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Elastic pion scattering on the deuteron in a multiple scattering model
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Pion elastic scattering on deuterium is studied in the Kerman-McManus-Thaler multiple scattering approach
developed in momentum space. Using a Paris wave function and the same methods and approximations as
commonly used in pion scattering on heavier nuclei excellent agreement with differential cross section data is
obtained for pion energies 1601, <250 MeV. At higher energies and very backward angles, discrepancies
appear that are reminiscent of disagreements in pion scatteringHen °H, and “He. At low energies
T ,=<65 MeV the model fails to reproduce experimental data at forward direction. In this kinematical region the
coupling with the breakup channels has to be included. Polarization observables are studied in detail. While
tensor analyzing powers are well reproduced, vector analyzing powers exhibit dramatic discrepancies.
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I. INTRODUCTION formalism was successful in describing the pion-nuclear in-
teraction in theA resonance region as well as at low energies

In the realm of pion-nuclear physics, the pion interactionfor a large set of nuclei wittA=4-40. In Refs.[9], this
with the deuteron is of special interddf. On the theoretical method has been extended successfully to the description of
side, it is the simplest few-body system in which conven-pionic atoms as well.
tional theories(Faddeev theory, coupledNN—NN equa- The aim of the present work is a systematic investigation
tions and multiple scattering thegrgan be rigorously tested. Of pion scattering on the deuteron in the region of pion ki-
The knowledge obtained from these studies can then be exetic energies o ,=60-300 MeV. We employ a multiple
tended to many-body systems. On the experimental side, $cattering framework in momentum space using only el-
large set of measurements for differential cross sections argimentary amplitudes extracted fromN scattering data and
polarization observables are availablerd scattering. Thus, realistic deuteron wave functions. Due to the latter ingredient
there is sufficient motivation to study pion interaction we are in a good position to fix the nuclear structure input in
mechanisms with very light nuclei in detail. order to shed more light on the reaction mechanism. Another

In recent years the three-body approach has been uségirpose is to develop a pion deuteron interaction that can be
extensively in describing the pion-deuteron interaction. Fronused for pion photoproduction on the deuteron in a straight-
the point of view of solving therNN three-body problem forward way. Such an approach, applied to pion scattering
directly this is clearly an important achievement. However,and pion photoproduction on the trinuclepn6] has pro-
due to the complexity of the three-body formalism the appli-vided an excellent description of the differential cross sec-
cation of the obtained results to the case of pion interactiotion. This has motivated us to extend our momentum space
with heavier nuclei may be more difficult. approach for these reactions to the deuteron.

On the other hand, a microscopic description of the pion- Our study has been divided into two parts. In this paper
nuclear interaction in the framework of the multiple scatter-we investigate pion elastic scattering on the deuteron, testing
ing theory[2,3] has continuously been improved. More re- our multiple scattering approach by comparing with all avail-
cent developments are due especially to techniquesble experimental data. Cohererft photoproduction is con-
developed to perform calculations in momentum space usingidered in the second part. The main aspects of our formal-
the Kerman-McManus-ThaldKMT) [2] formulation of the ism based on the KMT multiple scattering approach and
multiple scattering theory. In momentum space nonlocalitiesoupled-channels method are given in Sec. Il. Section llI
of the pion-nuclear interaction, off-shell extrapolations of thepresents our results for elastic pion-deuteron scattering while
pion-nucleon scattering amplitudes and exact treatment gdur conclusions are summarized in Sec. IV.

Fermi motion can be taken into accoydt—7]. The KMT

approach is important to avoid double counting of pion res- Il. FORMALISM

cattering on the same nucleon. With the addition of the phe-

nomenologicap? term[8], which is responsible for real pion

absorption and second order effects, the momentum space In multiple scattering theory the pion-nuclear matrix
can be presented as

A. General overview

A
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where E. In general, the energy of the pion-nucleon system is a
dynamical variable in the many-body systgh0]. Thus
there are many possibilities for relatian andE. Indeedw
Ti(E):Ti(E)+Ti(E)Go(E)§ Ti(E) (2)  can be considered as a parameter of the multiple scattering
a theory which could be determined using physical or math-
ematical arguments. One attractive choice is to minimize the
contribution from the second term of E¢c) with the help
7(E)=v+vGy(E) 7(E). (3)  of this parameter. A detailed investigation of this issue was
done in Ref[5]. To be consistent with our previous studies
In Egs.(2,3), Go(E) is the Green’s function of the noninter- Of pion scattering qr?He [6] and on heavier nucl¢b,8] we
acting pion-nuclear system ands the potential of the pion- follow the prescription of Landau and Thomg§ which is
nucleon interaction. Note that thematrix in Eq.(3) differs ~ called modified impulse approximatiowith the three-body
from the standard two-body matrix for free pion-nucleon chou;e for the.reac_:tlor.l energy. The relativistic generalization
scattering through the Green's functi@y(E) which con- of this approximation in the case of the deuteron leads to the

tains the many-body nuclear Hamiltonian. For the free pion_followmg expression for the pion-nucleon energy

A

and 7;(E) is defined as a solution of the equation

nucleont matrix we have the equation (' +q)? 12
w=E+ mﬂ+MN—[(mﬂ+MN)2+ —_—
t(0)=v+vgo(w)t(w) @) 16
e} “\2 1/2
with the free pion-nucleon Green’s functig(w). Ve (Q'+a) ©)
Following the KMT version of multiple scattering theory N 16 '

[2], Egs.(1-4) are equivalent to the system of integral equa-

tions for the auxiliary matrix’ =[(A— 1)/A]T wherem_ andM are the pion and nucleon masses, respec-

tively. We note that Eq(6) was evaluated with the value of
PEY—1 17 / / the nucleon momenta defined in the following by Et4),
T (E)=U"(E)+U'(E)Go(E)PT'(E), 5 i . )

(E) (E) (E)Go(E) (E) (53 which gives for therN system and the residual nucleus the
PEN— (A _ momenta (’'+q)/4 and —(q’'+q)/4, respectively. As
UV'(B)=(A=1)7(B) +(A=1)7(B)Go(E)QU(E), (5b) shown in Refs[4,5,1]], in the case of weak binding this

choice minimizes the contribution from tleoperator in the

(E)=t(0) +1()[Go(E)~Go(@)I(P+Q)7(E), (59 ol tomm of Eq0).
where the operato8=|0)(0| andQ= 3 ,..o|m)(m| project The scattering amplitudBy v (9’,q) is connected with
the nuclear state vectors into the ground st@eand all  the T’ matrix in Eq.(53) by the relation
possible excited statdsn), respectively. In the case of the JM@ M)
deuteron, the operat@ projects onto the states of the con- Fam (o?, 9)=— M@)M(@) A
tinuum. i 2m A-1
One of the main problems which arise in applying these -, , : >
equations to pion deuteron scattering is the correct descrip- X(m(q"),f[T"(E)|i,m(q)), (7

tion of the coupling to the breakup or continuum channels. "\Nhereﬁ andq’ are the pion momenta in the initial and final
this case the Lippmann-Schwinger equation has a NONCOMYjatag respectivelyj)=|1"M;) and |f)=|1"M;) denote
pact kernel and, therefore_, cannot .be solved numerically. It i§o 1 clear initial and final states, with the nuclear spin pro-
well known that the solution to this problem was found by jeciion M, in the initial andM final states. The pion-nuclear
Faddeev who from the system of EqS) derived a new set gqyced mass is given byt(q) =E._(q)EA(q)/E(q), where
of equations which do not have this inherent shortcoming. g(q)=E _(q)+Ea(q) is the total pion-nuclear energy. To

In this paper we demonstrate that multiple scatteringshorten the notation in E¢7) we skipped the dependence on
theory is able mainly to reproduce existing experimental datghe energyE for the scattering amplitude. For a given pion
using several standard approximations for the solution of th@nergy E is fixed and in the following we usE=E(q). In
Egs.(5). This in turn generates a simple pion-deuteron interthe same way we can express the pion-nuclear potential in
action that will be used in our description of cohererft tum spacy 3" Q) via matrix U’ (E) from E
photoproduction, discussed in the following part. As a firstTomentu i P MfMi(q ’q_) ( ) q
step, weneglect the contribution from the coupling to the (5P)- Then, in accordance with E(a the elastic scattering
breakup channelThis means that in Eq¢5b,50 the contri-  @mPplitude can be constructed by solving the integral equa-
bution from theQ operator is dropped. The motivation for ton with relativistic kinematics
this approximation is that contributions from the diagonal . . a
matrix elements dominate due to the large overlap of theFMfMi(q’,q)=VMfMi(q’,q)—ﬁ
nuclear wave functions in the initial and final states. As we (2m)
will see below this approximatiorsia 0 starting point for the . > /i
study of pion-nuclear interaction. However, at low energies E dq VMfM(q 9 )FMMi(q 9
where for isoscalar nuclei the contribution from tRepera- M J M(@Q")  E(q)—-E(Q")+ie
tor is very small, the coupling to the breakup channels be- %)
comes important.

The next approximation is the special choice for connectwhere the factoa=(A—1)/A is important to avoid double
ing the pion-nucleon energyy, with the pion-nuclear one, counting of pion rescattering on the same nucleon, which is
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already included in the free pion-nuclebmatrix. Note that v (gM(q")
due to this factor, Eq(8) is not the standard Lippmann- f(*)(off-shell) = f*)(w) — =7 I (12)
Schwinger equation. i i (v (a)]
In accordance with the approximations discussed above
and after neglecting the contributions from the second termwith =N form factors
in Egs. (5b) and (5¢) the momentum space potential of the |
pion-nuclear interaction can be given by (£) qr
vi_(Q) [T+ (e (13

Vi (67,8)=Veou(q' = GiR) Sy m +Virw (a',0), (9 . .
Mot (A8 =Veou(d' = AR Swm + Vi (@70, O e employ the value,=0.47 fm, consistent with the

. ) o analysis of the separabteN potential of Ref[12].
which contains the Coulomb potential in momentum space, Finally, we mention a useful approximation related to the
cutoff at radius R. The so-calldifst-order potentialof the  reatment of nucleon Fermi motion. In accordance with the

strong pion-nuclear interaction{yy. is related to the free results of Refs{4,13] the internal nucleon momentum can be

7N scatteringt matrix replaced by an effective value
L M@ M@ s s 4 1. .
V%?Mi(q’,q): - T P— Per= E Z(q q ) (14)
. A . This choice is based on the fact that in the case of Gaussian
x{ m(q"),f 21 tj(w)|i,m(q) ), (100  wave functions, which can reproduce the domingwave
=

part of the deuteron ground state at low momenta, such a

replacement treats the IineﬁAQM terms in the pion-nucleon

wherew is defined by Eq(6). Thus our first oder potential is scattering amplitude exactly.

related to the first terms of Eq&b) and (5¢) with a mini-
mized contribution from th® operator in the second term of

Eq. (50). B. Partial wave decomposition and polarization observables
The free pion-nucleon scatteringnatrix is defined in the We express the scattering amplitude in terms of partial
following way: amplitudes using the representations of total angular momen-

tum j with projectionm
t-n=(d",p’[t(»)|p,q)

2 . N .
- — fan(w,07)8(p' +0d'—p—q),
m(q',p")u(d,p)
(119

N . 0y L; S
Fug (0,0 =473 (2j+1)it=L0Y 7 (§)F,,

X(a',Q) Y5 "(d)

L1 o\ (L, 1
M’ Mf —m Mﬂ. Mi -m/’

(15

fanl(@,6%) = A+ At 7410 [G X G)(AstAsri-7),
(11b)

whereu(q,p)=E(q)En(p)/w is the pion-nucleon reduced
mass,ﬁ andp’ are the nucleon momenta in the initial and N i
final stategin pion-nuclear c.m. systemin the pion-nucleon Waves and. (L ;) is the angular momentum of the incom-
scattering amplitudé.,y, which is in general relativistically 119 (0utgoing pions. Note that due to parity conservation
invariant, a’i and a’f are the unit vectors for the initial and (—1)"+"tr=1. For the amplitude Mom, we perform an ex-
final pion momenta in therN c.m. system. The vectors pansion identical to EG15).

> . . Substituting the above expansions &, , and Fy .
andt are the usual isospin operators for the target nucleon . . i i
into Eg.(8) we obtain the following system of integral equa-

where theY',;,l’T (a) are the spherical harmonics for the pion

and pion. . . .

The scalar functioné\(w,cos7%)(i=0,S,T, andST), that tions for the partial wave amplitudes
depend on the total pion-nucleon energyand the pion . ‘ a
angle #% in the 7N c.m. system, are the usual combinationsFJL,L (q’,q)=V’L,L (q',9)— p

of partial N scattering amplitude${™)(w) and Legendre

polynomialsP; (cos}), wherel .. is the pion-nucleon angu- "2 V{;:L(Q’.Q")FJIL“(Q",CI)

lar momentum. The definition of these amplitudes has been XZ J’ /\/(t:l( N T E@ =B+ dq”.
given in our previous work6]. Note that their on-shell value L q q q €
was obtained from phase-shift analysis of the elastic pion- (16)

nucleon scattering data.
The off-shell extrapolation of therN partial amplitudes This equation is solved using the matrix inversion method. In
was constructed using a separable form our evaluation of the partial amplitudes we also take into
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account the Coulomb interaction applying the matching pro-only four amplitudes are independent.

cedure developed by Vincent and Phatta#]. In our numerical calculations we will use a system of
Expressions for the polarization observables can be obcoordinates which corresponds to thtadison Conventian

tained using the spherical tensor operatgy which is de- A right-handed coordinate system in which the positive

fined as axis is along the beam directidalong the initial pion mo-

mentumgq) and they axis is along the vectdigqxq’].

~n J J k
(JM'|TkK|JM>=Jk(—1)J+M'( ) 17

M -M" « C. Pion-nuclear potential

were we use the notatich=y2J+ 1. Analyzing powers can  Here we discuss the first-order potenti4fy)y, , defined

then be expressed as expectation values in Eg. (10). It can be rewritten as
Tr(F 7 F7) s, = VM(q")M(q)
There are four polarization observables which can be . (j r -
measured inrd elastic scattering using a pion beam and a f droy, (r)e ton(;9",q)

polarized deuteron target. These are the vector analyzing
power iTq;, and the three tensor analyzing powers Xy (1), (23
Ty, T21, and Ty,. The last two can be measured only in '

linear combinations, such as T
whereQ=qg—q’ is the momentum transfer.

o= Tort & (Topt T20/\/—) (193 The deuteron wave function in this expression is given by
(r)
T22:T22+T20/\/6. (19b) m(r \/_E ( 1 !
The differential cross section and four polarization ob- | 1 1
servables can be expressed in terms of five amplitudes, called ( ) y! (i?)Xl (24)
A,B,C,D, and & which correspond to our amplitudes m mg —m/ T OAm

Fu M, with different initial and final deuteron spin projec-

tions. FollowingRobson's conventiof5] they are defined Wherel=0 and 2 denote th& andD components, respec-
as tively, Xm denotes the spin wave function for the two-

nucleon system with total sps= 1 and projectionmg. After

Fiv For Fy A B ¢ a multipole decomposition for the exponential, é@(lZ),
F _| Fto Foo Fo|_| D & -D in Eq. (23) the pion-nuclear potential can be expressed via
MM F.. Fo. F__ c B 4l reduced nuclear matrix elemeniss, {Q) defined as
(20) 2 . r
f12 Y (F)eofTui % i
where the sign+,0,— corresponds to the deuteron’s spin =1
projectionM;)=+1,0,—1. Then the five observables can 1 3 1
be written as =(—1)1Ms Mg {Q), (25
| —Mf M Mi SLJ(
o _2q 2 2|12 2 11 g2 9
d_Q_ﬁ(M| 1B+ |CF+ D+ 2] )_an”)’ wherej, (2) is the spherical Bessel function®=1 and o

(219  for S=0 and 1, respectively.
Using standard techniques one finds
iT,=\2BIMD* (A-C)—-B*E)]/a(,), (21b

I L
V2 Mg Q)= 3\/3(S+l)/4772 1K LJ( )

Ta= g (AP B2+ [P~ 21D~ [e)/a(6,), (210 ° 00

11" 1
T,= —2[3RED* (A—C)+B*E)]/a(b,), (21d W11 RH(Q). (26)
L * 2 J L S
Tzfﬁ[ZRe(A O —|B*1/a(6,). (210
(L)

The radial integraldR|;/(Q) are defined as
Note that due to the relatigri5]

Qr
£=(A-C)— V2(B+D)cotd,, (22 th)(Q):frUv(r)JL ) Ui(r) (27)



92
and satisfy the normalization condition
Roo (Q)+R%(Q) = 1. (28)

Explicit expressions for the matrix elemerités, Q) are
given in the Appendix.

The radial wave functiond(r) are parameterizdd 6] as
a discrete superposition of Yukawa-type terms

N
Ug(r)= 21 C.exp—myr)  (3S,component (293

N
3 3
UZ(I’)=n§=:1 Dnexq—mnr) 1+m—nr+W>

(3D, component (29b)

where the 13 coefficientS,,, D, and massem, have been
calculated following the prescription given in R¢L6].

In order to facilitate a qualitative understanding of the
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FIG. 1. Differential cross sections far™ elastic scattering on

behavior of the polarization observables we present expresse geuteron at pion kinetic energi@s =65, 181, and 254 MeV

sions for the five amplitudest, ... .£ in the plane wave
impulse approximatiofPWIA) [the second term in EqB8)

is dropped. Taking into account only contributions from the
S-wave component and their interference with thevave
component of the deuteron wave functigreglecting terms
with |"=1=2), we obtain

A=2 AW, Rg%)—i(l—Bcossl,T)Rgzz) , (309
2\2
o ©, Lo 2)
B=—sind,,| V2AgWs ROO+ER02 —3AWoRZ |,
(30b)
__3 )
C=-—- ﬁ(“_ co,.) AgWoRy5 (300
i ©, 1o )
D=sind,,| V2AsWs ROO+ER02 +3AWRY |,
(300
~ 0, 2)
E=2 AgWy| R+ \/5(1 3co9,)RZ|. (308

Here, A; and Ag are the isoscalar scalar and spin-flip
7N-scattering amplitudes from Eqll), and Rl(',‘l) are the
radial integrals defined in Eq27), the coefficientsV, and

Ws are kinematical factors arising from the Lorentz transfor-

mation of the elementary amplitude from thé&\ c.m. to the

calculated with(solid curve$ and without(dashed curvespin flip
transition. The dotted curves &t,.=181 and 254 MeV are the re-
sults obtained without the deuter@nstate. The dash-dotted curve
at T,=65 MeV is the result with second order correctiof32).
Experimental data are from Ref26,27] (®) and Ref.[28] (0).

Ill. RESULTS AND DISCUSSION
A. Pion scattering on unpolarized targets

We begin our discussion with some of the main features
of the pion-nuclear interaction. The results of our calcula-
tions for pion kinetic energies in the lab systein,= 65,
181, and 254 MeV, are shown in Fig. 1. One of the most
important properties of therN interaction in this energy
region is the dominance of thgwave contribution coming
from the A-isobar excitation. This feature is reflected in the
coherent scattering process which is proportional Ao
(nuclear mass numbeand described by the scalar-isoscalar
part (Ag) of the N amplitude. Since thp-wave part of this
amplitude has a c@s dependence, the differential cross sec-
tion experiences a minimum arourtl.=90° (see dashed
curves. The position of this minimum is slightly shifted
from the Lorentz transformation of the pion angle from the
7N to therd c.m. frame and from the- and p-wave inter-
ference. The spin-flip transition coming from the amplitude
Ag (which is also mainly ofp-wave naturg is proportional
to sind,.. The corresponding spin-flip contribution fills in the
minimum, as shown in Fig. 1.

In the A-resonance regioril(,=180 MeV) our results are
in fairly good agreement with the experimental data and are
basically the same as the results of three-body Faddeev cal-
culations[1]. This may be due to the dominance of the
A-resonance contribution. It had been shown in R&f]

md c.m. system. They can easily be obtained from Egsthat in this case the two-body approach is a good approxi-

(10,19 and the angle transformation pf; < q] in the el-
ementary amplitudp4]. The complete expressions of the five
amplitudes(including the full contribution from the deuteron
D statg are given in the Appendix.

mation for the more elaborate three-body Faddeev frame-
work.

However, at lower energiesT(=65 MeV) our model
fails to reproduce the experimental data in the forward direc-
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tion. This is related to the well-known problem of describing
the low-energyS-wave pion-nucleon interaction in nuclei
with zero isospin. In this case, the contribution from the
large isovectorrN scattering amplitudé; cancels and only
the smallA, amplitude remains in the first-order potential.
Therefore, in the zero-energy limit our approach gives a
small value for therd-scattering length

1)
0 ~-0.015 fm, (31)

a'l=lim
q~>0

da/dQ(mb/sr)

Whereégl) is theS-wave 7rd scattering phase shift calculated
with the first-order potential. The experimental value is about
five times largera®'= — (0.073+0.02) fm[18]. In such a
situation one expects important contributions from ¢hep-
erator in Eq.(5b). A well-known estimatgsee for example
Refs.[19,20) for the corresponding second-order correction ;
IS -5
03060 90 120 B0 10
8., (deg)

1
=2 (A§—2A$><;>cz, (32)
FIG. 2. Differential cross sections far™ elastic scattering on

_ —1 _ the deuteron at pion kinetic energieg=142-324 MeV. Solid and
Whetel (1/r>_ 0.46 fm. and C .(1fm”/M)(1+m”/ dashed curves are full and PWIA calculations, respectively. The
2M) ™ ". In this expression the contribution from the isovec-

t litudeA- which d ibes double i t tteri dotted curves are our best fit with a phenomenological interaction of
or amplitu 7 Which desCribes double ISOVector Scalteringy, , jntermediate nucleons in the Jennings mechanism. Experimen-

(including charge exchangbeecomes important. Taking into .| yata are from Ref27] (@), Ref.[28] (0), and Ref[29] (A).
account such a correction for the scattering length we obtain
At T_>250 MeV the main problem which arises in our
a,¢~—(0.015-0.0349 fm=-0.049 fm, (33  approachas well as Faddeev calculations the discrepancy
with experimental data at backward angles. In contrast to
which is in better agreement with the experimental value agaddeev results which usually overestimate the data in this
well as with results from Faddeev calculation§?’=0.046 region by a factor of 21], our calculations tend to underes-
fm [21] (for the same set oA, and A; amplitude$. As  timate the measurements. We point out that a similar dis-
shown in Fig. 1, this correction factor also improves theagreement has been found for pion scattering®ste and
agreement with the experimental data for the differential*He [6,22].
cross section at ., =65 MeV (see dash-dotted curne In the framework of Faddeev equations there have been
The role of the®D, configuration in the deuteron wave numerous attempts to improve the situation at backward
function is also illustrated in Fig. 1. Its contribution can be angles, mainly by changing the two-body inputs. One of the
seen by turning off the nuclear matrix elements of Exf) more controversial attempts addressed Eheg part of the
with L=2 (see dotted curves in Fig.),1thus retaining the 7N amplitude with its division into a pole and nonpole term,
normalization condition of EQ.(28). As expected, the summarized in Refd1,23]. We only note here that the pole
D-state contribution becomes significant at large anglesterm determines the coupling between tR& and 7NN
0,>90°, for pion energie3 ,>180 MeV which correspond channels. Due to this coupling, pion scattering can also be
to momentum transfers @>1.78 fm 1. presented as pion absorption on one nucleon and subsequent
Figure 2 presents our results for higher pion energiesemission from another. Such a two-body mechanism is not
Note that with increasing pion energies the second-order coiincluded in the standard multiple scattering theory. At large
rection discussed above becomes less important due to timomentum transfers this process could be important because
dominance of the pion-nuclego-wave contribution. How-  of the possibility of momentum sharing. However, as argued
ever, it is still visible atT,,=142 MeV and it improves the by Jennings[24], such a two-body mechanism is almost
description in the forward directiofthe corresponding result completely canceled by additional contributions which come
is not shown in Fig. 2 Figure 2 illustrates the role of pion from the time ordering of the pion absorption and emission
rescattering contributions coming from the second term oprocesses.
Eq. (8) by comparing the plane wayevithout second term On the other hand, the issue concerning the so-called
of Eq. (8)] calculations(dashed curveswith the full results P, problem cannot be regarded as settled since the strong
(solid curves. Pion rescattering becomes very important incancelation takes place only if there is no interaction be-
the A region (146<T_,.<250 MeV), especially at large tween the two nucleons in the intermediate state. Our simple
angles. Here it can reduce the plane wave results by a factestimates show that if we would include the repulsive part of
of 2. However, with further increase of energy th#l inter-  the NN interaction which involves heavy meson exchange
action becomes weaker again, and, consequently, the rescéks was done by Mizutani and Koltun in their study of the
tering contributions become smaller. ard scattering lengti25]), the cancellation disappears. After
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0 30 80 90 120 150 180 = 10:_
8 (deg) — LV 256 MeV
<m. r

FIG. 3. Tensor analyzing powers Ty, 7o1=To+ "o 30 609 9(3eg)120 150 180
(Tt Too/\/6) and 7p= T+ T/ \6 at T,=294 MeV (solid e

curves. Individual contributions fromTy, (in 75) and Ty, (in FIG. 4. T,y observable aT ,=134—256 MeV. Solid and dashed
757) are shown by dashed curves. The dotted curves are the resull\es are full and PWIA calculations, respectively. The dotted

obtained forT 5, 75;, andz, without the deuterol state. Experi- ¢, es are the results obtained without the deut&tate. Experi-
mental data are from Ref30] (@), Ref.[31] (black triangleg and mental data are from Ref33] (®) and Ref[30] (0).
Ref.[32] (0).

a modification of the free two-nucleon propagator by addingr, (180°)~ — 2,  7,,(180°~217,,(180°~ — i (35)
the mean value of the residualNN interaction \/5
(Van(pyo, .. .)) the corresponding two-body contribution ) _ )
becomes proportional t6Vyy). Figure 2 illustrates the ef- This result is confirmed _exp_erlmental_ly far,>200 MeV.
fects which could come from this two-body mechanism with Note, that at lower energies in the region where the deuteron
(Vn) =40 MeV. Clearly, a more microscopic calculation is D-wave contribution is smallRiy>>R{%) tensor observ-
called for, here we want to merely point out that this mecha-ables at backward angles become proportional to the strength
nism can improve the situation at backward angles. of the deuteron D state. For example, T5,(180°)
~— 4RQIRE)

Another simplified scenario is given by neglecting the
) ) ) ) pion rescattering contributions and the deutebmvave. In

Here we begin our discussion with the results for the tenthjs case, theC amplitude vanishes, andi®=¢&® and
sor analyzing powers. In order to understand the genergk(s)— _p(S). pye to these identitieﬁj(zsl‘)zo and the other

structure of these observables and their behavior in diﬁere%bservables can be expressed solely via the elementsry
kinematical regions we first consider the size of the Observ'scattering amplitudes

ables at backward angles.=180°. It is instructive to also

B. Polarization observables

neglect the contribution of the deuteré®, component. As S 2\/§|AS| 2sirf e, s s
an example, Fig. 3 preseniy, 7, and 7, at T,=294 Tho = To =3/2T5 . (36)

. . ~ 12/Ay)%+8]Ag|%sir?e,’
MeV. We remind the reader that, according to Etg), the Aol ™+ 8| Ag|*sin" 0,
last two observables are linear combinationsTef, T>1,  As we have shown in the analysis of the differential cross
andTy,. _ sections, due to the dominance of {irevave contribution in

It follows from Eq. (30) that at¢,=180° the amplitudes N scattering,Ay(90°)~0. Therefore, in thed,=90° re-

B, C, and D vanish. Therefore, at backward angles the obgjon where the contribution from the deuterBrstate domi-
servablesTl,; andT,, vanish as well, and ,, reduces to the npates we have

following expression:

V2(1412-1€?) TS (90P) ~— \2/4, r&§><9oo>~2T<§><9o°>~—i. (37)
2 AFTEE 39 v

Figure 3 shows that these predictions can already reproduce
From Eq.(30) we can see that in the region where the radialthe experimental measurements fairly well.
integralR{Y= 2R the contribution from thed amplitude The next three figures, Fig. 4, Fig. 5, and Fig. 6, present
becomes very small. In this region we then have tensor observables dt,=134, 180, 219, and 256 MeV. In

T,o(180°) =
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pends entirely on the deuterdh state. In the case of the

0.0
751 Observable, which is mainly associated with;, the
N deuteron S state tends to fill in the minimum around
e =05 ! 0,.=90°. Note that this minimum appears because of the
134 MeV p-wave dominance of therN scattering amplitude. Finally,
-1.0 we see that the influence of pion rescattering effects on all
tensor analyzing powers is small.
Thus, we can obtain a good description for the tensor
e 05 80 Ve observables. This may be related to the fact that they are

determined mainly by the absolute values of the £ am-
plitudes. In contrast, the vector analyzing power,; de-
pends on the interference between these amplitudes. There-
fore, we expect this quantity to be more sensitive to details
of the model ingredients. In Fig. 7 we compare our results
with some old[33] and more recer{i32] measurements. We
obtain satisfactory agreement with these data only at
T,=100 MeV. At all other energies our results fail to repro-
duce the experimental data, especially figi>90°. The fail-
ure becomes more dramatic with increasing pion energy. In
our full calculationiT; goes through zero aroun,=180
03586 56 B0 0 T80 MeV and becqmgs negative a;,>9(_)°. We ha_lve found that '
0., (deq) pion rescattering is mainly responsible for this effect. Experi-
o mental measurements show quite the opposite behavior:
Above T_,.=250 MeV,iT; changes the sign in forward di-
rection producing a negative dip aroufd=70° and it as-
sumes large positive values fd#,.>90°. This behavior
could only be described in simple calculations without pion

general, their behavior follows the simple picture describedescatteringdashed curves Note that the influence of the

above. At backward angle$,, and T,, are almost com- deuteronD state _oniTll is small. Therefore, in the plane
pletely given by the3D; component of the deuteron wave Wave approximation the vector anal_yzmg power can be ex-
function. In forward direction(up to 6,=100°) the main Pressed via the elementamN scattering amplitudes

contribution comes from théS; component. Herd ,, and

256 MeV %

FIG. 5. The same as in Fig. 4 for the observabje=T,;+
(T oo+ T2/ /6). Experimental data are from Rdf33] (@) and
Ref. [30] (0).

T,, contain very little nuclear structure informatioh,; de-

2
|
o
n
T

[ 256 Mev

L3060

90 120 150 180
0, . (deg)

VBIM(ALAQ)sing,,

iTS=— ——.
n 12|Ao|%+ 8| Agl%sirfe,,

(39)

In this paper we have not attempted to present a detailed
comparison with the Faddeev calculations that have been
performed. A review of these results can be found in Ref.
[1]. We only mention that all conventional calculations en-
counter the difficulties in the description of the measured
vector analyzing power in thA-resonance region.

On a phenomenological level we have studied the effect
of modifying the spin-flip amplitudég (similar to A, at low

energiey
§ i

where|d) is the deuteron ground state. The phenomenologi-
cal term with a complex paramet8g would be associated
with second-order contributions. The sensitivity of the differ-
ential cross section and tensor analyzing powers to this cor-
rection is small since they are dominated by the coherent
contribution from the non-spin-flip amplitud&,. However,

it has a dramatic influence on the vector analyzing power.
Using this sensitivity we extracted tlBz parameter from the

—m_r
giaran i "
r

<d|ei<&fo7>»r72|d>

Asﬂ AS_ BS (39)

FIG. 6. The same as in Fig. 4 for the observableexperimental data farT,;. The result of our fit is shown in

T20= T oo+ T1o/ /6. Experimental data are from R¢B81] (®) and

Ref.[32] (0).

Fig. 7 by the dash-dotted curves. It is remarkable that the
energy behavior of the real and imaginary partsBaffol-



96

S. S. KAMALOV, L. TIATOR, AND C. BENNHOLD 55

0.6

F 100

MeV

1.0"~'|"~'|"'

By(fm?)

100 150 _ 200 250 300

MeV

FIG. 8. Energy dependence of the modification for the spin-flip
interaction[see Eq(39)] extracted from the vector analyzing power

0.2} 4 \ | R iTy,.
[ i \\ R ~
0'0."16‘4’M'\; R R IV. CONCLUSION
[ o ]
=0'4_‘ 1’ ] In this paper, we have studied the interaction of pions
= 021_ LN R with the deuteron in a multiple scattering approach carried

30 60 90 120 150 180

6, ,.(deg)

FIG. 7. Vector analyzing poweiT {; at (a) T,=100-164 MeV
and (b) T,=180-294 MeV. Solid and dashed curves are full and
PWIA calculations, respectively. Dash-dotted curve are the result
of our fit with phenomenological terr(89). Experimental data are

30

120 150 180

60 90
7} _m.(deg)

<,

from Ref.[33] (@) and Ref.[32] (0).

lows a typical resonance structusee Fig. 8 This might be
an indication for the presence of a residddll interaction.

out in momentum space. Our investigation covered the en-
ergy region of T =60-300 MeV, thus covering both the
low-energy and th@ region. Paris wave functions were em-
ployed to describe the deuteron. Phase-shift parameteriza-
tions were used for the elementaryN amplitudes, along
with a separable potential for the off-shell extrapolation. The
full spin and isospin dependence of th&l amplitudes were
taken into account.

Our framework of multiple scattering theory is clearly
less sophisticated than the many Faddeev calculations that
have studied pion deuteron scattering over the years. The
primary purpose of our investigation was to demonstrate that
the approach developed recently for the description of the
pion interaction withA=3 nuclei can be reliably applied in
the case of the deuteron. The results obtained are transparent
and can in the following be employed for the study of pion
photo- and electroproduction off deuterium.

We found that our approach gives a good description of
the differential cross sections and the tensor analyzing pow-
ers. At low pion energie§ ,<65 MeV the model fails to
reproduce experimental data at forward direction. In this ki-
nematical region the coupling with the breakup channels has
to be included. At higher energies and backward angles dis-
crepancies appear that may be related to two-body processes
involving heavy meson exchange. The tensor analyzing pow-
ers strongly depend on the deuteronstate and can be re-
produced satisfactorily. Clearly, the outstanding problem is
the explanation of the well-measured vector analyzing power
which has defied a number of attempts using more advanced
approaches than ours. While there may be a sensitivity re-

arding a residualA N-interaction care has to be taken to
clude it consistently.

In the following paper(paper 1), we will show that the
pion-deuteron interaction developed here is adequate to de-
scribe the final state interaction in coherent pion photopro-
duction from deuterium.

We point out that a similar situation occurs in pion scattering

on 3He for the target asymmetr, = J2iT; [34]. It seems
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APPENDIX

In this appendix, we give the complete expressions for the 8= — 7 V4m/3sind [AWsMg(Q) — 3 AgWoM 24 Q)],

Robson amplitudes4, . .. ,£ where the full contributions

from the deuteroD state have been taken into account.
First, we express the nuclear matrix elemektg, Q)

defined by Eqgs(25), (26) via the radial integrals of Eq27)

Mood Q) =2 V3/4m[R{Y(Q) +RY(Q)],
V2

(A1)

Mo2A Q) =4 V3/4m| R3(Q) — - (2)(Q)} (A2)

M101(Q) =2 \6/4m <°><Q)——R<°><Q>}, (A3)

M12:(Q) = —2 \6/4ar RB?(QH%R(Z’(Q) (A4)

A= VAmI3AWo| Mood Q) — \/—(1 3c0Y,)Mp2AQ) |,
(AS)
(A6)
C:_ %\/477/6(1+CO%W)A()WOMozz(Q), (A7)

= 3V4m/3sing [AsWsM (Q) + 3 AgWsM 5 Q) 1,
(A8)

E= \/477/3AOW0 MOO({Q) + %(1_3C0397)M022(Q)‘| .
(A9)

In Egs.(A6) and (A8) we introduced the matrix element

1
)=M )——=M ). (A10)
Mg(Q 101(Q \/— 121(Q
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