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Determination of bound-state wave functions by a genetic algorithm

Christian Winklet and Hartmut M. Hofmann
Institut fur Theoretische Physik IlI, Staudtsjga 7, D-91058 Erlangen, Germany
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We present a stochastic method of minimizing the ground state energy in variational calculations of light
nuclei using the refined resonating group model. The method utilizes a bit representation of the width param-
eters to be varied. To find the best possible set of width parameters we use strategies familiar from biological
evolution. Very complicated problems can be solved in this way because the method is intrinsically parallel.
The algorithm can be used on parallel computers with any number of processors without any change. As an
example we give the results of a simple model calculatioriLof [S0556-28187)06102-5

PACS numbgs): 21.60—n, 02.60.Pn, 02.70.Rw, 21.10.Dr

I. INTRODUCTION possible in order to be able to calculate complicated nuclei as
well.

In the framework of the refined resonating group model Using our method the general procedure for studying
[1] bound states and scattering observables of quite complground and scattering states of complicated nuclei starts
cated nuclei have been calculated successfily In this  from the ground states of light nuclei. These structures are
model a nucleus is decomposed into clusters. For details sé@en incorporated into the heavier nuclei. This can be done
[1]. Here we give only the essentials of the wave functiongnany times and so the states of heavier and heavier nuclei
used. The basic orbital wave function of a cluster is detercan be calculated step by step. For the helium isotopes this
mined by a Gaussian function. The wave function of thehas been carried out Hy].
relative motion again consists of a Gaussian multiplied by For this purpose we need analytical expressions for the
solid spherical harmonics. The total wave function is con-wave functions in a clearly defined model space which can
structed as a linear superposition of antisymmetrized prodee handled by more complex problems. This has to be re-
ucts of orbital and single particle spin functions. It might begarded in contrast to other approaches like GFMC, which are
necessary to allow for more than one width parameter pefore interested in exadnumerical results on a kind of
cluster and to include different decompositions into clusterslattice with a small but finite spacing.

e.g., 'Li=*He—3H and SLi—n.

_ However, as soon as the nucle_i g_et too complex and many II. OUTLINE OF THE GENETIC ALGORITHM
width parameters are involved it is very difficult to find
minima in the space of the highly nonlinear width param- Here we briefly summarize the essential points taken from
eters. Calculations are very time intensive since a singlé4]. Suppose we want to find a minimum in a space spanned
evaluation of the binding energy for a fixed set of width by p parameters. The basic idea of the method is then to
parameters can already take a considerable amount of CPtuave bit representatiorisalled genes of all p optimization
time. parameters which is called amdividual. Therefore an indi-

Traditional methods for finding minima in high dimen- vidual consists op genes. Initially we have to create a cer-
sional spaces usually require lots of different function evalutain numbemn of individuals (a populationof size n) with
ations. Additionally it can happen that these methods stop imandom genes. This is called the first generation. In an evo-
a local minimum and miss the global one. A further disad-lutionlike method we get from one generation to the next by
vantage is the fact that all function evaluations have to beelecting two “good” individuals. These will now have the
done sequentially because each new test point in the pararohance to produce twamffsprings with a crossoverlike
eter space depends on the function’s value of the previousmechanism acting on the bit representations.
points. For this reason the search for the optimal width pa- As we would like to minimize our binding energies with
rameters takes an enormous amount of time. respect to the width parameters, we chose a binary represen-

One approach to finding a smaller binding energy wouldtation of 16 bit length(i.e., a 16 bit numberfor each param-
be simply to extend the number of linear combinations takereter. This is sufficiently precise. The genes are mapped lin-
into account{3]. However, this leads to a very unphysical early onto the width parameters but that can easily be
model where it is hard to interpret the contribution of eachchanged by using different mappings.g., to enhance the
configuration. In addition to that, scattering calculations betesolution in certain regimes of the parameter space
come almost impossible. Therefore it would be nice to have The algorithm itself consists of five steps
a method that is able to find a minimum of the binding en- (1) Initialization. Create an initial population by randomly
ergies in the space of a fixddut smallest possiblenumber  choosing uniformly distributed 16 bit numbers. Calculate the
of width parameters. Ideally all this should be done as fast abinding energies of all members and sort them in ascending

order.
(2) Selection Choose two members of the population ac-
*Electronic address: cwinkler@theorie3.physik.uni-erlangen.de cording to their binding energy. Choosing members with
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crossover energy returned by one of the processors which are sorted
point into the current population. Then two new individuals are
selected and their offsprings are sent to the free processors.
[1[o]o[1[1[10[1[0[1[1[0[0[1]O[1] parents In this way we try to assure maximum parallelism.

The time needed for computing a fixed number of genera-
tions is therefore almostversely proportionato the num-
ber of processors available. Hence the power of the algo-
rithm grows automatically with the number of processors
offsprings available.

At this point one might argue that all stochastic methods
are trivially parallel. This is of course true but population
based approaches exhibit even another degree of parallelism

FIG. 1. Example of aone point crossover operation between tW%_S they permit communication between the processes by
genes. means of the population as a kind of “pool.” This leads

lower binding energy should be more probable. This can bgventually to faster resulign real time. This is true for all

implemented using strategies like roulette wheel or rank Sepopulatlon based _methods, be it a genetic algorithm or, e.g.,
lection [4]. a GFMC calculation. However, not all these methods are

(3) Crossover Use the bit representations of the two se.Suitable for minimization of functions and that is why we
lected members for a crossover to produce two new c)ff_have chosen the genetic algorithm. We have tried different

springs[4]. Crossover can be done in many different Ways,strateglfetsh for _Lé?ﬁlatmg th? pOp_IL_J:]atIOI’I like ztor:: hastic a}{ve{)-
the most famous of which is one point crossofsse Fig. L ages of the wi parameters. 'Hese proved however to be

However, in most practical applications, as in our case, uni_not as stable against being stuck in local minima and did not

form crossover(a generalized one point crossovermany corgerge as rapllii:]y tasdt.T_e gei(neuc aIgoIrli_hm. basadst
point crossoveris used4]. omparing with traditional(nonpopulation basedsto-

(4) Mutation Mutate (i.e., inver each bit in the off- _chastic techniqqes, this has c_onsiderable adv_antages regard-
springs with a given probability. This is done to ensure that"9 computing time. If, e.g., smulated anneahng Cconverges
the population does not become degenefate hence get after 20_0 steps and each funct|_on eyaluat|on take_s one hc_>ur
stuck in a local minimumif all bit representations are simi- the earliest results can be obtam_ed in 200 hours |rresp_ect|ve
lar. of the_numbe_r of processors aval!able. On the contrary if the

(5) Insertion Calculate the binding energies of the two genetic algorithm takes 500 function evaluations to converge

offsprings and insert them into the population. The “worst” the computation time can be made shorter by simply provid-

individuals are thrown out to have a constant population siz ing enough processor@.g., with 50 processors it will be

Return to steff2). only 10 hour$. We still can make stochastic statements
One cycle from steft2) to step(5) is called onegenera- about the quality of the solution by taking into account the

tion. If the algorithm converges, e.g., after 100 generationd!110€ Populationaverage, variation, efc.
with a population size of 50 one will need $000x2=250
function eva!uations. _ _ IIl. SIMPLE EXAMPLE
The algorithm can terminate after, e.g., a fixed number of
generations has been calculated or the mean binding energy We tried to apply all our considerations to a simple model
of the whole population is sufficiently close to the lowestproblem to see how well it works. For this end we chose the
binding energy of the population so that no drastic further’Li example. This is not too simple as five different width
change should be expected. parameters are used. On the other hand, calculations do not
We have to emphasize that the most important proceske too long so that it is easy to compare the results by the
which leads eventually to convergence is the crossover opgenetic algorithm with those from a deterministiguasi-
eration. The mutation is only done to ensure diversity in theNewton search.
population. This can be compared to the process of biologi- This section is just meant as a demonstration for the
cal evolution where it is also thought that crossover is thenethod itself, we wanted to see how well it performs on a

J[0[1[0]1]1]0[0]1[0[T]

most important step. problem with known exact solution to be able to compare it
Usually the most time consuming task is to evaluate thégo other methods.
binding energy for the new parameters in stBp All other As a first test we applied the genetic algorithm several

tasks are more or less just bookkeeping. Therefore we notiémes to see if the method converges on the average. In all
that the whole algorithm is perfectly well suited for mas- calculations we used a population size of 50, a mutation rate
sively parallel computation: each evaluation of the bindingof 0.001 and the number of total generations was fixed to be
energy can be done on a single processor. 500. The results displayed in Fig. 2 show a reasonable con-
To achieve maximal performance on any parallel com-vergence. Of course one has to do several runs to find reli-
puter system our algorithm proceeds as follows: all availableble results but this is no difference to the deterministic
processors are used for calculating the binding energies ahethod where it is possible to become stuck in a local mini-
the initial population. In the selection process two individu- mum.
als are selected and their offsprings’ binding energies are Note that even when the genetic calculation has stabilized
evaluated as long as free processors are available. If no fubasically still the whole space defined by the mapping of the
ther processor is available the program waits for the bindinggenes to the width parameters is used for finding better val-
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FIG. 3. Convergence of the binding energy as a function of the
' ' number of steps used in a genetic algoritfidotted ling and a
FIG. 2. Convergence of three different runs of the genetic algodeterministic type sequential meth¢id the deterministic method
rithm trying to find the ground state Jt.i (only the binding energy only the minimal energy found so far is plotied
of the best individual of the generation is shgwn . ) ) ] )

To summarize this section we would like to point out that
ues for the binding energy. At this point it is worthwhile calcu_latlons of nuclear ground states using parallel genetic
stopping the algorithm and starting it again with a new map-2l90rithms seem to be very fast and should be preferred
ping which takes account of the width parameters just found@d@inst sequential methods. Minimizing the ground state en-
This can be done several times to enhance the resolution 6f9Y of complicated nuclei might become possible in much
the method and to be sure that the global minimum is rea");horter(reab time. The algorithm is very flexible because
found. parameters like the size of the population, mutation rate, se-

The rate of convergence is of course independent of thiection scheme, etc. can easily be adjusted to suit the prob-

number of processors used because all “administrative’‘em [6]-
tasks are done in the main program which does not depend
on the number of processors.

We used the results from the solid line in Fig. 2 again to  after having found that the genetic algorithm works in the

estimate how well the genetic algorithm performs comparexpected way for a problem with a known solution we ap-
to a deterministic search method. Therefore we applied the

deterministic search algorithm from the NAGLIE] (a
quasi-Newton algorithpnand plotted in Fig. 3 the number of
necessary steps together with the results from the genetic
algorithm. Note, however, that the only physical input to the
genetic algorithm was theange of physically sensible width

parameters whereas the deterministic search already needs

goodstarting valuedo yield a reasonable performance. This
can be seen by the much better first energy value in the
deterministic method.

However, it must be emphasized that the actual time used
for getting the results is the CPU time divided by the number
of processors used in the parallel implementatiexcept for
bookkeeping tasks which can be totally neglected if the func- | s N
tion evaluation takes most of the CPU tim&herefore it is “1
only of minor interest that the genetic algorithm needs about ‘
twice as many stepdwice the CPU timgas a deterministic
sequential method. This drawback is easily compensated by
the number of available processors. 0.001 b e .

To get a feeling about the time needed for complicated 0 5 10 15 20
calculations in both methods we compare tieal time in tit]

Fig. 4. The genetic algorithm of course starts later since the

initial population has to be calculated first. After that the FIG. 4. Comparison of the real time used to find the minimum
genetic algorithm running on 50 processors converges draf binding energies using a genetic algorithm running on 50 pro-
matically faster than the deterministic method. cessorgdotted ling and a sequential deterministic type search.

IV. APPLICATION AND OUTLOOK
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plied it to a far more complex nuclear physics problem, the Of course all these computational methods are not re-
calculation of the properties of the helium isotopes, espestricted to nuclear physics. Indeed the first test trying to es-
cially ®He. As we want to separate the description of ourtimate the convergence of the method was done by calculat-
new method from the discussion of the physical inpaddel  ing the ground state wave function of the hydrogen atom
space, potentials, ejcthe results are presented in a separatqsing the Ritz variational method. So there should not be any

paper[7]. The calculations would not have been possiblegifficulty in using the same methods for quite complicated
without the new method because of the total CPU time usedyyantum chemistry calculations and atomic cluster calcula-

the actual calculation has been performed on a Convex SRi)ns.

computer using 32 processors. _ _____ One possible extension of the algorithm is some kind of
We have shown that a very easy algorithm “copied” self-adaptive behavior, i.e., changing the mapping of the

from nature can be used to calculate binding energies angenes to the width parameters dynamically. This is currently
wave functions of rather complicated nuclei. As this can beunder development.

done in a highly parallel manner and is fully scalable many
new problems can be solved in this way. The algorithm is
extremely simple and can be generalized to almost any kind
of problem where the determination of an extremum of a
function is involved. This work was supported by DFG and BMBF.
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