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Determination of bound-state wave functions by a genetic algorithm

Christian Winkler* and Hartmut M. Hofmann
Institut für Theoretische Physik III, Staudtstrabe 7, D-91058 Erlangen, Germany

~Received 12 June 1996!

We present a stochastic method of minimizing the ground state energy in variational calculations of light
nuclei using the refined resonating group model. The method utilizes a bit representation of the width param-
eters to be varied. To find the best possible set of width parameters we use strategies familiar from biological
evolution. Very complicated problems can be solved in this way because the method is intrinsically parallel.
The algorithm can be used on parallel computers with any number of processors without any change. As an
example we give the results of a simple model calculation of7Li. @S0556-2813~97!06102-5#

PACS number~s!: 21.60.2n, 02.60.Pn, 02.70.Rw, 21.10.Dr
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I. INTRODUCTION

In the framework of the refined resonating group mo
@1# bound states and scattering observables of quite com
cated nuclei have been calculated successfully@2#. In this
model a nucleus is decomposed into clusters. For details
@1#. Here we give only the essentials of the wave functio
used. The basic orbital wave function of a cluster is de
mined by a Gaussian function. The wave function of t
relative motion again consists of a Gaussian multiplied
solid spherical harmonics. The total wave function is co
structed as a linear superposition of antisymmetrized pr
ucts of orbital and single particle spin functions. It might
necessary to allow for more than one width parameter
cluster and to include different decompositions into cluste
e.g., 7Li54He23H and 6Li2n.

However, as soon as the nuclei get too complex and m
width parameters are involved it is very difficult to fin
minima in the space of the highly nonlinear width para
eters. Calculations are very time intensive since a sin
evaluation of the binding energy for a fixed set of wid
parameters can already take a considerable amount of
time.

Traditional methods for finding minima in high dimen
sional spaces usually require lots of different function eva
ations. Additionally it can happen that these methods sto
a local minimum and miss the global one. A further disa
vantage is the fact that all function evaluations have to
done sequentially because each new test point in the pa
eter space depends on the function’s value of the prev
points. For this reason the search for the optimal width
rameters takes an enormous amount of time.

One approach to finding a smaller binding energy wo
be simply to extend the number of linear combinations ta
into account@3#. However, this leads to a very unphysic
model where it is hard to interpret the contribution of ea
configuration. In addition to that, scattering calculations
come almost impossible. Therefore it would be nice to ha
a method that is able to find a minimum of the binding e
ergies in the space of a fixed~but smallest possible! number
of width parameters. Ideally all this should be done as fas
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possible in order to be able to calculate complicated nucle
well.

Using our method the general procedure for study
ground and scattering states of complicated nuclei st
from the ground states of light nuclei. These structures
then incorporated into the heavier nuclei. This can be d
many times and so the states of heavier and heavier nu
can be calculated step by step. For the helium isotopes
has been carried out by@7#.

For this purpose we need analytical expressions for
wave functions in a clearly defined model space which c
be handled by more complex problems. This has to be
garded in contrast to other approaches like GFMC, which
more interested in exact~numerical! results on a kind of
lattice with a small but finite spacing.

II. OUTLINE OF THE GENETIC ALGORITHM

Here we briefly summarize the essential points taken fr
@4#. Suppose we want to find a minimum in a space span
by p parameters. The basic idea of the method is then
have bit representations~calledgenes! of all p optimization
parameters which is called anindividual. Therefore an indi-
vidual consists ofp genes. Initially we have to create a ce
tain numbern of individuals ~a populationof size n) with
random genes. This is called the first generation. In an e
lutionlike method we get from one generation to the next
selecting two ‘‘good’’ individuals. These will now have th
chance to produce twooffsprings with a crossoverlike
mechanism acting on the bit representations.

As we would like to minimize our binding energies wit
respect to the width parameters, we chose a binary repre
tation of 16 bit length~i.e., a 16 bit number! for each param-
eter. This is sufficiently precise. The genes are mapped
early onto the width parameters but that can easily
changed by using different mappings~e.g., to enhance the
resolution in certain regimes of the parameter space!.

The algorithm itself consists of five steps
~1! Initialization. Create an initial population by randoml

choosing uniformly distributed 16 bit numbers. Calculate t
binding energies of all members and sort them in ascend
order.

~2! Selection. Choose two members of the population a
cording to their binding energy. Choosing members w
684 © 1997 The American Physical Society
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55 685DETERMINATION OF BOUND-STATE WAVE FUNCTIONS . . .
lower binding energy should be more probable. This can
implemented using strategies like roulette wheel or rank
lection @4#.

~3! Crossover. Use the bit representations of the two s
lected members for a crossover to produce two new
springs@4#. Crossover can be done in many different wa
the most famous of which is one point crossover~see Fig. 1!.
However, in most practical applications, as in our case, u
form crossover~a generalized one point crossover5 many
point crossover! is used@4#.

~4! Mutation. Mutate ~i.e., invert! each bit in the off-
springs with a given probability. This is done to ensure t
the population does not become degenerate~and hence ge
stuck in a local minimum! if all bit representations are simi
lar.

~5! Insertion. Calculate the binding energies of the tw
offsprings and insert them into the population. The ‘‘wors
individuals are thrown out to have a constant population s
Return to step~2!.

One cycle from step~2! to step~5! is called onegenera-
tion. If the algorithm converges, e.g., after 100 generatio
with a population size of 50 one will need 501100325250
function evaluations.

The algorithm can terminate after, e.g., a fixed numbe
generations has been calculated or the mean binding en
of the whole population is sufficiently close to the lowe
binding energy of the population so that no drastic furth
change should be expected.

We have to emphasize that the most important proc
which leads eventually to convergence is the crossover
eration. The mutation is only done to ensure diversity in
population. This can be compared to the process of biolo
cal evolution where it is also thought that crossover is
most important step.

Usually the most time consuming task is to evaluate
binding energy for the new parameters in step~5!. All other
tasks are more or less just bookkeeping. Therefore we
that the whole algorithm is perfectly well suited for ma
sively parallel computation: each evaluation of the bind
energy can be done on a single processor.

To achieve maximal performance on any parallel co
puter system our algorithm proceeds as follows: all availa
processors are used for calculating the binding energie
the initial population. In the selection process two individ
als are selected and their offsprings’ binding energies
evaluated as long as free processors are available. If no
ther processor is available the program waits for the bind

FIG. 1. Example of a one point crossover operation between
genes.
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energy returned by one of the processors which are so
into the current population. Then two new individuals a
selected and their offsprings are sent to the free process
In this way we try to assure maximum parallelism.

The time needed for computing a fixed number of gene
tions is therefore almostinversely proportionalto the num-
ber of processors available. Hence the power of the a
rithm grows automatically with the number of processo
available.

At this point one might argue that all stochastic metho
are trivially parallel. This is of course true but populatio
based approaches exhibit even another degree of paralle
as they permit communication between the processes
means of the population as a kind of ‘‘pool.’’ This lead
eventually to faster results~in real time!. This is true for all
population based methods, be it a genetic algorithm or, e
a GFMC calculation. However, not all these methods
suitable for minimization of functions and that is why w
have chosen the genetic algorithm. We have tried differ
strategies for updating the population like stochastic av
ages of the width parameters. These proved however to
not as stable against being stuck in local minima and did
converge as rapidly as the genetic algorithm.

Comparing with traditional~nonpopulation based! sto-
chastic techniques, this has considerable advantages re
ing computing time. If, e.g., simulated annealing converg
after 200 steps and each function evaluation takes one
the earliest results can be obtained in 200 hours irrespec
of the number of processors available. On the contrary if
genetic algorithm takes 500 function evaluations to conve
the computation time can be made shorter by simply prov
ing enough processors~e.g., with 50 processors it will be
only 10 hours!. We still can make stochastic statemen
about the quality of the solution by taking into account t
whole population~average, variation, etc.!.

III. SIMPLE EXAMPLE

We tried to apply all our considerations to a simple mod
problem to see how well it works. For this end we chose
7Li example. This is not too simple as five different wid
parameters are used. On the other hand, calculations do
take too long so that it is easy to compare the results by
genetic algorithm with those from a deterministic~quasi-
Newton! search.

This section is just meant as a demonstration for
method itself, we wanted to see how well it performs on
problem with known exact solution to be able to compare
to other methods.

As a first test we applied the genetic algorithm seve
times to see if the method converges on the average. In
calculations we used a population size of 50, a mutation
of 0.001 and the number of total generations was fixed to
500. The results displayed in Fig. 2 show a reasonable c
vergence. Of course one has to do several runs to find
able results but this is no difference to the determinis
method where it is possible to become stuck in a local m
mum.

Note that even when the genetic calculation has stabili
basically still the whole space defined by the mapping of
genes to the width parameters is used for finding better

o
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686 55CHRISTIAN WINKLER AND HARTMUT M. HOFMANN
ues for the binding energy. At this point it is worthwhi
stopping the algorithm and starting it again with a new m
ping which takes account of the width parameters just fou
This can be done several times to enhance the resolutio
the method and to be sure that the global minimum is re
found.

The rate of convergence is of course independent of
number of processors used because all ‘‘administrativ
tasks are done in the main program which does not dep
on the number of processors.

We used the results from the solid line in Fig. 2 again
estimate how well the genetic algorithm performs compa
to a deterministic search method. Therefore we applied
deterministic search algorithm from the NAGLIB@5# ~a
quasi-Newton algorithm! and plotted in Fig. 3 the number o
necessary steps together with the results from the gen
algorithm. Note, however, that the only physical input to t
genetic algorithm was therangeof physically sensible width
parameters whereas the deterministic search already n
goodstarting valuesto yield a reasonable performance. Th
can be seen by the much better first energy value in
deterministic method.

However, it must be emphasized that the actual time u
for getting the results is the CPU time divided by the num
of processors used in the parallel implementation~except for
bookkeeping tasks which can be totally neglected if the fu
tion evaluation takes most of the CPU time!. Therefore it is
only of minor interest that the genetic algorithm needs ab
twice as many steps~twice the CPU time! as a deterministic
sequential method. This drawback is easily compensate
the number of available processors.

To get a feeling about the time needed for complica
calculations in both methods we compare thereal time in
Fig. 4. The genetic algorithm of course starts later since
initial population has to be calculated first. After that t
genetic algorithm running on 50 processors converges
matically faster than the deterministic method.

FIG. 2. Convergence of three different runs of the genetic al
rithm trying to find the ground state of7Li ~only the binding energy
of the best individual of the generation is shown!.
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To summarize this section we would like to point out tha
calculations of nuclear ground states using parallel gene
algorithms seem to be very fast and should be preferr
against sequential methods. Minimizing the ground state e
ergy of complicated nuclei might become possible in muc
shorter ~real! time. The algorithm is very flexible because
parameters like the size of the population, mutation rate, s
lection scheme, etc. can easily be adjusted to suit the pro
lem @6#.

IV. APPLICATION AND OUTLOOK

After having found that the genetic algorithm works in th
expected way for a problem with a known solution we ap

-

FIG. 3. Convergence of the binding energy as a function of th
number of steps used in a genetic algorithm~dotted line! and a
deterministic type sequential method~in the deterministic method
only the minimal energy found so far is plotted!.

FIG. 4. Comparison of the real time used to find the minimum
of binding energies using a genetic algorithm running on 50 pr
cessors~dotted line! and a sequential deterministic type search.
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55 687DETERMINATION OF BOUND-STATE WAVE FUNCTIONS . . .
plied it to a far more complex nuclear physics problem,
calculation of the properties of the helium isotopes, es
cially 8He. As we want to separate the description of o
new method from the discussion of the physical input~model
space, potentials, etc.!, the results are presented in a separ
paper @7#. The calculations would not have been possi
without the new method because of the total CPU time us
the actual calculation has been performed on a Convex
computer using 32 processors.

We have shown that a very easy algorithm ‘‘copied
from nature can be used to calculate binding energies
wave functions of rather complicated nuclei. As this can
done in a highly parallel manner and is fully scalable ma
new problems can be solved in this way. The algorithm
extremely simple and can be generalized to almost any k
of problem where the determination of an extremum o
function is involved.
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Of course all these computational methods are not
stricted to nuclear physics. Indeed the first test trying to
timate the convergence of the method was done by calcu
ing the ground state wave function of the hydrogen at
using the Ritz variational method. So there should not be
difficulty in using the same methods for quite complicat
quantum chemistry calculations and atomic cluster calcu
tions.

One possible extension of the algorithm is some kind
self-adaptive behavior, i.e., changing the mapping of
genes to the width parameters dynamically. This is curren
under development.
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