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The problem of fragmentation of excited finite systems is explored in the frame of classical molecular
dynamics experiments of two-dimensional Lennard-Jones drops. The main objective of this work is to get
information about the relative value of the relevant characteristic time salES for this kind of process.

We investigate the CTS for fragment formation, the stabilization of the radial flux, and the internal “tempera-
ture.” It is found that the asymptotic fragments are realized early in phase space, when the system is still
dense, by the time the radial flux attains its asymptotic value. It is also shown that the temperature of the
system during the breakup is quite homogenous with respect to the expected profile if local thermal equilibra-
tion takes place. Special emphasis is put on the investigation of the time scale of stabilization of the statistical
properties of the mass spectrum, which is related to the kind of information carried by the asymptotic frag-
ments.[S0556-281®7)04301-X]

PACS numbdis): 25.70.Pq, 02.70.Ns, 24.10.Pa

I. INTRODUCTION fluctuation in phase spa¢®IBDF) is studied as a function of
time. It has been applied to different molecular dynamics

Despite the great efforts done in order to study the mechaexperiment§10-12 and it has been found, in all of them,
nisms which lead an excited system of nucleons to break uthat the MBDF becomes stable very early in the evolution,
in several intermediate-mass fragments, and the possiblehen the system is still dense, and that this density fluctua-
connection of this process with a liquid-gas transition, seviion turn out to be the asymptotic fragments, when it spreads
eral questions remain unanswered. It is not well knownin space due to the expansion.
when, how, and which density fluctuations start to develop in Regarding the breakup mechanism many authors, based
the expanding system of nucleons, during the early stages oih Fisher's semiphenomenological drop mof&8], have
the process, and become fragments in a later stage. In ordeglated power law behavior of the asymptotic mass spectra in
to understand why the system becomes unstable with respettultifragmentation to the disassembly of the system of
to some density fluctuations it is mandatory to determine itswucleons at the density and temperature of the critical point.
most relevant properties during the whole process and t&isher's model predicts that the mass distribution should be a
follow in time the development of the density fluctuations power law multiplied by an exponential whose argument
which lead to the breakup. The phenomenon of fragmentagoes to zero at the critical point. This kind of behavior is
tion is not a specific property of nuclear systems but it is aindeed observed in different experiments, but it has been
common feature of many different systems, for exampleshown that the times involved in multifragmentation are far
pressurized fluids flowing through nozzles, rock explosionsfoo short to relate the breakup to equilibrium processes like
protein decay through elongation, etc. All these processespinodal decomposition or nucleatigh2].
share the lack of knowledge about the dynamics of fragment Since nuclear matter is a Fermi system an appropriate
formation. model should be quantum mechanical in nature, unfortu-

In nuclear physics many models have been devised toately such a description is not feasible if one wishes to keep
study the behavior of expanding finite nuclear systems. Thep-body correlations. In our calculations we will try to keep
can be roughly classified in the three following categoriesthings as simple as possible, so we choose to simulate the
(1) the ones based on the calculation of the evolution of thdehavior of excited finite system via a system of classical
one body density functiofLV [1], BUU [2]), (2) thermody- Lennard-Jonef.-J) particles, which has an equation of state
namical models, which assume some degree of thermal equUiEOS in many respects similar to the one expected for
librium, and that have been developed in the framework ohuclear matter and exhibits liquid-gas phase transitict.
microcanonical 3], canonical[4], and grand canonicdb]  This model has the important advantage that it has been ex-
ensembles. Finally3) microscopic dynamical models which tensively studied both for finite and infinite systems and has
contain all the microscopic information at all times, thesealso been applied to the analysis of nuclear collisid§.
models have the appealing feature that they bring the possi- In this communication we focus our analysis on the study
bility of analyzing many body correlations at all times. of the characteristic time scalé€T9) related to the stabili-
Amongst this last category we can mention those which areation of different collective and intrinsic degrees of free-
purely classical6], quasiclassicdl7], and semiclassicgB]. = dom, as well as cluster formation. As a by-product we will

Only recently a cluster definition and its recognition algo-obtain new information about the validity of thermodynami-
rithm (early cluster recognition algorithm ECRAas been cal models and suggestions for their improvement. We also
proposed 9] which allows the analysis of the fragmentation address the problem of which kind of information is con-
process at all times. In this model the most bound densityained in the asymptotic mass spectra. We do this by analyz-
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ing the stage of the evolution at which the statistical proper- 070 —
ties of the MBDF spectra is statistically equivalent to the
asymptotic mass spectra.

The paper is organized as follows. In Sec. Il we describe
the model, tools, and CTS used in this work and in Sec. Il
we present the results of the analysis of the mass spectra of
our numerical simulations. In Sec. IV we analyze the time
dependence of the radial flux and temperature and in Sec. V
we discuss the early cluster formation model. Finally conclu-
sions are presented in Sec. VI.

temperature ()

Il. NUMERICAL EXPERIMENTS AND TIME SCALES

As mentioned in the Introduction we simulate nuclear
multifragmentation via a classical system of Lennard-Jones
particles in two dimensions. The two body interaction poten-
tial is taken as 020 r

[F[F-{) A
J— —_ — —_| — + J—
r r le Me
FIG. 1. Metastability curve, in th& —p plane, for the infinite

wherer . is the cutoff radiugthe potential is taken equal to two-dimensional Lennard-Jones systéil line) and metastability
zero forr>r.). In this calculations we took.=3c. Energy  curve for theN=100 periodic Lennard-Jones systeaircles.
and distance are measured in units of the potential wll (
and the distance in which the potential changes sigh ( point that the effect due to free boundaries have not been
respectively. The unit of time used ig=+0?/48¢. Al- included in this calculation of the EO&ee for example
though it is well known that such a potential presents a tod16]).
steep repulsive part, i.e., hard equation of state, we use it As stated in the Introduction, we studied, what we con-
because the properties of such a system are very well knowsider to be some of the most relevant quantities of the ex-
In this sense our calculations are mainly pedagodittala  panding system, as a function of time. One of these quanti-
study on the properties of the L-J potential with respect tdies is the collective expansion or radial flux. In order to
the nuclear problem sdé4]). study the mean radial velocity as a function of position we

Our work is based on the study of numerical simulationsdivided our system in ten concentric circular rings and stud-
of the time evolution of excited finite two dimensional ied the time behavior of the mean radial velocity in each of
Lennard-Jones drops df=100 particles, whose initial con- the regions. Théth region is the area between two concen-
figurations were obtained by cutting a circular drop from atric circles, centered in the center of mass of the system, of
thermalized periodic system &f=225 Lennard-Jones par- radiusr;=(i —1)rpn,/10 andr,=ir ,,,/10, wherer ., is the
ticles, per cell, with periodic boundary conditions. The distance of the outermost particle from the center of mass of
ground state energy,, of this system of 100 L-J particles the system. The mean radial velocity of thth region is
was calculated from an almost circular system cut out from alefined as
triangular lattice. The distance between nearest neighbors
was taken as that distance at whi{r) attains its minimum , v;(t)-ri(t)
value (min~1.12). We got the resultg=—2.8e. vﬁ;)d(t)= T ,

W : _ ; Ir; (0]

e performed explosions oN=100 particles, two-

dimensional drops built according to the method described in
the previous section. We studied a rather broad range of totg|,,
energies ranging forne=—1.15 to E=1.8, which means

initial temperature in the range:et-4e for a fixed initial which belong to theith region for a given simulatiort),

. _ _2 .
densityp=0.75 . This means that our drops are all COm- yentes the average over the ensemble of simulations per-
pressed and heated. This can be seen from Fig. 1 in which wg .4 4t given initial conditions.

show the metastability curve for an infinite two-dimensional  pnother important quantity is the “temperature” of each

L-J system(full line) [15]. We also show the one corre- o e circular sectors which we define as the velocity fluc-
sponding to a periodic system in which each cell is populateg), ations around the collective mean radial velocity:
with exactly 100 L-J particlegfull circles) which we ob-

tained studying the behavior of the specific heat at constant i )

volume Cy, with temperaturd12]. Noticeable finite size ef- TO)(1)= Em vi(t)— Urad ) -Tj(1)

fects are evident. This finite size effects are of the kind usu- 2 J |ri(t)]

ally referred to as bulk effects because they are related to the

inhibition of density fluctuations with wavelengths larger

than the cell siz¢12]. The corresponding spinodal lines lie These two magnitudes will help us analyze the degree of
inside the metastability curve. It is worth mentioning at thisequilibrium of the system during its evolution.
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erer; andyv; stand for the position and velocity of the
particle j, the symbol({); represents average over particles
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In order to study the role played by interparticle collisionsat any time. The resulting fragment spectra reaches stability
in the different stages of the multifragmentation process, wdar earlier than the MST one and reflects the complicated
found it convenient to define the collision rate at tilgeas  collisional evolution of the system in its early stages. In this

way, Teqa Will be given by the average time at which the
N fragment spectra becomes stable.
C(t) =2, [Vi(tns1) = Vilty)], Tmst 1S the CTS for the formation of the clusters according
=1 to the standard MST approach, i.e., the typical time at which
fragments are ammenable to experimental recognition.

From the relation among the above defined CTS we will

get a more complete insight of the fragmentation process.

wheret,,=nt;,;, beingt;, the time step that we used for the

integration of the equations of motion. We took

t;v=0.0001, which guaranteed proper conservation of en-
ergy and total momentum.

In this work we investigate the relationship among the
time evolution of the radial flux and temperature of the dif- |n Fig. 2 we show the asymptotic mass spectra for six
ferent regions, collision rate, and cluster formation. In orderifferent energies ranging froli=1.8¢ to E=—0.8¢ (see
to relate the process of flux formation and possible “tem-figure caption for details It can be seen that for the higher
perature” equilibration with fragment formation we need to energies the mass distributions show rapid, exponential, de-
select a fragment definition. In this work we use the follow- cay with fragment mass and as we move to smaller energies
ing ones. a broader mass spectra is obtained. For enefgies- 1e

(i) The simplest cluster definition is based on the two-andE= —1.15¢ a transition to U shaped spectra appears. We
particle correlations in configuration space: a particlee-  want to mention at this point that asymptotic mass spectra
longs to a clusteC if and only if there is another particle are those obtained according to the ECRA algorithm at the
j which also belongs to cluste® and |r;—rj|<r, where  end of the evolutiont,,,) of the expanding system. In most
re is a parameter called clusterization radius. This clustegases the results from MST recognition method g, are
definition is valid in the later stages of the process but itequivalent to ECRA results at that time. This is not true if the
gives no information about the early stages of the multifragevolutions are not long enough for the system to reach its
mentation. This method is known as minimum spanning tregrue asymptotic state.

(MST) or configurational. In our calculations we took  As mentioned above, one of our main objectives in this
re=3o0. work is the study of the time scales related to fragment for-

(i) Following Ref.[9] clusters are defined by the most mation, i.e., we want to know the time at which the asymp-
bound partition of the system, i.e., the partiti@efined by  totic fragments are already formed and the state of the sys-
the set of cluster4C;}) which minimizes the sum of the tem at that moment. We performed a cluster analysis of our

Ill. PROPERTIES OF THE MASS SPECTRA

energies of each fragment: explosions using both the MST and ECRA methods. In Fig.
3 we show the mass multiplicity spectra far=—0.3¢ for
different times, namely 49, 8Qt,, and 208,, using the MST
— c.m.
E{Ci}_zi jezci K] +J.Eci Vil algorithm(left part of the figurg and ECRA algorithn{right

par. It can be clearly seen that for timet4Ghe system is

where the first sum is over the clusters of the partition, andglill dense and a simple configurational analysis gives no
ch.m. is the kinetic energy of particlemeasured in the center information about the asymptotic behavior, nor does it at

of mass frame of the cluster which contains particldhe time 8Q,, but the ECRA spectrum is already very similar to

algorithm developed to achieve this goal is known as “earlythe asymptotic one. In Fig. 4 we show again the mass spectra

cluster recognition algorithm(ECRA) [9]. The partition ob- &t imes 48, 80y, and 20@, for both algorithms but for

tained using this last approach will be called hereafter mosE= —0-8¢. In Figs. 3a), 5(b), and c) we show the asymp-

bound density fluctuatiofMBDF), and we will denote the totic spectraldiamonds and the ECRA result for time 1§
constituent clusters as fragments only in the low density re(Squares for energiesE=—0.15, 0.3¢, and 0.&, respec-
gime, when the ECRA and MST clusters coincide. tively. In Fig. S(c) we also show, for comparison, the MST
In order to study the possible relation between the mosf"ass distribution for time 1@ (full C|rcle_s). From Flgs. 3-5
relevant processes like radial flux formation, cluster formadt can be seen that the ECRA model is able to find the as-

tion, etc., we found it useful to define the following charac-YMPtotic fragments at very short times when the system is
teristic time scalegCT9). still dense. This result has been found for a variety of mo-
Tauc IS the CTS for the stabilization of the collective ex- l€cular dynamics experimenfs2,11.

pansion degree of freedom, usually referred to as radial flux, SC far we have been comparing mass spectra at different

TiempiS the CTS for stabilization of the intrinsic effective times by simply looking at their shapes; in order to have a
“temperature” of each circular sector. We are defining justquantltatwe measure of the similarity of two mass distribu-

one time because. as will be shown in the next section. afions one can calculate the probability that the two different
circular sectors thermally stabilize at approximately the sam&P€ctra come from the same distribution function. This prob-

time for each initial excitation energy lem can be solved calculating thé statistics for binned data
Tcon IS the CTS for stabilization of the collision rate. [17]:
TecralS the CTS for the formation of the clusters according _ 5

to the ECRA fragment recognition formalism. The ECRA XﬁZZ [ni(ta) = ni(ty)]

algorithm provides information of the most bound partition T [ni(t) +ni(tp) ]’
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FIG. 2. Asymptotic mass spectra, for energies:E=—0.8¢, (b) E=—0.55, (c) E=—0.3¢, (d) E=—0.01%, (e) E=0.8¢, and(f)
E=1.8e.

wheren;(t) denotes the number of fragments in biand the E=—0.8¢ is already very similar to the asymptotic value
sum runs over a fixed mass range. To have an order of magvhile the MST result bares little similarity. The case is ex-
nitude for the value ofxﬁ denoting equivalence we have actly the same foE=—0.3¢ but for time 4@,. The mass
studied this magnitude when different mass spectra are gemange considered was chosen taking into account the follow-
erated from the same probability density distribution func-ing arguments: the smaller birgene to fouj are very sen-
tion. For this purpose we have generated sets of 100 partsible to the evaporation process in which we are not inter-
tions with a total mass oN=100 from a power law ested. On the other hand the bigger bins show great
distribution (as is done in the ERW model of fragmentation fluctuations due to the finite size of our system. That is why
[18]). After calculating)(ﬁ among them and averaging we we excluded these two mass ranges for our analysis. This
obtained a value of 70% as our limit of confidence. In Fig.kind of study is not suitable for high energies because the
6(a) we show the probability that the mass spectrum as @nass spectrum is very narrow and then the mass range to be
function of time and the asymptotic one come from the sameonsidered for the comparison vjg is far too small. The
distribution function for energf = —0.8¢, the circles repre- results we have obtained are summarized in the following:
sent the comparison with the ECRA result and the squarethe ECRA mass spectra reaches their asymptotic values at
the comparison with MST spectra. The mass range which wéme ~12t, for energiesE=—0.15%, this being the CTS
used for this energy is 4A<60. Figure @b) shows the 7, FOr E=—0.3¢ the time related to cluster formation is
same quantity but for energf=—0.3¢, in this case the ~40t, and forE= —0.8¢ the time is~70t,. This is a very
mass range considered issf<24. It can be seen from the important result because from it one can infer the kind of
figures above that at time #0the ECRA result for energy information contained in the asymptotic spectrum, i.e., the
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FIG. 3. Mass spectra for enerdgy=—0.3¢, (a) MST result for time 4€,, (b) ECRA result for time 4, (c) MST result for time
80t,, (d) ECRA result for time 8&, () MST result for time 206, and(f) ECRA result for time 208,

one obtained experimentally. In this way., is the time  potentials of the bulk gas and liquid phases, ands the
after which the statistical properties of the mass distributiorurface tension. This equation can be cast in the form
achieve their final values, so any information which the mass

spectrum may carry concerns this initial Stages ecd Of Y(A)=Y A" XATYA, (1)
the process of multifragmentation in which the system is still
dense and a MST analysis gives no information. In the fol-

lowing section we shall characterize this stage with respec t the critical pointj,= s, and thereforer goes to zero,

to its velocity distribution. X ! >
. . . and we are left with a simple power law, which has the
S Q;?;hiirgv a;/no;s';t::ylir;g tshheat'rgzgr;)aﬁ:ft; gfg??i%ﬂfaiprucial property of being scale invariant. Fisher’s scaling re-
pec y ’y 9 P . ¢ lation is common to other systems like percolation model,
cord_|.ng.to F|§hgr S sem|ph(a_nomenolog|cal droplet mOd?' f(.)rlsing model, etc. So if a given mass range of the spectrum is
equilibrium liquid-gas transitions, the fragment mass distri- S

bution should be a power law multiplied by an exponential
whose argument goes to zero at the critical point:

hereX andY are fitting parameterésee[19] for details.

fitted with a power lawY(A)xA~7, the exponent should
be a minimum at the critical point. The mass range should be
selected in such a way théb small fragments are left out
because the scaling is supposed to be valid for not too small
A2/3 clusters[20], moreover, the population of the first bins is
T T ’ constantly increasing due to evaporation process(intig-

ger clusters should be left out because either we are in the
whereA is the mass of the dropy andu, are the chemical region of U shaped spectra in which case the effect of expo-

Mg~ M1 4ario

Y(A)=Y,A~ fexp[



780 A. STRACHAN AND C. O. DORSO 55

1x102 1x10?
1 1
g‘lxlo (a) ;1><10 ()
B 1x10° S 1x10°
=3 =
35 110" WS 3 11107 — . ®
§ . L4 5 ass o e o
1x102 o0 00 00 o @0 1x102
1x103 | T T T 1 1x103 ] T T T ]
50 100 0 50 100
mass number mass number
1x10% 1x102
1 1
8 1x10 (c) s 1x10 (d)
=
j§ 1x10° % S 1x10°
= =
S Y Werlapeals T Yhag, o
i § ) (X 1 r 11 X /] \g N OAPO OWe
1x10° 1x10"

1x103 | T I T I 1x10%

0 50 100

mass number mass number

<multiplicity>
<multiplicity>

1x10% 000000 ©® & 1x10% o anue o

1x10% 1x103

| ' | ! | ! I ' |
0 40 80 40 80
mass number mass number

o
|
0
1x10% 1x10?
1
1x10! (e) 1x10 (§)
1x10° —l® 1x10° @
1x107 % £ 10!
C Y e TS M..-
|
0

FIG. 4. Mass spectra for enerdgy=—0.8¢, (a) MST result for time 4€,, (b) ECRA result for time 4, (c) MST result for time
80ty, (d) ECRA result for time 86, (e) MST result for time 206, and(f) ECRA result for time 200,

nential terms in the yiel®Y (A) is strong or we are in the case E=—0.5%¢, in this case the spectrum is not a power law at
of close to power law behavior for which we expect someany time(note the important dependence of the exponent on
sort of critical phenomena and the population of large masthe mass rangebut for time ~60t, onward the spectrum is
bins is expected to fluctuate noticeably. Taking into accountjuite invariant. A very similar result to this last one is ob-
these considerations, in Fig. 7 we show the exponesg a  tained for energye=—0.3e. The times involved in the as-
function of the energy of the system, obtained by fitting theymptotization of the exponents is in agreement with the one
mass spectrum in the mass range A< 20 for all energies obtained with they? test.

but for E=—1e€ for which we took the range 4 A<10. As stated in the Introduction, power law behavior in the
This is because the plateau of the typical U shaped spectrumass distribution, for energig = —0.8¢, should not be re-

for E= — 1€ a begins at mass number 10. It can be seen thdhted to Fisher's result for the critical point which applies for
minimum 7 is achieved folE = — 0.8¢; nevertheless this re- equilibrium systems. Nevertheless minimumand power
sult depends strongly on the mass range considered. To ovdaw behavior in mass distribution, and consequently invari-
come this ambiguity we decided to study the dependence aince against scale changes, can be the result of a critical
the exponent- with the mass range considered. In Figa)8 process of some other kind. In any case the critical process
we showr as a function of time for energif= —0.8¢ for  takes place during the early stage of the process. It is worth
three mass ranges, namely=A<20 (circleg, 4<A<30 mentioning at this point that according to the theory of criti-
(diamond$, and 4<A<50 (square} it can be seen that the cal phenomena the exponenshould be greater than 2. The
spectrum shows power law behavior and time invariance fodiscrepancy of our result with this fact can be due to finite
time ~ 70ty onward. In Fig. 8) we show the exponentfor  size effects, the decrease ofvith decreasing system size is
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FIG. 5. (a) Mass spectra for enerdy= —0.15, ECRA result for time 1 (squares and ECRA result for asymptotic tin{diamonds.
(b) Mass spectra for energg=0.3¢, ECRA result for time 1 (squarel and ECRA result for asymptotic tim@iamonds. (c) Mass
spectra for energf =0.8¢, ECRA result for time 16, (squares MST result for time 1€, (circles, and ECRA result for asymptotic time
(diamonds.

well known in percolation calculations. energies greater than 0.3¢ the radial velocity is almost
completely developed at time tiPregardless of its energy.
IV. COLLECTIVE EXPANSION AND TEMPERATURE For energyE= — 0.3 the overall behavior is similar but the

radial velocity goes on growing, at a smaller rate, after that

After showing that the statistical properties of the massiime, and it reaches its asymptotic value at tirnd0t,. And
spectrum are stable after a short period of time, we explor¢or E= —0.8¢ a very small radial flux is created but for some
the time evolution of two other relevant quantities defined inregions(regions 2 and 4) it starts to diminish after a short
Sec. I, namely the mean radial velocity and the effectiveperiod of time and it reaches its asymptotic value at time
temperature of the expanding system. ~70,. Itis clear from Fig. 9 the role played by collisions in

In Fig. 9 we show the mean radial velocitgefined in  the radial flux formation. Interparticle collisions are respon-
Sec. l) of regions 2, 4, 6, and 8 as a function of time, for six sible of transforming the initial thermal motion of constituent
different energies namelfg=1.8¢, 0.8¢, 0.3¢, —0.15%, particles into the more ordered collective expansion. The
—0.3¢, and—0.8¢, averaged over approximately 100 evolu- dotted lines of Fig. 10 show the value of the potential energy
tions each. We also show in Fig. 9 the collision rate for eaclper particle(scales are on the right axis) as a function of
energy(full thick line). The collision rate attains its asymp- time for the above mentioned energies. We can see that by
totic value at time~ 12t for all the energies considered. The the time the collision frequency has reached the plateau, the
first stage of the process<12ty) is a highly collisional one potential energy reaches its maximum value, bringing into
in which most of the radial flux is developed. Note that for evidence that interactions between different clusters are neg-
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FIG. 7. Exponentr as a function of energgin units of €). For
all energies buE= —1¢ the mass range considered in the fitting
was 4<A=<20, forE=—1le it was 4<A<10.

Taking into account Figs. 5 and 9 it can be seen that, for
energiesE= —0.15, by the time the radial flux attains its
asymptotic value the MBDF become stable and the final
mass distribution is obtained by the ECRA algorithm, i.e.,
the 7, @nd 7o zare very similar. This time (1g3) coincides
with the end of the initial collisional stage. For energy
E= —0.3¢ the system requires more time for the radial flux
to achieve its asymptotic valyeemember that the radial flux
goes on growing for a while after the highly collisional stage
has ended The mass distribution, according to the ECRA
algorithm, becomes stable at the same tirhe 40t,). For
energyE= —0.8¢ the case is similar to the last one, but the
I time required by the radial flux and by the mass spectra to

0.00 40.00 80.00 120.00 160.00 200.00 become stable is a little |Onger"(7(lo).
time(to) From the analysis of the data presented in the previous
sections it is rather straightforward to realize thag

FIG. 6. Probability that the mass spectra at a given time and thé~ 12o) IS quite independent of the energy and that at the
asymptotic one come from the same distribution function fore€nd of this stage the “temperature” has reached its asymp-
E=—0.8¢ () andE= —0.3¢ (b). The calculations are based on the totic value.
x2 method. Circles denote ECRA spectra while squares refer to It can be seen that for energies= —0.15%, for which the
MST spectra. mass spectrum shape is of the exponential type, the radial

flux and mass spectra are also stable at that time, so the
ligible (although not zero, as can be seen from the MSTfollowing relation between the relevant time scales holds:
analysi$. As a consequence at this stage entropy production
essentially stops. Teoll™ Ttemp™ Tecrd™ Tlux < Tmst-

In Fig. 10 we also show the “temperaturgas defined
above of the circular sectors as a function of time. The On the other hand, for the lower energies, when the mass
figures are characterized by a fast cooling down during thepectrum shape becomes closer to a power law
initial, highly collisional, stage of the evolution and after- (E=—0.3¢, —0.55% and—0.8¢), we find that when the col-
wards they stabilize. Note that there is only a weak depenlision rate and “temperature” attain their plateau the radial
dence of the “temperature” on the circular sector consid-flux is not completely develope@lthough its following time
ered; furthermore, for times aroundt32hey are remarkably evolution takes place at a much lower patBy the time the
similar. Also note that before and after this period of time theradial flux attains its final value the asymptotic fragments are
temperature decreases as we move from the center of tiietectable by the ECRA algorithm, so the following relation
system towards the outer regions and that the relative depalolds:
tures increase with time. A possible explanation of this facts
will be given in the next section. Teoll™ Tremp< Tecra™ Tiux< Tmst-

probability
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200 — which lie in the transition from the expansion driven regime
to the evaporation driven one.

The expansion driven multifragmentation processes
160 — present three distinct stages of evolution. The first stage is
dominated by interparticle collisions and most part of the
. collective expansion builds up during it. The time involved
in this stage is, for our system; 12t;. Once the collisional
stage is over the system breaks up, at least when analyzed
e . according to ECRA formalism. This is the second stage of
the process. The time involved in this stage depends on the
energy of the system, it is very short for the higher energies
i (E=—0.15%¢). For energyE= — 0.3¢ this second stage ends
at timet~40t; and for E=—0.8¢ at t~70t, (cf. Fig. 6).

, During the second stage the system is still dense and, regard-
J ing its velocity distribution, its state can be characterized by
an almost homogeneous “temperaturgsée Fig. 1Dand by
0.00 — T T T T T ] an expansion degree of freedom. Under these conditions, i.e.,
0.00 4000 80.00 120.00 160.00 200.00 in the presence of a collective expansion and an almost uni-
time(to) form “temperature,” the MBDF develop and become stable,
that is, the system breaks up. It is worth mentioning at this
point that the MST cluster analysis during this stage gives no
. information about the asymptotic behavior of the system; in
fact this kind of analysis gives longer times for cluster for-
mation. In this way one would miss the relation between the
J formation of radial flux, “temperature” stabilization, and the
appearance of the asymptotic clusters. The third stage is a
120 — very simple one, in which the system simply expands and the
MBDF already formed spread in space and became separated
drops. In this last stage the fragments keep on evaporating

1.20 —

0.80 —

0.40 —| (@

1.60 —

0.80 — some particles but the multifragmentation process has fin-
ished.

i In order to investigate the times at which the transition

0.40 — () from multifragmentation to evaporation takes place we find

it convenient to use the coefficient of persistefi2g] de-
fined by the following argument. Let; . . . ny the nucleons
which belong to the cluste€ with massA; at the timet.
bc(t)=0.5*ny(ny—1) is then the number of pairs of nucle-
. ons in clusterC at that time. At the time\t later, some of
time(to) the nucleons may have left the cluster and belong to another
cluster or be single particles. L&t-_ o be the number of
nucleons which have been in the clusirat timet and are
at  t+At in the cluster A. We define
ac(t+At)=2p0.5*[Nc_a(Nca—1)].

Now we are able to introduce the mass weighted persis-
tence coefficientP,,,)

From the results presented in the last two sections it is
clear that, according to the excitation energy, multifragmen- P_(t)= < < ac(t+At) > >
m - e C L
|

0.00 r

| ' I ' I ' I ! 1
0.00 40.00 80.00 120.00 160.00 200.00

FIG. 8. Exponentr as function of time forE=—0.8¢ (a) and
for E=—0.5¢ (b) for three mass ranges:<dA<20 (circles,
4<A=<30 (diamond$, and 4<A<50 (squares

V. THE EARLY CLUSTER FORMATION MODEL

tation can take place in two distinct way&) expansion bc(t)

driven processes arh) evaporation like processes. Most of

the results presented correspond to events in the first regime,

in which collisions generate a collective expansion, and it isvhere ()¢ denotes average over the clusters at timend

this expansion the main ingredient determining the instability)e denotes average over the ensemble of explosions at a
of the system against some density fluctuations, keeping ifiiven energyP(t) will be equal to 1 if all particles remain
mind the close relation between flux formation and the statogether and O if the clusters break up completely. It mea-
bilization of the mass spectra according to the ECRA modelsures the tendency of the members of a given cluster to re-
In the second regimeE< —0.8¢), the system expands dur- main together. We next show the persistence coefficient as a
ing the early stages of its evolution and then the attractivdunction of time(circles of Fig. 1} for energiesE=—0.8¢

part of the interaction makes the system contract after evapdFig. 11a], —0.55 [Fig. 11(b)], and —0.3¢ [Fig. 110)],
rating the outer particles. It is interesting to note that broadtogether with the value of the mass weighted persistence re-
est mass distributiofminimum 7) and power law behavior lated to evaporatiorP{, *)(t), which is calculated from the

of mass distribution was found, as j&1], for the events fragment configurations at tinteby considering that all frag-
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FIG. 9. Collision rate in arbitrary unitgull thick lines) and mean radial velocit{in units of o/ty) as a function of timgin units of
to) of regions 2(full thin lines), 4 (dotted line$, 6 (dashed lines and 8(dashed-dotted lingsFor energies{a) E=1.8¢, (b) E=0.8¢, (c)
E=0.3¢, (d) E=—0.01%, (¢) E=—0.3¢, and(f) E=—0.8e.

ments with mass bigger than 4 lose one partjtliangles of Regarding the temperature evolution in time note that dur-
Fig. 11). For these calculations we todit =5t for energy  ing the first stage of the evolution< 10t,) the outer regions
E=—0.3¢, At=4t, for energyE=—0.55, and At=10t,  cool down more rapidly than the central ones, this is because
for energyE=—0.8¢. It can be seen that, after the initial the expansion starts to develop in the outer region, so “tem-
stage of the process the main decay channel for the mediuperature” in this regions is converted into expansion more
mass fragments is evaporation. The time at which the multiquickly. An important question at this point regards whether
fragmentation stage ends and we are left with evaporation ithe homogenization of the temperature at tim&0t, is the
~40t, for energy E=-0.3¢, ~60;, for energy resultof thermalization or not. Lets analyze the velocity fluc-
E=—0.55%, and~10Q, for energyE= —0.8¢. This result tuations over the expansiowhich are related to the tem-
is consistent with the ones presented in Secs. lll and IV. peraturg at times shorter than 1§ lets take some charac-
Because at this times the systems are still dense accordirtgristic temperature of this early stage of the evolution, say
to MST recognition algorithm, the study of the above definedl = 1¢, the mean velocity associated with it is approximately
persistence coefficient states that the MBOcognized by 0.20/ty. Lets also consider some characteristic variation of
the ECRA algorithnm have reached microscopic stability.  mean radial velocity between adjacent circular regions,
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. . ) distance from the c.m. of the system to the c.m. of the as-
Avg=0.0%07to. This means that during a lapse of time of vy hiqtic fragments as a function of the mass of the clusters
10, two adjacent regions move-0.50 away from each for E= —0.15%. It is seen that the heavier fragments appear
other while the mean distance traveled by a particle over th@ear the c.m. of the system, as we move away from it lighter
expansion is> 2o, it is possible, then, that during a time of fragments appear. This behavior is also seen for all the other
10ty local thermal equilibrium be achieved. From Fig. 10 it energies analyzed in this work. Remember that according to
can be seen that during the breakup, i.e., the second stage@ir multifragmentation model the breakup state is character-
the process, the “temperature” of the system is quite ho-zed by a local mean radial velocity and by an almost homo-
mogenous. It can also be seen from Fig. 10 that, once thgeneous “temperature,” so, due to the expansion, the kinetic
second stage is over, the inner regions are hotter than thenergy of a cluster, measured from its c.m., increases with its
outer ones, for all the energies which we studied. This fact isize. As the clusters move away from each other, the expan-
also explained by our multifragmentation model as can besive kinetic energy is converted back into “temperature.” In
seen hy the following argument. We studied the correlatiorthis way the bigger clusters will be hotter than the smaller
between cluster size and relative position of its center obnes; taking into account Fig. 12, the central regions will be
mass(c.m) in the system; in Fig. 12 we show the mean hotter than the outer ones.
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8 ] | FIG. 12. Mean position of the asymptotic clustéirs units of
2 075 e |- o) as a function of its mass number for eneigy — 0.15.
i
S . - We found that at the time of effective breakup, when the

050 MBDF form, the state of the system can be characterized by

) ! I i \ \

an almost uniform “temperature” over a local mean radial
000 000 Oy e o e 2000 velocity which is an increasing function of the distance from
the center of mass of the system. So the conclusions which
FIG. 11. Persistence coefficient as a function of tilg(t) one can obtained b_y studyl_ng mass spectra concems this
(circles and reference evaporation persistence vafie" (t) (tri- state. The mean radial V(.':‘IOC'ty gradient ‘?'e!?e”ds on the”tc.)tal
angles. (@) Energy: E=—0.8¢, (b) E=-055, and (¢ energy of the system _wh|Ie the asymptotic temperature” is
E=— 0.3 quite mdepend_ent of it. As a by—p_roduct the_se results might
provide a basis for a microscopic foundation of, properly
modified, thermodynamic models.
VI. CONCLUSIONS We also found that for a short initial time the system

In this work we have studied the relation between frag_undergoes a highly collisional stage which is responsible for

ment formation, local “thermal” equilibration, and stabiliza- the creation of the radial flux, once this early stage ends, the

tion of the statistical properties of the mass spectrum. We lemperature of the system has reached its asymptotic

found, as in previous calculations, that the asymptotic fragyal\l;\?é found power law behavior in the mass spectra for

ments, in fact the density fluctuations which lead to the as- i ;
ymptotic fragments, are formed early in the evolution of the€Nergies arogn&= —0.8¢ and we W.OU|d like to recall once ,
expanding drops, when the system is still dense. This resuft9amn th"# th's result cannot be d'Te_C“y related_ to Flshers
had already suggested that the information contained in th sult of liquid-gas eq_umbrlum transition at the critical point,
asymptotic mass spectrum corresponded to these early sta frause our system is fragmenting in the presence of a col-
of the evolution. We have advanced in this respect by sho ective expansion.

ing the novel result that the overall statistical properties of
the cluster spectrum are equivalent to the asymptotic ones
after a short timer..,. Furthermore, we were able to char-  Partial financial support via Grant No. EX-076, Univer-
acterize this breakup state as regards its velocity distributiorsity of Buenos Aires, is acknowledged.
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