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Microscopic origins of effective charges in the shell model

Petr Navra´til,* Michael Thoresen, and Bruce R. Barrett
Department of Physics, University of Arizona, Tucson, Arizona 85721
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We use a large-scale 6\V calculation for 6Li with microscopically derived two-body interaction to con-
struct the 0\V 0p shell effective Hamiltonian, electric quadrupole, and magnetic dipole operators. While the
E2 andM1 6\V operators are one-body operators with free nucleon charges, the effective operators are
two-body operators with substantially different renormalization for the isoscalar and isovector matrix elements,
especially for theE2 operator. We show that these operators can be very well approximated by one-body
operators provided that effective protonand neutron charges are used. The obtained effective charges are
compatible with those used in phenomenological shell-model studies. The two-body part of the effective
operators is estimated.@S0556-2813~97!50202-0#

PACS number~s!: 21.60.Cs, 21.30.Fe, 27.20.1n
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Considerable effort has been devoted to derive the ef
tive interaction used in the shell-model calculations from
nucleon-nucleon interaction@1–3#. On the other hand, muc
less work has been done to understand the effective oper
employed in calculating different nuclear, usually elect
magnetic, properties. In particular, a microscopic derivat
of effective operators has been only partially successful.
well known that effective proton and neutron charges m
be employed to describe theE2 transitions and moments
These charges are quite different from the free nucl
charges, typically the values ofeeff

p '1.5e andeeff
n '0.5e are

obtained for both light and heavy nuclei. Attempts to der
these charges microscopically, usually by perturbation@3#, or
by an ‘‘expanded shell-model’’ approach@4#, yielded much
smaller values. It should be noted that these effective cha
correspond to a severely truncated single-major-shell,
0\V, space. The question arises as to what causes
nucleon properties to change so significantly, is it mostly
result of the space truncation or the fact that nucleons
bound? Also the non-nucleonic degrees of freedom may p
an important role. Other interesting questions are: how
portant are the higher than one-body parts of the effec
operators and what is thej dependence of effective charge

In this contribution we investigate how severe space tr
cation affects the electromagnetic operators. We use a la
space 6\V shell-model calculation for6Li, with a micro-
scopically derived two-body interaction, to construct
effective Hamiltonian and effective electromagnetic ope
tors, which will exactly reproduce the 6\V results in the
0p shell for the (0s)4(0p)2 dominated states. This enable
us to compare the resulting effective operators with the b
one-body 0p-shell operators and to extract the relevant
fective charges, which allow us to determine the amoun
renormalization, to study theirj dependence, and, event
ally, to quantify the two-body content of the effective oper
tors. Also we perform the same derivation from the cor
sponding 4\V calculation to study the dependence on t

*On leave of absence from the Institute of Nuclear Physics, Ac
emy of Sciences of the Czech Republic, 250 68 Rˇ ež near Prague,
Czech Republic.
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space size and compare the rate of convergence for the
fective Hamiltonian and the effective operators.

Recently, large-basis no-core shell-model calculatio
have been performed@5,6#. In these calculations all nucleon
are active, which simplifies the effective interaction, as
hole states are present. In the approach taken, the effe
interaction is determined microscopically from the nucleo
nucleon interaction for a system of two nucleons and sub
quently used in the many-particle calculations. To take i
account a part of the many-body effects, a multivalued eff
tive interaction approach was introduced@6#, which uses dif-
ferent sets of the effective interaction for different\V exci-
tations. In the latest application of the no-core approach,
derived starting-energy-independent Hermitian two-body
fective interactions from the Reid 93 nucleon-nucleon pot
tial @7# and applied them in the multivalued approach
A53–6 nuclei@8#. In this study we use the results of th
calculation for6Li presented in the third column of Table IV
of Ref. @8#. The many-particle calculation was done using t
many-fermion-dynamics shell-model code@9# in the m
scheme with dimensions approaching 23105. As in the pre-
vious large-scale no-core shell-model calculations@5,6#, a
reasonable description of the electromagnetic properties
been achieved using free nucleon charges. Our aim here
study the renormalization of these operators, when the mo
space is severely truncated.

For the 0\V dominated states of6Li shown in Table IV
of Ref. @8#, it is possible to formulate an equivalent descri
tion purely in the 0p shell. We may divide the basis states
the 6\V calculation into two subspaces, using the project
P andQ, P1Q51. Here theP space is spanned by th
statesu(0s)4(0p)2&. There are 10 such states in theMJ50
m scheme calculation and 8 in theMJ51 calculation, re-
spectively. TheQ space is then formed by the rest of th
almost 200 000 states. The effectiveP-space Hamiltonian
may be constructed by employing the Lee-Suzuki starti
energy independent similarity transformation method@10#,
which gives the effective Hamiltonian PHeffP
5PHP1PHQvP, with the transformation operatorv sat-
isfying v5QvP. In the case when the full space eigenve
tors are known, like in our situation, this operator may
obtained directly. Let us denote theP space states asuaP&,

-
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and those which belong to theQ space, asuaQ&. Then theQ
space components of the eigenvectoruk& of the full-space
Hamiltonian can be expressed as a combination of
P-space components with the help of the operatorv

^aQuk&5(
aP

^aQuvuaP&^aPuk&. ~1!

If the dimension of the model space isdP , we may choose a
setK of dP eigenevectorsuk&, for which the relation~1! will
be satisfied. In our case we choose those states, which
the dominant 0\V component. Under the condition that th
dP3dP matrix ^aPuk& for uk&PK is invertible, which is sat-
isfied in the present application, the operatorv can be deter-
mined from Eq.~1!. Consequently, the effective Hamiltonia
can be constructed as follows

^gPuHeffuaP&5 (
kPK

F ^gPuk&Ek^kuaP&1(
aQ

^gPuk&Ek^kuaQ&

3^aQuvuaP&G . ~2!

It should be noted thatPuk&5(aP
uaP&^aPuk& for uk&PK is

a right eigenvector of Eq.~2! with the eigenvalueEk . The
Hamiltonian~2! is, in general, non-Hermitian, or more acc
rately quasi-Hermitian. It can be Hermitized by a similar
transformation, which is determined from the metric opera
P(11v†v)P. The Hermitian Hamiltonian is then given b
@11#

H̄eff5@P~11v†v!P#1/2Heff@P~11v†v!P#21/2. ~3!

Similarly, a corresponding effective operatorÔeff can be
constructed for any full space, e.g., electromagnetic, oper
Ô so that it exactly reproduces the full space results for
P-space eigenstates. A double-similarity transformation@12#
leads to theP-space operator associated with the Ham
tonian ~2! in the form Ôeff5@P(11v†v)P#21(P
1Pv†Q)Ô(P1QvP). The operator associated with th
Hermitian P-space Hamiltonian~3! is then obtained as
@12,13#

Ōeff5@P~11v†v!P#21/2~P1Pv†Q!Ô~P1QvP!

3@P~11v†v!P#21/2. ~4!

Using the Eqs.~1!–~3!, we constructed the effective Hami
tonian, whose matrix elements, after performing the trans
mation fromm scheme toJT basis, are presented in Table
In the same table the well-known Cohen-Kurath matrix e
ments@14# are shown. These were obtained by a least-squ
fit to experimental binding energies, relative to4He, and
excitation energies ofA56–16 nuclei. To make a meaning
ful comparison, the calculated binding energy of4He,
27.408 MeV, obtained by using the same no-core appro
in the 8\V space@8#, was added to the diagonal matr
elements of our Hamiltonian. Note that by diagonalizing t
Hamiltonian in Table I, we get the same excitation energ
as those from the 6\V calculation given in the third column
of Table IV of Ref.@8#. We also present the effective Hami
e
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tonian obtained in the same way from a 4\V calculation.
Note that the dimension of the 4\V calculation is more than
an order of magnitude smaller than that of the 6\V calcula-
tion. The effective interaction used in this calculation w
obtained from the 6\V multivalued interaction by leaving
out the set corresponding to the 6\V space. Let us mention
that the change in the low-lying eigenenergies in the t
calculations is not substantial and the ordering of levels
identical. We observe that our calculated matrix eleme
differ in some cases from the phenomenological ones. Le
point out, however, that our matrix elements provide a be
description of 6Li states than those of Cohen-Kurath. Th
can be understood as the latter matrix elements were fitte
a large number of nuclei across the entire 0p shell.

Our primary aim is to derive 0p-shell effective electro-
magnetic operators. In the full-space calculation, we e
ployed the one-bodyE2 andM1 operators

T~E2!5ep(
i51

A

~ 1
2 1tzi!r i

2Y~2!~Q i !

1en(
i51

A

~ 1
22tzi!r i

2Y~2!~Q i !, ~5a!

T~M1!5A3/4pmN(
i51

A

@~ 1
21tzi!~gl

pl i1gs
psi !

1~ 1
22tzi!~gl

nl i1gs
nsi !#, ~5b!

with the free nucleon chargesep5e, en50 and free nucleon
g factors gl

p51, gl
n50, gs

p55.586, andgs
n523.826. The

P-space operators are constructed by the application of
~4!. We calculate theP-spaceT(E2) operator and separatel

TABLE I. The 0p-shell effective Hamiltonian matrix elements
in MeV, obtained from 6\V, second column, and from 4\V, third
column, calculation for6Li. The calculated binding energy o
4He, 27.408 MeV, obtained by using the same method in
8\V space@8#, was added to the diagonal matrix elements in ord
to make a meaningful comparison with the Cohen-Kurath phen
enological matrix elements@14#, presented in the fourth column.

^2 j 12 j 2 ,JTuHu2 j 32 j 4 ,JT& Eff Eff-4 CK 6-16

^11,01uHu11,01& 6.772 7.165 4.88
^11,01uHu33,01& 22.756 23.201 25.32
^33,01uHu33,01& 0.493 20.970 0.52
^11,10uHu11,10& 3.999 4.202 0.28
^11,10uHu13,10& 20.776 20.988 21.39
^13,10uHu13,10& 20.788 21.333 22.64
^11,10uHu33,10& 2.086 2.464 1.09
^13,10uHu33,10& 24.107 24.708 24.02
^33,10uHu33,10& 0.815 20.707 0.12
^13,11uHu13,11& 5.780 5.308 4.76
^13,20uHu13,20& 0.199 21.366 20.32
^13,21uHu13,21& 4.303 3.514 2.76
^13,21uHu33,21& 1.377 1.613 2.21
^33,21uHu33,21& 2.694 1.162 2.61
^33,30uHu33,30& 21.842 23.771 23.42
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55 R575MICROSCOPIC ORIGINS OF EFFECTIVE CHARGES IN . . .
the orbital and spin parts of theM1 operator. The calculation
is performed in them scheme and subsequently transform
to the J,T basis. To get all the reduced matrix elemen
full-space calculations withMJ50 and MJ51 must be
done. In Table II we present selected matrix elements
pieces of Eq.~5!, namely the operators

E2[A16p/5(
i51

A

~ 1
21tzi!r i

2Y~2!~Q i !, ~6a!

Ml[(
i51

A

~ 1
21tzi!l i , ~6b!

Ms[(
i51

A

~ 1
21tzi!si . ~6c!

These matrix elements are reduced inJ and forTz50. The
second column shows the matrix elements of the effec
operators, as obtained from Eq.~4! and the procedure out
lined above. Note that these operators, when used with

TABLE II. Selected reduced matrix elements of the protonE2,

in \/mV, and M1, in mN , operators. Here, ^Ô&[

^2 j 12 j 2 ,J1T1uÔu2 j 32 j 4 ,J3T3&. In the second column the
0p-shell effective operator matrix elements, obtained from
6\V calculation for6Li, are presented. The third column shows t
corresponding proton one-body~ob! operator matrix elements. Th
fourth and fifth columns display the matrix elements of the o
body operators with j -dependent andj -independent effective
charges, respectively. These operators are combinations of
body protonandneutron operators.

^Ô& Eff ob ob eff-j ob eff

^11,10uE2u13,20& 5.916 2.739 5.539 5.179
^11,10uE2u13,21& 23.101 22.739 23.256 23.184
^13,20uE2u13,21& 2.137 2.092 2.321 2.432
^13,21uE2u13,21& 23.612 22.092 23.605 23.956
^13,10uE2u33,21& 22.481 21.937 22.303 22.251
^13,10uE2u33,30& 26.295 23.240 26.554 26.128
^33,01uE2u33,21& 23.942 22.236 23.854 24.229
^33,21uE2u33,30& 4.122 3.742 4.152 4.350
^11,10uE2u11,10& 0.501 0.0 0.0 0.0
^11,10uE2u33,30& 0.649 0.0 0.0 0.0

^11,01uM lu11,10& 20.902 21.155 20.912 20.949
^11,10uM lu11,10& 1.560 1.633 1.585 1.621
^13,11uM lu33,10& 20.439 20.646 20.509 20.531
^13,21uM lu33,21& 20.603 20.646 20.586 20.641
^33,01uM lu33,10& 21.098 21.291 21.096 21.061
^33,30uM lu33,30& 3.122 3.055 3.106 3.032
^11,01uM lu33,10& 20.100 0.0 0.0 0.0

^11,01uMsu11,10& 0.289 0.289 0.280 0.270
^11,10uMsu11,10& 20.336 20.408 20.360 20.383
^11,10uMsu13,20& 0.804 0.913 0.829 0.856
^11,10uMsu13,21& 20.819 20.913 20.839 20.855
^33,01uMsu33,10& 20.618 20.646 20.620 20.604
^33,30uMsu33,30& 1.460 1.528 1.476 1.433
^11,01uMsu33,10& 0.041 0.0 0.0 0.0
d
,

f

e

he

eigenvectors of the effective Hamiltonian obtained from E
~3!, whose matrix elements are shown in Table I, give
same mean values and transition rates as the original
body operators~6!, when used with the 0\V dominated
eigenvectors of the 6\V calculation. Also note that the ef
fective operators are two-body operators unlike the fu
space original operators.

Let us first discuss theE2 operator. In the third column o
Table II the reduced matrix elements of the operators~6!,
evaluated in theP space, are shown for comparison. W
observe, that there is a striking difference in the renormali
tion of the isoscalar and isovector matrix elements
(E2)eff. The former are much larger in magnitude than t
latter in comparison with the unrenormalized values of
operator~6a!. Apparently, there is no chance to approxima
the effective operator as~6a! multiplied by some effective
charge. Instead, it is possible to mimic the mention
isoscalar-isovector effect by approximating the effective o
erator as a combination of one-body protonandneutron op-
erators with different effective charges, e.g.,

~E2!eff'eeff
p A16p/5(

i51

A

~ 1
21tzi!r i

2Y~2!~Q i !

1eeff
n A16p/5(

i51

A

~ 1
22tzi!r i

2Y~2!~Q i !, ~7!

where only valence nucleons contribute in the sums. A be
approximation may be obtained when the effective char
becomej dependent, e.g.,( i j eeffi j ^ i uÔu j &ai

†aj in the second-
quantization form. We calculated the effective charges fr
the reduced matrix elements of the appropriate operators
least-square fit. The resultingj dependent, as well asj inde-
pendent, effective charges are presented in Table III, and
corresponding reduced matrix elements are shown in
fourth and fifth columns of Table II. First, we observe th
this kind of approximation works very well. Moreover, th
pure two-body matrix elements, which cannot be reprodu
by an approximation of the type~7!, are almost a factor of
ten smaller than the largest one-body matrix elements. S

e

-

e-

TABLE III. Effective charges of the proton quadrupole, ma
netic orbital, and magnetic spin operators, derived by least-sq
fits to the corresponding 0p-shell effective operators obtained from
the 6\V calculation for 6Li. Both the j -dependent and
j -independent effective charges are shown. Also,
j -independent effective charges obtained in the same way from
4\V calculation are presented in the last two columns. For
definition of the effective charges see Eq.~7!.

e(1/2 3/2)
p e(1/2 3/2)

n e(3/2 3/2)
p e(3/2 3/2)

n e(1/2 1/2)
p e(1/2 1/2)

n

E2 1.606 0.417 1.417 0.307 - -
Ml 0.848 0.060 0.933 0.084 0.880 0.09
Ms 0.914 20.006 0.963 0.003 0.925 20.043

eeff
p eeff

n eeff-4
p eeff-4

n

E2 1.527 0.364 1.302 0.244
Ml 0.907 0.085 0.931 0.063
Ms 0.937 0.001 0.953 20.003
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ond, the calculated effective chargeseeff
p 51.527e,

eeff
n 50.364e are close to the phenomenological ones m
tioned in the Introduction. Third, thej dependence of the
effective charges is rather moderate.

From the phenomenological studies it is well known th
the magnetic dipole transitions and moments can be in m
cases described, at least in light nuclei, by using the oper
~5b! with small modification of theg factors. Also the effec-
tive orbital and spin operators obtained in our study
much less renormalized, when compared to the starting o
body operators, than the electric quadrupole operator.
reflected in the second and third parts of Table II. T
isoscalar-isovector effect is much smaller, and, in the cas
the spin operator it is almost nonexistent. Unlike the case
the quadrupole operator, the effective dipole operator ma
elements are, on average, smaller in comparison with o
body ones. A perhaps surprising result is, however, the
servation that the orbital part is more renormalized than
spin part and, moreover, a neutron orbital part is genera
with an effectiveg factorgleff

n 50.085. The protong factor is
about 10% quenchedgleff

p 50.907. The spin part is quenche
by about 6%, e.g.,gseff

p 50.937gs
p10.001gs

n and from the
isospin symmetrygseff

n 50.937gs
n10.001gs

p . As in the quad-
rupole operator case, thej dependence is also moderate f
the magnetic dipole operator effective charges, but the p
two-body matrix elements are relatively smaller.

The j -independent effective charges extracted in the sa
way from the 4\V calculation are also presented in Tab
III. We observe that the renormalization is smaller in th
case. This reflects the fact that, for example, theE2 transi-
tion rates obtained in the 4\V calculation are weaker tha
those calculated in the 6\V space. Our observation here
that the effective Hamiltonian converges more rapidly th
theE2 operator with respect to the full-space size chang

To quantify the two-body content of the effectiv
0p-shell electromagnetic operators, we evaluate the quan

R[A( i< j (Ôeff,i j2Ôob- eff,i j )
2/( i< j (Ôeff,i j )

2, where theÔi j
denotes the matrix elements between the 0p-shell two-body
.

L

. J
-

t
st
or

e
e-
is
e
of
of
ix
e-
b-
e
d

re

e

n

ity

statesi and j . In this way we estimate the part of the effe
tive operators, which cannot be expressed as a combina
of one-body operators. When using one-body operators w
j -dependent charges, we obtain a two-body contribution
10.1% forE2, 3.8% forMl , and 3.2% forMs, respectively.
For the one-body operator withj -independent effective
charges the two-body contributions are 12.3% forE2, 5.3%
for Ml , and 4.4% forMs, respectively. Clearly, the magneti
dipole operators are better approximated by combination
one-body operators.

In conclusion, we have shown that model-space trun
tion is sufficient to generate operator renormalization, wh
is characterized by effective charges compatible with th
used in the phenomenological applications. We have fo
that the isoscalar and isovector parts of the operators
renormalized differently, particularly, in the case of the ele
tric quadrupole operator. This difference in renormalizati
is the source of a nonzero neutron effective charge. Th
findings are based on a no-core 6\V calculation for6Li with
a multivalued starting-energy-independent two-body inter
tion derived microscopically from the Reid 93 nucleo
nucleon potential, from which the 0\V 0p-shell effective
Hamiltonian, electric quadrupole, and magnetic dipole o
erators were constructed. The obtained effective opera
are two-body operators. We have shown, however, that t
may be well approximated by one-body operators. Th
two-body content is about 10% forE2 and about 4% forM1
operators, respectively. We also studied the dependenc
the renormalization on the size of the full space. We o
served a non-negligible difference between the effectiveE2
charges extracted from the 6\V calculation in comparison to
those obtained from the 4\V calculation. On the other hand
the changes in the effective Hamiltonians obtained in the
calculations are less pronounced.
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