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f NpN : From quarks to the pion derivative coupling
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We study theNpN coupling, in the framework of a QCD-inspired confining Nambu-Jona-Lasinio model. A
simple relativistic confining and instantaneous quark model is reviewed. The Salpeter equation for theqqq
nucleon and theqq̄ boosted pion is solved. Thef npn and f npD couplings are calculated and they turn out to be
reasonably good. The sensibility off npn and f npD to confinement, chiral symmetry breaking, and Lorentz
invariance is briefly discussed.@S0556-2813~97!00902-3#

PACS number~s!: 13.75.Gx, 12.39.Fe, 12.39.Ki, 24.85.1p
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I. INTRODUCTION

It is widely accepted that the low energy phenomenolo
can be understood in terms of the mechanism of chiral s
metry spontaneous breaking. In this sense any microsc
theory ~including QCD! which has a ‘‘correct’’ chiral limit
will fare equally well in describing low energy hadronic ph
nomena. There is, however, an extra ingredient, the typ
hadronic size, which should also play an important role
scattering. To see that this scale is important it is sufficien
consider exotic reactions likeK-n scattering, for this scale
controls the extent of overlap between the bare nucleon
the kaon. In turn this overlap, when taken together with co
saturation and a generic spin-spin interaction for the qua
accounts for the generic hadronic central repulsion, a fea
which is notorious in then-n system@1# and one which can
also be measured in theK-n exotic s-wave phase shifts@2#.
Exotic reactions likeK-n, where thes̄ quark cannot annihi-
late with any of the quarks intervening in the reaction, can
thought as an effectiveK-n-K-n vertex without the exchang
of s-channel resonances. Nor does it havet-channel ex-
change of pions due toG parity and therefore constitutes a
ideal reaction to probe the low energy content of both
nucleon and the kaon wave functions, i.e., the overlap ker

On the other hand, the bare rho-pion mass differenc
completely controlled by the extent of chiral symmet
breaking and this mechanism, when understood in term
quarks, amounts to a specific connection between the c
condensate and the strength of the microscopic hyperfine
teractionsW•sW @3–5#. It happens that the obtained strength
this sW•sW when considered in the exoticK-n s-wave system
yields good phase shifts provided we have a small b
nucleon core. At this stage it should be understood that
size of bare hadrons and the extent of the chiral conden
are not independent quantities but instead they are relate
each other. This is a consequence of the fact that in hadr
reactions the mechanism of spontaneous chiral symm
breaking is self-consistently exerted in two separate sec
in the Salpeter amplitudes of the intervening hadrons an
the modifications it introduces in the quark-quark effect
potentials.

It is therefore interesting to see if it is possible to descr
in a unified way this central repulsion~linked with nonanni-
hilating quark amplitudes! together with quark-antiquark an
550556-2813/97/55~2!/834~14!/$10.00
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nihilating amplitudes which are not only at the origin
hadronic attraction, the other prominent feature of hadro
scattering and one which can be associated withn-n periph-
eral attraction, but also at the origin of other effects li
strong decay rates.

The n-n peripheral attraction is a central issue at t
crossroads between nuclear physics and hadronic phy
Several attempts to describe this attraction in terms of Sk
mion Lagrangians have been made but the overall resul
mains inconclusive. In the Skyrmion picture, although be
quite adapted in describingn-n repulsion in terms of topo-
logical numbers and despite containing the physics of
pion interaction, it is not simple to accommodate with t
Yukawa picture ofn-n attraction in terms of mesonic ex
change and several mechanisms have been proposed i
literature to provide for this attraction@6#. On the other hand
the physics of the centraln-n repulsion lies outside the do
main of chiral perturbation theory and therefore we can
use this theory to describe then-n scattering.

Any effective theory attempting to describe then-n at-
traction must also be able to describe the physics of mes
nucleon systems among which we have thepn system. In
this respect the exoticK-n scattering is much simpler to
study than thepn reaction which, being nonexotic, has no
quark-antiquark annihilating amplitudes which were abs
in the exoticK-n. Also we are forced to consider the quas
Goldstone nature of the pion which can be translated in
Salpeter language by the existence of two almost degene
amplitudes~the so-calledE-spin amplitudes! to describe the
pion wave function in contrast with the kaon case which
well described by one Salpeter amplitude.

The Nambu-Jona-Lasinio~NJL! effective Lagrangian@7#
with a nonlocal potential@3,4,8–11# offers then a simple
framework to describe in a unified way~in the present case
with only one parameter for the potential strength besides
current quark masses! not only the bulk of hadronic spectros
copy but also hadronic scattering phenomena among w
we have the coupledn-n, theD-n, and theD-D scattering
processes. It is clear that these processes, when seen fro
quark microscopic point of view embodied in the NJL L
grangian, should correspond to different scattering proce
described by thesameset of Lagrangian parameters. In th
paper we will useN to represent either theD or the nucleon
in the cases where it does not matter and reserve the l
834 © 1997 The American Physical Society
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55 835f NpN : FROM QUARKS TO THE PION DERIVATIVE . . .
n for the cases which are specific to the nucleon alone.
When dealing with potentials, Lorentz covariance b

comes a problem not unrelated to the problem of a relati
tic description of bound states. Covariant generalizations
potentials are available in the literature@12,13# but at this
stage we will ignore this issue which will be essential f
quantitative predictions but certainly not for the qualitati
picture which as we will show can be understood in terms
chiral symmetry and color confinement.

In nuclei the necessity of having a microscopic descr
tion of the nucleon in terms of quarks is already felt wh
considering Coulomb and magnetic form factors fors-shell
andp-shell nuclei like6Li and 16O @14#. But the simple fact
that chiral symmetry is spontaneously broken through
appearance of quark-antiquark condensates and consid
not only that these new chiral vacua are in turn affected
the presence of quark sources~the physics of chiral restora
tion and enhancement! @15#, but also that we might have
excitations of these vacua along the ‘‘Mexican hat’’ valley
a continuum of chiral states connected with the ‘‘true’’ chir
vacuum, should allow us to use the formalism of this pa
to investigate and predict the existence of signatures of th
states in the nuclear environment. For this we must hav
model accurate enough both in theN-N sector and in the
sector of hadron spectroscopy. This paper constitutes a
step towards this goal.

The remainder of this paper is divided into four sectio
and three appendixes. Section II is devoted to the introd
tion of the specific Nambu-Jonas-Lasinio effective mo
that we will be using. The pion and nucleon Salpeter eq
tions will be studied in Sec. III. The overlap diagrams for t
couplingsfpNN are presented in Sec. IV. Finally in Sec. V
we discuss the results. We have three appendixes. In Ap
dix A some diagrams contributing to thefpNN are presented
and discussed in detail. The color overlap results are give
Appendix B. In Appendix C we discuss, both for the nucle
and the delta, the relevant flavor-spin overlaps.

II. SIMPLE CONFINING QUARK MODEL
WITH CHIRAL SYMMETRY BREAKING

Our quarks are Dirac fermions that interact with a sim
effective two-body interaction@8# such as to simulate colo
confinement together with the introduction of a scale resp
sible for the actual particle sizes,

H5E d3x@H0~x!1HI~x!#, ~1!

whereH0 is the Hamiltonian density of the Dirac field, an
HI an effective interaction term,

H0~x!5c†~x!~mqb2 iaW •¹!c~x!,

HI~x!5
1

2E d3yVI~x2y!c̄~x!
la

2
g0c~x!c̄~y!g0

la

2
c~y!,

VI~x2y!52
3

4
@K0

3~x2y!22U#d~ tx2ty!. ~2!
-
s-
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The la’s are the Gell-Mann color matrices.U is an arbi-
trarily large constant. In Ref.@4# we have shown that physi
cal processes involving color singlets are independent oU
whereas any colored objects get an infinite mass w
U→`.

Different and more complex interactions have also be
used in the literature. Within the Wilson loop context, resu
for the effective microscopic interaction among heavy qua
are available@16# but unfortunately these results cannot
extended to the light quark sector due precisely to the pr
lem of consistency with chiral symmetry. Nevertheless, it
customary to make the approximation of dividing the qua
effective potential in two additive terms, one dominated
the Coulomb force due to one-gluon exchange which is
sponsible for the short distance interaction among quarks
one which plays an important role in the heavy quark sp
troscopy, and another term—the confining term—which
responsible for the long distance force among quarks. In
this approximation is also effectively used when extract
the heavy quark potentials from the Wilson loop.

Although there is a great flexibility in the choice of th
effective confining potential for the light quark mass sect
it is, however, not completely arbitrary. First it must not on
comply with the requirements of the Ward identities but a
provide finite results in the colorless sector while pushing
masses of the colored states to infinity. This is illustra
when we consider a more general Dirac structure like

V5VI~x2y!S s 1^11pg5^ g51vgm
^ gm

1agmg5^ gmg51
t

2
smn

^ smnD . ~3!

Then the axial and vectorial Ward identities would have co
strained the parameterss, p, a, v, andt to obey the equations
@5#

s1p16t50, s2p50. ~4!

Equation~4! implies that the scalar (s), pseudo-scalar (p),
and tensor (t) interactions do not contribute either to chir
symmetry breaking or to the structure of the ground st
hadrons. Finally we must also have

4v24a522v22a, a50, ~5!

in order to have both the Goldstone pion and the other co
singlets infrared independent. As for the shape of the po
tial, the linear potential has also been extensively stud
However, it seems to yield a much too large hadronic rad

The potential of Eqs.~1! and ~2! has been used to stud
the charmonium spectroscopy with a potential strength
K05290 MeV. Although the theoretical results did not diffe
too much from the experimental ones, it was shown in R
@5# in the context of a more general potential that we w
still need a Coulomb force if we want to get a correct val
for theR parameter~which is related with the mass splitting
of the 3PJ triplet!. And this happened despite the fact th
individually, the theoretically obtained masses were qu
good when compared with the experimental ones. It turns
that the charmonium spectroscopy@4# obtained with the sim-
pler potential of Eq.~2! does not fare too badly either, whe
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836 55P. BICUDO AND J. RIBEIRO
we consider individual masses, so that although no one
putes the fact that for short distances a Coulomb force
needed, we decided~also for the sake of mathematical sim
plicity! to discard this force as a first step towards a qua
tative description of the pion-nucleon coupling.

Therefore the model embodied in Eqs.~1! and ~2! not
only seems to sufficiently meet all the above general requ
ments but also yields reasonable results besides allow
relatively simple calculations. A covariant version of th
model has been developed in Ref.@13# and so far it has only
been applied to the study of the pion and kaon. For
simple harmonic confining potential the authors obtaine
substantial improvement on the value offp although still far
from a quantitative agreement. Coupled channels sho
constitute another sizable correction not only tofp but also
to the hadronic decay widths and masses. Even without
variance we have shown@2# that coupled channels provide
very large correction tof p , thereby substantiating the hop
that covariance plus coupled channels might bring thef p

close to its experimental value. The present calculation c
stitutes a preliminary step in the microscopic and Loren
invariant calculation of thef NpN . In Eq. ~2!, the field opera-
tor c(x) is defined as

c~x!5E d3p

~2p!3/2
@us~p!b~p!1vs~p!d†~2p!#eip•x. ~6!

b andd are, respectively, the quark and antiquark Fock sp
operators and they carry indices for flavor, spin, and co
Summation over repeated indices is assumed. The spi
u andv, together with the Fock space operators, differ fro
those used in free Dirac theory and are given by

us~p!5
1

A2
$@11sinw~p!#1/21@12sinw~p!#1/2p̂•aW %us

0 ,

vs~p!5
1

A2
$@11sinw~p!#1/22@12sinw~p!#1/2p̂•aW %vs

0 .

~7!

In Eq. ~7!, us
0 and vs

0 are spinor eigenvectors ofg0 corre-
sponding to eigenvalues61. The functionw(p) is called the
chiral angleand indexes the different Fock spaces comp
ible with the Pauli principle. This chiral angle has been stu
ied in Refs.@8,9# and is a solution of themass gap equation

~k2w8!852k3sin~w!2sin~2w!, ~8!

wherek is a dimensionless quantity in units ofK051. This
unit will be used in the remainder of this paper. In Fig. 1 w
plot sin@w(k)# as a function ofk.

Once this mass gap equation is solved, the quark
antiquark propagators can be diagonalized and it turns
that it is simpler to work in the spin representation rath
than in the Dirac representation. As will be clear this rep
sentation will turn out to be the simplest representation if
want to study thepn, orpD couplings. In the spin represen
tation we have, for the quark energyE(k),

E~k!5kcos~w!2
w82

2
2
cos2~w!

k2
. ~9!
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The Feynman rules for the spin representation are give
Fig. 2. We have, for the vertices,

u†s1~k1!us2~k2!5 1
2 $@A11S1A11S2

1A12S1A12S2~ k̂1• k̂2!#ds1,s2%

1A12S1A12S2~ isW • k̂13 k̂2!s1s2%,

v†s1~k1!vs2~k2!5 1
2 $@A11S1A11S2

1A12S1A12S2~ k̂1• k̂2!#ds1,s2%

1A12S1A12S2~ isW • k̂13 k̂2!s1s2* %,

us1
† ~k1!vs2~k2!52 1

2 $@A12S1A11S2k̂1

2A11S1A12S2k̂2#~ isW s2!s1s2%,

vs1
† ~k1!us2~k2!5 1

2 $@A12S1A11S2k̂1

2A11S1A12S2k̂2#~ isW s2!s1s2
1 %.

~10!

S1 and S2 stand, respectively, for sin@w(k1)# and
sin@w(k2)#. As usualsW represents the Pauli matrices vect
sW 5$s1 ,s2 ,s3%. The subscriptss1 ands2 stand for the spin
projections of the spinors and it is not hard to see that t
can be put in a one-to-one relationship with the matrix e
ments ofisW s2 or, for that matter, with any other such vecto
Notice that the last two vertices which representq-q̄ pair
creation or annihilation~the last vertex! are homogeneous
functions ofsW . This fact alone will entail a derivative cou
pling of the typesW •P for the Np(P)N coupling. For the
propagators we have

Sq~k,w!5S q̄~k,w!5
i

w2E~k!1 i e
. ~11!

Equipped with these rules we can now proceed to const
the Salpeter amplitudes for arbitrary hadronic processes.
fore concluding this section we would like to make a fe
remarks concerning some aspects of the physical picture

FIG. 1. The chiral angle as a function ofk.
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FIG. 2. Feynman rules in the spin represen
tion.
o
re

cr
,
ua

ta

ta

ou
s
a
u
m
i-
un

d
or-
ide

e in
tions
the
o

the
on-

son

t of
bodied in the Hamiltonian~2! and the Valatin-Bogoliubov
transformed Dirac spinors of Eq.~7!. In many respects it is a
picture similar to the BCS theory of superconductivity. F
details on how to construct a BCS-like vacuum as a cohe
superposition of3P0 quark-antiquark pairs see Ref.@9#. Here
as an illustrative example let us consider the quasiquark
ation operatorb†(p) with definite quantum numbers in spin
flavor, and color. As in BCS theory, it represents in the us
Fock space~with a fermion empty vacuum! a superposition
of a quark with those quantum numbers with a coherent s
made of ‘‘Cooper-like’’ 3P0, color singlet, quark-antiquark
pairs. And because of the Pauli principle, this coherent s
is made of all the possible3P0 quark pairs with the single
exception of that3P0 pair which would contain a quark with
the same quantum numbers. In the same manner a b
state~a meson or a baryon! will be a superposition of quark
~and/or antiquarks! with 3P0 coherent states built in such
way as to satisfy the Pauli exclusion principle. The usef
ness of the Valatin-Bogoliubov transformation stems fro
the fact that it allows us to ‘‘forget’’ the details of the phys
cal vacuum and therefore to treat complicated quark bo
r
nt

e-

l
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te
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states~which are quite different from ordinary pure boun
states! as normal bound sates of quasiquarks with the inf
mation on the details of the physical vacuum stored ins
the Dirac spinors in the form of achiral angle. The Dirac
structure of the quark spinors does not change this pictur
any essential way provided we use Bethe-Salpeter equa
to study these quasiquarks bound states. For simplicity,
word ‘‘quark’’ will be used in the remainder of this paper t
mean a quasiquark.

III. PION, NUCLEON, AND DELTA SALPETER
EQUATIONS

The hadronic Salpeter equations can be thought as
generating equations for the Dyson series of the corresp
dent hadronicT matrix ~see Ref.@10#!. In Fig. 3 we depict
this correspondence for one single mesonq-q̄ bound state.
The associated Salpeter equation for an arbitrary me
F5(F1,F2) with four-momentum (E,P) is given by two
coupled equations, one for the positive-energy componen
the Salpeter amplitudeF1,
Fs1,s2
1 ~k2P!5E d3k8dw

~2p!4
SqS k81

P

2
,
E

2
1wDS q̄S 2k81

P

2
,
E

2
2wD @2 iV~k2k8!#

3H Fus11 S k1
P

2Dus3S k81
P

2D GF2vs4
1 S k82

P

2D vs2S k2
P

2D GFs3,s4
1 ~k82P!

2Fus11 S k1
P

2D vs4S k81
P

2D GFus31 S k82
P

2D vs2S k2
P

2D GFs3,s4
2 ~k82P!J , ~12!

and a similar equation for the negative-energy componentF2,
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Fs1,s2
2 ~k,P!5E d3k8dw

~2p!4
SqS k81

P

2
,
E

2
1wDS q̄S 2k81

P

2
,
E

2
2wD @2 iV~k2k8!#

3H Fus31 S k81
P

2Dus1S k1
P

2D GF2vs2
1 S k2

P

2D vs4S k82
P

2D GFs3,s4
2 ~k8,P!

2Fvs41 S k82
P

2Dus1S k1
P

2D GFvs21 S k2
P

2Dus3S k82
P

2D GFs3,s4
1 ~k82P!J . ~13!

In what follows we denote byF(P) the energy-spin doublet„F1(k,P),F2(k,2P)…, therefore omitting theq-q̄ internal
momentumk and the spins. We will also denote the Taylor series inP of a given functionF(k,P) by (Fn instead of the usua
(1/n!)(fn•@P#n, with @P#n being a shorthand notation for a tensor inP of degreen.

Notice that in Eqs.~12! and ~13! we can integrate out the quark and antiquark propagators,

E dw

2p
SqS k,6E

2
1wDS q̄S 2k,

6E

2
2wD5

i

6E2Eq~k!2Eq̄~k!
, ~14!

therefore allowing us to rewrite Eqs.~12! and ~13! as

@H~k,P!2Emeson~P!I #F F1~k,P!

F2~k,2P!
G5 0, I5F1 0

0 21G , ~15!

wereH(k,P) is a 232 matrix,

H~k,P!5FH11~k,P! H12~k,P!

H21~k,P! H22~k,P!
G , ~16!

which depends in the center-of-mass momentumP. The bare masses of mesons are just the eigenvaluesE05M of
H(0)5H0. We have, forH (1;2)(1;2)(k,P),

H115H225E~p1!1
1

4 F S w8~p1!21
4~12S1!

p12 D1
1

6

~12S1!~12S2!

p12p22
p1•p2G~sW qk1•sW qk2!1p1→p21h.r.t.,

FIG. 3. Dyson series forq-q̄ bound states.
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H125H2152
1

12F S w8~p1!21
C1

p1 D S w8~p2!21
C2

p2 D ~p1•p2!2

p12p22
2
1

3 S w8~p1!1
C1

p1 DC2p2 1
C1C2

2p1p2G
3~sW qk1•sW qk2!1p1→p21h.r.t., ~17!

with p15k1P/2 andp252k1P/2 being, respectively, the momenta of the quark and the antiquark andP the momentum of
the pion. ‘‘h.r.t.’’ stands for higher rank tensors which will not contribute for the pion wave function andS1 represents
sin@w(p1)#, C2 represents cos@w(p2)#, and so on.sW qk1 andsW qk2 stand for two Pauli matrices vectors acting, respectively
quark 1 and antiquark 2. In the case of the Goldstone pion we have, for@H02E0#uf&,

H S 2
d2

dk2
12E~k! D F1 0

0 1G1S w82

2
1
cos~w!

k2 D F1 1

1 1G2M F1 0

0 21G J Fn1~k!

n2~k!
G50, ~18!
th
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where n65kF6. In the limit of vanishing current quark
masses we have thatF0

†IF050. In this limit we also have
thatM50 and thatF0

†H1F050.
Therefore in order to find the energy and the norm of

Goldstone pion to orderP, it turns out to be necessary t
expand Eq.~15! to second order in the pion momentumPW .
We obtain

~H02E0I !F050,

~H02E0I !F11~H12E1I !F050,

~H02E0I !F212~H12E1I !F11~H22E2I !F050.
~19!

Then we can obtain both the pion energyE1, correct up to
first order inP,

F0
†~H12E1I !F11F0

†H2F050, ~20!

and the pion Salpeter wave function normalization which
given by

N25F1
†IF01F0

†IF1 . ~21!

To obtain the desired pion Salpeter amplitude, we need
apply the above general formalism for our particular mod
Using the Feynman rules defined in Sec. II, we are able
obtain the matrix elements of Eq.~16!:

H0
115H0

2252E2H D2
1

2 S w8214
12S

k2 D2
1

3

~12S!2

k2

3sW qk1•sW qk2
t 1h.r.t.J ,

H0
125H0

215
1

3 S w82

2
1
C2

k2 DsW qk1•sW qk2
t 1h.r.t., ~22!

H1
115H1

2252H 14 ~12S!2

k3
P• k̂3~sW qk13sW qk2

t !

1
1

2 SCw8

k
12

12S

k2 DP• k̂@ i k̂•~sW qk12sW qk2
t !#

2
12S

2 k2
P• i ~sW qk12sW qk2

t !3¹kJ ,
e

s

to
l.
to

H1
125H1

215
1

4k S w81
C

k D 2P• k̂3~sW qk13sW qk2
t !,

H2
115H2

225(
d2H11

~dPi !
2 Pi

2 ~ i51,2,3!,

H2
125H2

215(
d2H12

~dPi !
2 Pi

2 ~ i51,2,3!. ~23!

As usualS stands for sin@w(k)# andC for cos@w(k)#. k rep-
resents theq-q̄ relative momentum andP the momentum of
the pion. Finally we solve the above equations to obtain
boosted pion Salpeter wave function, correct up to first or
in P,

F15N21~S1E1f 11 ig1P• k̂3sW !xpScolor,

F25N21~2S1E1f 12 ig1P• k̂3sW !xpScolor,

N 254E1E d3k

~2p!3
Sf15E1a

2,

E15
2P

a
AE d3k

~2p!3
S2( S d2H11

~dPi !
2 2

d2H12

~dPi !
2 D ~ i51,2,3!.

~24!

In Eq. ~24!, xp and S describe, respectively, the spin
flavor pion wave function given in Eq.~C5! and the usual
mesonic color singlet wave function. It is important to noti
that the pion normalization goes asA(E1). This fact will be
crucial to retrieve the well-known one-pion exchange pot
tial ~OPEP! in the static approximation—see Eq.~33!. The
constanta equals 0.16K0.

It is convenient to introduce the notationF65N21(f0
6

1f1
6) to be able to separate the contributions of the pion

rest and its associated boost correction to theNpN coupling.
From Eq.~24! we see that in the rest frame the pion Salpe
space-wave functionf0 is simply given by the sin(w)
whereasf15N(E1f 11 ig1P• k̂3SW ). f 1 andg1 are the solu-
tions of the differential equations
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F2
d2

dk2
12kCG f 15kS,

F2
d2

dk2
12kC1

2S2

k2 Gg1
5

i

2k3
@2kCw81S~2S222S2k2w8224kCw8!#.

~25!

The solutionsf 1 andg1 of Eq. ~25! are given in Fig. 4.
This result is the same as that obtained in Ref.@8#, provided
we perform the change

g152 i S f 22 sin@w~k!#

2 D . ~26!

Surprisingly the baryon Salpeter equation turns out to
simpler than the corresponding pion Salpeter equation. T
happens because in the baryon case, or indeed any
baryon, the associated Dyson series for the correspondiS
matrix with an instantaneous interaction does not h
negative-energy channels~which would correspond to an an
tibaryon component of the baryon propagator and there

FIG. 4. The f 1 and g1 amplitudes contributing to the booste
pion.
e
is
her

e

re

of negligible importance for the nucleon ground state
sharp contrast with the pion case!; nor does it have couplings
to negative-energy quark-positive energy diquark
positive-energy quark-negative energy diquark channels
to color confinement. We also make the approximation t
the baryon Salpeter wave function does not change for sm
boosts due to its heavy mass. In Fig. 5 we show theN asso-
ciated Salpeter equation. In what follows we will useN to
represent either the nucleon or the delta. When the n
arises to distinguish the nucleon from the delta we will
serven to denote the nucleon. TheN Salpeter equation is
then

@M23E~p1!#xs1s2s5
c~p1,p2,p3!

522E d3qV~q!

3@us1
† ~p1!us3~p12q!us2

† ~p2!us4~p21q!#

3xs3s4s5
c~p12q,p21q,p3!, ~27!

with p11p21p350. This equation can be solved variatio
ally,

da@^NauM2HuNa&#50, ~28!

whereH is a shorthand notation representing all the terms
Eq. ~27! except for the eigenvalueM , andxs1s2s5

is given in
Eqs.~C1! and ~C4! in Appendix C.

For the momentum representation of the nucleon w
function ^p1,p2,p3uNa& we used

^p1,p2,p3uN&5
e2~r21l2!/2a2

N ,

r5
p12p2

A2
,

l5
p11p222p3

A6
, ~29!
n
FIG. 5. The salpeter equation for the nucleo
and theD.
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with r andl the appropriate Jacobian variables.a, the in-
verse baryon radius, turns out to be the same for the nuc
and the delta. The totaln, D wave functionCN is then given
by

CN5^p1,p2,p3uNa&^flavoruN&^coloruN&, ~30!

where^flavoruN& stands for the appropriated spin-flavor co
tent of either the nucleon or the delta@see Eqs.~C1!– ~C4!#
and^coloruN& for the usual normalized color Slater determ
nant. The spin representation is then the natural represe
tion for the reduction of the Salpeter equation to t
Schrodinger-like equation~27!.

The case of the linear confining potential has also be
studied in Ref.@2# and for completeness we simply quote th
final conclusions: We obtained for the same nucleon b
mass a larger nucleon core in the case of the linear confin
potential than in the harmonic case. This result was th
shown to be difficult to accommodate with thek-N exotic
scattering which seems to favor a small nucleon core wh
is precisely what happened with the harmonic force.

IV. OVERLAP DIAGRAM FOR THE PION COUPLING

When studying meson-baryon scattering we need to c
sider nonexotic scattering amplitudes which are induced
quark-antiquark annihilation~or creation! amplitudes. The
Feynman diagrams contributing to thenpn andDpn verti-
ces are given in Fig. 6. We need to evaluate

f NpN5
mp

a
vWNpN•TW, ~31!

wherevWNpN andTW are defined in Appendixes C@Eq. ~C16!#
and A @Eqs.~A13! and ~A15!#, respectively. The constanta
pertaining to the pion Salpeter normalization was introduc
in Eq. ~24!. It is important to notice that the remainder of th
pion normalization,N, AE1, is absorbed in the pion propa
gator

FIG. 6. Diagrams contributing to theNpN coupling.
on

ta-

n

re
g
n

h

n-
y

d

P5
i

w2Ep
. ~32!

We have that in this approximationEp5E1, and because in
the OPEP we have twoNpN vertices, we get an overal
energy dependence 1/E1

2 which is in accordance with the
OPEP in the static approximation@17#,

V3
p52S f NpN

mp
D 2~P22mp

2 !21tW1•tW2~sW N1•P!~sW N2•P!,

~33!

wheresW N1 represents the vector of Pauli matrices acting
nucleonN1 as a whole. The same applies tosN2.

(vW npn•TW)(sW n•P)tn and (vW npD•TW)(SW •P)TW are examples of
the overlapO5^NuHI u(f01f1)N&, whereHI is the Hamil-
tonian of Eq.~1!. The only contribution toO is provided by
the term ofHI with a singleq-q̄ annihilation—see Fig. 6.
We can expandO up to first order in the pion momentum t
obtain

O5^Nuh01h1u~f01f1!N&,

O5Oa1Ob ,

Oa5^Nuh1up0N&, Ob5^Nuh0up1N&, ~34!

whereh stands forHI . Notice that̂ Nuh0uf0N&50. That is,
at rest the pion decouples from the nucleons. The reason
this is quite simple. From Eq.~10! theq-q̄ annihilation ver-
tex is of the formsW •kW , kW being one of the momenta flowin
in either the quark or the antiquark leg. In turn these m
menta are sums of internal loop momentak i5$k,k8,k9% and
the external momenta which in this case turns out to beP,
the pion momentum. Then upon integration in the inter
momenta loops all the terms which are of the typesW •k i will
disappear while the terms homogeneous insW •P are the only
surviving terms. In the appendixes we deriveOa both for
npn andnpD. Because of the smallness ofg1, Ob turns out
to be too small and it will be omitted henceforth. In Appe
dix A it is shown that in the case ofnpD we have an extra
contribution forOa which is absent in the case ofnpn. We
will denote it byO8. It will also turn out to be quite small.

We obtained the following values for the adimension
quantitiesOf s andOf s8 :

Of s50.54, Of s8 .0, ~35!

whereOf s andOf s8 stand forO andO8 amplitudes with the
spin-flavor terms amputated—see Eqs.~A13! and ~A15!.

V. COMPARISON WITH EXPERIMENT
AND DISCUSSION

The experimental values forf npn and f npD are, respec-
tively,

f npn51.0, f npD.2.1. ~36!

We can use the results of Eq.~31! to write the set of
equations
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f npn

mp
5
5

9

Of s

a
,

f npD

mp
5
2A2
3

Of s

a
1A2

Of s8

a
. ~37!

Using the values of Eq.~35! for O, O8, anda we are able
to get, for f npn and f npD ,

f npn51.9
mp

K0
, f npD53.2

mp

K0
. ~38!

If we use the value ofK05247 MeV of Ref.@8# we obtain
the theoretical results

f npn51.0, f npD51.8. ~39!

These results are surprisingly good.
We have seen that in order to explain theK-n exotic

phase shifts we needed a smaller bare nucleon and ther
a largerK0.400 MeV. With thisK0 we would get 60% of
the values just obtained. However, we still have to consi
the effects of Lorentz covariance and the contribution of
pion cloud around the bare nucleon. The study of these
effects will constitute a necessary step in this program
obtaining a quantitative microscopic description of low e
ergy hadronic phenomena. Nevertheless, it is already
markable that such a simple model~with only one scaleK0
apart from the quark masses! should yield results~ranging
from hadronic spectroscopy to the coupling of pions
nucleons! which are not obviously wrong. This is more so
we take in consideration that this model is able to unify
the same description, essentially depending in the ch
anglew, the~exotic! hadronic repulsion like, for instance, th
nucleon-nucleon repulsive core~which is of the same natur
than thek-n exotic repulsion! and then-n peripheral attrac-
tion mediated by pions. Retrospectively it is not hard to u
derstand why the ‘‘naive’’3P0 model @quark pair creation
model ~QPCM! @18## for strong decays should perform s
well. It is the minimal model which contains overlap kerne
and satisfies parity conservation. In this sense any mi
scopic model~like the present one! which produces a pion
derivative coupling can be simulated by the QPCM. T
ore

r
e
o
f
-
e-

al

-

o-

e

pion momentaP which is present in the hadron-pion cou
pling sW •P and which forces aP-wave pion-hadron outgoing
relative wave function can be made to have originated in
‘‘incoming’’ cluster P-waveq-q̄ bound state. Parity conser
vation will force it to be a3P0 q-q̄ bound state. Its amplitude
of occurrence, in the literature denoted byg, can afterward
be fitted to data. This is clearly seen if we use the graph
rules@19,2# to evaluate these overlap kernels. Of course w
such a minimal model one loses any connection with sp
troscopy~hadron bare masses! and the physics of chiral sym
metry breakingSxSB.

The N-N̄ scattering constitutes another area where
present model could and should be tested. At this stage
can already anticipate that the present model will again p
duce results which can be simulated by the QPCM. To
this it is sufficient to notice that from the point of view o
overlap kernels and as a qualitative guide we can lump
gether either the two spectatorq̄ or the two spectator quark
as an effective extended quark or antiquark, respectively,
therefore understand theN-N̄ scattering as a modifiedN-p
scattering. The present calculation will therefore constitut
prerequisite to the calculation of the more complicatedN-N̄
scattering. The spectroscopy and scattering reactions
higher angular momenta will constitute another class
stringent tests notably in what concerns the old problem
van der Waals forces which we feel can only be realistica
compared with experiment in the framework of covaria
improvement of this model~retardation!.

APPENDIX A: THE EVALUATION OF O, AN EXAMPLE

First a note on notation. We denote by (Np) i j
1 a N-p-N

diagram for positive pionE energy with a potential insertion
between quarksi and j . For the negative-E-energy pion,
NpN will be denoted by (Np) i j

2. In this appendix we will
evaluate in detail the diagrams (Np)11

1 and (Np)11
2 . The

other diagrams can be evaluated in a similar fashion and
derivation will be omitted. The Fourier transform of the p
tentialK0

3r 2 is given by

V~k!52~2p!3K0
3Dkd~k!. ~A1!

The quark momenta we used are
ian
incoming Nuc. p15k81k92
P

2
, p252k81k92

P

2
, p3522 k9,

outgoing Nuc.q15k81k91
P

2
, q252k81k91

P

2
, q3522k9,

pion p452k2k91
P

2
, q45k1k91

P

2
. ~A2!

We also discard the terms depending ong1 because they are negligible and therefore will not affect the final result.
Integrating by parts, we can get rid of thed in the potential~A1! and we have only to consider the effect of the Laplac

and gradients on the vertices. We have the following cases to consider:
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O11
1 5^l•l&11E dk3dk83dk93

~2p!9
„$vs3

† ~p4!Dk8@us1~p1!#12vs3
† ~p4!¹k8@us1~p1!#•¹k8%ds19s18

12$vs3
† ~p4!¹k8@us1~p1!#%•$¹k8@us19

†
~q1!#us18~q4!%…3d3~k2k8!@N~q1,q2,q3!†FN~p1,p2,p3!#, ~A3!

with

vs3
† ~p4!Dk8@us1~p1!#uk5k85

1

2 Fw9~p1!1
2w8~p1!

p1
1
2cos@w~p1!#

p12 GSW s3s1* •p̂1,

vs3
† ~p4!¹k8@us1~p1!#uk5k85

1

2 Fw8~p1!1
cos@w~p1!#

p1 G~SW s3s1* •p̂1!p̂12
cos@w~p1!#

p1
SW s3s1* ,

¹k8@us19
†

~q1!#us18~q4!uk5k852
i

2

12sin@w~q1!#

q1
~sW s19s183q̂1!. ~A4!

N(p1,p2,p3) is given by Eqs.~29! and ~30! andf stands for the pion wave function of Eq.~24!.
The overlapO11

2 is given by

O11
2 5^l•l&11E dk3dk83dk93

~2p!9
@„$us3

† ~p4!Dk8@us1~p1!#12us3
† ~p4!¹k8@us1~p1!#•¹k8%ds19s18

12$us3
† ~p4!¹k8@us1~p1!#%•$¹k8@us19

†
~q1!#vs18~q4!%…3d3~k2k8!@N~q1,q2,q3!†FN~p1,p2,p3!#. ~A5!

For the Laplacian it is not hard to see that the contributions of (Np)11
1 1(Np)12

1 1(Np)13
1 add to zero. The same happe

for the negative-energy pion amplitude. This is due to the fact that

l•~l11l21l3! f ~q!50 ~A6!

for any color singlet nucleonN(p1,p2,p3). We also have with all generality that the contributions of (Np)12
[1,2] are identical

to the contributions of (Np)13
[1,2] . This is a consequence of the antisymmetric properties of the incoming and outco

nucleon wave functions.
Using the results of Appendix B and after summing in the color degree of freedom we have the following

Term~a!:$vs3
† ~p1!¹@us1~p1!#%•¹~Nf1N!,

terms@1#: ~Np!11
1 1~Np!12

1 1~Np!13
1

3S 2
1

A3D 12 Fw8~p1!1
cos@w~p1!#

p1 G ~Ss3s1* •p̂1!p̂12
cos@w~p1!#

p1
SW s3s1* •@¹~Nout!F

1Nin#.

terms@2#: ~Np!11
2 1~Np!12

2 1~Np!13
2

3S 2
1

A3D 12 Fw8~q1!1
cos@w~q1!#

q1 G ~SW s18s19•q̂1!q̂12
cos@w~q1!#

q1
SW s18s19•@NoutF

2¹Nin#.

Term~b!:2$vs3
† ~p1!¹k8@us1~p8!#%•$¹k8@us19~p8!#us18~p1!%,

terms@1#: ~Np!11
1

32F2
i

2

12sin@w~q1!#

q1 G H 12w8~p1!1
cos@w~p1!#

p1
~SW s3s1* 3sW s19s18!•F21

2
p̂13~ p̂13q̂1!G2

cos@w~p1!#

p1

3~SW s3s1* 3sW s19s18!•q̂1J S 2
1

A3D .
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terms@2#: ~Np!11
2

32F1
i

2

12sin@w~p1!#

p1 G H 12w8~q1!1
cos@w~q1!#

q1
~SW s19s183sW s3s1!•F21

2
q̂13~ q̂13p̂1!G2

cos@w~q1!#

q1

3~SW s19s183sW s3s1!•p̂1J S 2
1

A3D . ~A7!

In term~b! the contributions of (np)12 and (np)13 are zero. This is not so in the case of thenpD coupling where we will have
an extra contribution coming from the sum of the diagrams (Np)12

2 and (Np)12
1 which survive the cancellation mechanism

Eq. ~A6! and which will contribute along the same lines as before to a new overlapO8,

term~b81 !,

F2
1

2 S w8~p1!1
C1

p1 D p̂13~ p̂13p̂2!2
C1

p1
p̂2GF12S2

2p2 G•~ isW qk13sW qk2!S 2
1

A3D ,
term~b82 !,

F2
1

2 S w8~q1!1
C1

q1 D q̂13~ q̂13q̂2!2
C1

q1
q̂2GF12S2

2q2 G•~ isW qk13sW qk2!S 2
1

A3D , ~A8!

whereC1 andS2 stand, respectively, for cos@w(p1)# and sin(w(p2)) for term ~b81) and cos@w(q1)# and sin@w(q2)# for term
~b82!. In expression~A8! as well as in the remainder of this papersqk1 represents the Pauli matrix operator acting in qu
1. A similar notation is used for quark 2.

In order to obtain the results of Eqs.~A7! and ~A8! we have made use of the identity

~SW s3s1* •p̂!~ p̂•@sW s19s183q̂# !52
1

2
~SW s3s1* 3sW s19s18•~ p̂3@ p̂3q̂# !, ~A9!

which is valid both for the nucleon and delta cases because the matrix elements of the tensor o

^NuT2(sW 1 ,sW 2)•T2(p1,p2)unN& are zero.
Finally we have also to consider the spin wave function of the pion,i @s2#s18,s3 /A2, and using the simple relations

~ is2!SW *5sW ,

SW ~ is2!52sW , ~A10!

we are able to write

term~a1!,

H w8~p1!sW •¹Nout1S w8~p1!1
cos@w~p1!#

p1 DsW •p̂13~ p̂13¹Nout!J Fs
1Nin ,

term~a2!,

NoutFs
2H w8~q1!sW •¹Nout1S w8~q1!1

cos@w~q1!#

q1 DsW •q̂13~ q̂13¹Nin!J ,
term~b1!,

12sin@w~q1!#

2q1 H 2cos@w~p1!#

p1
sW •q̂11S w8~p1!1

cos@w~p1!#

p1 DsW •p̂13~ p̂13q̂1!JNoutFs
1Nin ,

term~b2!,

2
12sin@w~p1!#

2p1 H 2cos@w~q1!#

q1
sW •p̂11S w8~q1!1

cos@w~q1!#

q1 DsW •q̂13~ q̂13p̂1!JNoutFs
1Nin , ~A11!
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whereFs represents the pion Salpeter amplitude amputa
of its spin wave function factor and we have omitted t
factor (21/A3) of the color overlap.

At this stage it is convenient to introduce the vec

vWN2p2N , summarizing the spin-flavor overlap both for th
npn andnpD cases obtained in Appendix C@Eq. ~C16!#,

vW npn5
1
2 $ 5

9 ,0%,

vW npD5
1

2 H 2A2
3

,A2J . ~A12!

The factor of12 stands for the spin-flavor overall normaliz
tion of the pion wave function. The next step is to expa
O andO8 up to first order inP and to integrate both ink9and in the solid angle ofk. It is also convenient to introduc
the vectorTW5$Of s ,Of s8 %, which correspond to the gener

NpN overlaps with both the spin flavor andsW n•PtWN ~for the
npn case! or SW •PTW ~for the npD case! factors amputated
We have

Of s5A3
*k2dk@Csin~w!1G#e23k2/2a2

*k2dke23k2/2a2
,

C5H 2
2

a2 Fw8

6
2
k2sin~w!

2
1
3sin~w!cos~w!25cos~w!

6k G
2

@12sin~w!#w8

k2 J ,
G5H 2

2

a2 J kw8

2
g1 , ~A13!

and we use the approximate relations

cosw

k
.
12sinw

k2
.2.05e22k2/a2, ~A14!

valid for the chiral angle solution of the mass gap equat
~8! depicted in Fig. 1 to obtain

Of s8 5A3
*k2dk$Dsin@w~k!#%e23k2/2a2

*k2dke23k2/2a2
,

D.2
1.4

2A2
F121

5k2

4a2Ge29k2/4a2, ~A15!

so that the final overlap is given by

f NpN5
mp

a
vWNpN•TW. ~A16!

APPENDIX B: COLOR OVERLAPS

When performing color calculations we have to attend
the following rules:
d

r

d

n

o

~ I! one quark,

l

2

l

2
5
4

3
,

~ II ! one nucleonN~1,2,3!,

~l11l21l3!
250→S l

2D
i
S l

2D
j

52
2

3 U
i , j51,2,3

,

~ III ! one mesonMq2q̄,

lq

2

l q̄

2
52

4

3
,

~ IV ! quarkl quark vertex,

q̄alqb5q̄a~qalqb!52~ q̄alq̄b!qb ,

~V! quark exchange,

^N~1,2,3!M ~4,5!uPi4uN~1,2,3!M ~4,5!&5 1
3 , ~B1!

so that we have

^NuS 2
3

4D l

2

l

2
uN&5

1

2
,

^M uS 2
3

4D l

2

l

2
uM &51. ~B2!

In the table below we summarize the color matrix eleme
for theN-p-N couplingO.

Diagram 2
3
4

l

2
l

2
Diagram 2

3
4

l

2
l

2

(Np)11
1 21

A3
(Np)11

2 21

A3
(Np)12

1 1

2A3
(Np)12

2 1

2A3
(Np)13

1 1

2A3
(Np)13

2 1

2A3

APPENDIX C: SPIN AND FLAVOR OVERLAPS

The spin-flavor content of the nucleon and delta wa
functions is given by

un&5
1

A2
uDspinDflavor1FspinFflavor&. ~C1!

It is sufficient to workout the spin overlaps being the flav
overlaps identical. The spinD wave functions are given by

un↑&5A2
3 u1 1, 122 1

2 &2A1
3 u1 0, 12

1
2 &,

un↓&52A2
3 u121,12

1
2 &1A1

3 u1 0,122 1
2 &, ~C2!
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where the first two numbers of each ket represent the
content of the quark pair 1-2. Similarly we have, for theF
wave functions,

un↑&5u0 0, 12
1
2 &,

un↓&5u0 0, 12 2 1
2 &. ~C3!

For the delta we have

uD&5u 3
2 s&spin^ u 3

2 f &flavor. ~C4!

The pion spin-flavor wave function is given by

xp5H i

A2
s2J

spin

^ H 1

A2
s3 ,s6J

flavor

, ~C5!

where s i stands for the appropriate Pauli matri
s65(s16 is2)/2. From now on we will follow the usua
notation in what concerns isospin and denotesflavor5t.

For theNpN overlaps we need to consider the expec
tion value of the operatorssqk1 andsqk1^ sqk2. We calcu-
late a few examples to illustrate the general method of
culating these operator matrix elements. The other case
obtained in the same manner. A general matrix elem
looks like

^B†usW qk1^ sW qk2uA&5trac$B†sW qk1^AsW qk2
t %, ~C6!

where the generic form for the spin wave functionsB and
A of two quarks is given by

A5~a01aW 1•sW !~ is2!, B5~b01bW 1•sW !~ is2!. ~C7!

The pion spin wave function is, for instance,a0( is2)
whereas the vectorr is given by (bW 1•sW )( is2). It is also
convenient to write the spin-flavor content of the nucle
wave function as

~n↑,n↓ !spin nuc5~↑,↓ !qk3

3S 1

A2
F f

A2
1~qk3,spin nuc!

2
1

A6
Df

A2
s~qk3,spin nuc!D , ~C8!

which maps the spin content of the nucleon to the spin of
third quark. Next we use the identities

trac$s is j%52d i j ,

trac$s isbs j%52i e ib j ,

trac$s isbs jsa%52~d ibd ja2d i jdba1d iad jb!, ~C9!

to obtain
in

-

l-
are
nt

e

^B†usqk1i
sqk2j

uA&522b0
†a0d i j12ib0

†a1ke i jk

22ia0b1k
†e i jk22b1i

†a1 j22b1 j
†a1i

12bW 1•aW 1d i j , ~C10!

We have to consider three cases of tensors,

^B†usW qk1•sW qk2uA&526b0
†a012 bW 1•aW 1 ,

^B†u isW qk13sW qk2uA&524 ~b0
†aW 12a0bW 1

†!. ~C11!

Then it is simple to evaluate, for instance,

^FsusW qk1uDs8&52
1

A2
21

A6
sW s,s8,

^DsusW qk1uDs8&522i
21

A6
21

A6
~sW qk13sW qk2!

5
2

3
ss,s8. ~C12!

Similar calculations for the other matrix elements so that
thenpn overlap we have the spin matrix elements

^DD& ^FD& ^DF& ^FF&

sWqk1
2
3sW n 0 2

1

A3
sW n 2

1

A3
sW n

isWqk13sWqk2 0 0 2
2

A3
sW n

2

A3
sW n

wheresn represents the Pauli matrix acting in spin of t
nucleon as a whole. We can repeat this calculations in
flavor space, using the appropriate flavor representation
the pion wave function given in Eq.~C5! so that we have, for
thenn spin-flavor overlap,

^nu$sW qk1,isW qk13sW qk2% ^ tWqk1un&5$ 5
9sW n^ tWn ,0%.

~C13!

For thenpD overlap we will need the spin matrix ele
ments

^DD& ^DF&

sWqk1 1

A3
SW SW

isWqk13sWqk2 0 0

Again we repeat similar calculations, this time in the flav
space, so that we have, for theDn spin-flavor overlap,

^Du$sW qk1,isW qk13sW qk2% ^ tWqk1un&5H 2A23 SW ^TW ,A2SW ^TW J ,
~C14!
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whereSW andTW are given in Ref.@17# and are defined by

^ 3
2 nDu~Sl

† ,Tl
†!u 1

2 nN&5^ 3
2 nDu1 l 1

2 nN&. ~C15!

Finally from Eqs.~C13! and ~C14! we can construct the
vectorsvWNpN ,
D

D

,

vW n-p-n5
1
2 $ 5

9 ,0%,

vW npD5
1

2 H 2A2
3

,A2J . ~C16!
s.

,

R.

. J.
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