
ria,

PHYSICAL REVIEW C FEBRUARY 1997VOLUME 55, NUMBER 2
Time scales in fragmentation
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Nuñez 1428, Buenos Aires, Argentina
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The problem of fragmentation of excited finite systems is explored in the frame of classical molecular
dynamics experiments of two-dimensional Lennard-Jones drops. The main objective of this work is to get
information about the relative value of the relevant characteristic time scales~CTS! for this kind of process.
We investigate the CTS for fragment formation, the stabilization of the radial flux, and the internal ‘‘tempera-
ture.’’ It is found that the asymptotic fragments are realized early in phase space, when the system is still
dense, by the time the radial flux attains its asymptotic value. It is also shown that the temperature of the
system during the breakup is quite homogenous with respect to the expected profile if local thermal equilibra-
tion takes place. Special emphasis is put on the investigation of the time scale of stabilization of the statistical
properties of the mass spectrum, which is related to the kind of information carried by the asymptotic frag-
ments.@S0556-2813~97!04301-X#

PACS number~s!: 25.70.Pq, 02.70.Ns, 24.10.Pa
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I. INTRODUCTION

Despite the great efforts done in order to study the mec
nisms which lead an excited system of nucleons to break
in several intermediate-mass fragments, and the poss
connection of this process with a liquid-gas transition, s
eral questions remain unanswered. It is not well kno
when, how, and which density fluctuations start to develop
the expanding system of nucleons, during the early stage
the process, and become fragments in a later stage. In o
to understand why the system becomes unstable with res
to some density fluctuations it is mandatory to determine
most relevant properties during the whole process and
follow in time the development of the density fluctuatio
which lead to the breakup. The phenomenon of fragme
tion is not a specific property of nuclear systems but it i
common feature of many different systems, for examp
pressurized fluids flowing through nozzles, rock explosio
protein decay through elongation, etc. All these proces
share the lack of knowledge about the dynamics of fragm
formation.

In nuclear physics many models have been devised
study the behavior of expanding finite nuclear systems. T
can be roughly classified in the three following categori
~1! the ones based on the calculation of the evolution of
one body density function~LV @1#, BUU @2#!, ~2! thermody-
namical models, which assume some degree of thermal e
librium, and that have been developed in the framework
microcanonical@3#, canonical@4#, and grand canonical@5#
ensembles. Finally~3! microscopic dynamical models whic
contain all the microscopic information at all times, the
models have the appealing feature that they bring the po
bility of analyzing many body correlations at all time
Amongst this last category we can mention those which
purely classical@6#, quasiclassical@7#, and semiclassical@8#.

Only recently a cluster definition and its recognition alg
rithm ~early cluster recognition algorithm ECRA! has been
proposed@9# which allows the analysis of the fragmentatio
process at all times. In this model the most bound den
550556-2813/97/55~2!/775~13!/$10.00
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fluctuation in phase space~MBDF! is studied as a function o
time. It has been applied to different molecular dynam
experiments@10–12# and it has been found, in all of them
that the MBDF becomes stable very early in the evolutio
when the system is still dense, and that this density fluct
tion turn out to be the asymptotic fragments, when it spre
in space due to the expansion.

Regarding the breakup mechanism many authors, ba
on Fisher’s semiphenomenological drop model@13#, have
related power law behavior of the asymptotic mass spectr
multifragmentation to the disassembly of the system
nucleons at the density and temperature of the critical po
Fisher’s model predicts that the mass distribution should b
power law multiplied by an exponential whose argume
goes to zero at the critical point. This kind of behavior
indeed observed in different experiments, but it has b
shown that the times involved in multifragmentation are
too short to relate the breakup to equilibrium processes
spinodal decomposition or nucleation@12#.

Since nuclear matter is a Fermi system an appropr
model should be quantum mechanical in nature, unfo
nately such a description is not feasible if one wishes to k
n-body correlations. In our calculations we will try to kee
things as simple as possible, so we choose to simulate
behavior of excited finite system via a system of classi
Lennard-Jones~L-J! particles, which has an equation of sta
~EOS! in many respects similar to the one expected
nuclear matter and exhibits liquid-gas phase transition@14#.
This model has the important advantage that it has been
tensively studied both for finite and infinite systems and h
also been applied to the analysis of nuclear collisions@14#.

In this communication we focus our analysis on the stu
of the characteristic time scales~CTS! related to the stabili-
zation of different collective and intrinsic degrees of fre
dom, as well as cluster formation. As a by-product we w
obtain new information about the validity of thermodynam
cal models and suggestions for their improvement. We a
address the problem of which kind of information is co
tained in the asymptotic mass spectra. We do this by ana
775 © 1997 The American Physical Society
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776 55A. STRACHAN AND C. O. DORSO
ing the stage of the evolution at which the statistical prop
ties of the MBDF spectra is statistically equivalent to t
asymptotic mass spectra.

The paper is organized as follows. In Sec. II we descr
the model, tools, and CTS used in this work and in Sec.
we present the results of the analysis of the mass spect
our numerical simulations. In Sec. IV we analyze the tim
dependence of the radial flux and temperature and in Se
we discuss the early cluster formation model. Finally conc
sions are presented in Sec. VI.

II. NUMERICAL EXPERIMENTS AND TIME SCALES

As mentioned in the Introduction we simulate nucle
multifragmentation via a classical system of Lennard-Jo
particles in two dimensions. The two body interaction pote
tial is taken as

V~r !54eF S s

r D
12

2S s

r D
6

2S s

r c
D 121S s

r c
D 6G ,

wherer c is the cutoff radius~the potential is taken equal t
zero forr.r c). In this calculations we tookr c53s. Energy
and distance are measured in units of the potential welle)
and the distance in which the potential changes signs)
respectively. The unit of time used ist05As2/48e. Al-
though it is well known that such a potential presents a
steep repulsive part, i.e., hard equation of state, we us
because the properties of such a system are very well kno
In this sense our calculations are mainly pedagogical~for a
study on the properties of the L-J potential with respect
the nuclear problem see@14#!.

Our work is based on the study of numerical simulatio
of the time evolution of excited finite two dimension
Lennard-Jones drops ofN5100 particles, whose initial con
figurations were obtained by cutting a circular drop from
thermalized periodic system ofN5225 Lennard-Jones par
ticles, per cell, with periodic boundary conditions. Th
ground state energy,e0, of this system of 100 L-J particle
was calculated from an almost circular system cut out from
triangular lattice. The distance between nearest neigh
was taken as that distance at whichV(r ) attains its minimum
value (rmin;1.12s). We got the resulte0.22.8e.

We performed explosions ofN5100 particles, two-
dimensional drops built according to the method describe
the previous section. We studied a rather broad range of
energies ranging formE521.15 toE51.8, which means
initial temperature in the range: 1e24e for a fixed initial
densityr50.75s22. This means that our drops are all com
pressed and heated. This can be seen from Fig. 1 in which
show the metastability curve for an infinite two-dimension
L-J system~full line! @15#. We also show the one corre
sponding to a periodic system in which each cell is popula
with exactly 100 L-J particles~full circles! which we ob-
tained studying the behavior of the specific heat at cons
volumeCV with temperature@12#. Noticeable finite size ef-
fects are evident. This finite size effects are of the kind u
ally referred to as bulk effects because they are related to
inhibition of density fluctuations with wavelengths larg
than the cell size@12#. The corresponding spinodal lines l
inside the metastability curve. It is worth mentioning at th
r-
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point that the effect due to free boundaries have not b
included in this calculation of the EOS~see for example
@16#!.

As stated in the Introduction, we studied, what we co
sider to be some of the most relevant quantities of the
panding system, as a function of time. One of these qua
ties is the collective expansion or radial flux. In order
study the mean radial velocity as a function of position
divided our system in ten concentric circular rings and st
ied the time behavior of the mean radial velocity in each
the regions. Thei th region is the area between two conce
tric circles, centered in the center of mass of the system
radiusr 15( i21)rmax/10 andr 15 ir max/10, wherermax is the
distance of the outermost particle from the center of mas
the system. The mean radial velocity of thei th region is
defined as

v rad
~ i ! ~ t !5K K vj~ t !•r j~ t !ur j~ t !u L

i

L
e

,

where r j and vj stand for the position and velocity of th
particle j , the symbol^& i represents average over particl
which belong to thei th region for a given simulation,̂&e
denotes the average over the ensemble of simulations
formed at given initial conditions.

Another important quantity is the ‘‘temperature’’ of eac
of the circular sectors which we define as the velocity flu
tuations around the collective mean radial velocity:

T~ i !~ t !5K K 12mS vj~ t !2
v rad
i ~ t !•r j~ t !

ur j~ t !u D 2L
i

L
e

.

These two magnitudes will help us analyze the degree
equilibrium of the system during its evolution.

FIG. 1. Metastability curve, in theT2r plane, for the infinite
two-dimensional Lennard-Jones system~full line! and metastability
curve for theN5100 periodic Lennard-Jones system~circles!.
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55 777TIME SCALES IN FRAGMENTATION
In order to study the role played by interparticle collisio
in the different stages of the multifragmentation process,
found it convenient to define the collision rate at timetn as

C~ tn!5(
i51

N

uvi~ tn11!2vi~ tn!u,

wheretn5ntint , beingt int the time step that we used for th
integration of the equations of motion. We too
t int50.0001t0 which guaranteed proper conservation of e
ergy and total momentum.

In this work we investigate the relationship among t
time evolution of the radial flux and temperature of the d
ferent regions, collision rate, and cluster formation. In ord
to relate the process of flux formation and possible ‘‘te
perature’’ equilibration with fragment formation we need
select a fragment definition. In this work we use the follo
ing ones.

~i! The simplest cluster definition is based on the tw
particle correlations in configuration space: a particlei be-
longs to a clusterC if and only if there is another particle
j which also belongs to clusterC and ur i2r j u<r cl , where
r cl is a parameter called clusterization radius. This clus
definition is valid in the later stages of the process bu
gives no information about the early stages of the multifr
mentation. This method is known as minimum spanning t
~MST! or configurational. In our calculations we too
r cl53s.

~ii ! Following Ref. @9# clusters are defined by the mo
bound partition of the system, i.e., the partition~defined by
the set of clusters$Ci%) which minimizes the sum of the
energies of each fragment:

E$Ci %
5(

i
F (
jPCi

K j
c.m.1 (

j ,kPCi
Vj ,kG ,

where the first sum is over the clusters of the partition, a
Kj
c.m. is the kinetic energy of particlej measured in the cente

of mass frame of the cluster which contains particlej . The
algorithm developed to achieve this goal is known as ‘‘ea
cluster recognition algorithm’’~ECRA! @9#. The partition ob-
tained using this last approach will be called hereafter m
bound density fluctuation~MBDF!, and we will denote the
constituent clusters as fragments only in the low density
gime, when the ECRA and MST clusters coincide.

In order to study the possible relation between the m
relevant processes like radial flux formation, cluster form
tion, etc., we found it useful to define the following chara
teristic time scales~CTS!.

tflux is the CTS for the stabilization of the collective e
pansion degree of freedom, usually referred to as radial fl

t temp is the CTS for stabilization of the intrinsic effectiv
‘‘temperature’’ of each circular sector. We are defining ju
one time because, as will be shown in the next section
circular sectors thermally stabilize at approximately the sa
time for each initial excitation energy

tcoll is the CTS for stabilization of the collision rate.
tecrais the CTS for the formation of the clusters accordi

to the ECRA fragment recognition formalism. The ECR
algorithm provides information of the most bound partiti
e
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at any time. The resulting fragment spectra reaches stab
far earlier than the MST one and reflects the complica
collisional evolution of the system in its early stages. In th
way, tecra will be given by the average time at which th
fragment spectra becomes stable.

tmst is the CTS for the formation of the clusters accordi
to the standard MST approach, i.e., the typical time at wh
fragments are ammenable to experimental recognition.

From the relation among the above defined CTS we w
get a more complete insight of the fragmentation proces

III. PROPERTIES OF THE MASS SPECTRA

In Fig. 2 we show the asymptotic mass spectra for
different energies ranging fromE51.8e to E520.8e ~see
figure caption for details!. It can be seen that for the highe
energies the mass distributions show rapid, exponential,
cay with fragment mass and as we move to smaller ener
a broader mass spectra is obtained. For energiesE521e
andE521.15e a transition to U shaped spectra appears.
want to mention at this point that asymptotic mass spe
are those obtained according to the ECRA algorithm at
end of the evolution (tmax) of the expanding system. In mos
cases the results from MST recognition method attmax are
equivalent to ECRA results at that time. This is not true if t
evolutions are not long enough for the system to reach
true asymptotic state.

As mentioned above, one of our main objectives in t
work is the study of the time scales related to fragment f
mation, i.e., we want to know the time at which the asym
totic fragments are already formed and the state of the
tem at that moment. We performed a cluster analysis of
explosions using both the MST and ECRA methods. In F
3 we show the mass multiplicity spectra forE520.3e for
different times, namely 40t0, 80t0, and 200t0, using the MST
algorithm~left part of the figure! and ECRA algorithm~right
part!. It can be clearly seen that for time 40t0 the system is
still dense and a simple configurational analysis gives
information about the asymptotic behavior, nor does it
time 80t0, but the ECRA spectrum is already very similar
the asymptotic one. In Fig. 4 we show again the mass spe
at times 40t0, 80t0, and 200t0 for both algorithms but for
E520.8e. In Figs. 5~a!, 5~b!, and 5~c! we show the asymp-
totic spectra~diamonds! and the ECRA result for time 10t0
~squares! for energiesE520.15e, 0.3e, and 0.8e, respec-
tively. In Fig. 5~c! we also show, for comparison, the MS
mass distribution for time 10t0 ~full circles!. From Figs. 3–5
it can be seen that the ECRA model is able to find the
ymptotic fragments at very short times when the system
still dense. This result has been found for a variety of m
lecular dynamics experiments@12,11#.

So far we have been comparing mass spectra at diffe
times by simply looking at their shapes; in order to have
quantitative measure of the similarity of two mass distrib
tions one can calculate the probability that the two differe
spectra come from the same distribution function. This pr
lem can be solved calculating thexb

2 statistics for binned data
@17#:

xb
25(

i

@ni~ ta!2ni~ tb!#
2

@ni~ ta!1ni~ tb!#
,
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FIG. 2. Asymptotic mass spectra, for energies:~a! E520.8e, ~b! E520.55e, ~c! E520.3e, ~d! E520.015e, ~e! E50.8e, and ~f!
E51.8e.
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whereni(t) denotes the number of fragments in bini and the
sum runs over a fixed mass range. To have an order of m
nitude for the value ofxb

2 denoting equivalence we hav
studied this magnitude when different mass spectra are
erated from the same probability density distribution fun
tion. For this purpose we have generated sets of 100 p
tions with a total mass ofN5100 from a power law
distribution ~as is done in the ERW model of fragmentatio
@18#!. After calculatingxb

2 among them and averaging w
obtained a value of 70% as our limit of confidence. In F
6~a! we show the probability that the mass spectrum a
function of time and the asymptotic one come from the sa
distribution function for energyE520.8e, the circles repre-
sent the comparison with the ECRA result and the squa
the comparison with MST spectra. The mass range which
used for this energy is 4<A<60. Figure 6~b! shows the
same quantity but for energyE520.3e, in this case the
mass range considered is 4<A<24. It can be seen from th
figures above that at time 70t0 the ECRA result for energy
g-

n-
-
ti-

.
a
e

es
e

E520.8e is already very similar to the asymptotic valu
while the MST result bares little similarity. The case is e
actly the same forE520.3e but for time 40t0. The mass
range considered was chosen taking into account the foll
ing arguments: the smaller bins~one to four! are very sen-
sible to the evaporation process in which we are not in
ested. On the other hand the bigger bins show gr
fluctuations due to the finite size of our system. That is w
we excluded these two mass ranges for our analysis. T
kind of study is not suitable for high energies because
mass spectrum is very narrow and then the mass range t
considered for the comparison viaxb

2 is far too small. The
results we have obtained are summarized in the followi
the ECRA mass spectra reaches their asymptotic value
time ;12t0 for energiesE>20.15e, this being the CTS
tecra. ForE520.3e the time related to cluster formation i
;40t0 and forE520.8e the time is;70t0. This is a very
important result because from it one can infer the kind
information contained in the asymptotic spectrum, i.e.,
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FIG. 3. Mass spectra for energyE520.3e, ~a! MST result for time 40t0, ~b! ECRA result for time 40t0, ~c! MST result for time
80t0, ~d! ECRA result for time 80t0, ~e! MST result for time 200t0, and~f! ECRA result for time 200t0.
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one obtained experimentally. In this waytecra is the time
after which the statistical properties of the mass distribut
achieve their final values, so any information which the m
spectrum may carry concerns this initial stage (t<tecra) of
the process of multifragmentation in which the system is s
dense and a MST analysis gives no information. In the
lowing section we shall characterize this stage with resp
to its velocity distribution.

Another way of studying the time properties of the MBD
spectra is by analyzing its shape as a function of time.
cording to Fisher’s semiphenomenological droplet model
equilibrium liquid-gas transitions, the fragment mass dis
bution should be a power law multiplied by an exponen
whose argument goes to zero at the critical point:

Y~A!5Y0A
2texpFmg2m l

T
A2

4pr 0
2s

T
A2/3G ,

whereA is the mass of the drop,mg andm l are the chemica
n
s

ll
l-
ct

-
r
-
l

potentials of the bulk gas and liquid phases, ands is the
surface tension. This equation can be cast in the form

Y~A!5Y0A
2tXA2/3YA, ~1!

whereX andY are fitting parameters~see@19# for details!.
At the critical pointmg5m l and therefores goes to zero,
and we are left with a simple power law, which has t
crucial property of being scale invariant. Fisher’s scaling
lation is common to other systems like percolation mod
Ising model, etc. So if a given mass range of the spectrum
fitted with a power lawY(A)}A2t, the exponentt should
be a minimum at the critical point. The mass range should
selected in such a way that~i! small fragments are left ou
because the scaling is supposed to be valid for not too s
clusters@20#, moreover, the population of the first bins
constantly increasing due to evaporation process and~ii ! big-
ger clusters should be left out because either we are in
region of U shaped spectra in which case the effect of ex
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FIG. 4. Mass spectra for energyE520.8e, ~a! MST result for time 40t0, ~b! ECRA result for time 40t0, ~c! MST result for time
80t0, ~d! ECRA result for time 80t0, ~e! MST result for time 200t0, and~f! ECRA result for time 200t0.
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nential terms in the yieldY(A) is strong or we are in the cas
of close to power law behavior for which we expect som
sort of critical phenomena and the population of large m
bins is expected to fluctuate noticeably. Taking into acco
these considerations, in Fig. 7 we show the exponentt as a
function of the energy of the system, obtained by fitting t
mass spectrum in the mass range 4<A<20 for all energies
but for E521e for which we took the range 4<A<10.
This is because the plateau of the typical U shaped spec
for E521e a begins at mass number 10. It can be seen
minimum t is achieved forE520.8e; nevertheless this re
sult depends strongly on the mass range considered. To o
come this ambiguity we decided to study the dependenc
the exponentt with the mass range considered. In Fig. 8~a!
we showt as a function of time for energyE520.8e for
three mass ranges, namely 4<A<20 ~circles!, 4<A<30
~diamonds!, and 4<A<50 ~squares!, it can be seen that th
spectrum shows power law behavior and time invariance
time;70t0 onward. In Fig. 8~b! we show the exponentt for
s
t

e

m
at

er-
of

r

E520.55e, in this case the spectrum is not a power law
any time~note the important dependence of the exponent
the mass range! but for time;60t0 onward the spectrum is
quite invariant. A very similar result to this last one is o
tained for energyE520.3e. The times involved in the as
ymptotization of the exponents is in agreement with the o
obtained with thexb

2 test.
As stated in the Introduction, power law behavior in t

mass distribution, for energyE520.8e, should not be re-
lated to Fisher’s result for the critical point which applies f
equilibrium systems. Nevertheless minimumt and power
law behavior in mass distribution, and consequently inva
ance against scale changes, can be the result of a cr
process of some other kind. In any case the critical proc
takes place during the early stage of the process. It is w
mentioning at this point that according to the theory of cr
cal phenomena the exponentt should be greater than 2. Th
discrepancy of our result with this fact can be due to fin
size effects, the decrease oft with decreasing system size
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FIG. 5. ~a! Mass spectra for energyE520.15e, ECRA result for time 10t0 ~squares!, and ECRA result for asymptotic time~diamonds!.
~b! Mass spectra for energyE50.3e, ECRA result for time 10t0 ~squares!, and ECRA result for asymptotic time~diamonds!. ~c! Mass
spectra for energyE50.8e, ECRA result for time 10t0 ~squares!, MST result for time 10t0 ~circles!, and ECRA result for asymptotic time
~diamonds!.
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well known in percolation calculations.

IV. COLLECTIVE EXPANSION AND TEMPERATURE

After showing that the statistical properties of the ma
spectrum are stable after a short period of time, we exp
the time evolution of two other relevant quantities defined
Sec. II, namely the mean radial velocity and the effect
temperature of the expanding system.

In Fig. 9 we show the mean radial velocity~defined in
Sec. II! of regions 2, 4, 6, and 8 as a function of time, for s
different energies namelyE51.8e, 0.8e, 0.3e, 20.15e,
20.3e, and20.8e, averaged over approximately 100 evol
tions each. We also show in Fig. 9 the collision rate for ea
energy~full thick line!. The collision rate attains its asymp
totic value at time;12t0 for all the energies considered. Th
first stage of the process (t<12t0) is a highly collisional one
in which most of the radial flux is developed. Note that f
s
re

e

h

energies greater than20.3e the radial velocity is almost
completely developed at time 12t0 regardless of its energy
For energyE520.3e the overall behavior is similar but th
radial velocity goes on growing, at a smaller rate, after t
time, and it reaches its asymptotic value at time;40t0. And
for E520.8e a very small radial flux is created but for som
regions~regions 2 and 4) it starts to diminish after a sho
period of time and it reaches its asymptotic value at ti
;70t0. It is clear from Fig. 9 the role played by collisions i
the radial flux formation. Interparticle collisions are respo
sible of transforming the initial thermal motion of constitue
particles into the more ordered collective expansion. T
dotted lines of Fig. 10 show the value of the potential ene
per particle~scales are on the rightY axis! as a function of
time for the above mentioned energies. We can see tha
the time the collision frequency has reached the plateau,
potential energy reaches its maximum value, bringing i
evidence that interactions between different clusters are n
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782 55A. STRACHAN AND C. O. DORSO
ligible ~although not zero, as can be seen from the M
analysis!. As a consequence at this stage entropy produc
essentially stops.

In Fig. 10 we also show the ‘‘temperature’’~as defined
above! of the circular sectors as a function of time. Th
figures are characterized by a fast cooling down during
initial, highly collisional, stage of the evolution and afte
wards they stabilize. Note that there is only a weak dep
dence of the ‘‘temperature’’ on the circular sector cons
ered; furthermore, for times around 12t0 they are remarkably
similar. Also note that before and after this period of time t
temperature decreases as we move from the center o
system towards the outer regions and that the relative de
tures increase with time. A possible explanation of this fa
will be given in the next section.

FIG. 6. Probability that the mass spectra at a given time and
asymptotic one come from the same distribution function
E520.8e ~a! andE520.3e ~b!. The calculations are based on th
xb
2 method. Circles denote ECRA spectra while squares refe

MST spectra.
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Taking into account Figs. 5 and 9 it can be seen that,
energiesE>20.15e, by the time the radial flux attains it
asymptotic value the MBDF become stable and the fi
mass distribution is obtained by the ECRA algorithm, i.
thetflux andtecraare very similar. This time (12t0) coincides
with the end of the initial collisional stage. For energ
E520.3e the system requires more time for the radial fl
to achieve its asymptotic value~remember that the radial flux
goes on growing for a while after the highly collisional sta
has ended!. The mass distribution, according to the ECR
algorithm, becomes stable at the same time (t540t0). For
energyE520.8e the case is similar to the last one, but th
time required by the radial flux and by the mass spectra
become stable is a little longer (;70t0).

From the analysis of the data presented in the previ
sections it is rather straightforward to realize thattcoll
(;12t0) is quite independent of the energy and that at
end of this stage the ‘‘temperature’’ has reached its asym
totic value.

It can be seen that for energiesE>20.15e, for which the
mass spectrum shape is of the exponential type, the ra
flux and mass spectra are also stable at that time, so
following relation between the relevant time scales holds

tcoll;t temp;tecra;tflux,tmst.

On the other hand, for the lower energies, when the m
spectrum shape becomes closer to a power
(E520.3e, 20.55e and20.8e), we find that when the col-
lision rate and ‘‘temperature’’ attain their plateau the rad
flux is not completely developed~although its following time
evolution takes place at a much lower rate!. By the time the
radial flux attains its final value the asymptotic fragments
detectable by the ECRA algorithm, so the following relati
holds:

tcoll;t temp,tecra;tflux,tmst.

e
r

to

FIG. 7. Exponentt as a function of energy~in units of e). For
all energies butE521e the mass range considered in the fittin
was 4<A<20, forE521e it was 4<A<10.
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55 783TIME SCALES IN FRAGMENTATION
V. THE EARLY CLUSTER FORMATION MODEL

From the results presented in the last two sections i
clear that, according to the excitation energy, multifragm
tation can take place in two distinct ways:~a! expansion
driven processes and~b! evaporation like processes. Most
the results presented correspond to events in the first reg
in which collisions generate a collective expansion, and i
this expansion the main ingredient determining the instab
of the system against some density fluctuations, keepin
mind the close relation between flux formation and the s
bilization of the mass spectra according to the ECRA mod
In the second regime (E,20.8e), the system expands du
ing the early stages of its evolution and then the attrac
part of the interaction makes the system contract after eva
rating the outer particles. It is interesting to note that bro
est mass distribution~minimum t) and power law behavio
of mass distribution was found, as in@21#, for the events

FIG. 8. Exponentt as function of time forE520.8e ~a! and
for E520.5e ~b! for three mass ranges: 4<A<20 ~circles!,
4<A<30 ~diamonds!, and 4<A<50 ~squares!.
is
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s
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-

which lie in the transition from the expansion driven regim
to the evaporation driven one.

The expansion driven multifragmentation process
present three distinct stages of evolution. The first stag
dominated by interparticle collisions and most part of t
collective expansion builds up during it. The time involve
in this stage is, for our system,;12t0. Once the collisional
stage is over the system breaks up, at least when anal
according to ECRA formalism. This is the second stage
the process. The time involved in this stage depends on
energy of the system, it is very short for the higher energ
(E>20.15e). For energyE520.3e this second stage end
at time t;40t0 and for E520.8e at t;70t0 ~cf. Fig. 6!.
During the second stage the system is still dense and, reg
ing its velocity distribution, its state can be characterized
an almost homogeneous ‘‘temperature’’~see Fig. 10! and by
an expansion degree of freedom. Under these conditions,
in the presence of a collective expansion and an almost
form ‘‘temperature,’’ the MBDF develop and become stab
that is, the system breaks up. It is worth mentioning at t
point that the MST cluster analysis during this stage gives
information about the asymptotic behavior of the system
fact this kind of analysis gives longer times for cluster fo
mation. In this way one would miss the relation between
formation of radial flux, ‘‘temperature’’ stabilization, and th
appearance of the asymptotic clusters. The third stage
very simple one, in which the system simply expands and
MBDF already formed spread in space and became sepa
drops. In this last stage the fragments keep on evapora
some particles but the multifragmentation process has
ished.

In order to investigate the times at which the transiti
from multifragmentation to evaporation takes place we fi
it convenient to use the coefficient of persistence@22# de-
fined by the following argument. Letn1 . . .nN the nucleons
which belong to the clusterC with massAC at the timet.
bC(t)50.5*nN(nN21) is then the number of pairs of nucle
ons in clusterC at that time. At the timeDt later, some of
the nucleons may have left the cluster and belong to ano
cluster or be single particles. LetNC→A be the number of
nucleons which have been in the clusterC at time t and are
at t1Dt in the cluster A. We define
aC(t1Dt)5(A0.5*@NC→A(NC→A21)#.

Now we are able to introduce the mass weighted per
tence coefficient (Pm)

Pm~ t !5K K aC~ t1Dt !

bC~ t !
ACL

cl
L
e

,

where ^&cl denotes average over the clusters at timet and
^&e denotes average over the ensemble of explosions
given energy.Pm(t) will be equal to 1 if all particles remain
together and 0 if the clusters break up completely. It m
sures the tendency of the members of a given cluster to
main together. We next show the persistence coefficient
function of time~circles of Fig. 11! for energiesE520.8e
@Fig. 11~a!#, 20.55e @Fig. 11~b!#, and20.3e @Fig. 11~c!#,
together with the value of the mass weighted persistence
lated to evaporation,Pm

(21)(t), which is calculated from the
fragment configurations at timet by considering that all frag-
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FIG. 9. Collision rate in arbitrary units~full thick lines! and mean radial velocity~in units of s/t0) as a function of time~in units of
t0) of regions 2~full thin lines!, 4 ~dotted lines!, 6 ~dashed lines!, and 8~dashed-dotted lines!. For energies:~a! E51.8e, ~b! E50.8e, ~c!
E50.3e, ~d! E520.015e, ~e! E520.3e, and~f! E520.8e.
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ments with mass bigger than 4 lose one particle~triangles of
Fig. 11!. For these calculations we tookDt55t0 for energy
E520.3e, Dt54t0 for energyE520.55e, andDt510t0
for energyE520.8e. It can be seen that, after the initia
stage of the process the main decay channel for the med
mass fragments is evaporation. The time at which the mu
fragmentation stage ends and we are left with evaporatio
;40t0 for energy E520.3e, ;60t0 for energy
E520.55e, and;100t0 for energyE520.8e. This result
is consistent with the ones presented in Secs. III and IV.

Because at this times the systems are still dense accor
to MST recognition algorithm, the study of the above defin
persistence coefficient states that the MBDF~ recognized by
the ECRA algorithm! have reached microscopic stability.
m
i-
is

ing
d

Regarding the temperature evolution in time note that d
ing the first stage of the evolution (t,10t0) the outer regions
cool down more rapidly than the central ones, this is beca
the expansion starts to develop in the outer region, so ‘‘te
perature’’ in this regions is converted into expansion mo
quickly. An important question at this point regards wheth
the homogenization of the temperature at time;10t0 is the
result of thermalization or not. Lets analyze the velocity flu
tuations over the expansion~which are related to the tem
perature! at times shorter than 10t0, lets take some charac
teristic temperature of this early stage of the evolution, s
T51e, the mean velocity associated with it is approximate
0.2s/t0. Lets also consider some characteristic variation
mean radial velocity between adjacent circular regio
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FIG. 10. Potential energy per particle, in units ofe ~dotted lines! on the rightY axis and, on the leftY axis, temperature, in units o
e, of regions 2~full thin lines!, 4 ~dotted lines!, 6 ~dashed lines! and 8 ~dashed-dotted lines! as a function of time~in units of t0). For
energies:~a! E51.8e, ~b! E50.8e, ~c! E50.3e, ~d! E520.015e, ~e! E520.3e, and~f! E520.8e.
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Dv rad.0.05s/t0. This means that during a lapse of time
10t0 two adjacent regions move;0.5s away from each
other while the mean distance traveled by a particle over
expansion is;2s, it is possible, then, that during a time o
10t0 local thermal equilibrium be achieved. From Fig. 10
can be seen that during the breakup, i.e., the second sta
the process, the ‘‘temperature’’ of the system is quite h
mogenous. It can also be seen from Fig. 10 that, once
second stage is over, the inner regions are hotter than
outer ones, for all the energies which we studied. This fac
also explained by our multifragmentation model as can
seen by the following argument. We studied the correlat
between cluster size and relative position of its center
mass~c.m.! in the system; in Fig. 12 we show the mea
e

of
-
he
he
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e
n
f

distance from the c.m. of the system to the c.m. of the
ymptotic fragments as a function of the mass of the clus
for E520.15e. It is seen that the heavier fragments appe
near the c.m. of the system, as we move away from it ligh
fragments appear. This behavior is also seen for all the o
energies analyzed in this work. Remember that accordin
our multifragmentation model the breakup state is charac
ized by a local mean radial velocity and by an almost hom
geneous ‘‘temperature,’’ so, due to the expansion, the kin
energy of a cluster, measured from its c.m., increases with
size. As the clusters move away from each other, the exp
sive kinetic energy is converted back into ‘‘temperature.’’
this way the bigger clusters will be hotter than the sma
ones; taking into account Fig. 12, the central regions will
hotter than the outer ones.
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786 55A. STRACHAN AND C. O. DORSO
VI. CONCLUSIONS

In this work we have studied the relation between fra
ment formation, local ‘‘thermal’’ equilibration, and stabiliza
tion of the statistical properties of the mass spectrum.
found, as in previous calculations, that the asymptotic fr
ments, in fact the density fluctuations which lead to the
ymptotic fragments, are formed early in the evolution of t
expanding drops, when the system is still dense. This re
had already suggested that the information contained in
asymptotic mass spectrum corresponded to these early s
of the evolution. We have advanced in this respect by sh
ing the novel result that the overall statistical properties
the cluster spectrum are equivalent to the asymptotic o
after a short timetecra. Furthermore, we were able to cha
acterize this breakup state as regards its velocity distribut

FIG. 11. Persistence coefficient as a function of timePm(t)
~circles! and reference evaporation persistence valuePm

(21)(t) ~tri-
angles!. ~a! Energy: E520.8e, ~b! E520.55e, and ~c!
E520.3e.
.
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e
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-
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We found that at the time of effective breakup, when t
MBDF form, the state of the system can be characterized
an almost uniform ‘‘temperature’’ over a local mean rad
velocity which is an increasing function of the distance fro
the center of mass of the system. So the conclusions w
one can obtained by studying mass spectra concerns
state. The mean radial velocity gradient depends on the t
energy of the system while the asymptotic ‘‘temperature’’
quite independent of it. As a by-product these results mi
provide a basis for a microscopic foundation of, prope
modified, thermodynamic models.

We also found that for a short initial time the syste
undergoes a highly collisional stage which is responsible
the creation of the radial flux, once this early stage ends,
‘‘temperature’’ of the system has reached its asympto
value.

We found power law behavior in the mass spectra
energies aroundE520.8e and we would like to recall once
again that this result cannot be directly related to Fishe
result of liquid-gas equilibrium transition at the critical poin
because our system is fragmenting in the presence of a
lective expansion.
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FIG. 12. Mean position of the asymptotic clusters~in units of
s) as a function of its mass number for energyE520.15e.
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