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Microscopic origins of effective charges in the shell model
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We use a large-scalefi®) calculation for8Li with microscopically derived two-body interaction to con-
struct the @) Op shell effective Hamiltonian, electric quadrupole, and magnetic dipole operators. While the
E2 andM1 6#() operators are one-body operators with free nucleon charges, the effective operators are
two-body operators with substantially different renormalization for the isoscalar and isovector matrix elements,
especially for theE2 operator. We show that these operators can be very well approximated by one-body
operators provided that effective protamd neutron charges are used. The obtained effective charges are
compatible with those used in phenomenological shell-model studies. The two-body part of the effective
operators is estimatefiS0556-28187)50202-(

PACS numbgs): 21.60.Cs, 21.30.Fe, 27.26n

Considerable effort has been devoted to derive the effecspace size and compare the rate of convergence for the ef-
tive interaction used in the shell-model calculations from thefective Hamiltonian and the effective operators.
nucleon-nucleon interactigi—3]. On the other hand, much Recently, large-basis no-core shell-model calculations
less work has been done to understand the effective operatdnave been performdd,6]. In these calculations all nucleons
employed in calculating different nuclear, usually electro-are active, which simplifies the effective interaction, as no
magnetic, properties. In particular, a microscopic derivatiorhole states are present. In the approach taken, the effective
of effective operators has been only partially successful. It isnteraction is determined microscopically from the nucleon-
well known that effective proton and neutron charges mushucleon interaction for a system of two nucleons and subse-
be employed to describe tHe2 transitions and moments. quently used in the many-particle calculations. To take into
These charges are quite different from the free nucleomccount a part of the many-body effects, a multivalued effec-
charges, typically the values ef;~1.5%¢ andel;~0.5¢ are tive interaction approach was introdudgd, which uses dif-
obtained for both light and heavy nuclei. Attempts to deriveferent sets of the effective interaction for differéif) exci-
these charges microscopically, usually by perturbdi8jnor  tations. In the latest application of the no-core approach, we
by an “expanded shell-model” approa¢h], yielded much derived starting-energy-independent Hermitian two-body ef-
smaller values. It should be noted that these effective chargdsctive interactions from the Reid 93 nucleon-nucleon poten-
correspond to a severely truncated single-major-shell, otial [7] and applied them in the multivalued approach to
0%, space. The question arises as to what causes th=3-6 nuclei[8]. In this study we use the results of this
nucleon properties to change so significantly, is it mostly thecalculation for®Li presented in the third column of Table IV
result of the space truncation or the fact that nucleons aref Ref.[8]. The many-particle calculation was done using the
bound? Also the non-nucleonic degrees of freedom may plagnany-fermion-dynamics shell-model cod®] in the m
an important role. Other interesting questions are: how imscheme with dimensions approaching 20°. As in the pre-
portant are the higher than one-body parts of the effectiverious large-scale no-core shell-model calculati¢bs], a
operators and what is thjedependence of effective charges? reasonable description of the electromagnetic properties has

In this contribution we investigate how severe space trunbeen achieved using free nucleon charges. Our aim here is to
cation affects the electromagnetic operators. We use a largstudy the renormalization of these operators, when the model
space &) shell-model calculation fofLi, with a micro-  space is severely truncated.
scopically derived two-body interaction, to construct an For the 0:Q) dominated states dfLi shown in Table IV
effective Hamiltonian and effective electromagnetic opera-of Ref.[8], it is possible to formulate an equivalent descrip-
tors, which will exactly reproduce the#&) results in the tion purely in the ® shell. We may divide the basis states of
Op shell for the ()%(0p)? dominated states. This enables the 6 () calculation into two subspaces, using the projectors
us to compare the resulting effective operators with the bar® and Q, P+Q=1. Here theP space is spanned by the
one-body (-shell operators and to extract the relevant ef-states|(0s)*(0p)2). There are 10 such states in thg=0
fective charges, which allow us to determine the amount ofn scheme calculation and 8 in thé ;=1 calculation, re-
renormalization, to study their dependence, and, eventu- spectively. TheQ space is then formed by the rest of the
ally, to quantify the two-body content of the effective opera-almost 200 000 states. The effecti®espace Hamiltonian
tors. Also we perform the same derivation from the corre-may be constructed by employing the Lee-Suzuki starting-
sponding 4 calculation to study the dependence on theenergy independent similarity transformation metHag],

which gives the effective Hamiltonian PHg«P
=PHP+PHQwP, with the transformation operates sat-
*On leave of absence from the Institute of Nuclear Physics, Acadisfying w=QwP. In the case when the full space eigenvec-
emy of Sciences of the Czech Republic, 250 6 Rear Prague, tors are known, like in our situation, this operator may be
Czech Republic. obtained directly. Let us denote the space states d&p),
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and those which belong to th@ space, a$aQ>_ Then theQ TABLE I. The Op-shell effective Hamiltonian matrix elements,
space components of the eigenvedtoy of the full-space in MeV, obtained from &), second column, and fronv4), third
Hamiltonian can be expressed as a combination of th&olumn, calculation for8Li. The calculated binding energy of

8% () spacd 8], was added to the diagonal matrix elements in order

to make a meaningful comparison with the Cohen-Kurath phenom-

<01Q|k>= 2 <aQ|w|aP><aP|k>- ) enological matrix elemen{sl4], presented in the fourth column.
ap

If the dimension of the model spaceds, we may choose a (2J1212 9TIH[2j32]4.JT) Eff Eff-4  CK6-16

setK of dp eigenevectorsk), for which the relatior(1) will (11,01H|11,01 6.772 7.165 4.88
be satisfied. In our case we choose those states, which hayg 01H|33,01 2756 —-3.201 —5.32
the dominant @) component. Under the condition that the (33 ojH|33,03) 0493 —0.970 0.52

de dp matrix(ap|k> for |k> € K is invertible, which is sat- <11,1QH|11,10 3.999 4.202 0.28
isfied in the present application, the operatocan be deter- (11,10H|13,10 —0776 —0.988 ~1.39
mined from Eq.1). Consequently, the effective Hamiltonian (13,10H|13,10 _0.788 —1.333 264

can be constructed as follows (11,10H|33,10 2086 > 464 1.09
(13,10H|33,10 -4.107 —4.708 —4.02

(velHerlap)= 2, [<vplk>Ek<klaP>+E (velK)Ex(Klag)  (33,10H|33,10 0815 —0.707 0.12

kek *Q (13,11H]13,11 5.780 5.308 4.76
(13,20H|13,20 0199 -1.366  —0.32

X({aglow|ap)|. (20 (13,21H|13,21) 4303 3514 2.76

(13,21H|33,21) 1.377 1.613 2.21

It should be noted tha|k)==, | ap){ap|k) for [kye L is ~ (33.21H[33,2) 2694 1162 2.61

a right eigenvector of Eq2) with the eigenvalueE, . The (33,30H]33,30 ~l84z —3a71 —342

Hamiltonian(2) is, in general, non-Hermitian, or more accu-

rately quasi-Hermitian. It can be Hermitized by a similarity fonian obtained in the same way from 4@ calculation.

transformation, which is determined from the metric operator, ; . -
P(1+'w)P. The Hermitian Hamiltonian is then given by Note that the dimension of thei4) calculation is more than

[11] an order of magnitude smaller than that of tHe(E calcula-
tion. The effective interaction used in this calculation was
Ho=P(1+ o &) PTY?H. T P(1+ oTw)PT Y2 (3 obtained from the EJQ_muItlvaIued interaction by Ieaw_ng
et =[P(1+ 0 )P Hed P(1+ 0 w)P] ® out the set corresponding to thé 8 space. Let us mention
that the change in the low-lying eigenenergies in the two
é:lalculations is not substantial and the ordering of levels is

identical. We observe that our calculated matrix elements

O so that it exactly reproduces the full space results for thgirer jn some cases from the phenomenological ones. Let us
P-space eigenstates. A double-similarity transformatiill 1 int out, however, that our matrix elements provide a better

leads to theP-space operator associated with the Hamil-qoqcrintion ofLi states than those of Cohen-Kurath. This

tonian (2) in the form Ocr=[P(1+w'®)P] (P can be understood as the latter matrix elements were fitted to

+Pw'Q)O(P+QwP). The operator associated with the a large number of nuclei across the entige €hell.

Hermitian P-space Hamiltonian(3) is then obtained as Our primary aim is to derive @-shell effective electro-

[12,13 magnetic operators. In the full-space calculation, we em-
ployed the one-bod¥2 andM 1 operators

Similarly, a corresponding effective operags can be
constructed for any full space, e.g., electromagnetic, operat

Ou=[P(1+0'w)P] Y4 P+ Pw'Q)O(P+QuwP)

A
X[P(1+w'w)P] 12 @ TEI=ePY, (3 +t,)r2v2(@)
=1
Using the Eqgs(1)—(3), we constructed the effective Hamil- A
tonian, whose matrix elements, after performing the transfor- n 1 e 2v(2)
mation fromm scheme taJ T basis, are presented in Table I. te ,21 (2= L)Y =(0), (53

In the same table the well-known Cohen-Kurath matrix ele-

ments[14] are shown. These were obtained by a least-square A

fit to experimental binding energies, relative tole, and T(M1)=\/%MNE [(3+t,)(aPli+gPs)

excitation energies oA=6-16 nuclei. To make a meaning- i=1

ful comparison, the calculated binding energy bFe, . n N

27.408 MeV, obtained by using the same no-core approach (2 ) (9li+9s8) ], (5b)

in the &) space[8], was added to the diagonal matrix

elements of our Hamiltonian. Note that by diagonalizing thewith the free nucleon charge$=e, e"=0 and free nucleon
Hamiltonian in Table I, we get the same excitation energieg factorsgf=1, g'=0, gf=5.586, andg;=—3.826. The
as those from the /() calculation given in the third column P-space operators are constructed by the application of Eq.
of Table IV of Ref.[8]. We also present the effective Hamil- (4). We calculate thé®-spaceT(F?) operator and separately
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TABLE II. Selected reduced matrix elements of the prok TABLE llIl. Effective charges of the proton quadrupole, mag-
in #/mQ, and M1, in puy, oOperators. Here, ((‘)); netic orbital, and magnetic spin operators, derived by least-square
(2] 12]2,J1T1|©|2j32j4,J3T3). In the second column the fitstothe correspohdingp}shell_ effective opergtors obtained from
Op-shell effective operator matrix elements, obtained from thell® (1 calculation for °Li. Both the j-dependent and
64 calculation forSLi, are presented. The third column shows the 1-independent  effective  charges are  shown. Also, the
corresponding proton one-bodgh) operator matrix elements. The j-lndependen_t effective charges (_)btalned in the same way from the
fourth and fifth columns display the matrix elements of the one-47{} calculation are presented in the last two columns. For the
body operators withj-dependent andj-independent effective definition of the effective charges see E@).
charges, respectively. These operators are combinations of one- . 0 . 0 .
body protonand neutron operators. €239 €u23iy €23y €23y €urzir €z

E2 1.606 0.417 1.417 0.307

(0) Eff ob obeffj obefl 548 0060 0933 0084 0880  0.090
<11,1QE2|13,2Q 5.916 2.739 5.539 5.179 Ms 0.914 —0.006 0.963 0.003 0.925 —-0.043
(11,10E2|13,22) -3.101 -2.739 -—-3.256 —3.184 P en P Qn
(13,20E2|13,21) 2137 2002 2321 2432 al al o e
(13,21E2|13,2%) —3.612 -2.092 —3.605 —3.956 E2 1527 0.364  1.302 0.244
(13,14E2|33,21) —2.481 -1.937 -—2303 -—2.251 Ml 0.907 0.085  0.931 0.063
(13,14E2|33,30 —6.295 -3.240 -6.554 —6.128 Ms  0.937 0.001  0.953 -0.003
(33,01E2|33,21) —3.942 —2.236 —3.854 —4.229
(33,21E2|33,30 4122 3.742 4.152 4.350 . . . . .
(11,10E2|11,10 0.501 0.0 0.0 0.0 eigenvectors of jthe effective Hamlltoman obtained frqm Eq.
(11,10E2|33,30 0.649 00 0.0 0.0 (3), whose matrix elements are shown in Table I,. give the
' i same mean values and transition rates as the original one-
(11,01MI[11,10 —-0.902 -—1.155 —-0.912 -0.949 body operatorg(6), when used with the Q) dominated
(11,10M1]11,10 1.560 1.633 1.585 1.621 eigenvectors of the () calculation. Also note that the ef-
(13,11M1|33,10 —0.439 —-0646 -0509 —0.531 fective operators are two-body operators unlike the full-
(13,21M1|33,21) —-0.603 —0.646 —0.586 —0.641  Space original operators. .
(33,01M1/33,10 ~1.098 —-1.291 -1.096 —1.061 Let us first discuss thE2 .operator. In the third column of
(33,30M1]33,30 3122 3.055 3.106 3.032 Table Il the reduced matrix elements of the operat@is
(11,01M1/33,10 ~0.100 0.0 0.0 0.0 evaluated in theP space, are shown for.companson. We
observe, that there is a striking difference in the renormaliza-
(11,01Ms[11,10 0.289 0.289 0.280 0.270  tion of the isoscalar and isovector matrix elements of
(11,19Ms|11,10 —-0.336 —0.408 -0.360 —0.383 (E2)esr. The former are much larger in magnitude than the
(11,19Ms|13,20 0.804 0.913 0.829 0.856 latter in comparison with the unrenormalized values of the
(11,14Ms|13,2D -0.819 -0.913 -0.839 -0.855 operator(6a). Apparently, there is no chance to approximate
(33,01Ms|33,10 —0.618 —0.646 —0.620 —0.604 the effective operator a6a) multiplied by some effective
(33,30Ms]33,30 1.460 1.528 1.476 1.433 charge. Instead, it is possible to mimic the mentioned
(11,01Ms|33,10 0.041 0.0 0.0 0.0 isoscalar-isovector effect by approximating the effective op-

erator as a combination of one-body protmd neutron op-
erators with different effective charges, e.g.,

the orbital and spin parts of thd 1 operator. The calculation

is performed in then scheme and subsequently transformed A

to the J,T basis. To get all the reduced matrix elements, (E2) e~ €2\/16m/5 Y, (3+1,)r2Y?(@))
full-space calculations witiM ;=0 and M;=1 must be =t

done. In Table Il we present selected matrix elements of A
pieces of Eq(5), namely the operators +el167/5 >, (2 —t,)r2y@(@,), (7
=
A
E2= \/1677/52l (3+t,)r2y?(e,), (6a  where only valence nucleons contribute in the sums. A better
“

approximation may be obtained when the effective charges
becomej dependent, e.g;;e.;(i|0|j)aa; in the second-

i
M >

MI (3+tl, (6b) quantization form. We calculated the effective charges from
=1 the reduced matrix elements of the appropriate operators by a
A least-square fit. The resultifjgdependent, as well gsinde-
_ 1 pendent, effective charges are presented in Table Ill, and the
Ms= 4 G+ . (60 corresponding reduced matrix elements are shown in the

I fourth and fifth columns of Table II. First, we observe that

These matrix elements are reducedliand forT,=0. The this kind of approximation works very well. Moreover, the
second column shows the matrix elements of the effectivgpure two-body matrix elements, which cannot be reproduced
operators, as obtained from E@) and the procedure out- by an approximation of the typ€), are almost a factor of
lined above. Note that these operators, when used with thien smaller than the largest one-body matrix elements. Sec-
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ond, the calculated effective chargeel;=1.52%, states andj. In this way we estimate the part of the effec-

el.—0.364 are close to the phenomenological ones menlive operators, which cannot be expressed as a combination
e ' : ;

tioned in the Introduction. Third, th¢ dependence of the ©Of ONe-body operators. When using one-body operators with
effective charges is rather mode’rate j-dependent charges, we obtain a two-body contribution of

: o 10.1% forE2, 3.8% forMI, and 3.2% forM s, respectively.
From the phenomenological studies it is well known thatFor the one-body operator with-independent effective

the magnetic_: dipole trans?tio_ns and moments can be in mo%tharges the two-body contributions are 12.3%E@, 5.3%
cases described, at least in light nuclei, by using the operatq[ M1, and 4.4% foMs, respectively. Clearly, the magnetic

(5b) with small modification of they factors. Also the effec- 416 'operators are better approximated by combinations of
tive orbital and spin operators obtained in our study aréyne-body operators.

much less renormalized, when compared to the starting one- |5 conclusion, we have shown that model-space trunca-
body operators, than the electric quadrupole operator. It igon js sufficient to generate operator renormalization, which
reflected in the second and third parts of Table Il. Thejs characterized by effective charges compatible with those
isoscalar-isovector effect is much smaller, and, in the case Qfsed in the phenomenological applications. We have found
the spin operator it is almost nonexistent. Unlike the case ofhat the isoscalar and isovector parts of the operators are
the quadrupole operator, the effective dipole operator matri¥enormalized differently, particularly, in the case of the elec-
elements are, on average, smaller in comparison with ongric quadrupole operator. This difference in renormalization
body ones. A perhaps surprising result is, however, the olys the source of a nonzero neutron effective charge. These
servation that the orbital part is more renormalized than th@indings are based on a no-cork® calculation foréLi with
spin part and, moreover, a neutron orbital part is generateg myltivalued starting-energy-independent two-body interac-
with an effectiveg factorgjq=0.085. The protoly factoris  tion derived microscopically from the Reid 93 nucleon-
about 10% quenchegf,=0.907. The spin part is quenched nucleon potential, from which the#d Op-shell effective
by about 6%, e.9.9%=0.93%5+0.001g; and from the Hamiltonian, electric quadrupole, and magnetic dipole op-
isospin symmetngg.;=0.9310+0.001g°. As in the quad- erators were constructed. The obtained effective operators
rupole operator case, tHedependence is also moderate for are two-body operators. We have shown, however, that they
the magnetic dipole operator effective charges, but the purghay be well approximated by one-body operators. Their
two-body matrix elements are relatively smaller. two-body content is about 10% fé2 and about 4% fok 1

Thej-independent effective charges extracted in the sameperators, respectively. We also studied the dependence of
way from the 4:Q calculation are also presented in Tablethe renormalization on the size of the full space. We ob-
lll. We observe that the renormalization is smaller in thisserved a non-negligible difference between the effedii2e
case. This reflects the fact that, for example, B®transi- charges extracted from thé6) calculation in comparison to
tion rates obtained in the#4) calculation are weaker than those obtained from thef4) calculation. On the other hand,
those calculated in the#@) space. Our observation here is the changes in the effective Hamiltonians obtained in the two
that the effective Hamiltonian converges more rapidly tharcalculations are less pronounced.
the E2 operator with respect to the full-space size change.

To quantify the two-body content of the effective ACKNOWLEDGMENTS

Op-shell electromagnetic operators, we evaluate the quantity Thjs work was supported by the NSF Grant No. PHY93-
R= V22 (Oettij — Oob-efri}) 7 Zi=j(Oerrij) %, Where theO;;  21668. P.N. also acknowledges partial support from the
denotes the matrix elements between tipesbell two-body  Czech Republic Grant No. GA ASCR A1048504.

[1] C. Bloch and J. Horowitz, Nucl. Phys, 91 (1958; B. H. [8] P. Navrdil and B. R. Barrett, Phys. Rev. 64, 2986 (1996

Brandow, Rev. Mod. Phys39, 771(1967). LANL e-print archive nucl-th/9609046.
[2] M. Hjorth-Jensen, T. T. S. Kuo, and E. Osnes, Phys. R6f, [9]J. P. Vary and D. C. Zheng, “The Many-Fermion-Dynamics
125(1999, and references therein. Shell-Model Code,” lowa State University, 199dinpub-
[3] P. J. Ellis and E. Osnes, Rev. Mod. Ph48, 777 (1977, and lished.
references therein. [10] K. Suzuki and S. Y. Lee, Prog. Theor. Phgd, 2091 (1980.
[4] N. Loludice, D. J. Rowe, and S. S. M. Wong, Phys. LB#B,  [11] K. Suzuki, Prog. Theor. Phy§8, 246 (1982; K. Suzuki and
44 (1971); Nucl. Phys.A219, 171(1974; P. Federman and S. R. Okamoto, Prog. Theor. Phy&0, 439 (1983.
Pittel, Phys. Lett77B, 128(1978. [12] P. Navfdil, H. B. Geyer, and T. T. S. Kuo, Phys. Lett. &5,
[5] D. C. Zheng, J. P. Vary, and B. R. Barrett, Phys. Re\6(Z 1(1993.
2841(1994.

[13] T. T. S. Kuo, P. J. Ellis, Jifa Hao, Zibang Li, K. Suzuki, R.
Okamoto, and H. Kumagai, Nucl. Phy&560, 621(1993; K.
Suzuki and R. Okamoto, Prog. Theor. Ph98, 905 (1995.

[14] S. Cohen and D. Kurath, Nucl. Phy&3, 1 (19695.

[6] D. C. Zheng, B. R. Barrett, J. P. Vary, W. C. Haxton, and C. L.
Song, Phys. Rev. G2, 2488(1995.

[7] V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen, and J. J.
de Swart, Phys. Rev. @9, 2950(1994).



