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Microscopic analysis of quadrupole collective motion in Cr-Fe nuclei.
I. Renormalization of collective states and interacting boson model parameters

Hitoshi Nakada
Department of Physics, Faculty of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263, Japan

Takaharu Otsuka
Department of Physics, Faculty of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan

~Received 30 September 1996!

We present a new method by which wave functions with simple structure are renormalized so as to contain
more complicated structure. This method, calledHn-cooling method, is applied to the study of the quadrupole
collective motion of56Fe, 54Cr, 58Fe, and56Cr. The shell-model wave functions of lowest-lying states of these
nuclei are well treated by this method. By using the wave functions obtained via theHn-cooling method,
interacting boson model-2 parameters are derived from a realistic shell-model Hamiltonian and transition
operators. The Majorana interaction becomes sizably repulsive, primarily as an effect of the renormalization.
The bosonicE2 effective charges are enhanced due to the renormalization, while a quenching occurs in the
M1 andM3 parameters for proton bosons. It is shown that thex parameters take similar values in the
Hamiltonian and in theE2 operator.@S0556-2813~97!05902-5#

PACS number~s!: 21.10.Re, 21.60.Cs, 21.60.Ev, 27.40.1z
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I. INTRODUCTION

Middle p f-shell nuclei provide us with a precious testin
ground to understand various aspects of the quadrupole
lective motion from microscopic standpoints. Computatio
difficulties in a realistic shell model rise rapidly in genera
as the mass number increases. The growing computer po
however, enables us to carry out realistic shell-model ca
lations in the middlep f-shell region. On the other side, th
middle p f-shell nuclei seem to gain significant quadrupo
collectivity, which is a global and dominating feature
heavier nuclei.

Recently we have reported one of the most succes
shell-model results forN528–30 nuclei@1–3#. The Kuo-
Brown interaction@4#, which had been derived from a rea
istic NN potential throughG matrix, has been employed i
these calculations, together with a large configuration sp
including excitations from the 0f 7/2 orbit. To be more pre-
cise, considering the following configuration:

~0 f 7/2!
n12k~0 f 5/21p3/21p1/2!

n21k, ~1!

wheren15(Z220)18 andn25N228 for the 20,Z<28
<N,40 nuclei, we have adopted a space consisting of
the k50, 1, and 2 configurations. It has been confirmed@3#
that, for even-even nuclei, the energy levels are reprodu
remarkably well forEx,4 MeV.

The presence of mixed-symmetry states with respec
the proton and neutron collective degrees of freedom
been predicted by the proton-neutron interacting bo
model~IBM-2! @5#. It has been pointed out@6# that a mixed-
symmetry 21 state may lie lower than the other mixe
symmetry states in spherical nuclei, although the origin
such a low-lying mixed-symmetry 21 level has remained
open. Experimental studies have suggested that the mi
symmetry 21 state exists aroundEx53 MeV in the Cr-Fe
region @7#. A realistic shell-model analysis has been appl
550556-2813/97/55~2!/748~14!/$10.00
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to pin down the mixed-symmetry 21 state of56Fe @1#, clari-
fying which states share substantial fractions of the mix
symmetry component. It is of special interest to study t
type of collective mode more extensively, on the basis o
realistic shell-model calculation.

The realistic shell-model Hamiltonian couples collecti
degrees of freedom to non-collective ones, in general. W
large-scale shell-model results are interpreted in terms
IBM-2, it is important to incorporate, through a certa
renormalization procedure, effects of relevant noncollect
degrees of freedom into the calculations made in the col
tive subspace. This is an example of the general problem
to how a complicated system can be described with a lim
number of degrees of freedom by taking into account a
riety of correlations in an effective manner. Rayleig
Schrödinger’s perturbation theory constitutes a possible w
by which the model wave function is modified. The secon
order perturbation has been applied to renormalize
IBM-2 parameters@8,9#. Another way is Bloch-Horowitz’s
renormalization of operators, in which operators, rather th
wave functions, are modified perturbatively so as to carry
relevant correlation effects. Some useful general theo
have been developed by extending Bloch-Horowit
method: Feshbach’s projection method@10# and the folded-
diagram theory@11#, for example. These methods are, ho
ever, more or less based on the perturbation theory. In
cases to be considered in this paper, perturbative ways
inappropriate, as is argued just below.

Our present goal is an investigation of the quadrup
collective states which are to be described within IBM-2,
connection with the realistic shell model. In the first appro
mation, thes andd bosons in IBM-2 correspond to the co
lective 01 (S) and 21 (D) pairs of valencelike nucleons@5#.
In Cr-Fe nuclei, as is assumed in Ref.@7#, theS andD pairs
normally comprise only thek50 configuration of Eq.~1!,
because of theZ5N528 magic number. The realistic shel
748 © 1997 The American Physical Society
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55 749MICROSCOPIC ANALYSIS OF QUADRUPOLE . . .
model wave functions, however, contain other configu
tions. According to the realistic shell-model results, the le
age out of thek50 space is so significant that even the 01

1

and 21
1 wave functions are not well enough covered with th

usualSD space (,60%! @3#. In order that the 01
1 and 21

1

states can be described within the IBM-2, the correlatio
beyond theSD pairs must be taken into account. This re
tively large k.0 fraction prevents perturbative ways fro
being applicable. A method beyond the perturbation theor
required. It is commented that this situation takes place
cause the56Ni core is not very stiff. Perturbative approach
may be legitimate in other mass regions in connecting IBM
to realistic shell model.

We recall here that, as far as several lowest-lying lev
are concerned, they are successfully reproduced by
Horie-Ogawa Hamiltonian@12# with only thek50 configu-
ration in the Cr-Fe region, apart from the precise descript
of the mixed-symmetry states@1#. Moreover, thisk50 shell-
model result is connected with IBM-2 fairly well, at least fo
01

1 and 21
1 @13#. This fact suggests that, even in more re

istic cases withk.0 configurations, the lowest-lying state
may be described within IBM-2 through a proper renorm
ization. In Ref.@1# modifiedSD pairs have been introduced
and the fragmentation of the mixed-symmetry 21 compo-
nents was clarified for56Fe.

We introduce a new and yet simple method in this artic
It is applicable even to some cases where the perturba
does not work well. The method is applied to quadrup
collective states of Cr-Fe nuclei, and the wave functions
those states are renormalized. In addition to56Fe and54Cr,
on which the shell-model results have already been repo
in Ref. @3#, 58Fe and56Cr are studied. Furthermore, by e
tending the OAI mapping@5#, the IBM-2 Hamiltonian is de-
rived from the realistic shell-model Hamiltonian. This is th
first work of this sort, while there have been many wor
evaluating IBM-2 parameters from more schematic inter
tions, for instance the surface-delta interaction. The IBM
transition operators are obtained as well. Renormaliza
effects on various IBM-2 parameters are discussed. Focu
on the IBM-2 results more concisely, we shall investiga
properties of the mixed-symmetry states in Cr-Fe region
the following paper@14#.

II. H n-COOLING METHOD „H nCM …

The present renormalization method is introduced in
general form, in this section. Some details of the proced
will be illustrated in Sec. III. Although this method may b
applicable to other many-body problems, we shall apply it
this paper, to elicit a collective space out of the shell-mo
space. This collective space should correspond to tha
IBM-2.

In 56Fe, for example, we have a pair of proton holes a
a pair of valence neutrons within the description assum
the 56Ni core. TheS andD pairs of protons are defined a
the 01 and 21 states of the (0f 7/2)

22 configuration, while
those of neutrons are collective 01 and 21 states of the
(0 f 5/21p3/21p1/2)

2 configuration. Once the structure of th
neutronS andD pairs is given, theSD space is constructe
by these proton and neutronS andD pairs.

We first introduce a subspace of the original Hilbe
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space. This subspace is denoted byW(0). In the application
discussed in Sec. IV, the original space corresponds to
shell-model space, andW(0) to the SD space. The base
belonging toW(0) are hereafter calledprimary bases, while
those outsideW(0) nonprimarybases. It is required that th
primary bases include basic dynamics already. If there
conserved quantum numberJ, the spaceW(0) can be decom-
posed as

W~0!5 %

J
WJ

~0! . ~2!

In the practical case,J represents nuclear spin. In the follow
ing procedure,WJ

(0)’s with different J’s never mix with one
another, reflecting the conservation law.

We consider a primary basisCl
(0)PWJ

(0) wherel is the
index of basis-state vectors for a givenJ. The quantum num-
ber J is not explicitly shown inCl

(0) for brevity. The state
Cl

(0) evolves with timet ase2 iHt uCl
(0)&, whereH means the

original Hamiltonian. When the inverse temperatureb5 i t
with imaginary t is employed, the time evolutione2 iHt is
converted to coolinge2bH. In order to simplify the following
discussion, we assume without loss of generality that all
eigenenergies are non-negative. This situation is attaine
necessary, by shifting the origin of energy. The expectat
value ^Cl

(0)ue2bHuCl
(0)&, which is a function ofb, is a su-

perposition of exponentially-decreasing components co
sponding to eigenvalues ofH. The number of these compo
nents is much larger, in general, than the dimension
W(0), because a sizable fraction ofe2bHuCl

(0)& escapes out
of W(0) with increasingb; e2bHWJ

(0)ÞWJ
(0) and therefore

e2bHW(0)ÞW(0). We consider, in this paper, the situation
in which the primary bases form a major part of some lo
lying states and then̂Cl

(0)ue2bHuCl
(0)& is dominated by one

or a few slowly decreasing components, while fast-decay
components are superposed with far smaller amplitudes
we choose appropriate states from nonprimary bases, on
small number of them will have a sizable mixing wit
Cl

(0) . These nonprimary but relevant bases are here
pressed asfl

(n) . The superscript (n) is used as an index o
degree of the coupling toCl

(0) , whose meaning will be
specified later in this section. By taking into account t
influence of thef bases, the wave function ofCl

(0) will be
renormalized as

Cl}Cl
~0!1(

n
cn,lfl

~n! , ~3!

wherecn,l represents mixing amplitude of thef basis. The
basisCl is constructed so as to contain higher-energy co
ponents with significantly small amplitudes. By doing th
rapidly decreasing components in̂Clue2bHuCl& can be
made negligibly small. Then the exact low-lying eigensta
will be reproduced to a good approximation by appropri
linear combinations ofCl’s. The following discussion will
exhibit how to choosefl

(n) efficiently and how to evaluate
cn,l . With an adequate set offl

(n)’s andcn,l’s, the trunca-
tion up to relatively smalln in Eq. ~3! is expected to yield
good renormalized bases, as will be shown with concr
examples.
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In the present method, it is required that the Hilbert sp
WJ[$Cl ;l51,2, . . .%, which consists of the renormalize
bases, fulfills the approximate relation

e2bHWJ'WJ , ~4!

up to a reasonably largeb. By defining the total space of th
renormalized bases by

W[ %

J
WJ , ~5!

Eq. ~4! can be expressed as

e2bHW'W. ~6!

We look for aW which satisfies Eq.~6! and, at the same
time, remains a rather small subspace of the full Hilb
space. Equation~4! or Eq. ~6! indicates approximate closur
of the renormalized space. The closure is exactly satisfie
W consists of eigenstates ofH. Such a construction, how
ever, only means a calculation in the full space. We are h
seeking to obtainWJ with a limited number of thef bases in
Eq. ~3!, discarding degrees of freedom coupled to the p
mary bases only weakly. For this purpose, we shall tr
how the original basisCl

(0) evolves bye2bH.
We consider a smallb by rewritingb asDb for the time

being, although it is not essential as discussed later. By
pandinge2DbH into the power series ofDb, the cooling of
Cl

(0) gives

e2DbHuCl
~0!&5F (

n50

n
~2Db!n

n!
Hn1Ô„~Db!n11

…G uCl
~0!&,

~7!

where Ô„(Db)n
… represents an operator with the order

(Db)n. We define thefl
(n) bases@see Eq.~3!# from the right-

hand side,

ufl
~n!&[PO•HnuCl

~0!&. ~8!

HerePO stands for an appropriate orthonormalization, who
concrete definition will be given in Sec. III. The basisfl

(1)

directly couples toCl
(0) via H, exhausting the coupling lead

ing out ofWJ
(0) . The next basisfl

(2) affects the primary state
via its coupling tofl

(1) . In this manner, important bases a
extracted one after another. Note that all thef bases carry
the same quantum numberJ asCl

(0) .
Since the shell model is defined as a finite dimensio

many-body problem, the cooling operatore2DbH does not
need infinite series expansion. Moreover, since we have
tulated that the primary bases include basic dynamics,
number of relevant degrees of freedom which couple to
primary bases can be relatively small. Making good use
these features,e2DbH is handled by the power-series expa
sion as in Eq.~7!, and thef bases are generated by Eq.~8!.

It has been known that the Lanczos diagonalization al
rithm is efficient to obtain eigenenergies and eigenfuncti
of low-lying states. We here try to utilize the advantage
the Lanczos method. The Lanczos method can be derived
the power-series expansion ofe2DbH acting on an arbitrary
basis. Besides a difference in thePO operator~see Sec. III!,
e

t

if

re

i-
e

x-

f

e

l

s-
e
e
f

-
s
f
ia

the f bases in Eq.~8! have basically the same form as th
Lanczos bases generated fromCl

(0) . However, it is a key
point of the present method that the primary bases con
basic dynamics of the system. In other words, the prim
bases form the main part of the wave functions of the lo
lying states under interest. Thereby we can regard the cur
procedure as a renormalization. The relation of the pres
method to the Lanczos method will be discussed furthe
Sec. VI.

Let us begin with a simple case in which there is jus
single stateC (0) in WJ

(0) . We do not need the labell in
this case. ThePO operator in Eq. ~8! expresses the
Gram-Schmidt orthogonalization toC (0) and f (n8)’s
with n8,n. We thus generate a subspaceG (n)

[$C (0),f (1),f (2), . . . ,f (n)%, corresponding to the order o
(Db)n.

A renormalized wave function@see Eq.~3!# is introduced
within G (n),

C~n!}C~0!1 (
n51

n

cnf~n!, ~9!

with the amplitudecn’s to be determined. The submatrix o
H for the subspaceG (n) is constructed, and the eigenvect
associated with the lowest eigenvalue is adopted as
renormalized basisC (n) in Eq. ~9!. It is noticed that the
mixing amplitudecn thus obtained depends onn, though this
dependence is not explicitly shown here. The basisC (n)

yields

e2DbHuC~n!&5e2DbE~n!
uC~n!&1@Ô„~Db!n11

…#uC~0!&,
~10!

whereE(n)5^C (n)uHuC (n)&. By this procedure, rapidly de
creasing components become substantially smaller
^C (n)ue2DbHuC (n)& than in ^C (0)ue2DbHuC (0)&. The C (0)

state is thus cooled down. Increasingn step by step, we can
monitor what components are adopted in higher-order st

When we havel (.1) bases inWJ
(0) , the renormalized

basisCl
(n) is obtained for eachl by diagonalizing a subma

trix of H in Gl
(n) , which is generated fromCl

(0) . TheCl
(n)

(l51,•••,l ) bases span a spaceWJ
(n) . However,H may

produce crossover couplings among bases inGl
(n) with dif-

ferent l, which gives rise to a nonorthogonality betwee
bases with differentl. In order to avoid this,Gl

(n) is created
so as to be orthogonal toGl8

(n) if lÞl8, by carrying out an
orthonormalization. This orthogonalization will be illustrate
concretely in Sec. III. Although this modification can gene
ally break the relation~10! for individual basis, the orthonor
malization can be made~see Sec. III! so that a similar con-
dition should be satisfied for the spaceWJ

(n) ,

e2DbHWJ
~n!5WJ

~n!1@Ô„~Db!n11
…#WJ

~0! . ~11!

This indicates thatWJ
(n) fulfills Eq. ~4! up toO„(Db)n…. The

entire space of the renormalized space at the ordern is then
defined as

W~n![ %

J
WJ

~n! . ~12!
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The cooling Eq.~11! is carried out step by step, throug
the power-series expansion~7!. We shall call the presen
procedureHn-cooling method~H nCM!. The HnCM gives a
wave function renormalization, incorporating dynamical c
relations contained inH. As far as the H1CM is concerned,
the statee2bHuCl

(0)& with smallb is decomposed in terms o
then51 basisCl

(1) and the rest. The latter has higher ener
than the former, giving rise to the faster-decreasing com
nent. Analogously, for a generaln, the HnCM process pro-
duces n faster-decreasing components in addition to
slowest-decreasing component~i.e., Cl

(n)). The closure of
the renormalized subspaceW(n) is fulfilled up to
O„(Db)n…, as is shown in Eq.~11!. The largern assures the
better approximation from the viewpoint of the condition~4!
or ~6!. If W(n) converges withn, no new basis is created b
H acting on this subspace. The convergence then beco
independent ofb, which means that Eq.~6! holds for a gen-
eral value ofb, not only forDb.

Although a cooling can be made only by operati
e2DbH on Cl

(0) , in the HnCM the diagonalization is per
formed withinGl

(n) for each step. This accelerates the co
ing to an appreciable extent, since the diagonalization
equivalent to the full cooling within the relevant subspa
Moreover, as far as the dimension ofH is finite, bases are
exhausted at finiten. Therefore, theb→` limit, which is
required for the full cooling in infinite-dimensional cases,
not necessary. Because of these properties, all the m
components for low-lying states are generated with relativ
smallb, and the HnCM is expected to be efficient even wit
rather smalln. We shall see it in practice in Sec. IV.

Here we should add the comment that some nuclear
lective states, for which the HnCM will be used, are not
necessarily the lowest-lying state with a specific spin-par
In such cases the term ‘‘cooling’’ may not be appropria
and some caution will be necessary in applying the pres
method. A prescription will be shown in Sec. VI, while th
actual case of the Cr-Fe nuclei will be presented in Ref.@14#.

III. ILLUSTRATION OF H nCM

The HnCM is illustrated in some detail with an exampl
let us consider the set spanned by theSD states with
JP521 in 56Fe.

As has been mentioned in the preceding section, the
ton S andD pairs have the (0f 7/2)

22 configuration in56Fe,
while the neutron pairs have the (0f 5/21p3/21p1/2)

2 configu-
ration. The set of 21 states within thisSD space of56Fe
comprises the following bases:

u21~SD!;F51&5
1

A2
~ uDp& ^ uSn&1uSp& ^ uDn&), ~13a!

u21~D2!;F51&5@ uDp& ^ uDn&]
~2!, ~13b!

u21~SD!;F50&5
1

A2
~ uDp& ^ uSn&2uSp& ^ uDn&). ~13c!

These bases straightforwardly correspond to the IBM-2 ba
through the OAI mapping@5#. In the following discussions
the proton-neutron property of the wave functions is tak
-

y
o-

e

es
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is
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.
,
nt
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n

into consideration, so that the states should correspond to
IBM-2 states with goodF spin. The variableF on the left-
hand side of Eq.~13! indicates theF-spin value of the cor-
responding IBM basis after the OAI mapping@5#. The maxi-

mum ofF is obtained byFmax5
1
2 N

B, whereNB5Np
B1Nn

B

is the total number ofSDpairs, which is the same as the tot
boson number in the IBM-2, for each nucleus. The sta
with F5Fmax are called totally symmetric states in th
IBM-2, while those with F5Fmax21 mixed-symmetry
states. We refer here the bases in theSD fermion space in an
analogous manner. Note thatFmax51 in 56Fe. Though the
aboveu21(SD);F50& state is a totally anti-symmetric state
it is called mixed-symmetry state in this article because
belongs to the class of theF5Fmax21 states.

For each nucleus we shall consider the complete se
orthonormal bases belonging toWJ

(0) ~i.e., theSD space with
a specific spin!; C1

(0) , C2
(0) , . . . ,C l

(0) . In the above case
of Eq. ~13!, theC (0)’s turn out to be

uC1
~0!&5u21~SD!;F51&, uC2

~0!&5u21~D2!;F51&,

uC3
~0!&5u21~SD!;F50&. ~14!

The ordering of the bases may affect the process of
H nCM, as will become transparent below. In this examp
theSD bases are ordered so that the class of states with
F-spin symmetry (F5Fmax) should come first, those with
next highestF spin (F5Fmax21) come second, and s
forth. Within each sector of a givenF spin, the bases are
placed from the lower seniority to the higher, similarly to th
OAI mapping.

In the HnCM, the f bases of Eq.~8! as well as the
C (0)’s are generated in the following order:

C1
~0! ,C2

~0! , . . . ,C l
~0! ,

f1
~1! ,f2

~1! , . . . ,f l
~1! ,

f1
~2! ,f2

~2! , . . . ,f l
~2! , ~15!

•••••••••,

f1
~n! ,f2

~n! , . . . ,f l
~n! .

Recall thatfl
(n) is generated fromHnCl

(0) , apart from the
orthonormalization byPO. We define thePO operator in Eq.
~8! as follows. The firstl bases areC1

(0) , C2
(0) , . . . ,

C l
(0) , which are already orthonormal, andPO acts as the

unity for them. The (l11)th basis isf1
(1) generated from

HC1
(0) with the Gram-Schmidt orthogonalization toC1

(0) ,
C2

(0) , . . . ,C l
(0) . Namely,

f1
~1![P

$C1
~0! , . . . ,C l

~0!%

O
•HC1

~0! , ~16!

whereP$%
O represents orthogonalization to the states speci

in the curly bracket, together with the normalization. T
( l12)th basisf2

(1) is created similarly, except that it shoul
be orthogonal also tof1

(1) ,
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f2
~1![P

$C1
~0! , . . . ,C l

~0! ,f1
~1!%

O
•HC2

~0! . ~17!

One can repeat the procedure until all the orthonormal ba
in Eq. ~15! are obtained. Eachf basis can be represente
explicitly as

fl
~n![P

$C1
~0! , . . . ,C l

~0! ,f1
~1! , . . . ,f l

~n21!%

O
•HnCl

~0! ~ for l51!,

~18a!

fl
~n![P

$C1
~0! , . . . ,C l

~0! ,f1
~1! , . . . ,f l

~n21! ,f1
~n! , . . . ,fl21

~n! %

O
•HnCl

~0!

~ for lÞ1!. ~18b!

Note that, asn becomes larger, some bases may vanish
to the orthogonalization. The bases in Eq.~15! are produced
in this manner, by carrying out the Gram-Schmidt orthog
nalization on them successively.

We then consider a subsetGl
(n)[$Cl

(0) ,fl
(1) ,

fl
(2) , . . . ,fl

(n)% for eachl(51,2, . . . ,l ). It should be no-
ticed thatGl

(n) is spanned by the bases constituting thelth
column of Eq.~15!. In order to obtain a renormalized bas
Cl

(n) @i.e., to evaluatecn,l of Eq. ~3!#, we construct a sub
matrix of H within this subspaceGl

(n) . After diagonalizing
this submatrix, the lowest eigenstate is taken as thelth basis
in WJ

(n) . In this manner, Cl
(1) is obtained from

Gl
(1)5$Cl

(0) ,fl
(1)%, Cl

(2) from Gl
(2)5$Cl

(0) ,fl
(1) ,fl

(2)%, and
so forth. The HnCM spaceW(n) is spanned by the bases th
obtained.

The HnCM will be useful for extracting some simpl
structural features from complicated shell-model wave fu
tions. Since the renormalized wave functions of theSD
states are explicitly constructed, it is possible to comp
them directly to the shell-model wave functions. It is al
straightforward to evaluate matrix elements of a given ope
tor in the spaceW(n). Although the largern implies the better
closure of the subspace from the viewpoint of Eq.~4!, we
considern<2 cases in the following application.

IV. APPLICATION OF H nCM TO SD SPACE
IN Cr-Fe NUCLEI

The HnCM is applied and tested numerically in Cr-F
nuclei, starting from theSD-pair states.

As has been shown in Ref.@3#, the shell-model calcula
tion with the Kuo-Brown realistic Hamiltonian in thek<2
space successfully reproduces the observed states u
Ex.4 MeV in 54Cr and 56Fe. While the protonS andD
pairs are uniquely determined by the (0f 7/2)

22 configuration,
the structure of the neutron pairs has to be fixed. In56Fe, the
structure ofuSn& is determined so as to maximize the overl
between theuSp& ^ uSn& state and the shell-model 01

1 state.
The structure ofuDn& is determined so that the overlap b
tween uSp& ^ uDn& and the shell-model 21

1 state should be
maximum. The neutron pair structure for54Cr is fixed so as
for uSp

2 & ^ uSn& (uSp
2 & ^ uDn&) to have maximum overlap with

the shell-model 01
1 (21

1) state. The structure of neutron pai
is slightly different between56Fe and 54Cr. Note that the
seniority projection@5# is carried out whenuDp

2 ;J& is pro-
duced in Cr.
es

e

-

-

e

-

to

The HnCM is applied, starting with the collective spac
composed of theseSD pairs. The HnCM is driven by the
shell-model Hamiltonian in thek<2 space. The subspac
WJ

(0) is spanned by the products of the aboveSD pairs with
angular momentumJ. Any basis inW(0) carries the lowest
isospin, and the isospin is conserved during the HnCM. The
primary basesCl

(0)’s in WJ
(0) are put in the order ofF spin

and seniority, as has been mentioned in the preceding
tion.

For n>1, Cl
(n)’s imply renormalizedSD states, while

they are referred to by the correspondingSD-pair structure
of Cl

(0) . OnceCl
(n)’s are obtained, eigenstates withinWJ

(n)

are calculated by diagonalizing the submatrix of the Ham
tonian whose elements are^Cl8

(n)uHuCl
(n)&. In Fig. 1~a!, the

energies of lowest 01 and 21 states within the subspac
W(n) are shown, in comparison with those of the shell mod
for 56Fe. The origin of energy is set to the shell-mod
ground-state energy. The unrenormalizedSD states gives far
higher energies~the most leftward sector! than the shell-
model eigenenergies~the most rightward sector!. In this re-
gard, the bareSD states~i.e., the primary bases! are insuffi-
cient. The renormalization via the HnCM reduces this
discrepancy of energies quite efficiently. The H2CM appears
to recover the shell-model 01

1 and 21
1 states satisfactorily

well. This observation is confirmed by direct comparison
the wave functions. Table I shows overlaps between
SD states and the shell-model eigenstates for the lowest1

and 21 states. The unrenormalized states are certainly dif
ent from the shell-model eigenstates. A large part of the d

FIG. 1. Energy levels in the collective space~without renormal-
ization, with renormalization via the H1CM, and with renormaliza-
tion via the H2CM!, in comparison with the shell-model ones
56Fe: ~a! lowest 01 and 21 energy eigenvalues in each space, re
tive to the shell-model ground-state energy.~b! Energies relative to
the lowest 01 level in each space.
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crepancy comes from thek.0 configurations. On the con
trary, the wave functions after the H2CM are quite close to
the corresponding shell-model ones, having more than 9
overlaps.

Figure 1~b! depicts energy levels for which energies a
measured from the ground state defined in each space.
remarked that the levels without the renormalization
semble the ones after the H2CM, whereas the H1CM spec-
trum is certainly different. The 21

1 excitation energy in the
originalSD space is in good agreement with the shell-mo
result, and therefore with experiments. In the H1CM result,
the 01

1 state is greatly lowered owing to the coupling to no
SD ~i.e., nonprimary! degrees of freedom. Though the 21

1

state is also lowered, the non-SD effect is smaller than in
01

1 . Some additional non-SD effect is absorbed by the
H2CM, which recovers the 21

1 excitation energy. In an
analogous manner, as far as the excitation spectra are
cerned, the result after the H2CM is close to the unrenormal
ized one for most lower-lying states. There is a certain d
ference in the 11 state. We shall return to this point late
The 41

1 state appears to be too high, even in the H2CM
result. This state seems to be largely influenced by
G-pair degrees of freedom. Although some parts of them
included in the renormalized wave functions, they are not
sufficient for compensating the whole influence of theG
pairs.

In Cr nuclei, there is nouDp
2 ;01& basis@i.e., 01 state with

(0 f 7/2)
4 and seniority 4#. It is not always possible, thereby, t

createCl
(0) basis having a goodF-spin value. For instance

the u01(SD2)& bases with goodF spins are

u01~SD2!;F5 3
2 &5

1

A3
~ uDp

2 ;01& ^ uSn&

1A2@ uSpDp& ^ uDn&]
~0!), ~19a!

u01~SD2!;F5 1
2 &5

1

A3
~A2uDp

2 ;01& ^ uSn&

2@ uSpDp& ^ uDn&]
~0!). ~19b!

Since uDp
2 ;01& does not exist in the present case, only

single u01(SD2)& basis is possible, and we introduce

u01~SD2!;F5 3
2 &8[@ uSpDp& ^ uDn&]

~0!. ~20!

We replace the higherF-spin basis~19a! by Eq. ~20!. The
lower F-spin basis is also subject to similar changes, a

TABLE I. Overlaps of wave functions of lowest-lying collectiv
states, before and after the renormalization via the H2CM, with
those of the shell-model eigenstates~%!.

01
1 21

1

Nucleus Unrenorm. H2CM Unrenorm. H2CM

56Fe 55.6 97.0 49.8 93.3
54Cr 53.5 95.8 47.5 92.3
58Fe 46.0 91.2 36.8 83.6
56Cr 54.6 95.1 47.4 90.9
%

is
-

l

-

on-

-

e
re
t

d

should be modified with proper orthogonalization to the b
sis assigned with higherF value. This orthogonalization
however, annihilates the basis corresponding to Eq.~19b!,
because of the lack of theuDp

2 ;01& component. The follow-
ing primary bases are thus obtained:

uC1
~0!&5u01~S3!;F5 3

2 &, uC2
~0!&5u01~SD2!;F5 3

2 &8,

uC3
~0!&5u01~D3!;F5 3

2 &. ~21!

The u21(D3)& bases are handled in an analogous mann
The energy levels in theSD space of54Cr thus constructed
are shown in Fig. 2.

For theN532 nuclei, the shell-model energy levels
58Fe and56Cr are presented in Figs. 3 and 4, in comparis
with the observed ones. This shell-model calculation is p
formed by using the computer codeVECSSE@15#. The k<2
space leads to theM -scheme dimension of 631,670 fo
58Fe and 621,478 for56Cr. Because available experiment
data for these nuclei are not as abundant as for theN530
isotones, a stringent assessment of the calculated result
pears to be difficult. However, we see that this shell-mo
calculation reproduces the observed levels reasonably
also for theseN532 nuclei.

The structure of neutronS andD pairs in 58Fe (56Cr! is
assumed to be the same as in56Fe (54Cr!, for the sake of
simplicity. TheuDn

2 ;J& bases are produced so as to have
generalized seniority@18# of four, by removing lower-
seniority components. In56Cr, the lack of theuDp

2 ;01& com-
ponent causes a modification of theSD bases, as in54Cr.
The energy levels in58Fe and56Cr within theSD space are
shown in Figs. 5 and 6, in comparison with the shell-mo
ones.

FIG. 2. Energy levels in the collective space compared with
shell-model ones in54Cr. Energy levels obtained from the IBM-2
Hamiltonian are also shown.
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754 55HITOSHI NAKADA AND TAKAHARU OTSUKA
Figures 2, 5, and 6 indicate, respectively, that
H2CM works well for the 01

1 and 21
1 states of54Cr, 58Fe,

and 56Cr, to the same extent as in56Fe. As shown in Table I,
the wave functions, as well as the energy levels, are in g
agreement with the realistic shell-model ones. In54Cr and
56Cr, the H2CM wave functions have more than 95% ove
lap with the shell-model eigenstates for 01

1 , and more than
90% for 21

1 , as in 56Fe. These numbers are somewh

FIG. 3. Energy levels of58Fe. The experimental data are take
from Ref. @16#. The calculated energy levels are obtained by
k<2 shell-model calculation with the Kuo-Brown Hamiltonian.

FIG. 4. Energy levels of56Cr. The experimental data are take
from Ref. @17#. The calculated energy levels are obtained by
k<2 shell-model calculation with the Kuo-Brown Hamiltonian.
e

d

t

smaller in 58Fe, originating in the smaller overlaps of th
unrenormalizedSD states and the shell-model eigenstat
Though we have presumed the same neutron-pair struc
as in 56Fe, a different choice may improve the overlaps. T

e

e

FIG. 5. Energy levels in the collective space, as well as
IBM-2 energy levels, compared with the shell-model ones
58Fe.

FIG. 6. Energy levels in the collective space, as well as
IBM-2 energy levels, compared with the shell-model ones
56Cr.
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overlaps of the H2CM wave functions with the shell-mode
ones are still large, exceeding 90% for 01

1 and 80% for
21

1 . Thus the quadrupole collective motion in these nuc
can plausibly be described via the H2CM, based on the re
alistic shell model.

Although the calculation without the renormalizatio
yields quite high ground-state energy, it produces the ene
spectrum similar to that in the H2CM result for most lower-
lying states. This consequence is not a trivial one, and se
to give a rather deep insight upon the correspondence
tween theSD pair states and the IBM-2 states.

It should be mentioned here that the renormalization p
posed by van Egmond and Allaart@19# has similar aspects to
the present one. They have included various correlations
duced through a nearly realistic shell-model Hamiltonian.
obtain a renormalized wave function of the state with o
D pair, the Hamiltonian is diagonalized on the one- and tw
broken-pair bases. Most of these bases are involved in
H1CM, if their work is compared with the HnCM. However,
a few of them emerge only in H2CM. In this sense, a part o
the H2CM effect has been taken into account in Ref.@19#.
The HnCM exploited in the present work, on the other han
provides us with a systematic way to pick up importa
bases. Wave functions of higherSD states are also handle
by the HnCM. A significant difference from Ref.@19#, as
well as from other studies, is that the56Ni-core excitation
plays a certain role in the present case, which may be c
acteristic to the present mass region. We should note
because of this point, theu01(SN

B
);F5Fmax& basis is modi-

fied to an appreciable extent.
It has been demonstrated how efficient the HnCM is. De-

spite the relatively heavy leakage out of theSD space
(W(0)), the H2CM yields reasonable energies and wa
functions for the lowest-lying states. The leakage mai
arises from thek.0 configurations, namely from th
56Ni-core breaking. It is commented that, if we had an a
propriate effective interaction in thek50 space, the
H1CM, or even the bareSD wave functions, might have
worked more efficiently.

V. IBM-2 PARAMETERS

We next calculate IBM-2 parameters by extending
OAI mapping, based on the HnCM. There have been nume
ous investigations devoted to the derivation of the IBM
Hamiltonian from schematic interactions like a pairing-plu
quadrupole interaction or a surface-delta interaction@8,9,20#.
A semirealistic interaction with the Gaussian form has be
applied to investigate several of the IBM-2 parameters
Ref. @19#. On the other hand, this is the first work to deri
IBM-2 Hamiltonian from a realistic shell-model interactio
the Kuo-Brown interaction, in the present case.

We employ the following form of the IBM-2 Hamil-
tonian, including all the possible one- and two-body term

HB5E01 (
r5p,n

edr
N̂dr

1 (
r5p,n

Vr
B2kQ̂p•Q̂n1 (

J51,2,3
jJM̂ J

1 (
J50,2,4

bJ@dp
†dn

†#~J!
•@ d̃pd̃n#~J!, ~22!

where
i

gy

s
e-

-

n-
o
e
-
he

,
t

r-
at,

y

-

e

-

n
n

:

Q̂r5@dr
†sr1sr

†d̃r#~2!1xr@dr
†d̃r#~2!, ~23!

Vr
B5

1

2
v0,r$sr

†sr
†
•@ d̃rd̃r#~0!1H.c.%

1
1

A2
v2,r$dr

†sr
†
•@ d̃rd̃r#~2!1H.c.%

1
1

2 (
J50,2,4

cJ,r@dr
†dr

†#~J!
•@ d̃rd̃r#~J!. ~24!

The so-called Majorana terms, which control the energy
the mixed-symmetry states relative to the symmetric sta
are defined by

M̂J5@dp
†dn

†#~J!
•@ d̃nd̃p#~J! ~ for J51,3!, ~25a!

M̂25
1

2
@dp

†sn
†2sp

†dn
†#~2!

•@ d̃psn2spd̃n#~2!. ~25b!

In the OAI mapping, a boson image of a certain nucle
operator is obtained from matrix elements concerning lo
seniority states. The parameters are fixed so that a bo
matrix element should be equal to the corresponding ma
element in the collective fermion space. We here consi
F spin also, in addition to the seniority. The boson mat
elements are equated to the fermion ones, similarly to
sequence of the bases in the HnCM discussed in Sec. III.
This procedure is briefly illustrated below.

We first consider thes-boson condensateusN
B
). Since

E05(sN
B
uHBusN

B
), the parameterE0 in Eq. ~22! is fixed by

the equation

E05^01~SN
B
!;F5FmaxuHu01~SN

B
!;F5Fmax&, ~26!

whereH stands for the shell-model Hamiltonian. When w
regard theu01(SN

B
)& basis as the unrenormalized one, w

obtain the unrenormalized value ofE0 from Eq. ~26!. By
putting the renormalized wave function foru01(SN

B
)&, the

renormalized value ofE0 is evaluated. In this procedure, th
wave function renormalization for the collective fermio
states gives rise to a renormalization of the IBM-2 parame
The k parameter is fixed from the

^01(SN
B
)uHu01(SN

B22D2)& matrix element. Thenedp
and

edn
are determined from the following coupled equation:

E01
1

NB ~Np
Bedp

1Nn
Bedn

!2
2Np

BNn
B

NB k

5^21~SN
B21D !;F5Fmaxu

3Hu21~SN
B21D !;F5Fmax&, ~27a!

ANp
BNn

B

NB ~Np
Bedp

2Nn
Bedn

!1
ANp

BNn
B~Np

B2Nn
B!

NB k

5^21~SN
B21D !;F5Fmaxu

3Hu21~SN
B21D !;F5Fmax21&. ~27b!
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TABLE II. Parameters for IBM-2 Hamiltonian derived from the Kuo-Brown shell-model Hamiltonia

56Fe 54Cr 58Fe 56Cr
Parameter Unrenorm. H2CM Unrenorm. H2CM Unrenorm. H2CM Unrenorm. H2CM

edp
~MeV! 1.022 1.362 1.022 1.671 1.022 1.216 1.022 1.5

edn
~MeV! 1.426 1.441 1.482 1.270 1.888 2.004 2.178 2.1

k ~MeV! 0.839 0.926 0.679 0.765 0.696 0.710 0.558 0.5
xp 20.933 21.220 0.000 20.202 20.933 21.194 0.000 20.164
xn 21.250 21.099 21.239 21.150 20.005 0.126 0.013 0.205
j1 ~MeV! 20.065 0.303 0.084 0.186 20.043 0.135 0.080 0.192
j2 ~MeV! 0.000 20.021 0.000 0.127 0.000 0.095 0.000 0.09
j3 ~MeV! 20.009 0.061 0.008 0.171 20.031 0.198 20.020 0.152
b0 ~MeV! 0.330 0.575 0.123 20.099 0.565 0.212 0.337 20.119
b2 ~MeV! 0.101 0.320 0.034 0.100 0.006 20.076 20.001 20.187
b4 ~MeV! 20.064 20.306 20.104 20.130 0.003 20.197 20.042 20.030
v2,p ~MeV! 0.000 0.012 0.000 0.060
c2,p ~MeV! 0.105 20.155 0.100 20.020
c4,p ~MeV! 20.424 21.215 20.469 21.033
v0,n ~MeV! 0.082 0.063 0.141 0.233
v2,n ~MeV! 20.441 20.287 20.615 20.690
c0,n ~MeV! 2.066 1.609 3.399 2.439
c2,n ~MeV! 20.308 21.347 0.053 20.924
c4,n ~MeV! 0.447 0.170 0.694 0.593
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The other parameters are evaluated in an analogous ma
It should be noticed that in the unrenormalized case
procedure yields the same results as the OAI mapping.

The resultant parameters, the unrenormalized ones an
renormalized ones via the H2CM, are displayed in Table II
For neither 56Fe nor 54Cr, the interaction among neutro
bosons (Vn

B) has any effect, sinceNn
B51. Hence the param

eters inVn
B have not been determined for these nuclei. Lik

wise,Vp
B in the Fe nuclei is not given. For the Cr nuclei, th

lack of the uDp
2 ;01& component is realized by settin

c0,p5`, while v0,p is indeterminate.
It is often assumed, in phenomenological studies, that

IBM-2 Hamiltonian is comprised only of the second, fourt
and fifth terms of Eq.~22!. Note that, as far as excitatio
energies are concerned, the constant termE0 plays no role.
The 21

1 excitation energy is governed mainly by theN̂d and

Q̂p•Q̂n terms. For the parameters associated with th
terms, the difference between the results with and with
the renormalization is not large. For instance,xp of the Cr
nuclei vanishes before the renormalization, and it rema
small after the H2CM. In theN532 nuclei, we have very
small xn both in the unrenormalized and H2CM cases. A
certain nucleus dependence has been expected for thex pa-
rameters @5#. This variation with the increasing valenc
nucleon number is rapid in this region, because the size
the shell is small, compared with heavier nuclei.

It is found that, while the Majorana interaction is neglig
bly small before the renormalization, it becomes sizably
pulsive due to the renormalization. In reality, the totally sy
metric states are pushed down more than the mix
symmetry states, absorbing the more effect of non-SD
degrees of freedom. Thereby the mixed-symmetry states
pushed up to some extent, relative to the lowest-lying sta
This point is already viewed in the fermion spectra shown
er.
is

the

-

e

e
t

s

of

-
-
d-

re
s.
n

the preceding section. The repulsiveM̂1 term after the
H2CM is compatible with increase of the excitation ener
of the 11 states in Figs. 1, 2, 5, and 6.

It has been shown@8,20# that, if we calculate a boson
image of a schematic interaction, the Majorana terms eme
as a renormalization effect. A similar effect occurs also fo
realistic interaction derived from theG matrix. Nevertheless
there is a difference in mechanism. Whereas only the in
ence ofg-boson degree of freedom is considered in Re
@8,20#, various correlation is included in the present ren
malization. In particular, the core excitation effect looks
play a certain role in the present case. Energies of the low
01 and 21 ~i.e., symmetric! states are lowered greatly
mainly due to the coupling to the core excitation. Th
mechanism works less for the mixed-symmetry compone
resulting in the repulsive Majorana terms.

Comparing the H2CM results on the Majorana term
among the four nuclei, we find certain nucleus depende
of the parameters. In56Fe, j1 is fairly large withj2 andj3
remaining quite small. The other nuclei have positive valu
for all of these parameters. Thej2 parameter is somewha
smaller than the others.

It is also noticed thatVr
B and the last term of Eq.~22! are

not negligibly small. Though they hardly contribute to th
lowest-lying states in these nuclei, some higher-lying sta
are affected to a certain extent.

By diagonalizing the IBM-2 Hamiltonian, we obtain th
energy levels within the IBM-2. They are already display
in Figs. 1, 2, 5, and 6, by using the parameters after
H2CM. Since we include all the one- and two-body terms
the boson Hamiltonian, the IBM-2 levels in56Fe, where
NB52, are exactly the same as those of the collective fe
ion space. In54Cr, the boson energy levels are very close
those of the collective fermion space, while the perfe
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TABLE III. Parameters for IBM-2 transition operators derived from the shell-model operators.

Parameter

56Fe 54Cr 58Fe 56Cr

Unrenorm. H2CM Unrenorm. H2CM Unrenorm. H2CM Unrenorm. H2CM

ep
B (efm2) 6.635 7.958 5.418 6.563 6.635 7.609 5.418 6.2
en
B (efm2) 6.034 7.273 6.009 6.618 5.057 6.037 5.004 5.3

xp8 20.933 21.127 0.000 20.336 20.993 21.178 0.000 20.331
xn8 21.226 21.307 21.205 21.334 0.011 20.049 0.035 0.010

gp
B (mN) 1.256 1.110 1.256 1.110 1.256 1.111 1.256 1.1
gn
B (mN) 20.027 20.037 20.039 20.080 20.035 20.015 20.038 20.042

b3,p (mNfm
2) 69.1 51.5 69.1 58.4 69.1 51.4 69.1 59.0

b3,n (mNfm
2) 218.8 220.7 222.5 226.3 6.1 8.6 5.3 10.1
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agreement can be made if we use three-body terms in
boson Hamiltonian. This indicates that the boson many-b
terms are not important. The same holds for58Fe and56Cr.

We next turn to electromagnetic transition operators. T
following shell-modelE2 operator is assumed:

T~E2!5 (
r5p,n

er
eff(
iPr

r i
2Y~2!~ r̂ i !, ~28!

with ep
eff51.4e anden

eff50.9e. The single-particle matrix el-
ements are evaluated by the harmonic-oscillator wave fu
tions withb5561/651.956 fm. For theM1 operator,

T~M1!5A 3

4p (
r5p,n

H gl ,reff(
iPr

l i1gs,r
eff (

iPr
si J , ~29!

and we takegl ,r
eff5gl ,r

free, gs,r
eff 50.5gs,r

free. These electromag
netic operators are the same as in Ref.@1#. While medium
effect on theM3 operator has not been explored sufficient
there is an evidence in thesd shell that no quenching is
necessary to describeM3 transitions@21#. The shell-model
M3 operator is taken to be equal to the bare-nucleon op
tor,

T~M3!5
A21
2 (

r5p,n
H gl ,rfree(

iPr
r i
2@Y~2!~ r̂ i !l i #

~3!

12gs,r
free(

iPr
r i
2@Y~2!~ r̂ i !si #

~3!J , ~30!

where theg parameter are the same as for the freeM1 op-
erator.

The IBM-2 operators are

TB~E2!5 (
r5p,n

er
B$@dr

†sr1sr
†d̃r#~2!1xr8@dr

†d̃r#~2!%, ~31!

TB~M1!5A 3

4p (
r5p,n

gr
BĴr

B ; Ĵr
B5A10@dr

†d̃r#~1!, ~32!

TB~M3!5 (
r5p,n

b3,r@dr
†d̃r#~3!. ~33!
he
y

e

c-

,

a-

The parameters introduced above are evaluated from the
trix elements within the collective fermion space, ana
gously to the mapping for the Hamiltonian. The resulta
IBM-2 parameters are shown in Table III.

The renormalization enhances the boson effective cha
(er

B), gaining more quadrupole collectivity. In phenomen
logical studies,ep

B5en
B is sometimes postulated. This is su

ported by the present microscopic study. Though the sh
model effective charge is smaller for neutrons than
protons, the neutrons have more quadrupole collectivity
cause the size of the valence shell is bigger. As a con
quence,ep

B anden
B are not so different. There is no appare

reason for thex8 parameters to agree with thex parameters
which appear in the boson Hamiltonian, because we ado
realistic shell-model interaction, not a schematic proto
neutron interaction likeQp•Qn . Nevertheless,x8 is close to
x in any case. It has been expected thatgp

B.gl ,p
free51 and

gn
B.gl ,n

free50, since the nucleon-spin degrees of freedom
not so active in the quadrupole collective states. Howev
gp
B is certainly larger than unity in the result without th
renormalization. This happens because the protonSD pairs
consist of the single-j orbit of 0f 7/2. On the contrary, when
we carry out the renormalization, the excitation from 0f 7/2 to
0 f 5/2 leads towards saturation of the nucleon spin. Theref
the gp

B value is reduced untilgp
B.1 is restored to a good

extent. The quenching ofb3,p due to the renormalization is
explained by a similar spin-saturation mechanism. It is som
what surprising that the influence of the renormalization
gn
B andb3,n is so small. This will be partly because the sp
saturation occurs already in the unrenormalized neutron
rameters, resulting in almost vanishing values.

The same quenching mechanism for the magnetic tra
tion parameters will prevail in heavier nuclei, where
unique-parity orbit is involved in the valence shell. Since t
spin-orbit partner of the unique-parity orbit is absent in t
valence shell, the nucleon-spin content could influencegr

B

andb3,r to a considerable extent, when we ignore effects
excitation across major shells. However, by taking into
count the excitation effects, those parameters will
quenched, owing to the spin-saturation tendency@22# in the
dynamics. It is expected for theM1 parameters thatgp

B ap-
proaches unity andgn

B almost vanishes.
The dependence of the IBM-2 parameters on vale

nucleon numbers is accounted for, in most cases, in term
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the quasispin properties of the relevant nucleon operator@5#.
TheE2 operator behaves as a vector in the quasispin sp
@23#. Weak dependence is suggested forer

B and is confirmed
in Table III. The number dependence ofx8 is strong, as is
expected. So isx in the boson Hamiltonian. SinceT(M1)
andT(M3) are quasispin scalars@23#, the gr

B andb3,r pa-
rameters are expected to be nearly constant. This is true
gp
B , gn

B , andb3,p , but a considerable deviation is seen
b3,n . This is a sort of many-body effect, originating in th
subshell structure.

VI. DISCUSSION ON H nCM

A. Choice of primary bases

In this section, we return to discussion on the HnCM.
Even when the subspaceWJ

(0) is fixed, there still remains
an ambiguity in choosing the primary orthonormal bas
$C1

(0) ,C2
(0) , . . . ,C l

(0)%. The bases can be changed by a u
tary transformation. Since the couplings betweenfl

(n21) and
fl
(n) are not uniform for variousl, the unitary transforma-

tion may lead to a different renormalized basis set in
H nCM. Moreover, because of the orthogonalization stated
Sec. III, the HnCM bases generally depends on the order
of the primary bases.

The following three choices will be possible.
~i! Some orthonormal basis set is postulated forCl

(0) by a
physical insight.

~ii ! The eigenstates withinWJ
(0) are taken asCl

(0) . They
are placed in order according to the eigenenergies.

~iii ! Cl
(0) is redefined for each stepn, so thatCl

(n21)

should be an eigenstate withinWJ
(n21) . They are put in order

according to the eigenenergies.
To fulfill the space closure of Eq.~4!, the couplings be-

tween renormalized states and remaining degrees of free
should be small. From this viewpoint, the latter choice see
favorable. On the other hand, the latter requires more c
plication in the numerical treatment.

The basic dynamical properties should be well rep
sented by the primary bases, otherwise the renormaliza
does not converge with smalln. In the practical case of the
Cr-Fe nuclei in Secs. III and IV, we have adopted~i!, with
the Up1n(5)^SUF(2) bases of IBM-2@24#. This will be
appropriate because those nuclei seem to be nearly sphe
In deformed region, another choice might be better@25#.

B. Choice of renormalized bases

One could pursue the convergence of HnCM, by increas-
ing the powern. However, besides tedious computations
might lead to a dissimilar wave function ofCl

(n) from that of
Cl

(0) . Then it is not reasonable to regardCl
(n) as a renormal-

ized state. In some cases, this is circumvented if an eig
state inGl

(n) having the largest overlap withCl
(0) is adopted

asCl
(n) , instead of the lowest-lying one.

A complication occurs when there is a substantial fra
mentation of the state which carries the main character of
primary state. As has been pointed out in Ref.@1#, the mixed-
symmetry 21 state of 56Fe may be the case. The 22

1 and
24

1 states share appreciable fractions of this collective co
ce
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ponent. Asn increases, the diagonalization withinGl
(n) will

lead to a problem at some value ofn; plural eigenstates hav
considerable amplitudes of the primary basisCl

(0) . It will
not be desirable, in such a case, to choose a single eigen
in Gl

(n) as a renormalized basisCl
(n) .

A solution to this problem is to adopt a linear combinati
of the few eigenstates inGl

(n) as a renormalized basis. W
can set a criterion of minimum amplitude for the states to
included. Another practical choice is just stopping at a c
tain n. It should be emphasized that, in any case, monitor
the HnCM outcome for each step is significant.

In the actual case of the Cr-Fe nuclei, we do not co
across the problems stated above, up to the H2CM. The
lowest-lying eigenstate inGl

(n) has the largest overlap with
Cl

(0) , and no serious fragmentation is viewed. As shown
Sec. IV, the convergence in 01

1 and 21
1 is so rapid that we

could acquire a good approximation by the H2CM. In this
respect, the H2CM seems good enough to investigate colle
tive states of the Cr-Fe nuclei.

C. H nCM and Lanczos method

As has been mentioned earlier, there is a common
between the HnCM and the Lanczos diagonalization metho

The HnCM energy levels are obtained via two steps
diagonalization; one within the subspaceGl

(n) and the other
within WJ

(n) . The dimension ofGl
(n) is (n11), while that of

WJ
(n) is l . The basis production and the diagonalizati

within Gl
(n) is similar to the Lanczos method. In the case th

there is a single basis inWJ
(0) , the HnCM procedure is the

same as the Lanczos method starting fromC (0), since we do
not need the diagonalization withinWJ

(n) . In other cases, the
orthogonalization betweenGl

(n) and Gl8
(n) (lÞl8) in the

H nCM does not appear in the Lanczos method. Apart fr
this difference, the HnCM is exploited so as to make goo
use of the advantage of the Lanczos method.

An emphasis should be put on the primary bases: we h
requested that they should have a simple structure but c
the basic dynamics of the system. For instance, theSD states
are taken as the primary bases in the application to the C
nuclei in Sec. IV. Because of these properties, it is expec
in many cases that the HnCM is more efficient than the
Lanczos method. The number of bases in the HnCM is given
by l (n11) for eachJ, which can be smaller than that ne
essary in the Lanczos method. In practice, within a fixedJ,
even less than 10 bases yield good accuracy for the low
lying levels of the Cr-Fe nuclei via the HnCM, whereas
about 50 bases are normally required in the Lanczos met
It is noted that each diagonalization is performed for a ma
with quite a small dimension, (n11) or l .

D. H nCM and a perturbative renormalization

In this subsection, the HnCM is discussed in connectio
with a perturbative method of renormalization. A more d
tailed discussion is given in Ref.@2#.

Let us recall Feshbach’s projection method@10#, a well-
known method of incorporating truncation effects. We defi
the P space as the space of the primary bases; the orig
SD space in the present case. The total space correspon



n
n
ri-

le
th
en
rix
le

o

m

by

r

e
ap-
ed
lei,
he

t

we
-

d

to

re-
we
ore

55 759MICROSCOPIC ANALYSIS OF QUADRUPOLE . . .
the k<2 shell-model space, while the original Hamiltonia
is the Kuo-Brown Hamiltonian. We shall take into accou
the effects of theQ space, which is spanned by the nonp
mary bases. Note that all thef bases of Eq.~8! belong to the
Q space. The projection operator onto theP space is denoted
by P̂, and that onto theQ space byQ̂, namelyQ̂512 P̂.

In Feshbach’s method, the renormalizedP space Hamil-
tonian is given by

H̃P5HP1 P̂HQ̂
1

E2HQ
Q̂HP̂, ~34!

where

HP5 P̂HP̂, HQ5Q̂HQ̂. ~35!

For the exact treatment ofHQ , eigenvalues ofHQ have to be
calculated. Let an eigenstate ofHQ be denoted byuqi&. No-
tice that Q̂uqi&5uqi& and Q̂5( i uqi&^qi u. Then the second
term on the right-hand side of Eq.~34! is rewritten as

(
i
P̂Huqi&

1

E2E~qi !
^qi uHP̂, ~36!

where E(qi)5^qi uHuqi&. Though Eq.~34! gives an exact
way to incorporate the influence of theQ space into the
Hamiltonian, it is difficult and not advantageous to hand
without any approximation in most cases, because of
following two reasons. If one wishes to know exact eigen
ergies,HQ must be treated exactly, which is usually a mat
with enormous dimension. Moreover, a nonlinear coup
equation must be solved, since the eigenenergyE is also
contained in the denominator of the second term.

For the sake of simplicity, our discussion is restricted t
fixed J ~conserved quantum number!, without loss of gener-
ality. We introduce the following state generated fro
Cl

(0) :

uf̄l&5(
i
xi ,luqi&}Q̂HuCl

~0!& ~l51,2, . . . ,l !, ~37!

where

xi ,l5
^qi uHuCl

~0!&

A( i 8u^qi 8uHuCl
~0!&u2

5
^qi uHuCl

~0!&

A^Cl
~0!uHQ̂HuCl

~0!&
. ~38!

It is noticed that, with the notation in Sec. III,f̄l can be
expressed asP

$C1
(0) ,C2

(0) ,•••,C l
(0)%

O
•HCl

(0) which is different

from the basisfl
(1) only in the lack of orthogonalization

betweenf̄l and f̄l8 (lÞl8).
We now substitute ac numberE(f̄l)5^f̄luHuf̄l& for

HQ in Eq. ~34!. Then a diagonal matrix element ofH̃P is
approximated by
t

e
-

d

a

^Cl
~0!uH̃PuCl

~0!&.^Cl
~0!uHuCl

~0!&

1^Cl
~0!uHuf̄l&

1

E2E~f̄l!
^f̄luHuCl

~0!&

5^Cl
~0!uHuCl

~0!&

1
1

E2E~f̄l!
^Cl

~0!uHQ̂HuCl
~0!&. ~39!

This is a kind of closure approximation, since it is given
replacing the energy denominator by ac number. It is not
easy, in general, to evaluateE in the energy denominato
properly. By substituting unperturbed energyEl

(0)

5^Cl
(0)uHuCl

(0)& for it, Eq. ~39! becomes equivalent to th
second-order perturbation combined with the closure
proximation. It is remarked that, however, the unperturb
energy is too high in the practical case of the Cr-Fe nuc
causing too big a renormalization effect. If we neglect t
nonorthogonality betweenf̄l and f̄l8 for lÞl8, the space
Gl
(1) becomes$Cl

(0) ,f̄l%. In addition, if E is estimated by
diagonalizing the Hamiltonian in thisGl

(1) space, we obtain
El
(1) . Then the right-hand side of Eq.~39! is equivalent to

the diagonal element of the H1CM collective Hamiltonian.
Note thatEl

(1) is lower thanEl
(0) , and is closer to the exac

E for low-lying states.
Observing the above relation between the H1CM and the

perturbative renormalization with closure approximation,
can claim that the H1CM is an improvement from the per
turbative method in the following points:~i! the overcount-
ing arising from the non-orthogonality betweenf̄l and f̄l8
(lÞl8) is removed,~ii ! off-diagonal elements are evaluate
in a consistent manner with diagonal ones, and~iii ! E in the
energy denominator is improved. If the overlap betweenf̄l

and f̄l8 is negligible, which somewhat depends on how
choose the original basis set$Cl

(0) ;l51,2, . . . ,l %, f̄l and
fl
(1) becomes quite similar. In order to further make the

lationship between the two methods more transparent,
shall restrict ourselves to the diagonal elements and ign
how E is estimated.

If the second term of the right-hand side of Eq.~34! is
expanded by the parameter

z i ,l5
E~f̄l!2E~qi !

E2E~f̄l!
, ~40!

we obtain@2#

K Cl
~0!U P̂HQ̂ 1

E2HQ
Q̂HP̂UCl

~0!L
5

1

E2E~f̄l!
^Cl

~0!uHQ̂HuCl
~0!&H 11F sl~HQ!

E2E~f̄l!
G2J

1O~z3!, ~41!

where

@sl~HQ!#25^f̄luHQ
2 uf̄l&2@E~f̄l!#2 ~42!
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760 55HITOSHI NAKADA AND TAKAHARU OTSUKA
represents variance ofHQ in the statef̄l . In a similar man-
ner, theO(zn) term corresponds to correction due to t
nth moment of the distribution ofuqi& ’s. By comparing Eq.
~41! with Eq. ~39!, it is found inO(z2) that the distribution

of f̄l over the eigenstates ofHQ generally enhances th
effect of the renormalization on energies.

The above discussion is useful to acquire an intuitive p
ture of the HnCM. The terms regardingHQ

2 are fully taken
into account in the H2CM. Therefore, as far as diagon
elements are concerned, the difference between Eq.~41! and
the H2CM is only in O(z3). In comparison with the
H1CM, an advantage of the H2CM is the inclusion of the
O(z2) effect @2#. As stated already, in the perturbativ
theory, which is connected to the H1CM well, the coupling
of a primary state with the outer space (Q space! is treated
by using an averaged energy of the nonprimary sta

E(f̄l), ignoring their distribution. The second-order effe
is, in essence, the correction due to the distribution of
coupled states in terms of the variance, as shown in Eq.~41!.
By extending the present discussion to higher order, it tu
out that thenth order effect of HnCM essentially corre-

sponds to thenth moment of the distribution off̄l in the
Q space.

We now look back at the results shown in Figs. 1, 2,
and 6 in Sec. IV. In proceeding from H1CM to H2CM, the
higher-lying states tend to go down more sharply. This i
plies that the variancesl(HQ) is more important in the
higher-lying state. On the other hand, some mixed-symm
states with relatively low energy~for instance, the lowes
11 and the second 21 states in the collective space of ea
nucleus! do not come down so rapidly, compared with the
surrounding states. Relatively smallsl(HQ) is suggested for
those mixed-symmetry degrees of freedom, giving rise to
repulsive Majorana interaction in the IBM-2 Hamiltonian.
,
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VII. SUMMARY

In order to study quadrupole collective modes based o
realistic shell model, we develop theHn-cooling method
~H nCM!, which leads to a wave function renormalization b
incorporating the effect of the dynamical correlation. In pra
tice, the HnCM is applied to theSD space of the Cr-Fe
nuclei: 56Fe, 54Cr, 58Fe, and 56Cr. While the shell-model
ground-state wave function is not fully covered with th
simpleSD pair degrees of freedom, the shell-model 01

1 and
21

1 energies and wave functions are nicely approximated
considering up to the second power ofH ~H2CM!. On the
other hand, as far as the energy difference is concerned
excitation spectra after the H2CM do not differ very much
from those without the renormalization. Note that t
56Ni-core excitation is taken into account in the prese
renormalization, as well as some effect of other like-nucle
pairs.

An extended OAI mapping is also developed and appl
to the Cr-Fe nuclei. This is the first work to evaluate t
IBM-2 parameters from a realistic shell-model Hamiltonia
The wave function renormalization is converted to a ren
malization of the IBM-2 parameters. Some effects of t
renormalization are discussed. Although most parameter
the IBM-2 Hamiltonian do not change considerably, the M
jorana interaction becomes sizably repulsive as a renorm
ization effect. It is indicated that many-body terms are u
necessary in the IBM-2 Hamiltonian. In the transitio
operators, the HnCM gives rise to spin quenching for th
M1 andM3 proton parameters, as well asE2 effective-
charge enhancement. Thex parameters in theE2 operator
are shown to take close values to those in the Hamilton
This situation is not influenced by the renormalization.
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