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Caloric curve for finite nuclei in Thomas-Fermi theory
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In a finite temperature Thomas-Fermi theory with realistic nuclear interactions, we construct caloric curves
for finite nuclei enclosed in a sphere of about 4 to 8 times the normal nuclear volume. The specific heat
capacityC, shows a peaked structure that is possibly indicative of a liquid-gas phase transition in finite nuclear
systems[S0556-281@7)50704-7

PACS numbgs): 21.10-k, 21.60—n, 21.65+f, 25.70.Pq

The equation of staté€EOS of nuclear matter with real- ve(1,P,p) =Cy J[v1(r,p)+vo(r,p)], )
istic effective interactions shows a typical Van der Waals
type behavior and a critical temperature #fl5-20 MeV v1=—(1—p¥b2)f(ry,ry),
[1-3]. Supported by the experimental observation of a power
law behavior in the mass or charge distribution in proton 42 n
[4,5] and heavy ion induced reactio§,7], the idea of v2=dTpa(re) +pa(r) I"f(ry,ra), 2
liquid-gas phase transition in nuclear matter or finite nuclear .
systemdq2,8—1( has gotten considerable interest in the lit- with
erature. Theoretical speculations and possible experimental oIty
indications of a limiting temperatufd1-15 in finite nuclei f(ry,rp)= _ 3)
at ~5-7 MeV, above which the nucleus becomes unstable [ri—rJl/a

and breaks up into many fragments, also calls for a possible

connection between the limiting temperature and the phasderea is the spatial range artathe strength of repulsion in
transition. Phase transitions are normally signaled by peakéie momentum dependence of the interactios,|r;—r,

in the specific heat at constant volun@, as temperature and p=|p;—p,| are the relative distance and relative mo-
increases. Fragmentation calculations in the microcanonicanenta of the two interacting nucleons. The subscripsid
algorithm of Grosg16] and in the Copenhagen canonical U in the strengtfC refer to like pair @-n or p-p) or unlike
description[17,18 show such peaks. Recent calculations byPair (n-p) interaction, respectivelyd andn are measures of
Das Guptet al.[19] in the lattice gas model for fragmenta- the strength of the den.5|.ty depende'nce of the interaction, and
tion also show such a structure. Renewed interest in thi€1 @ndp are the densities at the sites of the two nucleons.
subject was further fueled by the recent experimental obser- The F’Otefﬁ“a' parameters are determined for a fixed vglue
vation[20] in the caloric curve of a near constancy of tem- of n from a fit of the well-established bulk nuclear properties
perature in the excitation energy range s%—10 MeV/ and the value oh is determ|_ne({13] from a fit of the giant
nucleon in Au+ Au collisions. This prompted us to find out monopole resonance energies over a broad mass spectrum.

. . . . The Coulomb interaction energy density is given by the
whether the trends in the caloric curve as seen in the eXPerL m of the direct and exchange terms. They are given by
ment or in fragmentation calculations are reproduced in a ’
finite temperature Thomas-Fer({iF) theory. To our knowl-
edge this is the first calculation of its kind with a realistic ep(r)=e2mpy(r) J dr’ r'2p(r)g(r,r'), (4)
effective interaction. In the context of an exactly solvable
Fermion model, Rossignodit al.[21] have earlier calculated
the specific heat of a finite nucleus in the grand canonicaénd
mean field theory with Lipkin’'s model Hamiltonian, but
found no structure in it as a function of temperature. The 13 413
structure appeared in the canonical calculation, with inclu- ged 1) == 72— (37) "pp(r). ®)
sion of correlations.

In our refined Thomas-FerndTF) model, the interaction
density is calculated with a Seyler-Blanchard tyg&] mo-
mentum and density dependent finite range two-body effec-
tive interaction[13]. The interaction is given by

2

Here py(r) is the proton density and

+r')=lr=r’
) =r=rl. ®)

olrr)=—

*On leave of absence from the Variable Energy Cyclotron CentreWith the potential chosen, the total energy density at a tem-
1/AF, Bidhannagar, Calcutta 700 064, India. peratureT is then written as
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FIG. 1. The proton density profile for the systefi?Sm calcu- FIG. 2. The proton density profile for the systef?Sm calcu-

lated at four temperatures in the volurive=8.0Vo. The dashed, |ateq at temperaturé=10 MeV in two different volumes. The full

dotted, dash-dot, and full lines correspond to temperatureS,q dashed lines correspond to calculationsVat4.0v, and
T=5,9,9.5, and 10 MeV, respectively. V=8.0V,, respectively.

_ culations at zero temperature are independent of the volumes
s(n= Z‘ PATHT Jaid (1)1 I 7:(1)] taken; at low temperature ef 1-2 MeV, the observables are
. N 100 nearly independent of the volume. As the temperature in-
X[(L=mZ(r)Vi(r)]+3z V(). (7)  creases, the central density is depleted. In Fig. 1, the proton
, densities for>%Sm calculated in the volumg=8.0V, are
Here T refers to On_eutron or proton,_ the's are_the usual displayed for four temperature$=5 MeV (dashed curve
Fermi integralsV; is the single particle potentigfor pro- T=9 MeV (dotted curvg, T=9.5 MeV (dash-dotted curje
tons, it includes the Coulomb teilmli is the potential term 5 4T=10 MeV (full curve). At T=5 MeV, the central den-
that comes with momentum dependence and is associat%q{y is depleted by=49% compared to zero temperature den-
with the effective masen; . The fugacity».(r) is defined as  sjty, put has a long thin tail spread to the boundary. The
Ur(r):[MT—VE(V)—Vi(f)]/T, ®) behaviors aff=9 and 9.5 MeV are qualitatively the same,

but with further depletion in the central density and a thicker
where i . is the chemical potential aridf is the rearrange-

tail. BeyondT=9.5 MeV, the change in the density starts
ment potential that appears for a density-dependent intera?—?mg. abrupt and the whole system looks like a uniform dis-
tion. The total energy per particle at any temperature is thenr'buuon of.matter 'Us'd.e the \_/olume. This is showr_1 by a
given by representative density distribution®& 10 MeV. The slight
bump seen in the outer edge of the density is due to the
Coulomb force. In Fig. 2, the proton density B+ 10 MeV
E(T)Zf e(r) d*r/A. (9)  for the system a¥=8.0V,, (dashed curveis compared with
that calculated a¥=4.0V, (full curve). The density calcu-
Once the interaction energy density is known, the nucleatated in smaller volume still shows a structure and the central
density can be obtained self-consistently and other obsenglensity is depleted by only about 20% even at this high
ables of physical interest calculated. For details on the finitéemperature.
temperature TF theory, we refer to REE3]. The excitation energy per particle* is defined as
Since the continuum states of a nucleus at nonzero ten=* =E(T) —E(T=0). In Fig. 3, we display the caloric curve
perature are occupied with a finite probability given by afor the system'*Sm. The upper dashed curve corresponds
Fermi factor[23], the particle density does not vanish atto V=4.0V,, while the lower full curve corresponds to
large distances. The observables then depend on the size \6F=8.0Vy. At lower density, the excitation energy rises
the box in which the calculations are performed. Guided byfaster. For both volumes, initially the temperature rises faster
the practice that many calculations for heavy ion collisionswith excitation energy, then its rise is slower. For the lower
are done by imposing that thermalization occurs in a freezedensity, a kink is observed in the caloric curve Tat 10
out volume, we fix a volume and find out the excitation MeV, after which the excitation energy rises almost linearly
energy as a function of temperature which allows for thewith temperature. For the higher density, the kink is much
determination of the specific heat at constant volume. smaller and appears at a somewhat higher temperature. In
We choose two systems, namely’'Sm and®Kr. In the  Fig. 4, the corresponding specific he@ts defined as
context of very heavy ion collisions at intermediate or higher
energies, this mass range is of experimental interest. The C,=(dE*/dT), (10
calculations have been done for two confinement volumes,
one atV=4.0V, and the other a¥=8.0V,,, whereV, is the  are displayed. Since we use units of MeV for both energy
normal volume of the nucleus at zero temperature. The caland temperature, the calculat€®, is dimensionless. For
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FIG. 3. The temperature plotted as a function of excitation en-
ergy per particle(caloric curve for the system>%Sm. The dashed
curve corresponds to calculations with volume 4.0V,, while the
full curve corresponds t&=8.0V,,.

FIG. 5. Same as Fig. 3 for the systéfiKr.

atT~11 MeV is seen. In calculations with expanded volume
(8Vy), the system shows a sharp peal at10.5 MeV. This
peak is, however, not as sharp as the one for the heavier
both volumes, the specific heat shows a peak, the peak beirsystem. In calculations on limiting temperature in the model
much sharper for the case of a larger volume. For the smallesf liquid-gas phase equilibrium, the influence of Coulomb
volume, the peak is al~10.5 MeV, while for the large forces has often been emphasii824] in the instability of
volume the peak is shifted down byl MeV. We believe the system. For example, for infinite nuclear matter, with
that the kink in the caloric curve or the peak in the specificisospin asymmetry equal to that f6?°Sm, we find that the
heat are related to a phase transition in finite nuclei. Froneritical temperature is-13 MeV with the present interaction.
our calculations, we find that this transition temperature isHowever, the limiting temperature for the aforesaid nucleus
weakly dependent on the confinement volume beyondomes down to as low as5 MeV in the refined TF calcu-
V=28V, e.g., for V as high as 20, the transition tempera- lation[13] which is basically due to Coulomb interaction. In
ture is shifted down further by onls=1 MeV. The classical the present calculation, we see a relatively small effect of the
value of C,=3/2 is reached af~11 MeV for the case with Coulomb forces on the transition temperature. With the Cou-
V=8.0V, while for the smaller volume, it is reached at lomb force switched off, the transition temperature is shifted
T~13 MeV. This is expected as the interaction becomesip by ~1 MeV for both the confinement volumes/¢ and
weaker either with increased volume or with increased tem8V, and the matter density becomes more uniform. This is
perature. true for both the systems we have studied.

In Fig. 5, the caloric curve for the lower mass system To summarize, we have calculated the caloric curve and
8Kr is shown. The trends are nearly the same as in Fig. 3he specific heat for two systems in a self-consistent Thomas-
Figure 6 displays the specific heat for this system. In thé~ermi theory at two volumes, namely at 4 and 8 times the
calculation withV=4V,, a broad bump in the specific heat normal nuclear volume. The specific h€xt shows a peaked
structure possibly signaling a liquid-gas phase transition at a
temperature of=10 MeV which is lower than the calculated
critical temperature for infinite nuclear matter, but larger
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FIG. 4. The specific heat per particle plotted as a function of
T (MeV)

temperature for the systef’Sm. The dashed curve corresponds to
calculations with volumeV=4.0V,, while the full curve corre-

sponds toV=8.0V,,. FIG. 6. Same as Fig. 4 for the systéfiKr.
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compared to the calculated limiting temperature for finite  The authors acknowledge fruitful discussions with Dr. E.
real nuclei[13]. In simplistic model calculationg21], it has  Ramakrishnan. One of the autho{@&N.D) gratefully ac-
been shown that the inclusion of correlations brings in feaknowledges the hospitality of the Cyclotron Institute, Texas
tures reminiscent of a phase transition in a system when nd&M University where this work was completed. This work
phase transition is evident in the usual mean field calculais supported by the U.S. Department of Energy under Grant
tion; it would therefore be interesting to see whether fluctuaNo. DE-FE05-86ER40256, by the Natural Sciences and En-
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