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We study theN 7N coupling, in the framework of a QCD-inspired confining Nambu-Jona-Lasinio model. A
simple relativistic confining and instantaneous quark model is reviewed. The Salpeter equationdgqthe
nucleon and theq boosted pion is solved. THg, ., andf,,,, couplings are calculated and they turn out to be
reasonably good. The sensibility ®f ., and f,,, to confinement, chiral symmetry breaking, and Lorentz
invariance is briefly discussefi50556-281®7)00902-3
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[. INTRODUCTION nihilating amplitudes which are not only at the origin of
hadronic attraction, the other prominent feature of hadronic
It is widely accepted that the low energy phenomenologyscattering and one which can be associated withperiph-
can be understood in terms of the mechanism of chiral symeral attraction, but also at the origin of other effects like
metry spontaneous breaking. In this sense any microscopitrong decay rates.
theory (including QCD which has a “correct” chiral limit The n-n peripheral attraction is a central issue at the
will fare equally well in describing low energy hadronic phe- crossroads between nuclear physics and hadronic physics.
nomena. There is, however, an extra ingredient, the typicabeveral attempts to describe this attraction in terms of Skyr-
hadronic size, which should also play an important role inmion Lagrangians have been made but the overall result re-
scattering. To see that this scale is important it is sufficient tanains inconclusive. In the Skyrmion picture, although being
consider exotic reactions lik-n scattering, for this scale quite adapted in describing-n repulsion in terms of topo-
controls the extent of overlap between the bare nucleon andgical numbers and despite containing the physics of the
the kaon. In turn this overlap, when taken together with colopion interaction, it is not simple to accommodate with the
saturation and a generic spin-spin interaction for the quarksyukawa picture ofn-n attraction in terms of mesonic ex-
accounts for the generic hadronic central repulsion, a featurghange and several mechanisms have been proposed in the
which is notorious in thex-n system[1] and one which can |iterature to provide for this attractidit]. On the other hand,
also be measured in the-n exotic s-wave phase shiftf2]. ~ the physics of the centrai-n repulsion lies outside the do-
Exotic reactions like<-n, where thes quark cannot annihi- - main of chiral perturbation theory and therefore we cannot
late with any of the quarks intervening in the reaction, can bg,ge this theory to describe timen scattering.
thought as an effectivi-n-K-n vertex wi_thout the exchange Any effective theory attempting to describe then at-
of s-channel resonances. Nor does it havehannel ex- raction must also be able to describe the physics of meson-
change of pions due tG parity and therefore constitutes an ,cleon systems among which we have the system. In
ideal reaction to probe the low energy content of both thepis respect the exoti&k-n scattering is much simpler to
nucleon and the kaon wave functions, ie., the ove_rlap kerne_gtudy than thern reaction which, being nonexotic, has now
On the other hand, the bare rho-pion mass difference igark-antiquark annihilating amplitudes which were absent
completely controlled by the extent of chiral symmetry i the exoticK-n. Also we are forced to consider the quasi-
breaking and this mechanism, when understood in terms Q&g|dstone nature of the pion which can be translated in the
quarks, amounts to a specific connection between the chirdlyheter language by the existence of two almost degenerate
condensaltti and the strength of the microscopic hyperfine INsmplitudes(the so-callecE-spin amplitudesto describe the
teractions- s [3-5]. It happens that the obtained strength of pion wave function in contrast with the kaon case which is
this s-s when considered in the exoti¢-n s-wave system well described by one Salpeter amplitude.
yields good phase shifts provided we have a small bare The Nambu-Jona-LasiniiNJL) effective Lagrangian7]
nucleon core. At this stage it should be understood that theith a nonlocal potentia[3,4,8—1] offers then a simple
size of bare hadrons and the extent of the chiral condensafeamework to describe in a unified wdin the present case
are not independent quantities but instead they are related with only one parameter for the potential strength besides the
each other. This is a consequence of the fact that in hadroniurrent quark massgesot only the bulk of hadronic spectros-
reactions the mechanism of spontaneous chiral symmetrgopy but also hadronic scattering phenomena among which
breaking is self-consistently exerted in two separate sectorgve have the coupled-n, the A-n, and theA-A scattering
in the Salpeter amplitudes of the intervening hadrons and iprocesses. It is clear that these processes, when seen from the
the modifications it introduces in the quark-quark effectivequark microscopic point of view embodied in the NJL La-
potentials. grangian, should correspond to different scattering processes
It is therefore interesting to see if it is possible to describedescribed by theameset of Lagrangian parameters. In this
in a unified way this central repulsidfinked with nonanni-  paper we will useN to represent either th& or the nucleon
hilating quark amplitudestogether with quark-antiquark an- in the cases where it does not matter and reserve the letter
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n for the cases which are specific to the nucleon alone. The A®s are the Gell-Mann color matrice&l is an arbi-
When dealing with potentials, Lorentz covariance be-trarily large constant. In Ref4] we have shown that physi-
comes a problem not unrelated to the problem of a relativiseal processes involving color singlets are independent of
tic description of bound states. Covariant generalizations ofvhereas any colored objects get an infinite mass when
potentials are available in the literatu#2,13 but at this U-—co,
stage we will ignore this issue which will be essential for Different and more complex interactions have also been
guantitative predictions but certainly not for the qualitative used in the literature. Within the Wilson loop context, results
picture which as we will show can be understood in terms ofor the effective microscopic interaction among heavy quarks
chiral symmetry and color confinement. are availablg16] but unfortunately these results cannot be
In nuclei the necessity of having a microscopic descrip-extended to the light quark sector due precisely to the prob-
tion of the nucleon in terms of quarks is already felt whenlem of consistency with chiral symmetry. Nevertheless, it is
considering Coulomb and magnetic form factors $eshell  customary to make the approximation of dividing the quark
andp-shell nuclei like®Li and %0 [14]. But the simple fact effective potential in two additive terms, one dominated by
that chiral symmetry is spontaneously broken through theéhe Coulomb force due to one-gluon exchange which is re-
appearance of quark-antiquark condensates and considerisgonsible for the short distance interaction among quarks and
not only that these new chiral vacua are in turn affected byne which plays an important role in the heavy quark spec-
the presence of quark sourcgke physics of chiral restora- troscopy, and another term—the confining term—which is
tion and enhancemenf15], but also that we might have responsible for the long distance force among quarks. In fact
excitations of these vacua along the “Mexican hat” valley of this approximation is also effectively used when extracting
a continuum of chiral states connected with the “true” chiral the heavy quark potentials from the Wilson loop.
vacuum, should allow us to use the formalism of this paper Although there is a great flexibility in the choice of the
to investigate and predict the existence of signatures of theseffective confining potential for the light quark mass sector,
states in the nuclear environment. For this we must have #is, however, not completely arbitrary. First it must not only
model accurate enough both in theN sector and in the comply with the requirements of the Ward identities but also
sector of hadron spectroscopy. This paper constitutes a firprovide finite results in the colorless sector while pushing the
step towards this goal. masses of the colored states to infinity. This is illustrated
The remainder of this paper is divided into four sectionswhen we consider a more general Dirac structure like
and three appendixes. Section Il is devoted to the introduc-
tion of the specific Nambu-Jonas-Lasinio effective model
that we will be using. The pion and nucleon Salpeter equa-
tions will be studied in Sec. lll. The overlap diagrams for the
coup]ingsfﬂNN are presented in Sec. IV. Finally in Sec. VI +aytys® yﬂ75+iguv® T 3
we discuss the results. We have three appendixes. In Appen- 2
dix A some diagrams contributing to tHey are presented
and discussed in detail. The color overlap results are given i
Appendix B. In Appendix C we discuss, both for the nucleon[s]
and the delta, the relevant flavor-spin overlaps.

V=V|(x—-y)|s 1®81+pys®@ystvy*®7y,

A’hen the axial and vectorial Ward identities would have con-
strained the parametessp, a, v, andt to obey the equations

s+p+6t=0, s—p=0. (4

Il. SIMPLE CONFINING QUARK MODEL

Equation(4) implies that the scalars], pseudo-scalarp),
WITH CHIRAL SYMMETRY BREAKING

and tensor t) interactions do not contribute either to chiral
Our quarks are Dirac fermions that interact with a simpleSymmetry breaking or to the structure of the ground state

effective two-body interactiofi8] such as to simulate color hadrons. Finally we must also have

confinement together with the introduction of a scale respon- 4v—da=—2v—2a, a=0, )

sible for the actual particle sizes,

in order to have both the Goldstone pion and the other color
3 singlets infrared independent. As for the shape of the poten-
H:f d*X[Ho(x) +Hi(X)], (D) tial, the linear potential has also been extensively studied.
However, it seems to yield a much too large hadronic radius.
The potential of Egqs(1) and (2) has been used to study
the charmonium spectroscopy with a potential strength of
Ky,=290 MeV. Although the theoretical results did not differ
+ . too much from the experimental ones, it was shown in Ref.
Ho(X)=¢'(x)(mgB—ia- V)¢ (x), [5] in the context of a more general potential that we will
still need a Coulomb force if we want to get a correct value
1 — A% — % for the R parametefwhich is related with the mass splittings
Hi(x)= Ef dyV,(x—y) Y(X)— )’Olﬁ(x)lﬂ()/))’o?lﬂ()’), of the 3P, triplet). And this happened despite the fact that,
individually, the theoretically obtained masses were quite
good when compared with the experimental ones. It turns out
2 that the charmonium spectroscdpy obtained with the sim-
pler potential of Eq(2) does not fare too badly either, when

whereH,, is the Hamiltonian density of the Dirac field, and
H, an effective interaction term,

3 3 2
Vi(x—y) == 7 [Ko(x=y)* = U]5(tx—1y).
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we consider individual masses, so that although no one dis-

putes the fact that for short distances a Coulomb force is

needed, we decide@lso for the sake of mathematical sim- ) -0

plicity) to discard this force as a first step towards a quanti- sin ¢ ()

tative description of the pion-nucleon coupling. o8
Therefore the model embodied in Eq4) and (2) not

only seems to sufficiently meet all the above general require-

ments but also yields reasonable results besides allowing 04

relatively simple calculations. A covariant version of this

model has been developed in Rgf3] and so far it has only 02

been applied to the study of the pion and kaon. For the

simple harmonic confining potential the authors obtained a 00

substantial improvement on the valuefqgf although still far Tk

from a quantitative agreement. Coupled channels should

constitute another sizable correction not onlyftobut also FIG. 1. The chiral angle as a function kf

to the hadronic decay widths and masses. Even without co-

variance we have show2] that coupled channels provide a The Feynman rules for the spin representation are given in

very large correction td ., thereby substantiating the hope Fig. 2. We have, for the vertices,

that covariance plus coupled channels might bring the

close to its experimental value. The present calculation COﬂ-u*sl(kl)usz(kZ)z %{[,/1+ S11+S2

stitutes a preliminary step in the microscopic and Lorentz-

invariant calculation of théy .y . In Eq.(2), the field opera- +1-S1y1-S2(k1- I22)]551,52}
tor ¢(x) is defined as . aA A
+J1-S1y1—-S2(io-k1Xk2)s e},

[ d% b aaipe
w<x>—fm[us<p>b<p>+vs<p>d( PIETS O )= ([ TTELITS

0.6

b andd are, respectively, the quark and antiquark Fock space + mm(m_kz)w 1o}
operators and they carry indices for flavor, spin, and color. Shs
Summation over repeated indices is assumed. The spinors +‘/1_51‘/1_32(“}.|21><|22);*152},
u andv, together with the Fock space operators, differ from
those used in free Dirac theory and are given by ull(kl)vsz(k2)= _ %{[mmkl
1 . L
ugp)=-JE{[la-an¢(pxﬁm+{1——gn¢(pnlmp-a}ug, —V1+S1V1-S2k2](io07)s1s2},
L vl (kug(k2)= 3 {[V1—S1y1+S2k1
_ ; U2_11_ i 124 >y, 0 . .
vy(p)= \/E{[1+Sln¢(p)] [1-sine(p)]**p- ajvs. — JTFSTVI=S2k2] (i 60p) o)
(7) (10)

In Eq. (7), u andv? are spinor eigenvectors of, corre-

sponding to eigenvalues 1. The functione(p) is called the S.l and S2 standﬁ, respectively, - for -ﬂqa(kl-)] and
chiral angle and indexes the different Fock spaces compatSiN¢(k2)]. As usualo represents the Pauli matrices vector
ible with the Pauli principle. This chiral angle has been stud-c={c1,0,,03}. The subscriptsl ands2 stand for the spin
ied in Refs.[8,9] and is a solution of thenass gap equation projections of the spinors and it is not hard to see that they
can be put in a one-to-one relationship with the matrix ele-
(k%")" =2k’sin(¢) —sin(2¢), () ments ofigo, or, for that matter, with any other such vector.

. . . o . _ : Notice that the last two vertices which represegnt] pair
wh_ere_k IS a dlme_n5|0nless quantlty |n_un|ts Ko=1. _Th|s creation or annihilationthe last vertex are homogeneous
unit will be used in the remainder of this paper. In Fig. 1 wef i £ This § | il il 2 derivati
plot sie(K)] as a function ok. unctions ofo. This fact alone will entail a derivative cou-

Once this mass gap equation is solved, the quark angling of the typeo-P for the N#(P)N coupling. For the
antiquark propagators can be diagonalized and it turns outropagators we have
that it is simpler to work in the spin representation rather
than in the Dirac representation. As will be clear this repre-
sentation will turn out to be the simplest representation if we
want to study thern, or wA couplings. In the spin represen-
tation we have, for the quark energ(k), Equipped with these rules we can now proceed to construct
" 2 the Salpeter amplitudes for arbitrary hadronic processes. Be-
E(K) = kcog @) — ¢'" cos(e) ) fore concluding this section we would like to make a few
2 k? remarks concerning some aspects of the physical picture em-

Sq(k,w)=S5tk,w)= (11)

i
W—E(K) +ie’
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Vertices Propagators
q TU q + ﬁ ﬁ 1
s',k" H 'sf, kf ::)u(sfs kf-) U(si, ki) t,: w = w-E(kHic
i

+
=V (Spk) u (s, k) —

s.k
T . .
FIG. 2. Feynman rules in the spin representa-
tion
q 70 + .
= (s, k) V(s k)
s Ky
s, k.
— 1
q
q Tu q +
———— ==V (spky) V(S Ky )
s, k. ' s,k
PP T

bodied in the Hamiltoniar2) and the Valatin-Bogoliubov states(which are quite different from ordinary pure bound
transformed Dirac spinors of E(Z). In many respects itis a state$ as normal bound sates of quasiquarks with the infor-
picture similar to the BCS theory of superconductivity. For mation on the details of the physical vacuum stored inside
details on how to construct a BCS-like vacuum as a cohererthe Dirac spinors in the form of ahiral angle The Dirac
superposition of P, quark-antiquark pairs see Rg8]. Here  structure of the quark spinors does not change this picture in
as an illustrative example let us consider the quasiquark creany essential way provided we use Bethe-Salpeter equations
ation operatob’(p) with definite quantum numbers in spin, to study these quasiquarks bound states. For simplicity, the
flavor, and color. As in BCS theory, it represents in the usuaivord “quark’” will be used in the remainder of this paper to
Fock spacewith a fermion empty vacuujna superposition mean a quasiquark.

of a quark with those quantum numbers with a coherent state

ma}de of “Cooper-like” 3Py, colpr §ing|et, qqark-antiquark IIl. PION, NUCLEON, AND DELTA SALPETER

pairs. And because of the Pauli principle, this coherent state EQUATIONS

is made of all the possibléP, quark pairs with the single

exception of tha’P pair which would contain a quark with The hadronic Salpeter equations can be thought as the
the same quantum numbers. In the same manner a bouggnerating equations for the Dyson series of the correspon-
state(a meson or a baryomill be a superposition of quarks dent hadronicT matrix (see Ref[10]). In Fig. 3 we depict
(and/or antiquarkswith 3P, coherent states built in such a this correspondence for one single mespg bound state.
way as to satisfy the Pauli exclusion principle. The useful-The associated Salpeter equation for an arbitrary meson
ness of the Valatin-Bogoliubov transformation stems from® = (®*,®~) with four-momentum E,P) is given by two

the fact that it allows us to “forget” the details of the physi- coupled equations, one for the positive-energy component of
cal vacuum and therefore to treat complicated quark bounthe Salpeter amplitudé *,

+ d3k’ dw , PE , PE _ ’
(I)sl,s2(k_P): (ZT)ASq k +§'E+W Sq -k +§,§—W [—iV(k—Kk")]

+ P ’ P + ' P P + ’
Xy | Ug k+§ ugs| k +§ —Ugg k ) Vg2 k—z (1)53’34“( -P)
+ P ’ P + ’ P P - ’
—| Usy k+§ vsa| K T3] || Uss k T 5|Vs2 k_i Pzea(k'=P) 1, (12

and a similar equation for the negative-energy compodent
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FIG. 3. Dyson series fog-q bound states.

_ d3k’dw , PE , PE _ ,
D o(k,P) = qu K'+ 5,5 +W S5t =K'+ 5,5 —w|[=iV(k—k")]
+ ! P + P ’ P — 7
X uS3 k +§ Ugp k+§ —Ug k_i Usg k _z (DSS,S4(k ,P)
—lvg k’—E k+E g k—E k’—E DLuk'—P 13
Usq 2 Usy 2 Us2 2 Us3 2 53,34( ) . ( )

In what follows we denote byb(P) the energy-spin doublet® *(k,P),®~(k,— P)), therefore omitting theg-q internal
momentummk and the spins. We will also denote the Taylor serieB of a given functiorF(k,P) by 2F, instead of the usual
(1) =f,-[P]", with [P]" being a shorthand notation for a tensorArof degreen.

Notice that in Eqs(12) and(13) we can integrate out the quark and antiquark propagators,

J dWS K +E
2o W

+E i
Si_k'T_W):iE—Eq(k)—Ea(k)' (19

therefore allowing us to rewrite Egél2) and (13) as

®*(k,P) B B 1 0
[H(klp)_EmeSOI(P)I] @—(k,_P) - 1 - 0 _1 1 (15)
wereH(k,P) is a 2X2 matrix,
H**(k,P) H" (k,P)
HKPY=l kP H— kP | (16

which depends in the center-of-mass momentBmThe bare masses of mesons are just the eigenvdtyesM of
H(0)=H,. We have, foH(": )(+:7)(k, P),

(Gga- Tqid) +PLl—p2+hirt,

4(1—51)) 1 (1-S1)(1-S2)

’ 2 — .

1
- — -
H™"=H E(pl)-i—4 012022
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HY""=H T=- "(pl )2.1,.2 '(p2 )2 (pl p2)2 1 o' (p1)+ Cl C2 C1C2
X(‘;qkr 5qkz)+pl—>p2+ h.r.t., an

with pl=k+ P/2 andp2= —k+ P/2 being, respectively, the momenta of the quark and the antiquarkR #mel momentum of
the pion. “h.r.t.” stands for higher rank tensors which will not contribute for the pion wave functionSndepresents

sin¢(pl)], C2 represents cpg(p2)], and so onEqkl and &qkz stand for two Pauli matrices vectors acting, respectively, in
quark 1 and antiquark 2. In the case of the Goldstone pion we haveHfpr Eq]| &),

11} [1 0

@'? cogg)

FREa

10

o 1 =0, (18)

1 1] o -1

v+(k)}

d2
[<_W+2E(k)> v (K)

where v*=k®*. In the limit of vanishing current quark
masses we have thdtI ®,=0. In this limit we also have H1+7:HI+:E
thatM =0 and thatdH,®,=0.

Therefore in order to find the energy and the norm of the

c\2_ . . .
(p,+F) P'kX(O'qleU';kz),

Goldstone pion to ordeP, it turns out to be necessary to H2++=H§’=E d*H t P2 (i=1,2.3
expand Eq(15) to second order in the pion momentuPn (dPy)
We obtain
d?H* -
(Ho—Egl)®,=0, Hi =H, =, @py? PZ (i=1,23. (23

(Ho—Eoh)®;+(H;—E11) D=0,

As usualS stands for sifp(k) ] andC for cog¢(k)]. k rep-
' resents theg-q relative momentum ang the momentum o
(19 hey-q relati B th f
the pion. Finally we solve the above equations to obtain the

Then we can obtain both the pion ener§y, correct up to  boosted pion Salpeter wave function, correct up to first order

(Ho—Egl)®,+2(H—Eql)® 1+ (H,—ELl)Py=0

first order inP, in P,
Ty i _ .

PolHa= B )Pt BoHaPo=0, (20 O = NHSH Eyfy +i91P- kX @) X o Seaor
and the pion Salpeter wave function normalization which is
given by O =N"Y=S+E;f1—i91P-KX &) X »Seolor

N=Dl1 D+ DI, (21)
3

To obtain the desired pion Salpeter amplitude, we need to N2:4E1f d_kssflelaZ,
apply the above general formalism for our particular model. (2

Using the Feynman rules defined in Sec. Il, we are able to
obtain the matrix elements of E¢L6): ZP\/J K PHTT PR
“a V) ( (

S
1-S| 1(1-95)?2 2m)3°
k2] 3 K

@p)2 (apyz) =123
o214 (24)

1
Hg "=H, =2E- A-3

In Eq. (24), x, and S describe, respectively, the spin-
flavor pion wave function given in EqC5) and the usual
mesonic color singlet wave function. It is important to notice
that the pion normalization goes &$E;). This fact will be

Ta Ty hrt, (22 crucial to retrieve the well-known one-pion exchange poten-
tial (OPEB in the static approximation—see E@3). The
[1 (1-9)2 constanta equals 0.1K,.

et KX (01X o) It is convenient to introduce the notatigh™ =N"1($q

- >t

o 7+_1 qD/2 CZ
fo THo T3l e

HI"=H; =

+ ¢7) to be able to separate the contributions of the pion at
Co' 1-S\ . . . - rest and its associated boost correction toNheN coupling.
T2z |PKlik-(0ga=oqge) ] From Eq.(24) we see that in the rest frame the pion Salpeter
space-wave functiongy is simply given by the sinf)
whereasp,=M(E;f,+ig,P-kxZ). f; andg; are the solu-
tions of the differential equations

1
"2
1-S
k2

P-i(0ga— quz)ka
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0.1 of negligible importance for the nucleon ground state in
1K) o08 sharp contrast with the pion caseor does it have couplings
to negative-energy quark-positive energy diquark or
positive-energy quark-negative energy diquark channels due
to color confinement. We also make the approximation that

0.06

0.04

0.02 the baryon Salpeter wave function does not change for small
00 boosts due to its heavy mass. In Fig. 5 we showNhasso-
00 ciated Salpeter equation. In what follows we will uSeto

represent either the nucleon or the delta. When the need

oo arises to distinguish the nucleon from the delta we will re-
006 serven to denote the nucleon. The Salpeter equation is
-0.08 then
g1(k)
-0.1
0.0 0.5 1.0 1.5 20 2.5 3.0 3.5 4.0 " [M _3E(pl)]Xslszsslﬂ(pl.pZ,p?’)
FIG. 4. Thef, and g; amplitudes contributing to the boosted
pion. 1 Ane ampi Hng :_Zf d*qV(q)
42 X[ud (pL)us,(p1—q)ul (p2)us,(p2+0)]
[— d_kz_‘_ZkC]fl:kS,
X Xsy5,5,¥(P1—0,p2+q,p3), (27)
2 2
_ d_z +2kC+ g 01 with p1+p2+p3=0. This equation can be solved variation-
dk k a”y,
i
=5,3[2KCo' + (287~ 25— k¢ ?~ 4kCy")]. 8al (Na|M—H|N,)]=0, (28)

(25) whereH is a shorthand notation representing all the terms of
Eq. (27) except for the eigenvalué, andys s,s, is given in
The solutionsf; andg, of Eq. (25 are given in Fig. 4. Egs.(C1) and(C4) in Appendix C.

This result is the same as that obtained in R&f, provided For the momentum representation of the nucleon wave
we perform the change function(p1,p2,p3|N,) we used
, sif (k)] e~ (PP +AD)2a?
gl—_l(fz_ —2 . (26) <p1,p2,p3|N>=T’
Surprisingly the baryon Salpeter equation turns out to be
simpler than the corresponding pion Salpeter equation. This _ pl-p2
happens because in the baryon case, or indeed any other P= 2

baryon, the associated Dyson series for the corresporgling
matrix with an instantaneous interaction does not have

negative-energy channelwhich would correspond to an an- A= M

, 29
tibaryon component of the baryon propagator and therefore J6 (29
A%
ql T q]
N a, — N : a, +
q3 qa

FIG. 5. The salpeter equation for the nucleon
and theA.
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7 [+, T\\ (=Pl P=w—E." (32

q v et q a— v —t q
N @ aN N a an We have that in this approximatkﬁw: E,, and because in
the OPEP we have twdwN vertices, we get an overall
q q q . . . .
a ﬁqﬂ[tpl a a 7[=P] energy_dependence =7} wr_nch Is in accordance with the
OPEP in the static approximatigt 7],
e ! Tv ) f 2
v H - PN -
N @ aN N N VEZ—( r’\:]N (Pz—mi) L1 o(ong - P) (o2 P),
q q 9 b (33)

7[-.P]

q
. g AN where&Nl represents the vector of Pauli matrices acting in
a q L]
v

nucleonN1 as a whole. The same appliesdq,.
N (ann' 7)((;“- P) 7, and (Jn,TA~7)(§- P)'T' are examples of
a a a  la the overlapO=(N|H,|(¢o+ #1)N), whereH, is the Hamil-
tonian of Eq.(1). The only contribution ta? is provided by
the term ofH, with a singleg-q annihilation—see Fig. 6.
We can expand up to first order in the pion momentum to

FIG. 6. Diagrams contributing to thidN coupling.

obtain
with p and\ the appropriate Jacobian variables.the in- I
verse baryon radius, turns out to be the same for the nucleon O=(N|hg+hy|(po+ ¢1)N),
and the delta. The total, A wave function¥ is then given
by O0=0,+0y,
W= (p1,p2,p3|N,){flavofN){colofN), (30 Oa=(N|hy|moN),  Op=(N|ho|m1N), (34)

. _ whereh stands foH, . Notice that(N|hy|poN)=0. That is,
where(flavoriN) stands for the appropriated spin-flavor con- 4t rest the pion decouples from the nucleons. The reason for
ten; of lelther the Eucleonlor the cljle[lsdee IIEqS((I:l)_ gc"')] _ this is quite simple. From Eq10) the g-q annihilation ver-
and(coloriN) for the usual normalized color Slater determi- \ . the forme- k, k being one of the momenta flowing
nant. The spin representation is then the natural representleh— either the quark or the antiquark leg. In turn these mo-

tion for the reduction of the Salpeter equation to thementa are sums of internal loop momekta: {k,k’,k"} and

Schrodinger-like equatiof27). the external momenta which in this case turns out tdPbe

The case of the linear confining potential has also bee?he ion momentum. Then upon intearation in the internal
studied in Ref[2] and for completeness we simply quote the P ' P 9

final conclusions: We obtained for the same nucleon barg'omenta loops all the terms which are of the type' will
mass a larger nucleon core in the case of the linear confinindisappear while the terms homogeneoug i are the only
potential than in the harmonic case. This result was themsurviving terms. In the appendixes we deri¢® both for
shown to be difficult to accommodate with theN exotic  nzn andnwA. Because of the smallness@f, O, turns out
scattering which seems to favor a small nucleon core whiciio be too small and it will be omitted henceforth. In Appen-
is precisely what happened with the harmonic force. dix A it is shown that in the case ofrA we have an extra
contribution forO, which is absent in the case ofrn. We
will denote it by O'. It will also turn out to be quite small.
We obtained the following values for the adimensional

When studying meson-baryon scattering we need to corguantitiesOs and Os:
sider nonexotic scattering amplitudes which are induced by

IV. OVERLAP DIAGRAM FOR THE PION COUPLING

quark-antiquark annihilatiorfor creation amplitudes. The O1s=0.54, 0;=0, (39
Feynman diagrams contributing to thern and A wn verti- , ) ) .
ces are given in Fig. 6. We need to evaluate where Oz and O;4 stand for© and O’ amplitudes with the

spin-flavor terms amputated—see E@513) and (A15).

m,. -
fNﬂ—N:?ﬂ-UN'n—N'T (31 V. COMPARISON WITH EXPERIMENT

AND DISCUSSION

The experimental values fdr, ., and f,.A are, respec-

whereuvy,n and7 are defined in Appendixes [Eq. (C16)] tively

and A[Egs.(A13) and(A15)], respectively. The constaat

pertaining to the pion Salpeter normalization was introduced frmm=1.0, fo.a=2.1. (36)
in Eq. (24). It is important to notice that the remainder of the

pion normalization\, VE;, is absorbed in the pion propa-  We can use the results of E¢31) to write the set of
gator equations
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faomn 5 Oss pion momentaP which is present in the hadron-pion cou-

m, 9 a'’ pling - P and which forces @-wave pion-hadron outgoing
relative wave function can be made to have originated in an
¢ 220 o “incoming” cluster P—waveq-q__bound state. Parity conser-
nmd _ 2V Mis | pfs (37)  Vvation will force it to be a3P, g-q bound state. Its amplitude
mz 3 a a of occurrence, in the literature denoted pycan afterward
be fitted to data. This is clearly seen if we use the graphical
rules[19,2] to evaluate these overlap kernels. Of course with
such a minimal model one loses any connection with spec-
troscopy(hadron bare masseand the physics of chiral sym-
metry breakingSySB.
The N-N scattering constitutes another area where the
present model could and should be tested. At this stage we
If we use the value oKo=247 MeV of Ref[8] we obtain  can already anticipate that the present model will again pro-

Using the values of Eq35) for O, O', anda we are able
to get, forf,, ., andf, A,

m7T m’IT
frm=19-", f, \=3.2-". (38)
Ko Ko

the theoretical results duce results which can be simulated by the QPCM. To see
this it is sufficient to notice that from the point of view of

foan=21.0, f,,A=1.8. (39  overlap kernels and as a qualitative guide we can lump to-
gether either the two spectatgror the two spectator quarks

These results are surprisingly good. as an effective extended quark or antiquark, respectively, and

We have seen that in order to explain then exotic  therefore understand tHe-N scattering as a modifieN-
phase shifts we needed a smaller bare nucleon andotherEfoééattering. The present calculation will therefore constitute a
a largerKy=400 MeV. With thisK, we would get 60% of rerequisite to the calculation of the more complicatedl

the values just obtained. Hc_)wever, we il hav_e tq conside cattering. The spectroscopy and scattering reactions for
the effects of Lorentz covariance and the contribution of thqﬂigher angular momenta will constitute another class of

p:c?n tdou% arount(_i t?e bare nucleon. tThe_stltJﬁIy of these tw tringent tests notably in what concerns the old problem of
erfects will consututeé a necessary Step In this program of 5, ger \Waals forces which we feel can only be realistically

obtaining a quantitative microscopic description of low en'compared with experiment in the framework of covariant

ergy hadronic phenomena. Nevertheless, it is already "8t provement of this modeiretardatio
markable that such a simple modelith only one scal&K, P e n

apart from the quark massgeshould yield resultfranging _
from hadronic spectroscopy to the coupling of pions to APPENDIX A: THE EVALUATION OF O, AN EXAMPLE
nucleon$ which are not obviously wrong. This is more so if  Fjrst a note on notation. We denote by £); aN-7-N

we take in consideration that this model is able to unify i”diagram for positive pioiE energy with a potential insertion

the same description, essentially depending in the chirglanveen quarks and j. For the negativéE-energy pion,
angleg, the (exotic) hadronic repulsion like, for instance, the NN will be denoted by Klm);;. In this appendix we wil

nucleon-nucleon repulsive cofehich is of the same nature . qotail the diagram$\);; and (N7)1;. The

B e e PP . oier ciagrams can b evluated n 3 smia ashion and i
S . X derivation will be omitted. The Fourier transform of the po-

derstand why the “naive”*P, model [quark pair creation tential K3r2 is given b

model (QPCM) [18]] for strong decays should perform so en 0 9 y

well. It is the minimal model which contains overlap kernels

and satisfies parity conservation. In this sense any micro- V(k)=—(21-r)3K§Ak5(k). (A1)

scopic model(like the present onewhich produces a pion

derivative coupling can be simulated by the QPCM. TheThe quark momenta we used are

P P
incoming Nuc.pl=k’+k”—§, p2=—k’+k"—§, p3=-2k",

P P
outgoing Nuc.q1=k’+k”+§, q2=—k’+k”+§, g3=—2k",

: P P
pion p4=—k—k"+ X g4=k+k"+ 5

(A2)
We also discard the terms dependingginbecause they are negligible and therefore will not affect the final result.
Integrating by parts, we can get rid of tldan the potentialA1) and we have only to consider the effect of the Laplacian
and gradients on the vertices. We have the following cases to consider:
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dk3dk13dku3
011 (NN W({Uss(p‘l)Ak'[Usl(pl)]"'2053(p4)Vk'[U51(p1)] Vit s1rs10

+2{v (P4 Vi [ug (PL) 1} - {V e [ul . (a1) Jugy (a4)}) X 83(k—k")[N(q1,02,03) 'ON(p1,p2,p3)], (A3)
with

1 2¢'(pl) 2cose(pl)]|. ~
vi(PA AU (PL) ]k =5 [ "(pl)+ <Pp1 + p(iz } s3s1°PL,

cogp(pl)] .,
1

s3sl:

%}(25351 1){)1_

1
le(p4)Vk’[usl(p1)]|kk’:§[¢,(p1)+

i 1-siMe(ql)] -
Vielug (D) sy (@) eie = = 5 o7 (Tewrsa X 1), (A4)

N(pl,p2,p3) is given by Egs(29) and(30) and ¢ stands for the pion wave function of E@4).
The overlapOy; is given by

dk3dk13dk//3
On=(\-Mn W[({u%(p‘l’)Ak’[usl(pl)]+2us3(p4)vk’[usl(p1 Vi ds1rsay

+2{uly(pA) Vi [Ug(PL) 1} - {V o [ul,.(q1) Tvsy (a4)}) X 83(k—k")[N(q1,02,03) 'ON(p1,p2,p3)]. (A5)

For the Laplacian it is not hard to see that the contributions\af);;+ (N);,+ (N7)5 add to zero. The same happens
for the negative-energy pion amplitude. This is due to the fact that

for any color singlet nucleoN(p1,p2,p3). We also have with all generality that the contributionshfr) ., 7~ are identical
to the contributions ofI(Iw)[ng'_]. This is a consequence of the antisymmetric properties of the incoming and outcoming

nucleon wave functions.
Using the results of Appendix B and after summing in the color degree of freedom we have the following

Term(@):{v3(p1) V[ug(p1)1}- V(NG N),

termg+1:  (Nw) 3+ (Na) o+ (N7) g3

1)1 cog ¢(pl)] ~ code(pl)].,
_ﬁ)z (,D’(p1)+_ (;1 ](25351 )pl_:—l s3sl” [V out)q) Nln]
termg—1:  (Nw);+(N7) L+ (N7) 5
111 coge(qD)]| ~ oo~ Code(ql)]
X(_ﬁ>§ (P,(ql)'*’(;—ll(Esl'sl”'ql)ql_(g—l sl’sl” [Noutq) VNln]

Term(b):2{v 3(p1) Vio[us(P) 1} - {Vio[Usr(p') Jusy (PD)},

termg+]: (Nm)j;

i 1-sine(ql)]
2 gl

—1. o 1
[ ¢'(p 1)+%(Es3slxasl”sl’)' 7p1><(p1><q1) —M

X2| — pl

L A 1
x(isi?»slxo-sl”sl’)‘ql} ( - ﬁ) .
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termg—1: (Nm);

i 1-sime(pD]][ 1 cog o(ql)] . 1. . . ] cofe(ql)]
x2| 45— {5«p'<q1>+z—f<isl~sy><crsgsl>[7q1><<q1><p1> S
- ~ 1
X (isl”sl’ X Os3s1) - pl] ( - ﬁ) . (A7)

In term(b) the contributions of i), and (n) 3 are zero. This is not so in the case of theA coupling where we will have
an extra contribution coming from the sum of the diagrais);, and (N);, which survive the cancellation mechanism of
Eq. (A6) and which will contribute along the same lines as before to a new ovéHap

term(b’ +),
1 (o1 +Cl N S (B1X B2 ClA2 1-S2| . - 1
—5|e'(p ) Py plX(plXxp )_Hp 22 (IogaX o) _ﬁ ,
term(b’—),
10 1 JrCl o0 S (G1XE2 ClA2 1-S2) . - 1 A8
—5| #'(al) a1 /9 x(glxq )—q—lq 202 (I T gaX Tgro) ~ &) (A8)

whereC1 andS2 stand, respectively, for clag(pl)] and sinf(p2)) for term(b’+) and cofe(gl)] and sife(g2)] for term
(b'—). In expressior{A8) as well as in the remainder of this papey, represents the Pauli matrix operator acting in quark
1. A similar notation is used for quark 2.

In order to obtain the results of Eqe\7) and (A8) we have made use of the identity

N Ao ~ 1 - N A A
(22331'p)(p'[a'sl”sl'xqp:_E(izaslxo'sl”sl"(px[pxq])a (A9)

which is valid both for the nucleon and delta cases because the matrix elements of the tensor operator
(N|To(01,07)- To(p1,p2)|nN) are zero.
Finally we have also to consider the spin wave function of the pibﬂz]sl,,53/\/§, and using the simple relations

-

(i0p)2* =0,
S(ioy)=—a, (A10)
we are able to write
terma+),
[cp%pl)&'VNm <p'<p1>+w)&'ﬁlx<ﬁlxvmuo]<I>;Nm.
terma—),
Nout@;{qo'(ql)&-vr\louﬁ ¢'<q1>+%(1ql)])&a1x<&1whlm>],
term(b+),
1-siM¢(ql) cogo(pl)] . . cog o(pl)]\ - - ~ oa .
" ](2 L5 a1+ o o0+ P 5 e rxan [N N,
termb—),
1-simM ¢o(pl) cog o(gl)] - - cog o(gql)]) - - "~ oA N
- ;{p‘plp ][2 i‘glq L pa cp'(MH%)mqlxmlxm)}Nou@st, (A11)
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where® represents the pion Salpeter amplitude amputated

of its spin wave function factor and we have omitted the
factor (—1/y/3) of the color overlap.
At this stage it is convenient to introduce the vector

JN_W_N, summarizing the spin-flavor overlap both for the
nwn andnwA cases obtained in Appendix [Eg. (C16)],

>

Unmzn= %{ g 10}1

K

The factor of3 stands for the spin-flavor overall normaliza-
tion of the pion wave function. The next step is to expand
O and O’ up to first order inP and to integrate both ik
and in the solid angle df. It is also convenient to introduce
the vector7={0s,0js}, which correspond to the generic
NN overlaps with both the spin flavor ara?d,- P;-N (for the
nmn case or S-PT (for the nwA case factors amputated.
We have

- 1

UnmA= E (AlZ)

JK2dK[Csin @) +Gle~ 32

Ofs_ \/_ szd ke~ 3k2/2a2 !
o] _2[¢' _Ksinle) 3sin(g)cose)—Ecode)
| a?|6 2 6k
[1—sin(¢)]e’
I
_[_2 |k A13
g9=1—22{ 3 9 (AL3)
and we use the approximate relations
co 1-sin
cos ® —2.05 2 (A14)

k K

+
valid for the chiral angle solution of the mass gap equation(I\“T)12

(8) depicted in Fig. 1 to obtain

k2dk{Dsin o(k)]}e~32e°
f k2d ke 3k2/2a2

, J
Ofs: \/§

14

2\2

so that the final overlap is given by

[1 5k2

+ —9kZ/4a2
2 4a?

(A15)

m,. -
—Unan T

- (A16)

fnan=

APPENDIX B: COLOR OVERLAPS

When performing color calculations we have to attend to

the following rules:

E PION DERIVATIVE ... 845

(I) one quark,

N| >
w|

N
2
(1) one nucleonN(1,2,3,

-

J

A

2|

2

N

2

2
3

ij=1,2,3

(N1+ Mo+ >\3)2=0H(

(1) one mesonMqg—q,

Ag Mg
2 2

a_

(IV) quark\ quark vertex,
CRYPECRCRYHEEICRYHIPE

(V) quark exchange,

(N(1,23M(45)|P4N(1,2,3M(45))=1%, (BY)
so that we have
AR 1
<N|(——)§§|N>—§,
AN
<M|<—4)§§|M>=1 (B2)

In the table below we summarize the color matrix elements
for the N-77-N coupling O.

Diagram _§ f ﬁ Diagram _§ l ﬁ
422 422
(N7 -t (N7)3; -1
V3 V3
L (N1, L
23 2.3
(Nm) 13 L (N7) 13 L
2.3 23

APPENDIX C: SPIN AND FLAVOR OVERLAPS

The spin-flavor content of the nucleon and delta wave
functions is given by

1
|n> = E | DspianIavor+ I:spianIavor>- (ox))

It is sufficient to workout the spin overlaps being the flavor
overlaps identical. The spib wave functions are given by

InTy=31 1,2-H—10,13),
Inly=—VE1-141)+ Vi1 02—,

(C2
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where the first two numbers of each ket represent the spin <BT|qu]10qk2.|A>: —2bga05ij +2ib,yTay €ijk

content of the quark pair 1-2. Similarly we have, for the ) K

wave functions, —2iaghy, e — 2b1iTa1j—2blea1i
+2b,-a,6;, C10
n1)=10 0.3 $), 18 (€19

We have to consider three cases of tensors,
n1)=10 0,3~ 3). (c3) fe - e
(B0 g1 oqral Ay = —6bgag+2b;-ay,
For the delta we have
<BT|i(;qk1>< 5’qk2|A>: —4 (bgél_aoﬁb- (C1y

AY=]28)i®|3f . (C9
=12 Jspi |2t Then it is simple to evaluate, for instance,

The pion spin-flavor wave function is given by

- 1 -1.
i 1 <Fs|0'qk1|Ds/>:2E %Us,s’v
Xﬂ':[_UZ] ®[_0'3,0'+] , (CH)
\/E spin \/E flavor
N —1-1_ .
where o; stands for the appropriate Pauli matrix. (Dglogal D)= —2'% %( T k1 X Oqk2)
o+.=(o1xiag,)/2. From now on we will follow the usual
notation in what concerns isospin and denetg,o= 7. 2
For theN«N overlaps we need to consider the expecta- =30ss (C12

tion value of the operatorsq; and oq;® oq.. We calcu-
late a few examples to illustrate the general method of calSjmilar calculations for the other matrix elements so that for

culating these operator matrix elements. The other cases afige nn overlap we have the spin matrix elements
obtained in the same manner. A general matrix element

looks like (DD) (FD) (DF) (FF)
(BT|oga® oqd A)=tradBloqq®Adls,  (C6) Gt 25 0 % G % .
3 3
where the generic form for the spin wave functiddsand . - 2 2
A of two quarks is given by logaXoge 0 0 Ez;n \/§5n

A=(ap+a;-o)(ioy), B=(by+by-o)(ios). (C7) _ _ o
0T 2 o 2 where o, represents the Pauli matrix acting in spin of the
The pion spin wave function is, for instancey(io-) nucleon as a whole. We can repeat this calculations.in the
flavor space, using the appropriate flavor representation for
the pion wave function given in E§C5) so that we have, for
the nn spin-flavor overlap,

whereas the vectop is given by 61~5)(i02). It is also
convenient to write the spin-flavor content of the nucleon
wave function as

- - - - g -
(nTanl)spin nuc_ (Tai)qk3 <n|{0-qkl’l oqklx qu2}® qu1| n>_{ 90n® 7 ’0}'
(C13
1 Fy . . :
X| —=—=1 . For thenwA overlap we will need the spin matrix ele-
(\/E V2 (alk@.spinnue ments
1 D¢ (AD) (AF)
T 7= =0 (gk3,spinnug | » (C8
V62 " )
(}qkl i IS é
which maps the spin content of the nucleon to the spin of the V3
third quark. Next we use the identities i Tqr1X Ogkz 0 0
q q
traqO'in}ZZ(Sij ,

Again we repeat similar calculations, this time in the flavor
trad ojopo} = 2i€jp; space, so that we have, for tha spin-flavor overlap,

... . 2V2. . . .
(Al{oga,i ogiaX O'qk2}®7'qk1|n>=[ TS‘X’Ta\/ES@T] ,

to obtain (C19

trad oo,00 4} = 2(Sip 8ja— ij Spat Fiadjp),  (C9)
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whereS and T are given in Ref[17] and are defined by

GoalSLTDI 3 vy =CGwallriny).  (C15

Finally from Egs.(C13 and(C14) we can construct the
VeCtorSl;Nﬂ-N y

fnan e FROM QUARKS TO THE PION DERIVATIVE . ..
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Jn—»rr—n: %{ 95_) 0},
R 1(2+2
UHWAZE[ 3 :\/E] . (C].G)
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