  excitation energies is also investigated in this work. The cal-
without squares Similar results for3=90° are shown in culations shown in Figs. 1-7 are carried out for a fixed value
Figs. 6 and 7. As shown in these figures, at zero temperaturef K, at all distances, wherk, (R)=K,(*)=1fm™1. This
by increasingB the potential is repulsed due to the reductionvalue corresponds to the incident laboratory energy per
in the overlap region. Increasing the temperature, the nucleiucleon,~20.7 MeV. However, during the collisions, (R)
tend to the spherical shapes, due to the disappearance of shgtiould be changed due to the attractive real nuclear potential
effects, which decreases the deformations and thus reduc&e(Vg), the repulsive Coulomb potenti®l-, and the excita-
the overlap a3=0°, but increases the overlap with increas-tion energies. In order to consider these effeltg(R) is
ing B. Thus, increasing the temperature reduces the repulsiotalculated at each separation from

1000
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L/ . T=3MeV
-3 T = 5 MeV
-
m . H . 1 { i H
10 12 14 18 18 20
-40 N I " H " ! . 1 |
Distance R (fm) 10 12 14 18 18 20 22

Distance R (tm)
FIG. 3. Same as Fig. 1, but for the totatal nuclear plus Cou-

lomb) potential. FIG. 5. Same as Fig. 4, but for the imaginary part.
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FIG. 6. Same as Fig. 4, but @#t=90°. FIG. 8. Real part of the free interaction energy calculateg at
=0° and atT=0 and 3 MeV for the relative momentum per

42 52 R V(K. (R)R:T nucleon as calculated from E€L6) (dashed curvesn comparison

— KrZ(R)Z — Kf(oo)—z 4VeK(R) )] with that calculated with fixedK,(R)=K,(*)=1fm ! (solid

2m 2m Ap curves.

Ve(RT) _ '
_2—Ap —4a T~ (180 parison with that calculated with fixed,(R)=K, ()

=1fm* (solid curve$. As shown in Figs. 8 and 9 the

A similar relation for the case of zero temperature is found inhucléar potentials calculated with nonfix¢q [i.e., with
Ref. [7]. The level density parameté& is taken to be K,(R) as determined from Eq.16)] are less attractive in

0.1 MeV1 [16]. Although the energy-level density param- comparison to that calculated with fixd€, (i.e., with K,

—1 f-L oy :
eter depends, in principle, on the shell, pairing, and deforma= 1 fm *), especially in the surface region. At large separa-

tion effects as well as on the model used for the energ ions the potentials calculated with nonfixed and with fixed

density, the value used here is already deduced from oufr close tog_ether, as expected. The reason for the repulsion
previousG-matrix calculatior 16] for the 233U nucleus(see that_ occurs in the potentials calc_ulated Wlth nonﬁMR)
Table 2 in Ref.[16]). Moreover, this value of the energy- (which increases when decreasing the internuclear distance

level density is, in general, consistent with other theoretical?) iS mainly due to the increase in the repulsive Coulomb
calculations and also with experimefiz8—25. potential, which overcomes the increase in the attractive

Equation(16) is solved by iteration since the nuclear po- nuclear potential and thus reduces the valuelpf Obvi-

tential depends oK, (R). Figures 8, 9, and 10 show the real, ously, the reduction irK, presents less attractive nuclear

imaginary, and total potentials, respectively, calculateg at Potentials. _ ,
=0°, and atT=0, and 3 MeV for relative momentum per In summary, we investigate the effect of temperature on

nucleon determined from Eq16) (dashed curvésin com- the free interaction energy of the deformed U-U system. The

3 3
g 2 8=0
< 200 ) T=3MeV =0
F £/
o a / /
E E ¥ —— K= Ko} =1 tm"'
/ ---- K= Ki(R)
-30
.40 ) i : X ; X L ; ) .40 . ! . ! . ! L t " L . J
10 12 14 18 18 20 22 10 12 14 16 18 20 22
Distance R (fm) Distance R (fm)

FIG. 7. Same as Fig. 5, but @t=90°. FIG. 9. Same as Fig. 8, but for the imaginary part.



1024 M. RASHDAN 56

1100 imaginary part of the interaction, which is important for the
guantum-mechanical description of the inelastic processes.
8=¢ This is different from other calculationg5,10,13,1%, in
which the free interaction energy has been calculated within
Koo} =1 tm™ the single-nuclear-entity picture, which may not be appropri-
K(R) ate for heavy-ion collisions.

It is also important to note that shell effects, which have
been simulated in this work through the deformation param-
eters of the colliding nuclei, have been found to affect the
interactions between deformed nuclei strongly. This is be-
cause the interactions strongly affected by deformations and
orientations that strongly depend on shell effects. The depen-
dence of the interactions on shell effects decreases with in-
creasing temperature due to the decrease in the static defor-
mation of the colliding nucleus. For much higher excitation

?

-1
o
T
e

-
-

800

Total patential (MeV)

700

800 ‘ : ‘ - : :

10 12 14 18 18 20 (T>5 MeV) the nuclei become unstable and fragment into
Distance R (fm) many particles. Finally, it is worth mentioning that the
present interactiongreal, imaginary, and total which
FIG. 10. Same as Fig. 8, but for the total potential. strongly depend on deformation, orientations, and tempera-

ture, are expected to be important in the investigations of the

free interaction energy is described in a realistic manner'€actions between deformed nuclei.
where the entropy, kinetic-energy, and potential-energy den-
sities of the composite system are calculated in the momen- ACKNOWLEDGMENTS

tum space configuration of two colliding nuclear matters. In
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