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The cross section for the removal of high-momentum protons i@ is calculated for high missing
energies. The admixture of high-momentum nucleons in*fide ground state is obtained by calculating the
single-hole spectral function directly in the finite nucleus with the inclusion of short-range and tensor corre-
lations induced by a realistic meson-exchange interaction. The presence of high-momentum nucleons in the
transition to final states if°N at 60—100 MeV missing energy is converted to the coincidence cross section for
the (e,e’p) reaction by including the coupling to the electromagnetic probe and the final state interactions of
the outgoing proton in the same way as in the standard analysis of the experimental data. Detectable cross
sections for the removal of a single proton at these high missing energies are obtained which are considerably
larger at higher missing momentum than the corresponding cross sections ffewtine quasihole transitions.

Cross sections for these quasihole transitions are compared with the most recent experimental data available.
[S0556-281@7)03902-3

PACS numbsg(s): 25.30.Dh, 25.30.Fj, 21.10.Jx, 21.30.Fe

[. INTRODUCTION without reproducing the fragmentation of tipg strength.
This calculation includes the influence of both long-range
Experimental progress in the exclusive, €’ p) reaction correlations, associated with a large shell-model space, as
in recent years has provided a clear picture of the limitationsvell as short-range correlations. This inclusion of the long-
of the simple shell-model description of closed-shell nucleirange correlations yields in general a good description of,
Of particular interest is the reduction of the single-particlee.g., thel =2 strength. However, it fails to reproduce some
(sp strength for the removal of particles with valence holedetails: In the experimental data, one observes some strength
quantum numbers with respect to the simple shell-model esef positive parity {=2) at energies below the firgt frag-
timate which corresponds to a spectroscopic factor of 1 foment whereas the calculation yields b# 2 strength above
such states. Typical experimental res{ik for closed-shell  the p3 peak. This suggests that additional work has to be
nuclei exhibit reductions of about 30—-45% for these spectroelone to reproduce such details. Furthermore, one should be
scopic factors. In the case 6P®%Pb, one obtains a spectro- aware that also a correct treatment of the center-of-mass mo-
scopic factor for the transition to the ground statédTl of  tion may affect the distribution of single-particle strength
about 0.65 which is associated with the removal ofs3 3 even for nuclei as heavy a80 [7]. The contribution to the
proton. An analysis which uses information obtained fromdepletion of the sp strength due to short-range correlations is
elastic electron scattering indicates that the total occupatiotypically about 10%. This result is obtained both in nuclear
number for this state is about 10% highgk, corresponding matter calculations, as reviewed [i8], and in calculations
to 0.75. This additional background strength should bedirectly for finite (medium heavy nucle{7-10,§. Although
present at higher missing energy and is presumed to bie influence of long-range correlations on the distribution of
highly fragmented. The depletion of more deeply bound orthe sp strength is substantial, it is clear that a sizable fraction
bitals is expected to be somewhat less as suggested by theaf-the missing sp strength is due to short-range effects. The
retical considerationg[3] which also indicate that the experimental datfl,5] indicate that only about 70% of the
strength in the background, outside the main peak, correexpected protons in the nucleus has been detected in the
sponds to about 10%see alsd4]). energy and momentum domain studied so far. It is therefore
Recent experimental results f6fO [5] yield a combined important to establish precisely where the protons which
quasihole strength for the; andp3 states corresponding to have been admixed into the nuclear ground state due to
about 65% with the3 strength concentrated in one peak andshort-range and tensor correlations can be detected in the
the p3 strength fragmented already over several peaks. Ree,e’p) reaction and with what cross section.
cent theoretical results yield about 76% for thesetateq 6] The influence of short-range correlations on the presence
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of high-momentum components in finiimediun) heavy nu-  practical implementation of the inclusion of FSI’s. In Sec. llI
clei has been calculated [B—10]. In this work the spectral the general formalism of the distorted wave impulse approxi-
function for %0 has been calculated from a realistic interac-mation(DWIA) is briefly reviewed. The influence of FSI's is
tion without recourse to some form of local density approxi-StUdied in Sec. IV for the quasihole transitions for which data
mation[11,12. No substantial high-momentum componentsare availabld5,15]. Extending the calculation of the cross
are obtained if8—10 at small missing energy. With in- section to higher missing energies yields the expected rise of
creasing missing energy, however, one recovers the higmlgh-mlssmg—momentum components |n.the cross section in
momentum components which have been admixed into theomparison to the results near the Fermi energy. The contri-
ground state. The physics of these features can be trac&ytion of various partial waves is studied demonstrating the
back to the realization that the admixture of high momentdncreasing importance of highdr values with increasing
requires the coupling to two-hole—one-parti¢ghlp states Missing momentum. All these results are discussed in Sec.
in the self-energy for a nucleon with high momentum. In!V @nd a brief summary is presented in Sec. V.

nuclear matter the conservation of momentum requires the

equality of the 2hlp momentum in the self-energy and the

external high momentum. Since the two-hole state has a rela- Il. SINGLE-PARTICLE SPECTRAL FUNCTION

tively small total pair momentum, one automatically needs The calculation of the cross section for exclusive

an essentially equally large and opposite momentum for thgg e’ ) processes requires the knowledge of the hole spec-
intermediate one-particle state to fulfill momentum conservag| function which is defined in the following way

tion. As a result, the relevant intermediate 2h1p states will lie
at increasing excitation energy with increasing momentum.
Considerations of this type are well known for nuclear matters(p,mg,m_,p’,m;,m_;E)
(see, e.g.[13]), but are approximately valid in finite nuclei
as well. Recent experiments df®Pb[14] and %0 [15] es-
sentially confirm that the presence of high-momentum com-
ponents in the quasihole states accounts for only a tiny frac-
tion of the sp strength. X (Wq Ha(p,mg,m)| Vo) SE—(Eg—ER 1), (D)

The theoretical prediction concerning the presence of
high-momentum components at high missing energy remains , ) )
to be verified experimentally, however. In order to facilitate Where the summation over runs over the discrete excited
and support these efforts, the present work aims to combingtates as vA\\/eI_I as over the continuum of tie(1) particle
the calculation of the spectral function at these energies witgystem,[¥) is the ground state of the initial nucleus, and
the description of both the electromagnetic vertex and fina®(p.ms,m,) [a'(p’,m{,m,)] is the annihilation[creatior]
state interactiongFSlI's) in order to produce realistic esti- operator with the specified sp quantum numbers for mo-
mates of the exclusivee(e’p) cross section under experi- menta and third component of spin and isospin, respectively.
mental conditions possible at NIKHEF and Mainz. The im-The spectral function is diagonal in the third component of
pulse approximation has been adopted for thethe isospin, and ignoring the Coulomb interaction between
electromagnetic current operator, which describes the nonrethe protons, the spectral functions for protons and neutrons
ativistic reduction(up to fourth order in the inverse nucleon are identical foN=Z nuclei. Therefore in the following we
mass|16]) of the coupling between the external virtual pho- have dropped the isospin quantum numiver Note that the
ton and single nucleons only. The treatment of FSI's hagnergy variableE in this definition of the spectral function
been developed by the Pavia groiy—21 (see also Ref. refers to minus the excitation energy of statén the A—1
[22]) and takes into account the average complex opticaparticle system with respect to the ground-state energy
potential the nucleon experiences on its way out of the(Eé) of the nucleus withA nucleons.
nucleus. Other contributions to the exclusived’p) reac- To proceed further in the calculations it is useful to intro-
tion are present in principle, such as two-step mechanisms iduce a partial wave decomposition which yields the spectral
the final state or the decay of initial collective excitations infunction for a nucleon in the sp basis with orbital angular
the target nucleus. However, by transferring sufficiently highmomentuml, total angular momentunj, and momentum
energyw to the target nucleus and by selecting typical kine-p:
matical conditions corresponding to the so-called quasielas-
tic peak withw=q%/2m (q the momentum transfer and
the nucleon mags these contributions are suppressed. In R ALt A-1 A-1 A
these conditions, adopted in the most recent expp%riments, the Ji(P-P ’E)_; (Wolap:;|Wn ™ ")(¥n™lap;| Vo)
direct knockout mechanism has been shown to be the domi-
nant contribution{21] and essentially corresponds to calcu- X S(E—(Eg—Ep™Y), 2
lating the combined probability for exciting a correlated par-
ticle (which is ultimately detectedand a correlated hole such "
that energy and momentum are conserved but no further irwhereay; (a,,;) denotes the corresponding removadidi-
teraction of the particle with the hole is included. tion) operator. The spectral functions for the various partial

The calculation of the spectral function fdfO is re- waves,§;(p,p’;E), have been obtained from the imaginary
viewed in Sec. Il. Special attention is given to a separablgart of the corresponding sp propagatyf(p,p’;E). This
representation of the spectral function which facilitates theGreen’s function solves the Dyson equation

=2 (wlal(p',mg,m)| R



812 POLLS, RADICI, BOFFI, DICKHOFF, AND MUHER 55

wherep;, |;, andj; refer to momentum and angular mo-

menta of particld whereas) andT define the total angular
f\/\ﬁO momentum and isospin of the two-particle state. Performing
an integration over one of the , one obtains a two-particle

state in the mixed representation

(€)) ®) © . . * , :
IN1l1j1P2l2j2dT)= o dplp%Rnl,Il(aplﬂpllljlpzlzj 2JT).
FIG. 1. Graphical representation of the Hartree-Féak the (5)
two-particle—one-holg2p1h (b), and the two-hole—one-particle
contribution(2h1p (c), to the self-energy of the nucleon. Here Rn1,|l stands for the radial oscillator function and the

oscillator lengtha=1.72 fm~! has been chosen to have an
e (0) _ © appropriate description of the bound sp stated®®. Using
9ij(P1.P2:E)=gj; (pl’pZ-EHJ dpsf dpag;; the notation defined in Eq$4) and (5), our Hartree-Fock
approximation for the self-energy is obtained in the momen-
X(P1,P3;E)AZj(P3,P4;E)91j(P4:P2;E),  tum representation

(3)
1
zﬁfl<p1,p1>=mn22 (23+1)(2T+1)

where g refers to a Hartree-Fock propagator and; (21237
represents contributions to the real and imaginary parts of the ; ; " :
irreducible self-energy, which go beyond the Hartree-Fock X(Pal1janal 2l 2 TIGIPila]1nal2j2dT).
approximation of the nucleon self-energy used to derive (6)

g(®. Although the evaluation of the self-energy as well as _ _ _

the solution of the Dyson equation has been discussed iih€ summation over the oscillator quantum numbers is re-
detail in previous publication®,10], we include here a brief stricted to the states occupied in the independent particle

summary of the relevant aspects of the method. model of 0. This Hartree-Fock part of the self-energy is
real and does not depend on the energy.

The terms of lowest order i which give rise to an
imaginary part in the self-energy are represented by the dia-
The self-energy is evaluated in terms oBamatrix which  grams displayed in Figs.(}) and Xc), referring to interme-
is obtained as a solution of the Bethe-Goldstone equation fadliate 2plh and 2hlp states, respectively. The 2plh contribu-
nuclear matter choosing for the ba¥éN interaction the one- tion to the imaginary part is given by
boson-exchange potential B defined by Machl¢Rrkf.[23],
Table A.2. We have chosen version B as it seems to be the szlr( /)= -1 K2dk
most typical of the different Bonn potentials. The strength of Iy \P1:P1s ) 2(2j1+ 1) njyj, T 935T
its tensor components is in between those of versions A and
C as can be seen from tldestate probabilities calculated for
the deuteron(4.5 for Bonn A, 5.1 for Bonn B, and 5.5 for
Bonn O. The Bethe-Goldstone equation has been solved for . .
a Fermi momentumke=1.4 fm ! and starting energy X(Pal1j1N2l2j2I TIGKISIKKLT)
—10 MeV. The choices for the density of nuclear matter and X(KISIKLT|G|p1l1j1nal2jdT)
the starting energy are rather arbitrary. It turns out, however,

A. Calculation of the nucleon self-energy

xf K2dK(2J+1)(2T+1)

that the calculation of the Hartree-Fock tefiig. 1(a)] is K? K2

not very sensitive to this choid@4]. Furthermore, we will X6\ Eten,i, am T m) @)
correct this nuclear matter approximation by calculating the

two-particle—one-hol¢2p1h term displayed in Fig. () di-  where the “experimental” sp energies, ,;, are used for

re;.“{] for the ﬁ”ge system. T.rl‘lis SeCO”d'Olfderhco”eC“O.”rt e hole states{47 MeV, —21.8 MeV, and- 15.7 MeV for
which assumes harmonic oscillator states for the occupie %, pg’ andp% states, reSpeCtive)yWh”e the energies of the

(hole) states and plane waves for the intermediate “”b"“r? article states are given in terms of the kinetic energy only.

particle states, incorpqra_tes the .C(.)”eCt energy ?”d densi he plane waves associated with the particle states in the
deplendenﬁe gharacten_stllcrof f finite m:jcl@sr_\atnlx. To .intermediate states are properly orthogonalized to the bound
evaluate the diagrams in Fig. 1, we need matrix elements _'gp states following the techniques discussed by Borromeo
a mixed representation of one particle in a bound harmom(ét al. [26]. The 2h1p contribution to the imaginary part

oscillator while the other is in a plane wave state. Usinngnl / : -
. - i ,P1;E) can be calculated in a similar wagee also
vector bracket transformation coefficief®5] one can trans- la 1p(p1 P1iE) 4y

form matrix elements from the representation in coordinate§26))- . L ) .
of relative and center-of-mass momenta to the coordinates of OUr choice to assume pure kinetic energies for the particle

. - - - 1h
sp momenta in the laboratory frame in which the two-particleStates in calculating the imaginary parts Wf*1" [Eq. (7)]
state is described by andW<""? may not be very realistic for the excitation modes

at low energy. Indeed a sizable imaginary partil"" is
|Pal1j1paloj2dT), (4)  obtained only for energieE below —40 MeV. As we are
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mainly interested, however, in the effects of short-range corHere and in the following the set of basis states in the box
relations, which lead to excitations of particle states withhas been truncated by assuming an approphaig. In the
high momentum, the choice seems to be appropriate. A difbasis of Hartree—Fock statps), the Hartree-Fock propaga-
ferent approach would be required to treat the coupling to théor is diagonal and given by

very low-lying 2plh and 2hlp states in an adequate way.

Attempts at such a treatment can be found in RE#3— 0) 1

31,6. The 2plh contribution to the real part of the self- 9y (e E)_ —elfb+ip’ (13

energy can be calculated from the imaginary paifP" us- ol

ing a dispersion relatiof32] where the sign in front of the infinitesimal imaginary quan-
tity i is positive (negative if €ffj is above(below the

1 lllh(pl,pl,E ) Fermi energy. With these ingredients one can solve the
Vzﬁllr(plvpi:EF ;Pf TdE’, (8)  Dyson equatior(3). One possibility is to determine first the
o so-called reducible self-energy, originating from an iteration

. . - . of A3, by solving
whereP represents a principal value integral. A similar dis-

persion relation holds fov?™P and W2"*P,

Since the Hartree-Fock contributidi® has been calcu-  (alS[FAE)B)=(alAZ;(E)|B)+ X (alAS);(E)|y)
lated in terms of a nuclear matt& matrix, it already con- 7
tains 2p1h terms of the kind displayed in Figb)l In order ngjo)(viE)<7|2|rfd(E)|B> (14)
to avoid such an overcounting of the particle-particle ladder
terms, we subtract from the real part of the self-energy and obtain the propagator from
correction term Y.), which just contains the 2p1h contribu-
tion calculated in nuclear matter. Summing up the various gij(a.B;E)= 3, s9{(a;E)+0{”(a;E){ 2|3 E)|B)
contributions we obtain for the self-energy the expressions

x g’ (B;E). (15
=S HF =S HF (y2plh_ys 4 ys2hl ' . _ _
2=2 A% =% v Ve VD Using this representation of the Green’s function one can
+(W2p1h+w2hlp)_ (9) calculate the spectral function in the “box basis” from
B. Solution of the Dyson equation %(pm,pn,E)— Im 2 (Pml @)1 (e, B; E)<ﬂ|pn>|j)
The next step is to solve the Dyson equati8nfor the sp (16)

propagator. To this aim, we discretize the integrals in this

equation by considering a complete basis within a sphericdfor energiesE below the lowest sp energy of a given

box of a radiusR,.,. The calculated observables are inde-Hartree-Fock statéwith 1j) this spectral function is different

pendent of the choice @, if it is chosen to be around 15 from zero only due to the imaginary part E{*. This con-

fm or larger. A complete and orthonormal set of regular basidribution involves the coupling to the continuum of 2hlp

functions within this box is given by states and is therefore nonvanishing only for energies at
which the corresponding irreducible self-ener§® has a

Dijjm (1) =(r[piljm) =N j;(piNNjm(6,¢). (100  nonzero imaginary part. Besides this continuum contribution,

the hole spectral function also receives contributions from

In this equation));,, represent the spherical harmonics in- the quasihole statd9]. The energies and wave functions of

cluding the spin degrees of freedom gndienote the spheri- these quasihole states can be determined by diagonalizing

cal Bessel functions for the discrete mometavhich fulfill the Hartree-Fock Hamiltonian pluss, in the “box basis”:
1(PiRb0) =0 ay e/ |
o ' nzl <p| ﬁ&n"_z +AE|J(E EYlJ pn><pn|Y>I]

Note that the basis functions defined for discrete values of
the momentunp; within the box differ from the plane wave =E'¥?,~<pi|Y>|j : (17)
states defined in the continuum with the corresponding mo-
mentum just by the normalization constant, whichy@/  Since in the present work2, only contains a sizable imagi-
for the latter. This enables us to determine the matrix elehary part for energie& below ¥, the energies of the quasi-
ments of the nucleon self-energy in the basis of Eif) hole states are real and the contmuum contribution to the
from the results presented in the preceding subsection. ~ spectral function is separated in energy from the quasihole

As a first step we determine the Hartree-Fock approximacontribution. The quasihole contribution to the hole spectral
tion for the sp Green’s function in the “box basis.” For that function is given by
purpose the Hartree—Fock Hamiltonian is diagonalized: ~ah h

i (Pm P E)=Zyij(Pml Y )1 (Y [pn)ij S(E— Y1),

Nmax

p2
> <p.‘ Sint+ 3]

n=

= MFip. .
p”> (Pol @)y = eaij(Pil ;- with the spectroscopic factor for the quasihole state given by

12 [9]
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B HY[AZ(E)|Y)

ZYIj = JE

-1
) . (19
i

)i

Finally, the continuum contribution of Eql16) and the
guasihole parts of Eq18), which are obtained in the basis of

box states, can be added and renormalized to obtain the spec-
tral function in the continuum representation at the momenta

defined by Eq(11):

WNﬁ

Sj(Pm.Pn;E)= (’écj(pm’pn;E)

2 @Tj(pm,pn;E)). (20)

It is useful to have a separable representation of the spectral
function in momentum space. For a given energy, the spec-

tral function in the box is represented by a matrix in momen
tum space; after diagonalizing this matrix, one obtains

N max

S (Pm.Pn;E) = Ei S;() (P di(Py), (2D

whereS;; (i) are the eigenvalues angl are the correspond-

ing eigenfunctions. In all cases considered here, it is enoug

to consider the first five or six largest eigenvalues in 4)

CKHOFF, AND MUTHER

W, ,» depend org, o, py, cosy=py-a/pLa, and the angle
a between the {§,q) plane and the electron scattering
plane.

The hadron tensor is defined [d9,21,33

Wm\':zi (@I} (q) 8(E—Ey); (24)
f

i.e., it involves the average over initial states and the sum
over the final undetected statésompatible with energy-
momentum conservatigmf bilinear products of the scatter-
ing amplitudeJ, (q).

This basic ingredient of the calculation is defined as

= [ dres iy, vl @9

‘where the matrix element of the nuclear charge-current den-
sity operatorfJ# is taken between the initia]¥'5), and the
final, | ¥'$), nuclear states. A natural choice 1o 7) is sug-
gested by the experimental conditions of the reaction select-
ing a final state, which behaves asymptotically as a knocked-
out nucleon with momenturpy, and a residual nucleus in a
well-defined statdw~*(E)) with energyE and quantum
numbersn. By projecting this specific channel out of the

for an accurate representation of the spectral function. Thesghtire Hilbert space, it is possible to rewrite HgS) in a

eigenfunctions are in principle sp overlap functi¢ase dis-
cussion after Eq(29) below]. They can be thought of as the

one-body representatiofin momentum space and omitting
spin degrees of freedom for simplicjitps[18]

natural orbits at a given energy. In fact, if the diagonalization
is performed after integrating over the enelgyone would
precisely obtain the natural orbits associated with the one-
body density matrix and the eigenvalugg(i) would be the
natural occupation numbef40].

3@~ [ doxty L (p+ 3 (0.0)- e e PISIENY
29

provided thatJ . 1S substituted by an appropriate effective
one-body charge-current density operalff, which guaran-

_ o . tees the orthogonality betwe¢®§) and|W#) besides tak-
For the scattering of an ultrarelativistic electron with ini- ing into account effects due to truncation of the Hilbert
tial (final) momentumpe(p,), while a nucleon is ejected gpace. Actually, the orthogonality defect is negligible in the
with final momentunpy, the differential cross section in the standard kinematics fore(e’ p) reactions and in the DWIA
one-photon-exchange approximation reptis,21] 3¢ is usually replaced by a simple one-body current operator

[18,20,21,
>

The functions
"'=0,+1

Ill. GENERAL FORMALISM OF THE DWIA

do et 1

dpzdpy  167° Q%pepe »

Laa Wy, (22

E 1/2 — \I,Afl E \I,A ,
where?— e o APl . = e are the M- [SH(E) 1 2e(p)= (VA (E)|a(p)| ¥4)

mentum and energy transferred to the target nucleus,
respectively. The quantitiek,, ., W, \. (usually referred
to as the lepton and hadron tensors, respectivate ex-
pressed in the basis of unit vectors

X P) = (¥R HE) a(p) [ ¥7) (27)

describe the overlap between the residual s#tg™*(E))

and the hole produced iW5) and | W), respectively, by

removing a particle with momentum Both ¢g, ’Xl(r;l)zn are
N

1 1 eigenfunctions of a Feshbach-like nonlocal energy-
eﬂ:(Oa: \[51_ \[E"O)v dependent Hamiltonian referred to the residual nucleus, be-
longing to the eigenvalueE and E+ w, respectively[17].
which define the longitudinal0) and transverse 1) com- ~ The norm of¢g, is 1 andS,(E) is the spectroscopic factor
ponents of the nuclear response with respect to the polariz&ssociated with the removal process; i.e., it is the probability
tion of the exchanged virtual photon. The components of théhat the residual nucleus can indeed be conceived as a hole
lepton tensor depend only on the electron kinematics, whilgroduced in the target nucleus. The dependeng@f}ﬁﬁn on

€=(1,0,0,0,

(23
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py, is hidden in the asymptotic staf@#) and the boundary O
conditions are those of an incoming wave. ]

Because of the complexity of the eigenvalue problem in
the continuum, the Feshbach Hamiltonian is usually replaced
by a phenomenological local optical potentd{r) of the
Woods-Saxon form with complex central and spin-orbit -
components. It simulates the mean-field interaction between
the residual nucleus and the emitted nucleon with energy-
dependent parameters determined through a best fit of elastic =
nucleon-nucleus scattering data including cross section and = .

polarizations. Then,X(T)En~X(7) is expanded in partial
PN PN

o
\
=

©

L NG . . ] b —— with Fs1 ¥
waves and a Schdinger equation includiny/(r) is solved ] 1 . PWIA 7
for each component up to a maximum angular momentum ] 'H' 3 Bxp
satisfying apy-dependent convergency criteriggl]. The Lo I
nonlocality of the original Feshbach Hamiltonian is taken 200 Cleo o 0o 200 500
into account by multiplying the optical-model solution by the Missing Momentum [MeV/c]

appropriate Perey fact¢84].

After summing over the. undetected final states with quan- G, 2. Reduced cross section for tHO(e, e’ p) 5N o reaction
tum numbersn of the residual nucleus, the hadron tensorin parallel kinematics. Results witlsolid line) and without(dashed
W, .+ in momentum space becomes line) inclusion of the FSI's are compared to the experimental data

[5]. A spectroscopic factor of 0.644 has been employed in display-
(—)* g ing the results for the calculations involving the spectral function.
Wni =2 f dpdp’ x;,. " (P+)3,.(p.) - & be(P) 9 g e sp

Pm=pPn—4d [1]. Therefore, in the following section results

' 3t vt (=)0
X BEn(PSH(B)J,(P ’q)'ek’ng, (p'+a) will be presented under the form of the so-called reduced
cross sectioh21]
Ef dpdp’x;, " (P+0)J,(p.Q)-'S(p.p":E) o
N(Pm)= T~ : (32)
Ip’ (o dp.dpy, K
x3(p".a)- & Tx,, (P 0, 29 pedpy Koen
where IV. RESULTS

In this section we will discuss results for the reduced
S(p,p’;E)zE SW(E)dEn(P") den(P) (29 cross section defined in E¢31) for (e,e’p) reactions on
n 180 leading both to discrete bound states of the residual

is the hole spectral function defined in Ed). Notice that nﬁglre us D,\ils?:rctjicgg Sot? tg;gt]rg:]e ;r?gtmruoutﬁa\fvgi/gehsew;slszlggn
the spin and isospin indices have been omitted for Simp"dtfaker?)i/ﬁto account throuah the eﬁect?ve MOMEntuMm apbroxi-
and the summation over is over the different partial wave 9 PP

contributions which are present at a given eneEgyThis mation [35] and through the optical potential derived from

X the Schwandt parametrizatip®6] (see Table Il in Ref[5]),
sum should not be confused with the separable representa- . .
! . S respectively. All results presented here have been obtained
tion [Eq. (21)] of the partial wave contributions to the spec-

tral function S, (p.p’,E) defined in Eq/(2). Eachlj contri- using the CC1 prescriptidr87] for the half off-shell elemen-

. ; . . . X tary electron-proton scattering amplitude in analogy with
bution, coming from either quasihole sta_tes E is the what has been commonly done in the analysis of the experi-
correct excitation energyor from states which are usually

unoccupied in the standard shell model, can be separate}/ental data. We also employed the nonrelativistic descrip-
computed, so that the total hadron tensor will look like on for this amplitude38] to be consistent with the nonrel-

ativistic calculation of the fivefold differential cross section.

' In parallel kinematics, where most of the experimental data

WM,EZ W'xJ NE (30 are available, this choice does not produce very different
l ’ results with respect to the former and, therefore, will not be

Experimental data for thee(e'p) reaction are usually considered in the following.

collected as ratios between the measured cross section and

Koen, WhereK is a suitable kinematical factor angly is A. Quasihole states

the elementary(half off-shel) electron-nucleon cross sec-  |n Fig. 2 the experimental results for the transition to the
tion. In this way the information contained in the fivefold ground state of°N are displayed as a function of the miss-
differential cross section is reduced to a twofold function ofing momentunp,,. These data points have been collected at
the missing energi,=w—Ty —E, (T, is the kinetic en-  NIKHEF choosing the so-called parallel kinematigs],
ergy of the emitted nucleon arfd, is the excitation energy where the direction of the momentum of the outgoing proton,
of the residual nuclelisand of the missing momentum py, has been fixed to be parallel to the momentum transfer
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g. In order to minimize the effects of the energy dependence 10°5
of the optical potential describing FSI's, the data points have ]
been collected at a constant kinetic energy of 90 MeV in the
center-of-mass system of the emitted proton and the residual
nucleus. Consequently, since the momentum of the ejected
particle is also fixed and

Pm=|pn—1al, (32)

10"

[(Gev/c) ™3]

—

the missing momentum can be modified by collecting data at & .|
various momenta transferred from the scattered electron. - ]
The experimental data points for this reduced cross sec- ] —— Greens Fet. 2
tion are compared to the predictions of the calculations dis- ] — = Variational
cussed above. The quasihole part of the spectral function for ]
the p3 partial wave represents the relevant piece of the 107 e e A ——
nuclear structure calculation for the proton knockout reaction =00 cee o 10 200 800
leading to the ground state 8fN. Using the quasihole part Missing Momentum [MeV/c]
of the spectral function as discussed abfmee Eq(18)] but ) . o
adjusting the spectroscopic factor for the quasihole state con- 7/C: 3. Reduced cross section for thé(e,e’p) reaction in
tribution Zgq/, to fit the experimental data, we obtain the pargdllellklneraglgil legd'n? to fth% state at—66.32 ,MP}V Of. the i
solid line of Fig. 2. Comparing this result with the experi- residual nucleus™N. Results of the present Green's function ap
mental data one finds that the calculated spectral functiOﬁroach(golld line) are compgred to those obtal_ned in the variational
: calculation of[7] (dashed ling and the experimental da{&]. A
r.epmduces t.he.Shape of the reduced cross section as a fu ectroscopic factor of 0.537 was required for the Green’s function
tion of the missing momentum very well. The absolute valu":‘approach, whileZ,,3,=0.459 has been used to adjust the results of
for the reduced cross _sectlon can only be reproduced py afe variational calculation.
suming a spectroscopic factdp,,,=0.644, a value consid-
erably below the one of 0.89 calculated from Ef9) [9]. ) S )
The phenomenological Woods-Saxon wave functions agdoptical potential yields a reduction of the momentum of the
justed to fit the shape of the reduced cross section requir@utgoing protonpy . According to Eq.(32), this implies in
spectroscopic factors ranging from 0.61 to 0.64 for the low-{parallel kinematics a redistribution of the strength towards
est Op3 state and from 0.50 to 0.59 for thg@ state, respec- smaller values of the missing momentum and makes it pos-
tively, depending upon the choice of the optical potential forsible to reproduce the observed asymmetry of the data
the outgoing protoii5]. The fact that the calculated spectro- aroundp,,=0. This feature cannot be obtained in the PWIA
scopic factor is larger than the one adjusted to the experitdashed ling where the results are symmetric around
mental data may be explained by the observation that thg =0 due to the cylindrical symmetry of the hadron tensor
calculations only reflect the depletion of the quasihole occuyy, ,, around the direction off when FSI's are switched off
pation due to short-range correlations. Further depletion angor general review see ReR1] and references thergin
fragmentation should arise from long-range correlations duge imaginary part of the optical potential describes the ab-
to collective excitations at low energig§,31]. Other expla-  gorption of the proton flux due to coherent inelastic rescat-

nations for this discrepancy could be the need for improving[ermgs, which produces the well known quenching with re-
the description of spurious center-of-mass mofi8®,7] or a spect to the PWIA result
different treatment of FSI's in terms of a relativistic model As a second examplé for the reduced cross section in

for the optical potential40]. , . .
In ordgr to \ﬁsualizzlth(]a effects of FSI's, Fig. 2 also dis-(e’e p) reactions on'*0 leading to bound states of the re-

plays the results obtained for the quasihole contribution tc?'dlff,al nucleus, we present in Fig. 3 the data for%ﬁ_estat_e

the spectral functionwith the same spectroscopic factor ©f N at an excitation energy of 6.32 MeV. Also in this
Zop1o=0.644 as before, for the sake of consisteriayt ig- case the experlmentalldata are reproduced very yvell if we
noring the effects of the optical potential. In this so-calleg@diust the spectroscopic factor for the corresponding quasi-
plane-wave impulse approximatiotPWIA) the reduced hole part in the spectral function @y,3,=0.537. The dis-
cross section as a function of the missing momentum is idercrepancy with the calculated spectroscopic fa¢®814 is

tical to the spectral function at the missing energy of theeven larger for this partial wave than it is for the state. A
considered P3 state or, better, to the momentum distribution large part of this discrepancy can be attributed to long-range
of the peak observed at this missing energy with the quanturnorrelations, which are not accounted for in the present
numbers of the ground state &IN. Therefore, the difference study. Note that in the experimental data thieestates are
between the solid and dashed lines in Fig. 2 corresponds mbserved in*>N at low excitation energies. Long-range cor-
the difference between the reduced cross section defined nelations yield a splitting such that 86% of the total strength
Eg. (31) and the momentum distribution for the ground stategoing to these three states is contained in the experimental
of °N. In other words, it illustrates the effect of all the data displayed in Fig. 3. This splitting is not observed in the
ingredients entering the present theoretical description of ththeoretical calculations. If one divides the adjusted spectro-
(e,e’p) reaction, which are not contained in the calculationscopic factoiZy,3, by 0.86 to account for the splitting of the

of the spectral function. In particular, the real part of theexperimental strength, one obtains a value of 0.624 which is
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{0 ——— S SN S — spond to large excitation energies in the residual nucleus. A
] ] careful analysis of such reactions leading to final states
E above the threshold for two-nucleon emission, however, is
3 much more involved. For example, a description of the elec-
] tromagnetic vertex beyond the impulse approximation is
needed and two-body current operators must be adopted
which are consistent with the contributions included in the
= spectral function. Moreover, the possible further fragmenta-
o] tion of the (A—1) residual system requires, for a realistic
description of FSI's, a coupled-channel formalism with
many open channels. Calculations based on the optical po-
4 tential are not satisfactory at such missing energies, because
] inelastic rescatterings and multistep processes will add and
E 7 3 remove strength from this particular channel.
107 e RARaaasas prree prrre ARAdanss : Nevertheless, it should be of interest to analyze the pre-
100200300 400 800 600 dictions of the present approach at such missing energies,
first of all, because it represents the first realistic attempt of a
complete calculation of the single-particle channel leading to
the final proton emission, including intermediate states above

ditions considered in the experiment[d5]. The calculations were the Fermi level up td =4, and therefore, it represents a

performed using the same spectral functions as discussed for Figs.rSaIIStIC estimate O.f the relgtlve size of this specific channel;
and 3 second, because information on the shape of the reduced

cross section as a function of the missing momentum or on
ng relative contribution of various partial waves could yield
reliable results even at these missing energies. Because of the
groblems mentioned above, no reliable description of the ab-
solute value of the reduced cross section can be reached in
this framework.
In order to demonstrate the energy dependence of the

spectral function and its effect on the cross section, we have
alculated the reduced cross section for the excitation of
5 states aE,,= —63 MeV. For these studies we considered
the so-called perpendicular kinematics, where the energy of
éhe emitted proton is kept fixed at 90 MeV as well as the

a

n(p) [(GeV/c)™°]

P, * 0.001

Missing Momentum [MeV/c]

FIG. 4. Reduced cross section for tH®(e,e’p) reaction lead-
ing to the ground and thé’ states of'®N in the kinematical con-

close to the total spectroscopic factor adjusted to describe t
knockout of a proton from @3 state.

Figure 3 also contains the results for the reduced cros
section derived by substituting the overlg®,(E)]¥?¢g, in
Eqg. (26) with the variational wave function of Radieit al.
[7], who employed the Argonne potential for theN inter-
action[41]. Also in this case the shape of the experimental
data is globally reproduced with a slightly better agreemen
for small negative values gf,, but with a clear underesti-
mation at largemp,,. The overall quality of the fit is some-

what worse than for the Green’s function approach and th )
required adjusted spectroscopic factoZjgsz,= 0.459, even mo;nentum tra?s;?r_rﬁ~ 420 Me\{[( c (quutal tt(') tlhe qut?:qlng 5
below the value of 0.537 needed in the present calculation. Rr%%n morlr;en 3 i detsadme 0%'(:'%8'7,0 en (ljathas In FIgs.
is not clear, however, whether the differences in the calcy@nd = can be adopted 1o describe S and the missing mo-

lated reduced cross section are more due to the use of diffementu”f d|s(';r|bu;|on IS Obta'ﬁd bY varying tlhe dangle .be-
ent interactions or more to the various methods employed ilﬁweenpN andg. For a spectral function hormaiize to qmty
calculating the spectral function. as the absolute result for the cross section is not reliable

The analysis of the reduced cross section has been egqe reduced cross section is represented by the_solid Ii_ne in
tended to higher missing momenta by experiments per_F|g. 5. 1If, however, we replac_e th_e spectral function derived
formed at the MAMI accelerator in Mainfl5], adopting oM the continuum contribution in Eq20) by the one de-
different kinematical conditions than the parallel kinematics.[ived for the; ~ quasihole state at its proper missing energy
Using the same spectroscopic factors for fieand thep (but now in the same kl'nd of perpend!cular klnematllcs and
partial waves, which were adjusted to the NIKHEF datanormallzed to 1, we obtain the dashed line. A comparison of

above, the results of our calculations agree quite well aBﬁ;ese two calculations demonstrates the enhancement of the

with these MAMI data, as displayed in Fig. 4. Although the gh-momentum components in the spectral function leading

calculation is somewhat below the data at high missing moto final states at large excitation energies. Note that the cross

mentum, one should keep in mind that the correspondinjecnon derived from the appropriate spectral function is
difference in sp strength is only an extremely tiny fraction of 2P0t two orders of magnitude larger ph~500 Meve
the 10% of the protons which are expected to be associatdgan the one derived from the spectral function at the quasi-

with high momenta due to short-range correlatipds10]. hole energy. _ ,
The discussion so far is of course somewhat academic

since it will be difficult to perform a decomposition of the
continuum contribution to the reduced cross section in terms
From theoretical studies it is known that an enhancementf the quantum numbers for angular momentum and parity of
of the high-momentum components due to short-raNg  the state for the residual system. Therefore we display in
correlations does not show up in knockout experiments lead-igs. 6 and 7 the contributions to the total reduced cross
ing to states of low excitation energy in th&{ 1) nucleus, section of the various partial waves associated with states
but should be seen at higher missing energies, which correxbove the Fermi level and usually unoccupied in the standard

B. Contribution of the continuum
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FIG. 5. Reduced cross section for th8O(e,e’p) reaction in o . .
perpendicular kinematics for the excitation G states at FIG. 7. Relative importance of various partial waves to the re-
E,.=—63 MeV (solid ling) and —6.32 MeV (dashed ling duced cross section for tHéO(e,e’ p) reaction in the same condi-
m .

tions as in Fig. 6.

shell model. From Fig. 6 we can furthermore see that the'®0 system itself, by employing the techniques developed
relative importance of the various partial waves changes witland discussed ifi26,8—1Q. At low missing energies, the
the missing momentum, emphasizing the contribution ofdescription of the missing momentum dependence of the
higher angular momenta at increasipg. This feature can Pz andp3 quasihole states compares favorably with the ex-
be observed even better in Fig. 7, where the percentage §€rimental data obtained at NIKHEB] and at the MAMI
each relative contribution to the total reduced cross section i&¢ility in Mainz [15]. The difference between theory and

displayed as a function of the missing momentum. For eacfXPeriment at high missing momenta can at most account for
orbital angular momentum we obtain a “window” ip a very tiny fraction of the sp strength which is predicted to
m

where its contribution shows a maximum as compared t e present at th?$e mom.el[l&—lo]. A com,pa.nson with the
other partial waves. WIA result clarifies the influence of FSI's in parallel kine-

matics. We also compare our results for §hg quasihole
state with the results obtained in R¢¥] for the Argonne
V. CONCLUSIONS NN interaction. While the shape of the cross sections is

In the present paper the consequences of the presence njgely described by our results, the associated spectroscopic
high-momentum components in tH€O ground state have factors are overestimated substantially. Although a large
been explored in the calculation of the,é’p) cross section fraction of this discrepancy can be ascribed to the influence

within the formalism for the DWIA developed in Refa7—  ©f long-range correlation$6,31], which are outside the

22]. The spectral functions have been calculated for theCOP€ Of the present work, a discrepancy may still remain,
although it has been suggested that a correct treatment of the

center-of-mass motiof7] may fill this gap.

As discussed previously for nuclear matteee, e.g.13])
and emphasized ifB8—10| for finite nuclei, the admixture of
high-momentum components in the nuclear ground state can
only be explored by considering high missing energies in the
(e,e’p) reaction. Although other processes may contribute
to the cross section at these energies, we have demonstrated
in this paper that the expected emergence of high-missing-
momentum components in the cross section is indeed ob-
tained and yields substantially larger cross sections than the
corresponding outcome for the quasihole states. As a result,
we conclude that the presence of high-momentum compo-
nents leads to a detectable cross section at high missing en-
ergy. In addition, we observe that it is important to include
. ] orbital angular momenta at least uplte 4 in the spectral
600 —400 200 0 200 400 600 function in order to account for all the high-missing-

Missing Momentum [MeV/c] momentum components up to about 600 MeVA clear
window for the dominant contribution of eadhvalue as a

FIG. 6. Contributions of various partial waves to the reducedfunction of missing momentum is also established. This fea-
cross section for thé®0O(e,e’p) reaction in the same conditions as ture may help to analyze experimental data at these high
for the solid line in Fig. 5. missing energies.

n(p) [(Gev/c)3)
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