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Microscopic analysis of quadrupole collective motion in Cr-Fe nuclei.
|. Renormalization of collective states and interacting boson model parameters
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We present a new method by which wave functions with simple structure are renormalized so as to contain
more complicated structure. This method, caltticooling method, is applied to the study of the quadrupole
collective motion of*Fe, 5Cr, 58Fe, and®®Cr. The shell-model wave functions of lowest-lying states of these
nuclei are well treated by this method. By using the wave functions obtained vibl"He®oling method,
interacting boson model-2 parameters are derived from a realistic shell-model Hamiltonian and transition
operators. The Majorana interaction becomes sizably repulsive, primarily as an effect of the renormalization.
The bosoniceE2 effective charges are enhanced due to the renormalization, while a quenching occurs in the
M1 and M3 parameters for proton bosons. It is shown that thparameters take similar values in the
Hamiltonian and in thée2 operator[S0556-28187)05902-3

PACS numbgs): 21.10.Re, 21.60.Cs, 21.60.Ev, 27 4@.

l. INTRODUCTION to pin down the mixed-symmetry2state of>®Fe[1], clari-
fying which states share substantial fractions of the mixed-
Middle pf-shell nuclei provide us with a precious testing symmetry component. It is of special interest to study this
ground to understand various aspects of the quadrupole calype of collective mode more extensively, on the basis of a
lective motion from microscopic standpoints. Computationalrealistic shell-model calculation.
difficulties in a realistic shell model rise rapidly in general,  The realistic shell-model Hamiltonian couples collective
as the mass number increases. The growing computer powgfegrees of freedom to non-collective ones, in general. When
however, enables us to carry out realistic shell-model Ca|CUIarge-scaIe shell-model results are interpreted in terms of
lations in the middiepf-shell region. On the other side, the |g\-2, it is important to incorporate, through a certain
middle pf-shell nuclei seem to gain significant quadrupole enormalization procedure, effects of relevant noncollective
collectivity, which is a global and dominating feature of yoqrees of freedom into the calculations made in the collec-
heavier nuclei. tive subspace. This is an example of the general problem as
Recently we have reported one of.the most SUCCGSSfl{ how a complicated system can be described with a limited
shell-model results foN=28-30 nuclei[1-3]. The Kuo- ber of dearees of freedom by taking into account a va-
Brown interaction 4], which had been derived from a real- numboer ot degre . yi 9 .
riety of correlations in an effective manner. Rayleigh-

istic NN potential throughG matrix, has been employed in hidli , turbation th titut il
these calculations, together with a large configuration spac:§C raiingers perturbation theory constitutes a possibie way,
by which the model wave function is modified. The second-

including excitations from the orbit. To be more pre- X . .
- G P order perturbation has been applied to renormalize the

cise, considering the following configuration: i .
IBM-2 parameterg8,9]. Another way is Bloch-Horowitz’s
(0f7/2)n1_k(0f5/21p3/21p1/2)n2+k, (1) renormalization of operators, in which operators, rather than
wave functions, are modified perturbatively so as to carry the
wheren;=(Z—20)+8 andn,=N-28 for the 26<Z<28 relevant correlation effects. Some useful general theories
<N<40 nuclei, we have adopted a space consisting of alhave been developed by extending Bloch-Horowitz’'s
thek=0, 1, and 2 configurations. It has been confiri@d method: Feshbach’s projection methidd] and the folded-
that, for even-even nuclei, the energy levels are reproducediagram theoryf11], for example. These methods are, how-
remarkably well forE,<4 MeV. ever, more or less based on the perturbation theory. In the
The presence of mixed-symmetry states with respect teases to be considered in this paper, perturbative ways are
the proton and neutron collective degrees of freedom hawappropriate, as is argued just below.
been predicted by the proton-neutron interacting boson Our present goal is an investigation of the quadrupole
model(IBM-2) [5]. It has been pointed o(i6] that a mixed-  collective states which are to be described within IBM-2, in
symmetry 2° state may lie lower than the other mixed- connection with the realistic shell model. In the first approxi-
symmetry states in spherical nuclei, although the origin ofmation, thes andd bosons in IBM-2 correspond to the col-
such a low-lying mixed-symmetry 2 level has remained lective 0" (S) and 2 (D) pairs of valencelike nucleors].
open. Experimental studies have suggested that the mixeth Cr-Fe nuclei, as is assumed in REf], theS andD pairs
symmetry 2" state exists aroun#,=3 MeV in the Cr-Fe normally comprise only thé&=0 configuration of Eq(1),
region[7]. A realistic shell-model analysis has been appliedbecause of th&=N=28 magic number. The realistic shell-
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model wave functions, however, contain other configuraspace. This subspace is denotedW{f). In the application
tions. According to the realistic shell-model results, the leak-discussed in Sec. 1V, the original space corresponds to the
age out of thek=0 space is so significant that even thg 0 shell-model space, an#/(?) to the SD space. The bases
and 21+ wave functions are not well enough covered with thisbelonging toW® are hereafter callegrimary bases, while
usual SD space €60%) [3]. In order that the § and 2 those outsida\V(®) nonprimarybases. It is required that the
states can be described within the IBM-2, the correlationgrimary bases include basic dynamics already. If there is a
beyond theSD pairs must be taken into account. This rela- conserved quantum numbéythe spacéV(®) can be decom-
tively large k>0 fraction prevents perturbative ways from posed as

being applicable. A method beyond the perturbation theory is 0 0

required. It is commented that this situation takes place be- WO = EBVVS . )
cause the’®Ni core is not very stiff. Perturbative approaches J

may be legitimate in other mass regions in connecting IBM'zln the practical case) represents nuclear spin. In the follow-

to realistic shell model. . (0)res \rint 1o , L
. ing procedureWj”’s with differentJ’s never mix with one
We recall here that, as far as several lowest-lying levels . .
%nother, reflecting the conservation law.

are concerned, they are successfully reproduced by th . . ) .
4 y Tep y We consider a primary basi(® e W) where\ is the

Horie-Ogawa Hamiltoniaf12] with only thek=0 configu- . ) )
ration in the Cr-Fe region, apart from the precise descriptiori’d€X of basis-state vectors for a givénThe quantum num-

of the mixed-symmetry staté]. Moreover, thisk=0 shell-  Per J is not explicitly shown in¥{” for brevity. The state

model result is connected with IBM-2 fairly well, at least for ¥\ evolves with timet ase™ ™| ¥{”), whereH means the

0; and 2/ [13]. This fact suggests that, even in more real-original Hamiltonian. When the inverse temperatifie- it

istic cases wittk>0 configurations, the lowest-lying states With imaginaryt is employed, the time evolutioa™ """ is

may be described within IBM-2 through a proper renormal-converted to cooling™ . In order to simplify the following

ization. In Ref[1] modified SD pairs have been introduced, discussion, we assume without loss of generality that all the

and the fragmentation of the mixed-symmetry 2ompo-  €igenenergies are non-negative. This situation is attained, if

nents was clarified foPtFe. necessary, by shifting the origin of energy. The expectation
We introduce a new and yet simple method in this articlevalue (¥ {|e”#H|w{?), which is a function ofg, is a su-

It is applicable even to some cases where the perturbatioperposition of exponentially-decreasing components corre-

does not work well. The method is applied to quadrupolesponding to eigenvalues &f. The number of these compo-

collective states of Cr-Fe nuclei, and the wave functions ofients is much larger, in general, than the dimension of

those states are renormalized. In addition’$6e and5‘Cr, W, because a sizable fraction ef #H|¥(?) escapes out

on which the shell-model results have already been reporteof W(® with increasingg; e #"W{®= W) and therefore

in Ref. [3], *®Fe and®°Cr are studied. Furthermore, by ex- e~ AHW(O) =W We consider, in this paper, the situations

tending the OAI mapping5], the IBM-2 Hamiltonian is de- in which the primary bases form a major part of some low-

rived from the realistic shell-model Hamiltonian. This is the |ying states and the(ﬂfgo)le‘ﬁ'*hlfﬁo)) is dominated by one

first work of this sort, while there have been many worksor 3 few slowly decreasing components, while fast-decaying

evaluating IBM-2 parameters from more schematic interaCtomponents are superposed with far smaller amplitudes. If

tionS,_ _fOI’ instance the SurfaCQ-delta interaction. The IBM'Z\Ne choose appropriate states from nonprimary bases' On'y a
transition operators are obtained as well. RenormalizatioRmall number of them will have a sizable mixing with

effects on various IBM-2 parameters are discussed. Focusir\g(AO)_ These nonprimary but relevant bases are here ex-

on the IBM-2 results more concisely, we shall investigate

(v) . . .
properties of the mixed-symmetry states in Cr-Fe region "Pressed ag,” . The §upersc(r(:);:)t10 's used as gn mdgx of
the following papef14] degree of the coupling toF'}”’, whose meaning will be

specified later in this section. By taking into account the
influence of theg bases, the wave function & (® will be
renormalized as

The present renormalization method is introduced in a
ggnerall form, in this section. Some detgils of the procedure ‘PWI';"HE o g\v)' 3
will be illustrated in Sec. lll. Although this method may be v
applicable to other many-body problems, we shall apply it, in
this paper, to elicit a collective space out of the shell-modeWvherec, , represents mixing amplitude of thg basis. The
space. This collective space should correspond to that d¥asis¥, is constructed so as to contain higher-energy com-
IBM-2. ponents with significantly small amplitudes. By doing this,
In 5%Fe, for example, we have a pair of proton holes and@pidly decreasing components {W,|e”#"|W¥,) can be
a pair of valence neutrons within the description assumingnade negligibly small. Then the exact low-lying eigenstates
the 5%Ni core. TheS andD pairs of protons are defined as Will be reproduced to a good approximation by appropriate
the 0" and 2" states of the (6y,,) 2 configuration, while linear combinations of,’s. The following discussion will
those of neutrons are collective”0and 2° states of the exhibit how to choosep{" efficiently and how to evaluate
(Of 5,1 p321p1s2)2 configuration. Once the structure of the ¢, . With an adequate set @{"’s andc,,,’s, the trunca-
neutronS andD pairs is given, thesD space is constructed tion up to relatively smallv in Eq. (3) is expected to yield
by these proton and neutr@andD pairs. good renormalized bases, as will be shown with concrete
We first introduce a subspace of the original Hilbertexamples.

Il. H"-COOLING METHOD (H"CM)
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In the present method, it is required that the Hilbert spacéhe ¢ bases in Eq(8) have basically the same form as the
W,={¥, ;A=1,2, ...}, which consists of the renormalized Lanczos bases generated frob{?). However, it is a key
bases, fulfills the approximate relation point of the present method that the primary bases contain

—H basic dynamics of the system. In other words, the primary

e W= W,, (4) bases form the main part of the wave functions of the low-
lying states under interest. Thereby we can regard the current
procedure as a renormalization. The relation of the present
method to the Lanczos method will be discussed further in

W=aW,, (5) Sec. VI.
J Let us begin with a simple case in which there is just a
single state?(® in W . We do not need the labal in

up to a reasonably large. By defining the total space of the
renormalized bases by

Eq. (4) can be expressed as this case. TheP? operator in Eq.(8) expresses the
e~ BHW~W. (6)  Gram-Schmidt orthogonalization to¥® and $(")s
with »'<v. We thus generate a subspacE(™

We look for aW which satisfies Eq(6) and, at the same ={W(© M 4@ 4™ corresponding to the order of

time, remains a rather small subspace of the full Hilbert(Ag)".

space. Equatiofd) or Eq. (6) indicates approximate closure A renormalized wave functiofsee Eq(3)] is introduced

of the renormalized space. The closure is exactly satisfied ifyithin T"(",

W consists of eigenstates éf. Such a construction, how-

ever, only means a calculation in the full space. We are here "

seeking to obtaiV; with a limited number of thep bases in WMo ()4 21 c, o', 9)

Eq. (3), discarding degrees of freedom coupled to the pri- "

mary bases only weakly. For this purpose, we shall tracyith the amplitudec,’s to be determined. The submatrix of

how the original basia{”) evolves bye™#". H for the subspac& (™ is constructed, and the eigenvector
We consider a smafs by rewriting 8 asAg for the time  associated with the lowest eigenvalue is adopted as the

being, although it is not essential as discussed later. By e)ifenormanzed basisl}(n) in Eq (9) It is noticed that the

pandinge™*#" into the power series of B, the cooling of  mixing amplitudec,, thus obtained depends onthough this

¥ gives dependence is not explicitly shown here. The bagi®’

) . yields
o ABH| 0y ZoﬂHué((AB)““) W),

v!
(7

where O((AB)”) represents an operator with the order of where E®=(wM|H|w(). By this procedure, rapidly de-

AB)”. We define thes(”) basedsee Eq(3)] from the right- creasing components become substantially smaller in
ﬁaf& side % $ )] g (WM~ ABH| P MY than in (V(]e 2AH W) The ¥(©)

state is thus cooled down. Increasingtep by step, we can
|p\y=PO. H"|¥?). (8)  monitor what components are adopted in higher-order steps.
When we havd (>1) bases inW{?), the renormalized
HereP? stands for an appropriate orthonormalization, whosebasisW (" is obtained for each by diagonalizing a subma-
concrete definition will be given in Sec. lll. The basi§”  trix of H in T'(" , which is generated fron#(?). The ¥("
directly couples tob{”) via H, exhausting the coupling lead- (A=1,- - 1) bases span a spat#" . However,H may
ing out of W . The next basigs{*) affects the primary state produce crossover couplings among baseE { with dif-
via its coupling to¢§1). In this manner, important bases are ferent A\, which gives rise to a nonorthogonality between
extracted one after another. Note that all thébases carry bases with differenk. In order to avoid thisrgn) is created
the same quantum numbaras (") so as to be orthogonal {7 if A+\’, by carrying out an
Since the shell model is defined as a finite dimensionagthonormalization. This orthogonalization will be illustrated
many-body problem, the cooling operater*#" does not  concretely in Sec. Ill. Although this modification can gener-
need infinite series expansion. Moreover, since we have pogily break the relatiot10) for individual basis, the orthonor-

tulated that the primary bases include basic dynamics, thgzlization can be madesee Sec. I)l so that a similar con-
number of relevant degrees of freedom which couple to thejition should be satisfied for the Spawgn)

primary bases can be relatively small. Making good use of
these featureg 2" is handled by the power-series expan- e ABHWI =W L [H((A )" L)W (12)
sion as in Eq(7), and the¢ bases are generated by E§). J ) I

It has been known that the Lanczos diagonalization algoThjs indicates that{" fulfills Eq. (4) up to O((A8)"). The

rithm is efficient to obtain eigenenergies and eigenfunctiongtire space of the renormalized space at the anderthen
of low-lying states. We here try to utilize the advantage ofjefined as

the Lanczos method. The Lanczos method can be derived via
the power-series expansion ef " acting on an arbitrary W(”)E@W(Jn)_ (12)
basis. Besides a difference in tR& operator(see Sec. I, J

e BH|p (M) = g~ ABE | (M) L[ G((AB)" ]| WO,
(10)
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The cooling Eq.11) is carried out step by step, through into consideration, so that the states should correspond to the
the power-series expansidii). We shall call the present IBM-2 states with good= spin. The variabld= on the left-
procedureH"-cooling methodH"CM). The H'"CM gives a  hand side of Eq(13) indicates the~-spin value of the cor-

wave function renormalization, incorporating dynamical cor-responding IBM basis after the OAI mappifg]. The maxi-
relations contained iil. As far as the HCM is concerned, mum of F is obtained bYF max= 5 NB, whereNB=NEB+NB

the statee™#"| W {”)) with small 8 is decomposed in terms of s the total number o8 D pairs, which is the same as the total

then=1 basis¥ " and the rest. The latter has higher energyboson number in the IBM-2, for each nucleus. The states
than the former, giving rise to the faster-decreasing compowith F=F,, are called totally symmetric states in the

nent. Analogously, for a general the H"CM process pro-

IBM-2, while those with F=F5—1 mixed-symmetry

ducesn faster-decreasing components in addition to thestates. We refer here the bases in ®2fermion space in an

slowest-decreasing compone(ite., \I’(x“)). The closure of
the renormalized subspacaV(™ is fulfilled up to
O((AB)"), as is shown in Eq11). The largem assures the
better approximation from the viewpoint of the conditi@h)
or (6). If W™ converges witm, no new basis is created by

analogous manner. Note thBf,,,=1 in Fe. Though the
above|2"(SD);F=0) state is a totally anti-symmetric state,

it is called mixed-symmetry state in this article because it

belongs to the class of tHe=F,,,— 1 states.

For each nucleus we shall consider the complete set of

H acting on this subspace. The convergence then becomesthonormal bases belonging\mgo) (i.e., theSD space with

independent of3, which means that Eq6) holds for a gen-
eral value ofg3, not only forApg.

a specific spin ¥, v ... W In the above case
of Eq. (13), the ¥(®'s turn out to be

Although a cooling can be made only by operating
e 2" on ¥(? in the H'CM the diagonalization is per-
formed withinI'{") for each step. This accelerates the cool-
ing to an appreciable extent, since the diagonalization is
equivalent to the full cooling within the relevant subspace.
Moreover, as far as the dimension Kfis finite, bases are The ordering of the bases may affect the process of the
exhausted at finiter. Therefore, thg8— limit, which is  H"CM, as will become transparent below. In this example,
required for the full cooling in infinite-dimensional cases, isthe SD bases are ordered so that the class of states with full
not necessary. Because of these properties, all the maj@r-spin symmetry F=F,,) should come first, those with
components for low-lying states are generated with relativelyhext highestF spin (F=F.,—1) come second, and so
small 8, and the HCM is expected to be efficient even with forth. Within each sector of a giveR spin, the bases are

rather smalin. We shall see it in practice in Sec. IV. placed from the lower seniority to the higher, similarly to the
Here we should add the comment that some nuclear col®AI mapping.

lective states, for which the MCM will be used, are not In the H'CM, the ¢ bases of Eq(8) as well as the

necessarily the |0W€St-|ying state with a SpeCiﬁC Spin-paritylp(o)'s are generated in the fo”owing order:
In such cases the term “cooling” may not be appropriate,

(W) =[27(SD);F=1), |W)=|2"(D?);F=1),

|y =]2"(SD);F=0). (14)

and some caution will be necessary in applying the present O g0 w0
method. A prescription will be shown in Sec. VI, while the
actual case of the Cr-Fe nuclei will be presented in Ref]. d)(ll)’ (21)’ o ’¢|(1>,
n
lll. ILLUSTRATION OF H "CM ¢(12)'¢(22)’ o '¢|(2)’ (15)

The H"CM is illustrated in some detail with an example:
let us consider the set spanned by t8® states with ... ,
JP=2"in S%Fe.

As has been mentioned in the preceding section, the pro- M, e, L™

ton S andD pairs have the (B,,) ~? configuration in>%Fe,
while the neutron pairs have the f@1ps,1p1)? configu-
ration. The set of 2 states within thisSD space of°°Fe
comprises the following bases:

Recall that¢{” is generated fronH"¥(?), apart from the
orthonormalization byP®. We define the?® operator in Eq.
(8) as follows. The firstl bases are¥(?, ¥ . |

1 w9 which are already orthonormal, arRf’ acts as the

|27(SD);F=1)=—=(|D,)®|S,)+|S,)®|D,)), (138  unity for them. The (+1)th basis is¢{") generated from
V2 HW(® with the Gram-Schmidt orthogonalization (",
(0) (0)
2*(D2);F=1)=[ID,)0D)?, @3y 2 - Vi Namely,
]
(11)5 P{\I,<10) _____ vy H ‘I’(l()) ) (16

1
|2+(SD):F=0>=E(ID7T>®ISV>—IS,T>®|DV>)- (130
whereP¢ represents orthogonalization to the states specified
These bases straightforwardly correspond to the IBM-2 baseB the curly bracket, together with the normalization. The

through the OAI mapping5]. In the following discussions, (I+2)th basisg$" is created similarly, except that it should
the proton-neutron property of the wave functions is takerbe orthogonal also te{",
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1_pY . (0)
b5 P{q,(lO) ..... w(® 40 HWYS," . 17 al | (@)
One can repeat the procedure until all the orthonormal bases s 6f E
in Eq. (15 are obtained. Eaclp basis can be represented 2
explicitly as = a4 | 4
&
v o v o L | 4
g\)EP{q,gm _____ v® 4 ¢,I<v—1>}~H v (for A=1), E 2 S »
(189 of e o
o unren H'CM HCM Sh-M
(= P{\I,<10) """" WO G0 gD g0y H"p (O
(for \#1). (18h) &F
>
Note that, asm becomes larger, some bases may vanish due =
. . . St 4 -
to the orthogonalization. The bases in Etf) are produced -
in this manner, by carrying out the Gram-Schmidt orthogo- 2
nalization on them successively. & ol
We then consider a subsetl{V={w{® #®, 5
#®, ... ¢"} for eachA(=1,2,... ). It should be no- g 2* — 2",
ticed thatr‘g\”) is spanned by the bases constituting kth u% ol o 0",
column of Eqg.(15). In order to obtain a renormalized basis unren H'CM H'CM Sh-M

\Ifs\”) [i.e., to evaluate, , of Eq. (3)], we construct a sub-

matrix of H within this subspacé‘@. After diagonalizing

this submatrix, the lowest eigenstate is taken as\thebasis . _.. . PR : )
ization, with renormalization via the ¥cM, and with renormaliza-

. n . l . .
In 1 WS )'o In 1th|s 2manner, \21f§ ) 'So obltalnezd from tion via the HHCM), in comparison with the shell-model ones in
rP={w® ¢}, w@ from TP={¥?, o1 ¢}, and  sere; (a) lowest 0" and 2" energy eigenvalues in each space, rela-
so forth. The HCM spaceW(™ is spanned by the bases thus tive to the shell-model ground-state ener@y. Energies relative to
obtained. the lowest 0 level in each space.

The H"CM will be useful for extracting some simple
structural features from complicated shell-model wave func-

tions. Since thglrenormahzed wave functl_ons of ®e composed of thes&D pairs. The HCM is driven by the
states are explicitly constructed, it is possible to comparg, ii-model Hamiltonian in thé<2 space. The subspace

them directly to the shell-model wave functions. It is aIsoW(o) is spanned by the products of the ab&® pairs with
straightforward to evaluate matrix elements of a given opera-

. . (0) .
tor in the spac&V(™. Although the largen implies the better angular momentund. Any basis inW @ carries the lowest

closure of the subspace from the viewpoint of E4), we 1SOSpIn, and the(éios_pm |(so)conserveq during tHEAI, The
considern=<2 cases in the following application. primary _ba_seslfx s in W™ are PF“ n the order oF Spin
and seniority, as has been mentioned in the preceding sec-

tion.

For n=1, \II(A”)’S imply renormalizedSD states, while
they are referred to by the correspondi®@-pair structure

The H'CM is applied and tested numerically in Cr-Fe of ¥(%). OnceW{"s are obtained, eigenstates withii{™
nuclei, starting from thé& D-pair states. are calculated by diagonalizing the submatrix of the Hamil-

As has been shown in R€f3], the shell-model calcula- tgnian whose elements a(gfg\fj)“_”qu\n))_ In Fig. 1a), the
tion with the Kuo-Brown realistic Hamiltonian in thie<?2 energies of lowest 0 and 2 states within the subspace
Space SUCC?SSEUHV repr5<)6duces the observed states up \}jxn gre shown, in comparison with those of the shell model,
E,~4 MeV in *Cr and **Fe. While the_g)rotor_S andD  ¢5r SSre The origin of energy is set to the shell-model
pairs are uniquely determined by thef¢@) ~* configuration, 44 nd-state energy. The unrenormali& states gives far
the structure of the neutron pairs has to be fixed®®fe, the higher energiesthe most leftward sectprthan the shell-
structure of S,) is determined so as to maximize the overlap model eigenenergiethe most rightward sectprin this re-
between thgS,)®|[S,) state and the shell-modelOstate.  gard, the bare&D states(i.e., the primary basgsre insuffi-
The structure ofD,) is determined so that the overlap be- cient. The renormalization via the "€M reduces this
tween|S,)®|D,) and the shell-model @ state should be discrepancy of energies quite efficiently. Th8EM appears
maximum. The neutron pair structure féiCr is fixed so as 1o recover the shell-model;0and 2 states satisfactorily
for |SZ)®[S,) (IS.)®|D,)) to have maximum overlap with well. This observation is confirmed by direct comparison of
the shell-model § (2;) state. The structure of neutron pairs the wave functions. Table | shows overlaps between the
is slightly different betweerr®Fe and ®‘Cr. Note that the SD states and the shell-model eigenstates for the lowést O
seniority projection5] is carried out wheD2;J) is pro-  and 2" states. The unrenormalized states are certainly differ-
duced in Cr. ent from the shell-model eigenstates. A large part of the dis-

FIG. 1. Energy levels in the collective spa@egthout renormal-

The H"CM is applied, starting with the collective space

IV. APPLICATION OF H "CM TO SD SPACE
IN Cr-Fe NUCLEI
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TABLE I. Overlaps of wave functions of lowest-lying collective
states, before and after the renormalization via tH&CM, with 8l (a)
those of the shell-model eigenstatés).

0y 27
Nucleus Unrenorm. RCM Unrenorm. HCM

Energy [MeV]

Fe 55.6 97.0 49.8 93.3 \
S4Cr 53.5 95.8 475 92.3 Tr—
= 46.0 91.2 36.8 83.6 0
Secr 54.6 95.1 47.4 90.9

unren H'CM HCM IBM2 Sh-M

crepancy comes from thie>0 configurations. On the con-
trary, the wave functions after the?@M are quite close to
the corresponding shell-model ones, having more than 90%
overlaps.

Figure Xb) depicts energy levels for which energies are
measured from the ground state defined in each space. It is
remarked that the levels without the renormalization re-
semble the ones after the?8M, whereas the HCM spec-
trum is certainly different. The 2 excitation energy in the
original SD space is in good agreement with the shell-model unren H'CM H'CM IBM2 Sh-M
result, and therefore with experiments. In théGM result,
the O state is greatly lowered owing to the coupling to non-
SD (i.e., nonprimary degrees of freedom. Though thg 2
state is also lowered, the n@D effect is smaller than in
0; . Some additional no&D effect is absorbed by the

HZCM, which recovers the 2 excitation energy. In an should be modified with proper orthogonalization to the ba-
analogous manner, as far as the excitation spectra are cosis assigned with higheF value. This orthogonalization,
cerned, the result after the@M is close to the unrenormal- however, annihilates the basis corresponding to E§b),

ized one for most lower-lying states. There is a certain dif-hecause of the lack of tH®2;0") component. The follow-
ference in the 1 state. We shall return to this point later. ing primary bases are thus obtained:

The 4, state appears to be too high, even in théCOm
result. This state seems to be largely influenced by théw(?)=|07(S%);F=3), |¥)=|0"(SD?);F=3),
G-pair degrees of freedom. Although some parts of them are

Excitation Energy [MeV]

FIG. 2. Energy levels in the collective space compared with the
shell-model ones irPCr. Energy levels obtained from the IBM-2
Hamiltonian are also shown.

included in the renormalized wave functions, they are not yet [wPY=|0"(D%);F=%). (21)
sufficient for compensating the whole influence of tGe
pairs. The |27 (D3)) bases are handled in an analogous manner.

In Cr nuclei, there is ngD2 ;0" ) basigi.e., 0" state with ~ The energy levels in th&D space of*'Cr thus constructed

(0f,,)* and seniority 4 It is not always possible, thereby, to are shown in Fig. 2.

create¥?) basis having a goo#-spin value. For instance, __For the N=32 nuclei, the shell-model energy levels of

the |0*(SD?)) bases with good spins are %8Fe and®®Cr are presented in Figs. 3 and 4, in comparison
with the observed ones. This shell-model calculation is per-

1 - formed by using the computer codecsse[15]. The k=2

ﬁ(IDW:O )®[S,) space leads to thé&1-scheme dimension of 631,670 for
8Fe and 621,478 foP°Cr. Because available experimental

+ \/§[|SWDW>®|DV>]<0)), (199 data for these nuclei are not as abundant as folNk€30
isotones, a stringent assessment of the calculated results ap-

0" (SD?)F=3)=

1 pears to be difficult. However, we see that this shell-model
|0T(SD?);F=3%)= —(\/§|Df,;0+>®|sy> calculation reproduces the observed levels reasonably well
J3 )
also for theseN=32 nuclei.
—[]S,D.)®[D,)]©).  (19b The structure of neutro§ and D pairs in *%e (°Cr) is

assumed to be the same as®fire (“Cr), for the sake of
Since|D2;0*) does not exist in the present case, only asimplicity. The|D2;J) bases are produced so as to have the

single|0*(SD?)) basis is possible, and we introduce generalized seniority{18] of four, by removing lower-
seniority components. IR°Cr, the lack of théD2;0™) com-
|0 (SD?);F=3)"=[|S,D,)®|D,)]©. (200  ponent causes a modification of t&D bases, as iP‘Cr.

The energy levels ir®Fe and®®Cr within the SD space are
We replace the highdf-spin basis(199 by Eq. (20). The  shown in Figs. 5 and 6, in comparison with the shell-model
lower F-spin basis is also subject to similar changes, andnes.
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FIG. 3. Energy levels of®Fe. The experimental data are taken

from Ref.[16]. The calculated energy levels are obtained by the

k=2 shell-model calculation with the Kuo-Brown Hamiltonian. FIG. 5. Energy levels in the collective space, as well as the
IBM-2 energy levels, compared with the shell-model ones in

Figures 2, 5, and 6 indicate, respectively, that the*’Fe.

H2CM works well for the @ and Z states of>“Cr, e,

and %Cr, to the same extent as MFe. As shown in Table I, smaller in %Fe, originating in the smaller overlaps of the

the wave functions, as well as the energy levels, are in goodnrenormalizedSD states and the shell-model eigenstates.

agreement with the realistic shell-model ones.>f@r and  Though we have presumed the same neutron-pair structure

56Cr, the HHCM wave functions have more than 95% over- as in °Fe, a different choice may improve the overlaps. The

lap with the shell-model eigenstates fof Pand more than

90% for 2, as in °®Fe. These numbers are somewhat
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FIG. 4. Energy levels of®Cr. The experimental data are taken FIG. 6. Energy levels in the collective space, as well as the
from Ref.[17]. The calculated energy levels are obtained by thelBM-2 energy levels, compared with the shell-model ones in
k=2 shell-model calculation with the Kuo-Brown Hamiltonian. ~ 5¢Cr.
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overlaps of the HCM wave functions with the shell-model A 1t 3 7(2) 3 1(2)
ones are still large, exceeding 90% fo{ Gand 80% for Q=108 5,0, 17+ x,ld,d, T @3
2] . Thus the quadrupole collective motion in these nuclei 1 L
can plausibly be described via the?€M, based on the re- V5=§u0,p{sls;-[dpdp](°)+ H.c}
alistic shell model.
Although the calculation without the renormalization

1 ~—~
yields quite high ground-state energy, it produces the energy + —vz,p{d;Sl- [dpdp]<2)+ H.c}
spectrum similar to that in the #CM result for most lower- V2
lying states. This consequence is not a trivial one, and seems 1 s
to give a rather deep insight upon the correspondence be- + Ejguclp[d;d;]w‘[dpdp]<J)- (24)

tween theSD pair states and the IBM-2 states.
It should be mentioned here that the renormalization pro:l_h led Mai i hich trol th f
posed by van Egmond and Allagf9] has similar aspects to € so-cafled Vigjorana terms, which control the energy o

the present one. They have included various correlations i€ Mixed-symmetry states relative to the symmetric states,

duced through a nearly realistic shell-model Hamiltonian. T defined by

obtain a renormalized wave function of the state with one
D pair, the Hamiltonian is diagonalized on the one- and two-
broken-pair bases. Most of these bases are involved in the
H1CM, if their work is comp_ared with theT FCM. However, I\7IZ=E[dITSI—sI,dI](2>~[E,,sy—swa,,](z). (25b)

a few of them emerge only in #CM. In this sense, a part of 2

the H2CM effect has been taken into account in R@f. _ _ .

The H'CM exploited in the present work, on the other hand, [N the OAl mapping, a boson image of a certain nucleon
provides us with a systematic way to pick up importantoperator is obtained from matrix elements concerning low-
bases. Wave functions of high8iD states are also handled Seniority states. The parameters are fixed so that a boson
by the H'CM. A significant difference from Ref[19], as matrix element should be equal to the corresponding matrix
well as from other studies. is that tHSNi-core excitation €lement in the collective fermion space. We here consider
plays a certain role in the present case, which may be chaf- SPIn also, in addition to the seniority. The boson matrix

acteristic to the present mass region. We should note thag/éments are equated to the fermion ones, similarly to the
because of this point tH@+(SNB).F:F ) basis is modi- sequence of the bases in thd'®M discussed in Sec. Ill.
fied to an appreciablé extent ' ma This procedure is briefly illustrated below.

. . B .

It has been demonstrated how efficient thBam is. De- We first consider thes-boson condensats""). Since
spite the relatively heavy leakage out of tig&D space Eo=(s" |HB|sV"), the parameteE, in Eq. (22) is fixed by
(W), the H’CM yields reasonable energies and wavethe equation
functions for the lowest-lying states. The leakage mainly 5 5
arises from thek>0 configurations, namely from the Eo=(0" (SN );F=FalH|0" (SN );F=F a0, (26
SéNi-core breaking. It is commented that, if we had an ap-
propriate effective interaction in thé&=0 space, the WwhereH stands for the shell-model Hamiltonian. When we
HCM, or even the bar&sD wave functions, might have regard the|0+(SNB)> basis as the unrenormalized one, we
worked more efficiently. obtain the unrenormalized value &, from Eq. (26). By

putting the renormalized wave function f¢m+(SNB)>, the
renormalized value o is evaluated. In this procedure, the
We next calculate IBM-2 parameters by extending thewave function renormalization for the collective fermion
OAI mapping, based on the M. There have been numer- States gives rise to a renormalization of the IBM-2 parameter.
ous investigations devoted to the derivation of the IBM-2The  « parameter  is  fixed  from  the
Hamiltonian from schematic interactions like a pairing-plus-(O*(S’\‘B)|H|0+(SNB‘2D2)) matrix element. Therrdﬁ and
quadrupole interaction or a surface-delta interacf®8,20. ¢ are determined from the following coupled equation:
A semirealistic interaction with the Gaussian form has been
applied to investigate several of the IBM-2 parameters in 1
Ref.[19]. On the other hand, this is the first work to derive Eo+ _B(Nied + NEEd )—
IBM-2 Hamiltonian from a realistic shell-model interaction; N N Y
the Kuo-Brown interaction, in the present case.
We employ the following form of the IBM-2 Hamil-

My=[dtd"19.[d,d,1? (for J=1,3, (25a

V. IBM-2 PARAMETERS

2NENB
NB

K

— (2% (SN 1D);F=F o)

tonian, including all the possible one- and two-body terms: « H|2+(SN371D);F: F ) (273
B_ | B_ . .C  /
HP=Bot 2 eqNat 2 VpmeQuQut 2, &M WENE oo oy, NNENENE-NE)
NB wedﬁ Vedv) NB K
+ byldfd! 1. [d,d,]?, 22 B_
JZ%ZA J[ ™ V] [ T V] ( ) =<2+(SN lD);Fszaxl

where XH|2* (SN 1D ) F=Fpa— 1). (27b)
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TABLE Il. Parameters for IBM-2 Hamiltonian derived from the Kuo-Brown shell-model Hamiltonian.

S6re S4cr 58re Sécr
Parameter  Unrenorm. %€M Unrenorm. HCM Unrenorm. HCM Unrenorm. HCM

€q_ (MeV) 1.022 1.362 1.022 1.671 1.022 1.216 1.022 1.591
€q, (MeV) 1.426 1.441 1.482 1.270 1.888 2.004 2.178 2.143
K (MeV) 0.839 0.926 0.679 0.765 0.696 0.710 0.558 0.538
X —0.933 —1.220 0.000 -0.202 -0.933 -—-1.194 0.000 -—0.164

X —-1250 —-1099 -1239 -1.150 -—0.005 0.126 0.013 0.205
& (MeVv)  —0.065 0.303 0.084 0.186 —0.043 0.135 0.080 0.192
& (MeV) 0.000 -—0.021 0.000 0.127 0.000 0.095 0.000 0.098
&3 (MeV)  —0.009 0.061 0.008 0.171 —-0.031 0.198 -0.020 0.152

by (MeV) 0.330 0.575 0.123 —0.099 0.565 0.212 0.337 —0.119

b, (MeV) 0.101 0.320 0.034 0.100 0.006 —0.076 —0.001 —0.187

b, (Mev) -0.064 -0.306 -—0.104 -0.130 0.003 -0.197 -0.042 -—-0.030

vo, (MeV) 0.000 0.012 0.000 0.060
Com (MeV) 0.105 —0.155 0.100 —0.020
Can  (MeV) —0.424 -1215 —-0.469 —1.033
vo, (MeV) 0.082 0.063 0.141 0.233
vy, (MeV) —-0.441 —0.287 -0615 —0.690
o, (MeV) 2.066 1.609 3.399 2.439
oy (MeV) ~0.308 —1.347 0.053 —0.924
i, (MeV) 0.447 0.170 0.694 0.593

The other parameters are evaluated in an analogous manngfe preceding section. The repulsivd, term after the

procedure yields the same results as the OAl mapping.  of the 1" states in Figs. 1, 2, 5, and 6.

The re.sultant parameters, the unrenormalizgd ones and theé |; has been showfig,20] that, if we calculate a boson
renormalized ones via the3€M, are displayed in Table II.
For neithgrSeFe nor 34Cr, the intgraction among neutron
boson_s vsv) has any effect, S'nCN,V_L Hence the param- o alistic interaction derived from th@ matrix. Nevertheless,
eters 'nE}/,v have not been determined for these nuclei. Like~yo o s 4 difference in mechanism. Whereas only the influ-
wise, V- in the l2:e n+ucle| is not given. For the Cr nuclei, the gnce ofg-hoson degree of freedom is considered in Refs.
lack of the |[D7:0") component is realized by setting [g (] various correlation is included in the present renor-
Cor=, While vo, is indeterminate. , _ malization. In particular, the core excitation effect looks to

It is often assumed, in phenomenological studies, that thgay 4 certain role in the present case. Energies of the lowest
IBM-Z_ Hamiltonian is comprised only of the second,_foqrth, 0 and 2" (i.e., symmetri¢ states are lowered greatly,
and flfth terms of Eq(22). Note that, as far as excitation mainly due to the coupling to the core excitation. This
energies are concerned, the constant tegiplays no role.  mechanism works less for the mixed-symmetry components,
The 2/ excitation energy is governed mainly by tNg and resulting in the repulsive Majorana terms.

Q.-O, terms. For the parameters associated with these Comparing the MCM results on the Majorana terms
terms, the difference between the results with and withougmong the four nuclei, we find certain nucleus dependence
the renormalization is not large. For instange, of the Cr  of the parameters. I1%e, £, is fairly large with ¢, and &
nuclei vanishes before the renormalization, and it remaingemaining quite small. The other nuclei have positive values
small after the HCM. In the N=32 nuclei, we have very for all of these parameters. Thg parameter is somewhat
small x, both in the unrenormalized and?8M cases. A smaller than the others.

certain nucleus dependence has been expected for pze It is also noticed thav® and the last term of E¢22) are
rameters[5]. This variation with the increasing valence not negligibly small. Though they hardly contribute to the
nucleon number is rapid in this region, because the size dbwest-lying states in these nuclei, some higher-lying states
the shell is small, compared with heavier nuclei. are affected to a certain extent.

It is found that, while the Majorana interaction is negligi- By diagonalizing the IBM-2 Hamiltonian, we obtain the
bly small before the renormalization, it becomes sizably re€nergy levels within the IBM-2. They are already displayed
pulsive due to the renormalization. In reality, the totally sym-in Figs. 1, 2, 5, and 6, by using the parameters after the
metric states are pushed down more than the mixedH??CM. Since we include all the one- and two-body terms in
symmetry states, absorbing the more effect of 8- the boson Hamiltonian, the IBM-2 levels iA°Fe, where
degrees of freedom. Thereby the mixed-symmetry states ald®=2, are exactly the same as those of the collective ferm-
pushed up to some extent, relative to the lowest-lying stateson space. In°“Cr, the boson energy levels are very close to
This point is already viewed in the fermion spectra shown inthose of the collective fermion space, while the perfect

image of a schematic interaction, the Majorana terms emerge
as a renormalization effect. A similar effect occurs also for a
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TABLE lll. Parameters for IBM-2 transition operators derived from the shell-model operators.

S6re Scr S8re Sécr

Parameter Unrenorm. HCM Unrenorm. HCM Unrenorm. HCM Unrenorm. HCM

e?  (efm? 6.635 7.958 5.418 6.563 6.635 7.609 5.418 6.243
e?  (efm? 6.034 7.273 6.009 6.618 5.057 6.037 5.004 5.365
X -0.933 -—1.127 0.000 -0.336 -0.993 -1.178 0.000 —-0.331
X, -1.226 —1.307 -1.205 -—1.334 0.011 -0.049 0.035 0.010
g8 (1) 1.256 1.110 1.256 1.110 1.256 1.111 1.256 1.110
g® () -0.027 -0.037 -0.039 -0.080 -0.035 -0.015 -0.038 —0.042
Bsr (mnfm?)  69.1 51.5 69.1 58.4 69.1 51.4 69.1 59.0
Bs, (unfm?) —-188  —-207 —225 -26.3 6.1 8.6 5.3 10.1

agreement can be made if we use three-body terms in thEhe parameters introduced above are evaluated from the ma-
boson Hamiltonian. This indicates that the boson many-bodirix elements within the collective fermion space, analo-
terms are not important. The same holds féfe and®®Cr.  gously to the mapping for the Hamiltonian. The resultant

We next turn to electromagnetic transition operators. ThdBM-2 parameters are shown in Table III.

following shell-modelE2 operator is assumed: The renormalization enhances the boson effective charges
(epB), gaining mgre guadrupole collectivity. In phenomeno-
B off 2 (2), 2 logical studiesg,_=e, is sometimes postulated. This is sup-

T(E2)—p=2w ) % Y@, (28) ported by the present microscopic study. Though the shell-
model effective charge is smaller for neutrons than for

with e"=1.4e ande®"=0.9. The single-particle matrix el- Protons, the neutrons have more quadrupole collectivity be-

ements are evaluated by the harmonic-oscillator wave funcsause thg Size E?f the valence shell is bigger. As a conse-
tions with b=56"6=1.956 fm. For theM 1 operator, quencege_ ande, are not so different. There is no apparent
reason for they’ parameters to agree with theparameters
3 which appear in the boson Hamiltonian, because we adopt a
TM1)=/— > |g$f;2 Li+02 > sif, (29  realistic shell-model interaction, not a schematic proton-
AT oS tep tep neutron interaction lik& .- Q,, . Nevertheleassx’f is close to
x in any case. It has been expected thgt=g/';’=1 and
and we takeg?,=g[;*, g5, =0.59; . These electromag- g%=g[™*=0, since the nucleon-spin degrees of freedom are

gl?fgf:too%etrﬁg\)/lr; iree:ggrsﬁ;‘ensfggegég' Vl\g;g(ej ;n‘?f(.j(':gg:m not so active in the quadrupole collective states. However,
P xp utmcel y’g?, is certainly larger than unity in the result without the

there is an evidence in thed shell that no quenching is renormalization. This haopens because the pr&tBNOAirs
necessary to descridd3 transitions[21]. The shell-model . s PP P P
consist of the singlg-orbit of 0f;,,. On the contrary, when

M3 operator is taken to be equal to the bare-nucleon OPeIEve carry out the renormalization, the excitation froffiy@to

tor, 0fs, leads towards saturation of the nucleon spin. Therefore
V21 i the gi value is reduced untigizl is restored to a good
T(M3)=—— [glf“;e rEY@ 1@ extent. The quenching ¢85, due to the renormalization is
2 5w | TP explained by a similar spin-saturation mechanism. It is some-
what surprising that the influence of the renormalization on
+2g4ee riZ[Y(Z)(Fi)si](3>], (300 g5 andps, is so small. This will be partly because the spin
ep saturation occurs already in the unrenormalized neutron pa-
rameters, resulting in almost vanishing values.
where theg parameter are the same as for the fké# op- The same quenching mechanism for the magnetic transi-
erator. tion parameters will prevail in heavier nuclei, where a
The IBM-2 operators are unique-parity orbit is involved in the valence shell. Since the

spin-orbit partner of the unique-parity orbit is absent in the
TB(EZ)ZPZ eE{[dZSerSde](z)JrX;[d;dp](z)}, (31) valence shell, the nucleon-spin content could mfluegﬁe

=T and B3, to a considerable extent, when we ignore effects of
excitation across major shells. However, by taking into ac-
3 brs ap ~ count the excitation effects, those parameters will be
TB(M1)= Ep—E,v 9538, 38=\10d'd,]¥, (32  quenched, owing to the spin-saturation tendef®g] in the

dynamics. It is expected for tHd 1 parameters thagf‘; ap-
proaches unity angf almost vanishes.
TB(M3)= E Bsp[d;ap](?’)- (33 The dependenpe of the IBM—2. parameters on valence
p=my nucleon numbers is accounted for, in most cases, in terms of
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ponent. Asn increases, the diagonalization Witriﬂ”) will

The E2 operator behaves as a vector in the quasispin spaggad to a problem at some valuerfplural eigenstates have

[23]. Weak dependence is suggesteddﬁrand is confirmed
in Table Ill. The number dependence pf is strong, as is
expected. So ig in the boson Hamiltonian. SincE(M1)
and T(M3) are quasispin scalaf&3], the gE and B3, pa-

rameters are expected to be nearly constant. This is true for,
92, g2, and 35, but a considerable deviation is seen in

B3, . This is a sort of many-body effect, originating in the
subshell structure.

VI. DISCUSSION ON H"CM
A. Choice of primary bases

In this section, we return to discussion on th&G.
Even when the subspat® is fixed, there still remains

considerable amplitudes of the primary ba$i{”. It will
not be desirable, in such a case, to choose a single eigenstate
in I'("' as a renormalized basik{" .

A solution to this problem is to adopt a linear combination
of the few eigenstates ifi{" as a renormalized basis. We
can set a criterion of minimum amplitude for the states to be
included. Another practical choice is just stopping at a cer-
tain n. It should be emphasized that, in any case, monitoring
the H"CM outcome for each step is significant.

In the actual case of the Cr-Fe nuclei, we do not come
across the problems stated above, up to tH&CH. The
lowest-lying eigenstate ilﬁ({‘) has the largest overlap with
w9 and no serious fragmentation is viewed. As shown in
Sec. IV, the convergence inj0and 2 is so rapid that we

an ambiguity in choosing the primary orthonormal base<oUld acquire a good approximation by thé€M. In this

{(w® w0
tary transformation. Since the couplings betwegh ) and
¢({) are not uniform for varioua, the unitary transforma-

. (O, The bases can be changed by a uni-

respect, the BCM seems good enough to investigate collec-
tive states of the Cr-Fe nuclei.

C. H"CM and Lanczos method

tion may lead to a different renormalized basis set in the
H"CM. Moreover, because of the orthogonalization stated in As has been mentioned earlier, there is a common part
Sec. lll, the H'CM bases generally depends on the orderingbetween the HCM and the Lanczos diagonalization method.
of the primary bases. The H'CM energy levels are obtained via two steps of
The following three choices will be possible. diagonalization; one within the subspaﬁé‘) and the other
(i) Some orthonormal basis set is postulated‘]'ti?) bya  within WS“). The dimension 01‘5\“) is (n+1), while that of
physical insight. W is |. The basis production and the diagonalization
(i) The eigenstates withi/” are taken a®(”. They  within I'(" is similar to the Lanczos method. In the case that
are placed in order according to the eigenenergies. there is a single basis 'VVSO): the H'CM procedure is the
(i) w{? is redefined for each step, so thatW{"™"  same as the Lanczos method starting i), since we do
should be an eigenstate withii{"*). They are putin order not need the diagonalization withit{" . In other cases, the
accordmg to the eigenenergies. . orthogonalization betweeﬂi‘(xn) and I‘({l) (N#N') in the
o e o CN 02 ot appea n e Lanczos method. Apar o
{Ris difference, the ACM is exploited so as to make good
se of the advantage of the Lanczos method.

should be small. From this viewpoint, the latter choice seemg
An emphasis should be put on the primary bases: we have

favorable. On the other hand, the latter requires more com-
plication in the numerical treatment. requested that they should have a simple structure but carry

The basic dyf‘am'ca' properties s_hould be well rePreihe basic dynamics of the system. For instance Stbestates
sented by the primary bases, otherwise the renormalizati

Og . . . .

; : re taken as the primary bases in the application to the Cr-Fe
does not converge with smail In the practical case of the - e

Cr-Fe nuclei in Secs. Ill and IV, we have adopi@y with nuclei in Sec. IV. Because of these properties, it is expected

the U, (5)®SUq(2) bases of IBM-2[24]. This will be in many cases that the '€M is more efficient than the

appropriate because those nuclei seem to be nearly sphericéi”mczoS method. The number of bases in €M is given
In deformed region, another choice might be befs, y I(n+1) for eachd, which can be smaller than that nec-

essary in the Lanczos method. In practice, within a fided
even less than 10 bases yield good accuracy for the lowest-
lying levels of the Cr-Fe nuclei via the M, whereas
One could pursue the convergence difGM, by increas- about 50 bases are normally required in the Lanczos method.
ing the powem. However, besides tedious computations, itlt is noted that each diagonalization is performed for a matrix
might lead to a dissimilar wave function (" from that of ~ with quite a small dimensionn(+1) orl.
w9 Then it is not reasonable to regaltf” as a renormal-
ized state. In some cases, this is circumvented if an eigen-

B. Choice of renormalized bases

D. H"CM and a perturbative renormalization

state inI"(") having the largest overlap witl{®) is adopted
asW", instead of the lowest-lying one.

In this subsection, the MCM is discussed in connection
with a perturbative method of renormalization. A more de-

A complication occurs when there is a substantial frag-tailed discussion is given in Reff2].
mentation of the state which carries the main character of the Let us recall Feshbach’s projection methdd], a well-

primary state. As has been pointed out in R&f, the mixed-
symmetry 2 state of *®Fe may be the case. The 2and

known method of incorporating truncation effects. We define
the P space as the space of the primary bases; the original

2, states share appreciable fractions of this collective comSD space in the present case. The total space corresponds to
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the k<2 shell-model space, while the original Hamiltonian <\P§\O)|HP|\P§\O)>:<\I}§\O)|H|\I,§\O)>
is the Kuo-Brown Hamiltonian. We shall take into account

the effects of theQ space, which is spanned by the nonpri- — 1 —
HWPHIby) —————(r[H[ W)

mary bases. Note that all thi bases of Eq(8) belong to the E—E(¢,)
Q space. The projection operator onto thepace is denoted . .
by P, and that onto th€ space byQ, namelyQ=1-P. =(V{V|H|¥{”)
In Feshbach’s method, the renormalizédspace Hamil- 0y A (0)
tonian is given by * E—E(¢,) (WTHQH[WT). (39
ﬁP: Hp+PHQ OHP, (34)  This is a kind of closure approximation, since it is given by
E—Hq replacing the energy denominator bycanumber. It is not
easy, in general, to evaluate in the energy denominator
where properly. By substituting unperturbed energg ("

=(TOH|w®) for it, Eq. (39) becomes equivalent to the
second-order perturbation combined with the closure ap-
proximation. It is remarked that, however, the unperturbed
energy is too high in the practical case of the Cr-Fe nuclei,
For the exact treatment &f,, eigenvalues ofio have to be ~ Causing too big a renormalization effect. If we neglect the
calculated. Let an eigenstate i, be denoted byq;). No-  nonorthogonality betweet, and ¢,, for \#\’, the space
tice thatQ|q;)=|q;) and ®==;|q;)(q;|. Then the second T'{" becomes(¥(” ¢,}. In addition, if E is estimated by
term on the right-hand side of E(B4) is rewritten as diagonalizing the Hamiltonian in thiE(Al) space, we obtain
E(Y. Then the right-hand side of E€39) is equivalent to
1 the diagonal element of the ¥&€M collective Hamiltonian.
> PH|qg;) =———(qi|HP, (36)  Note thatE(" is lower thanE(”, and is closer to the exact
i E-E(q) E for low-lying states.

Observing the above relation between th&aM and the
where E(q;)=(q;|H|q;). Though Eq.(34) gives an exact perturbative renormalization with closure approximation, we
way to incorporate the influence of @ space into the Can claim that the HCM is an improvement from the per-
Hamiltonian, it is difficult and not advantageous to handleturbative method in the following pointst) the overcount-
without any approximation in most cases, because of théhg arising from the non-orthogonality betwees and ¢,
following two reasons. If one wishes to know exact eigenen{A #\") is removed(ii) off-diagonal elements are evaluated
ergies,Hqo must be treated exactly, which is usually a matrixin a consistent manner with diagonal ones, &iid E in the
with enormous dimension. Moreover, a nonlinear couplecenergy denominator is improved. If the overlap betwegn
equation must be solved, since the eigenendfgis also  and ¢,, is negligible, which somewhat depends on how to
contained in the denominator of the second term. choose the original basis s (¥ ;x=1,2,... 1}, ¢, and
_ For the sake of simplicity, our dISCl.JSSIon is restricted to a¢(x1) becomes quite similar. In order to further make the re-
f|>§edJ (conserved quantum numbewnhout loss of gener- lationship between the two methods more transparent, we
ality. We introduce the following state generated from gy, restrict ourselves to the diagonal elements and ignore

Hp=PHP, Ho=QHQ. (35)

(0). . .
Wy how E is estimated.
If the second term of the right-hand side of Eg4) is
_ ~ o expanded by the parameter
[60)= 2 Xiala)=QHIWY")  (\=1.2,...1), (3D _
E(¢y) —E(a)
&,x:#(d))l, (40)
where >
we obtain[2]
o (alH?) @y .
AT = = . A .
VE K HI O @ HOH|w(©) <\If§°> PHQE_HQQHP’W§°)>
: . : . - 1 R oy(Ho) 12
It is noticed that, with the notation in Sec. i), can be = (VOHQH|¥ (@) 1+ AP
expressed aﬁ’fq,m) ¥ © ...y, HP{? which is different E-E(é)) E—-E(é))
1 72 |
from the basis¢{") only in the lack of orthogonalization +0(2%), (42)

betweeng, and ¢, (N#N'). -
We now substitute @ numberE(¢,)=(¢,|H|¢,) for where

Hg in Eq. (34). Then a diagonal matrix element éfp is e e —
approximated by [on(Ho)1°=(¢\[Hgldr) —[E(H))] (42)
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represents variance éfg in the states, . In a similar man- VIl. SUMMARY

ner, theO({") term corresponds to correction due to the |n order to study quadrupole collective modes based on a
nth moment of the distribution dfg;)’'s. By comparing Eq. realistic shell model, we develop the"-cooling method
(42) with Eq. (39), it is found inO(¢?) that the distribution  (H"CM), \{_vhicthhleags tto afl tvr\]h’:l\:je funCFior? renorlnlfilizaltion by
: incorporating the effect of the dynamical correlation. In prac-
Z]tfeda c?fvgetreenoerlrazrlliigﬁi gT;Qer?:rn?erzny enhances the tice, 'ghe H'CM is applied to theSD space of the Cr-Fe
) o gies.. . nuclei: *Fe, >Cr, %®Fe, and®®Cr. While the shell-model
The above discussion is useful to acquire an intuitive PiCground-state wave function is not fully covered with the
ture of the H'CM. The terms regardingig are fully taken  simple SD pair degrees of freedom, the shell-modgl and
into account in the ICM. Therefore, as far as diagonal 2; energies and wave functions are nicely approximated by
elements are concerned, the difference betweerfAyand  considering up to the second power téf(H2CM). On the
the HCM is only in O(Z%). In comparison with the other hand, as far as the energy difference is concerned, the
H1CM, an advantage of the 3M is the inclusion of the €Xcitation spectra after the iem do not differ very much
0(?) effect [2]. As stated already, in the perturbative fgg’m those v_v|th_0ut _the reno_rmallzatlon. I_\Iote that the
theory, which is connected to thel8M well, the coupling Ni-core excitation is taken into account in the present
" ] ! ] renormalization, as well as some effect of other like-nucleon
of a primary state with the outer spac® Epaceg is treated pairs.
by using an averaged energy of the nonprimary states An extended OAI mapping is also developed and applied
E(¢,), ignoring their distribution. The second-order effectto the Cr-Fe nuclei. This is the first work to evaluate the
is, in essence, the correction due to the distribution of thdBM-2 parameters from a realistic shell-model Hamiltonian.
coupled states in terms of the variance, as shown ir(4. he wave function renormalization is converted to a renor-

By extending the present discussion to higher order, it tummalization of the IBM-2 parameters. Some effects of the
y 9 P 9 ' Yenormalization are discussed. Although most parameters in

out that thenth order effect of HCM essentially corre-  {he |BM-2 Hamiltonian do not change considerably, the Ma-
sponds to thenth moment of the distribution o#, in the jorana interaction becomes sizably repulsive as a renormal-
Q space. ization effect. It is indicated that many-body terms are un-
We now look back at the results shown in Figs. 1, 2, 5,necessary in the IBM-2 Hamiltonian. In the transition
and 6 in Sec. IV. In proceeding from &M to H2CM, the operators, the FICM gives rise to spin quenching for the

: . .. M1 and M3 proton parameters, as well &2 effective-
h|gher—ly|ng stateg tend to go down more sharply. This Im'charge enhancement. Theparameters in th&2 operator
plies that the variancer,(H

! _ Q) is more important in the 416 shown to take close values to those in the Hamiltonian.
higher-lying state. On the other hand, some mixed-symmetryhjs situation is not influenced by the renormalization.
states with relatively low energyfor instance, the lowest
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