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Effects of state dependent correlations on nucleon density and momentum distributions
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The proton momentum and density distributions of closed shell nuclei are calculated with a model treating
short-range correlations up to first order in the cluster expansion. The validity of the model is verified by
comparing the results obtained using purely scalar correlations with those produced by finite nuclei Fermi
hypernetted chain calculations. State dependent correlations are used to calculate momentum and density
distributions of 12C, 16O, 40Ca, and 48Ca, and the effects of their tensor components are studied.
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I. INTRODUCTION

The high precision data produced by modern elect
scattering experiments have imposed severe constraint
the validity of the models and the theories aiming to descr
the nuclear properties. Since the beginning of the 198
elastic scattering experiments@1#, measuring charge distribu
tions, and knockout experiments@2#, measuring spectra
functions, have pointed out the difficulties of the mean-fie
model in the description of the ground state of atomic nuc

The effects not considered in the mean-field model h
been generically named correlations. One usually dis
guishes between short- and long-range correlations.
former ones are those acting at short interparticle distan
modifying the mean-field single-particle wave functions
take care of the hard core part of the nuclear potential.
long-range correlations are instead acting on the full sys
and are produced by collective phenomena like sound wa
or surface vibrations.

The correlated basis function~CBF! theory, based on
Jastrow’s approach@3#, is particularly suitable for the stud
of the short-range correlations, since these correlations
explicitly included in the definition of the many-body wav
function. Unfortunately the technical complexity of th
theory has limited its application to few-body systems and
infinite nuclear matter@4–6#. At present there are only few
examples of CBF calculations in nuclei heavier than4He.
The CBF theory has been used in variational Monte Ca
calculations of the16O nucleus@7#. Only recently the Fermi
hypernetted chain theory~FHNC! has been extended to de
scribe the ground-state properties of medium-heavy dou
closed shell nuclei@8–10#. Unfortunately these calculation
are still limited to the use of central interactions and sca
correlations.

Because of these difficulties, the study of short-range c
relations in medium-heavy nuclei has been done using s
plified models. Nuclear models considering short-range c
relations have been used to analyze elastic electron scatt
data already at the end of the 1960s@11#. These models are
based on cluster expansion like the CBF theory, but t
retain only those terms containing a single correlation l
550556-2813/97/55~2!/673~11!/$10.00
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@12#. The truncation of the expansion simplifies the calcu
tions and it is done in a way to conserve the normalization
the density distribution. More recently, these simplified mo
els have been used to investigate also the nucleon mom
tum distributions@13–15#.

The aim of the present work is twofold: first we wou
like to discuss the validity of these nuclear models, and s
ond we would like to investigate the effects of the state
pendent part of the correlation on density and moment
distributions.

For these purposes we extend the model developed in
@16# to calculate both density and momentum distributio
for doubly closed shell nuclei and we compare our resu
with those of finite nuclei FHNC calculations@10#. After this
test, using a nuclear matter correlation function@17#, we
study the effects produced by the state dependent term
the correlation on the proton density and the momentum
tributions of the12C, 16O, 40Ca, and48Ca nuclei.

II. THE MODEL

The basic quantity of interest for our calculations is t
one-body density matrix~OBDM! defined as

r~r1 ,r18!5
A

NE d3r 2 d
3r 3 ••• d

3r A

3C†~r1 ,r2 ,r3 , . . . ,rA!C~r18 ,r2 ,r3 , . . . ,rA!,

~1!

whereC is the nuclear ground-state wave function andN
5^CuC&. In Eq. ~1! a sum on the spin and isospin comp
nents of all the particles, particle 1 included, is understoo

In our model the protons and the neutrons are separa
treated, therefore:

r~r1 ,r18!5rp~r1 ,r18!1rn~r1 ,r18!, ~2!

where the proton and neutron OBDM’s are obtained ins
ing in Eq. ~1! the operators selecting the protons
673 © 1997 The American Physical Society
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Q~1!5
1

2
@11t3~1!#, ~3!

and the neutrons 12Q(1).
The density distribution is the diagonal part of the OBD

(r15r18) while the momentum distribution is its Fourie
transform:

n~k!5
1

AE d3r 1E d3r 18r~r1 ,r18!eik•~r12r18!. ~4!

The OBDM is normalized as

E d3r 1 E d3r 18r~r1 ,r18!d~r12r18!5A ~5!

and therefore

E d3k n~k!5~2p!3. ~6!

Our model is based upon the Jastrow ansatz on
nuclear wave function@3#:

C~1, . . . ,A!5F~1, . . . ,A!F~1, . . . ,A!, ~7!

whereF is anA-body correlation operator, andF is a Slater
determinant built on a basis of single-particle~s.p.! wave
functions generated by a one-body Hamiltonian.

In the present work we shall use a spherical mean-fi
potential with a spin-orbit interaction, therefore the quantu
numbers characterizing the s.p. wave functions are the p
cipal quantum numbern, the orbital angular momentuml ,
the total angular momentumj , its third componentm, and
the third isospin componentt.

FIG. 1. Set of diagrams considered in our model. The orien
lines represent the uncorrelated OBDM@Eq. ~10!# and the dotted
lines represent the correlation functionshn @Eq. ~12!#.
e

ld

n-

A usual choice of the expression of the correlation ope
tor is based upon an extension of the original Jastrow an
to a state dependent form:

F~1, . . . ,A!5S )
j. i51

A S (
n51

M

f n~r i j !Oi j
n D , ~8!

wherer i j5ur i2r j u, and we have indicated withS a symme-
trizer operator, withM the maximum number of the correla
tion channels and withOi j

n the operators characterizing th
various channels. In the present work we use correlati
with six active channels defined as:Oi j

151, Oi j
2

5s( i )•s( j ), Oi j
35t( i )•t( j ), Oi j

45s( i )•s( j )t( i )•t( j ),
Oi j
55Si j , Oi j

65Si jt( i )•t( j ), whereSi j is the tensor opera
tor:

Si j53
@s~ i !•r i j #@s~ j !•r i j #

~r i j !
2 2s~ i !•s~ j !. ~9!

The OBDM is calculated with cluster expansion tec
niques applied to finite systems@18#. We express the corre
lation function as

F~1, . . . ,A!511S )
j. i51

A S (
n51

M

hn~r i j !Oi j
n D , ~10!

and perform the expansion in terms ofhn .
The denominator in Eq.~1! cancels all the unlinked dia

grams of the numerator, i.e., all the diagrams which do
have a direct link, either statistical or dynamical one, w
the pointsr and r 8.

The basic hypothesis of the model enters now, becaus
all the infinite set of linked diagrams obtained within th
cluster expansion, we retain only those containing corre
tions lines up to the second order in the correlation funct
hn . The set of diagrams considered is shown in Fig. 1. T
is the lowest order set of correlated diagrams conserving
normalization of the OBDM, Eq.~5!.

d

FIG. 2. Set of diagrams considered in our model. This set
diagrams corresponds to that of Fig. 1. In this figure the das
lines indicate the dynamical correlationsf n @Eq. ~8!#.
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It is possible to describe this limited set of diagrams in terms of the correlation functionf n . In this new representation th
set of diagrams to be calculated is shown in Fig. 2.

The OBDM calculated with the diagrams of Fig. 2 can be expressed as

r1
p~r1 ,r18![r0

p~r1 ,r18!1A~r1 ,r18!2B~r1 ,r18!2C~r1 ,r18!1D~r1 ,r18!

5r0
p~r1 ,r18!1r0~r1 ,r18!E d3r 2 H~r1 ,r18 ,r2!r0~r2 ,r2!2E d3r 2r0~r1 ,r2! H~r1 ,r18 ,r2!r0~r2 ,r18!

2E d3r 2E d3r 3r0~r1 ,r2!r0~r2 ,r18!r0~r3 ,r3! H~r2 ,r2 ,r3!

1E d3r 2E d3r 3r0~r1 ,r2!r0~r2 ,r3!r0~r3 ,r18! H~r2 ,r2 ,r3!, ~11!
t

at

co

co
y

r
the

de-
where, as in Eq.~1!, the sum on spin and isospin componen
is understood.

In the above expression we have used the uncorrel
OBDM defined in terms of the s.p. wave functions as

r0~r1 ,r2!5 (
nl jmt

fnl jm* t ~r1!fnl jm
t ~r2!. ~12!

In the diagrams of Fig. 2 ther0(r1 ,r2) is represented by an
oriented line. The dashed lines represent the dynamical
relations expressed in Eq.~11! by the coefficients
H(r1 ,r2 ,r3) defined as

H~r1 ,r2 ,r3!5S (
p51

6

f p~r 13!O13
p DQ~1!S (

q51

6

f q~r 23!O13
q D ,

~13!

with Q(1) defined by Eq.~3!.
It is easy to see that the set of considered diagrams

serves the density normalization. Because of the propert
the uncorrelated density

E d3r j r0~r i ,r j !r0~r j ,r k!5r0~r i ,r k!, ~14!

where we have also summed on the spin and isospin coo
nates of the particlej , we obtain the following relations
among the diagrams of Fig. 2:
s

ed

r-

n-
of

di-

E d3r 1E d3r 18 A~r1 ,r18! d~r12r18!

5E d3r 1E d3r 18 C~r1 ,r18! d~r12r18!, ~15!

E d3r 1E d3r 18 B~r1 ,r18! d~r12r18!

5E d3r 1E d3r 18 D~r1 ,r18! d~r12r18! ~16!

and therefore

E d3r 1E d3r 18 r1
p~r1 ,r18! d~r12r18!

5E d3r 1E d3r 18 r0
p~r1 ,r18! d~r12r18!5Z. ~17!

In the evaluation of the spin and isospin traces of
correlation kernels of Eq.~13!, we found it convenient to
separate the various terms with respect to their isospin
pendence and we obtain four terms:
H~r1 ,r18 ,r2!5@ f 1g113 f 2g216 f 5g51~ f 1g21 f 2g122 f 2g212 f 5g5!s~1!•s~2!1~ f 1g51 f 5g11 f 2g51 f 5g2

22 f 5g5!S12#Q~1!

1@ f 3g113 f 4g216 f 6g51~ f 3g21 f 4g122 f 4g212 f 6g5!s~1!•s~2!1~ f 3g51 f 6g11 f 4g5

1 f 6g222 f 6g5!S12#t~1!•t~2!Q~1!

1@ f 1g313 f 2g416 f 5g61~ f 1g41 f 2g322 f 2g412 f 5g6!s~1!•s~2!

1~ f 1g61 f 5g31 f 2g61 f 5g422 f 5g6!S12#Q~1!t~1!•t~2!

1@ f 3g313 f 4g416 f 6g61~ f 3g41 f 4g322 f 4g412 f 6g6!s~1!•s~2!1~ f 3g61 f 6g31 f 4g61 f 6g4

22 f 6g6!S12#t~1!•t~2!Q~1!t~1!•t~2!. ~18!
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In the above expression to simplify, the writing, we used the symbolf n for the correlation functions depending fromr1 and
r2, andgn for those depending fromr18 and r2. Clearly, in the caser15r18 we havef n5gn .

The calculation continues inserting the above expression in Eq.~11! and evaluating the spin and isospin traces. The tra
of the isospin dependent part of each term are given in Table I. We have explicitly verified that the spin traces of all th
depending from the tensor operator are zero. This is due to the definition of the tensor operator, Eq.~9!, to the spherical
symmetry of the problem, and to the saturation of the spin of all the single-particle wave functions.

In order to express the final result we used the quantityr0
s1,s2,t(r1 ,r2) defined by the relation

r0~r1 ,r2!5 (
t5p,n

(
s1s2

r0
s1,s2,t~r1 ,r2!xs1

† ~1!xs2~2!x t
†~1!x t~2!, ~19!

where we have indicated withx the spin and isospin wave functions. Together with the above definition we define as

r0
t ~r1 ,r2!5(

s
r0
s,s,t~r1 ,r2!, ~20!

r0
t ~r1!5r0

t ~r1 ,r1!. ~21!

Using the quantities defined above we express the four terms composingr1
p , Eq. ~11!, as

A~r1 ,r18!5r0
p~r1 ,r18!E d3r 2@r0

p~r2!G1~r1 ,r18 ,r2!1r0
n~r2!G2~r1 ,r18 ,r2!#14r0

n~r1 ,r18!E d3r 2r0
p~r2!G3~r1 ,r18 ,r2! , ~22!

B~r1 ,r18!5E d3r 2H (
s1 s2

r0
s1,s2,p~r1 ,r2!r0

s2,s1,p~r2 ,r18! G4~r1 ,r18 ,r2!12r0
p~r1 ,r2!r0

p~r2 ,r 18! G5~r1 ,r18 ,r2!

1 (
s1 s2

2r0
s1,s2,p~r1 ,r2!r0

s2,s1,n~r2 ,r18! G6~r1 ,r18 ,r2!14r0
p~r1 ,r2!r0

n~r2 ,r 18! G7~r1 ,r18 ,r2!

1 (
s1 s2

2r0
s1,s2,n~r1 ,r2!r0

s2,s1,p~r2 ,r18! G8~r1 ,r18 ,r2!14r0
n~r1 ,r2!r0

p~r2 ,r 18! G9~r1 ,r18 ,r2!J , ~23!

C~r1 ,r18!5E d3r 2E d3r 3(
s1 s2

r0
s1,s2,p~r1 ,r2!r0

s2,s1,p~r2 ,r18! $r0
p~r3!G1~r2 ,r2 ,r3!1r0

n~r3!@G2~r2 ,r2 ,r3!

14G3~r2 ,r2 ,r3!#%, ~24!

D~r1 ,r18!5E d3r 2E d3r 3S (
s1 s2 s3

r0
s1,s2,p~r1 ,r2!r0

s3,s1,p~r3 ,r18! $r0
s2,s3,p~r2 ,r3!G4~r2 ,r2 ,r3!12r0

s2,s3,n~r2 ,r3!@G6~r2 ,r2 ,r3!

1G8~r2 ,r2 ,r3!#%1 (
s1 s2

r0
s1,s2,p~r1 ,r2!r0

s2,s1,p~r3 ,r18!2$r0
p~r2 ,r3!G5~r2 ,r2 ,r3!12r0

n~r2 ,r3!@G7~r2 ,r2 ,r3!

1G9~r2 ,r2 ,r3!#% D . ~25!

TABLE I. Isospin traces of Eq.~18! for each diagram considered.

A C

^Q(1)& d t1,p d t1,pd t2,p

^t(1)•t(2)Q(1)& d t1,p(2d t2,p21) d t1,pd t2,p(2d t3,p21)
^Q(1)t(1)•t(2)& d t1,p(2d t2,p21) d t1,pd t2,p(2d t3,p21)
^t(1)•t(2)Q(1)t(1)•t(2)& (2d t2,p2d t1,p)

2 d t1,pd t2,p(524d t3,p)

B D

^Q(1)& d t1,pd t2,p d t1,pd t2,pd t3,p

^t(1)•t(2)Q(1)& d t1,p(22d t2,p) d t1,pd t3,p(22d t2,p)
^Q(1)t(1)•t(2)& d t2,p(22d t1,p) d t1,pd t3,p(22d t2,p)
^t(1)•t(2)Q(1)t(1)•t(2)& 5d t1,pd t2,p22d t1,p22d t2,p d t1,pd t3,p(5d t2,p24)
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The explicit expression of the termsG containing the corre-
lation functions are given in the Appendix.

The calculation of the momentum and density distrib
tions of doubly magic nuclei has been done by exploiting
spherical symmetry of the problem to perform an analyti
integration on the angular variables. For this purpose
have expressed the s.p. wave functions in spherical coo
nates and we have performed a multipole expansion of
functionsG containing the correlations. In the Appendix w
present the basic points of the calculation and we give
final expressions used to evaluate the diagramsA, B, C, and
D. The details of the calculation are presented in Ref.@19#.

III. RESULTS

In our calculations the s.p. wave functions have been g
erated by a spherical Woods-Saxon well of the form:

V~r !5
2V0

11e~r2R!/a

1S \

mpc
D 2 1r d

dr S 2Vls

11e~r2R!/aD l•s1VCoul, ~26!

wheremp is the pion mass.
For each nucleus considered, we have taken from the

erature@20# the parameters of the potential~see Table II!.
These parameters have been fixed to reproduce the s.p
ergies around the Fermi surface and the root mean squ
charge radii.

We tested the validity of our model by comparing o
results with those of FHNC calculations performed with t
same inputs. We used two kinds of correlation functions
first one has a Gaussian functional dependence from the
terparticle distance. The second one has been obtaine
Ref. @10# by solving the variational equations for the me
value of the Hamiltonian up to the second order~Euler cor-
relations!.

The correlations used for the12C and 48Ca nuclei are
shown in Fig. 3. The dashed lines represent the Gaus
correlations, while the full lines show the Euler correlation
These correlations have been fixed in Ref.@10# by minimiz-
ing the nuclear binding energies for the Afnan and Tang
interaction@21#. The Euler correlations show an overshoo
ing of the asymptotic value in the region between 1 and 2

TABLE II. Coefficients of the Woods-Saxon potential Eq.~26!.

V0 VLS R a

12C p 62.00 3.20 2.86 0.57
n 60.00 3.15 2.86 0.57

16O p 52.50 7.00 3.20 0.53
n 52.50 6.54 3.20 0.53

40Ca p 57.50 11.11 4.10 0.53
n 55.00 8.50 4.10 0.53

48Ca p 59.50 8.55 4.36 0.53
n 50.00 7.74 4.36 0.53
-
e
l
e
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e

e
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it-

en-
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in-
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3
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In Fig. 4 we compare the momentum and density dis
butions calculated within the FHNC theory@10# ~dashed
lines! and those obtained with the present model~full lines!.
The agreement between the two calculations is quite go
independently from the correlation function used.

Confident of the validity of our model we use the nucle
matter state dependent correlation function of Ref.@17# to
calculate momentum and density distributions in12C, 16O,
40Ca, and48Ca.
We show in Fig. 5 the various terms of the correlation

a function of the interparticle distance. The dominant term
the correlation is the scalar channel. The tensor term (f 5) is
extremely small and the tensor-isospin term (f 6) is peaked at
an interparticle distance of about 1 fm.

In Figs. 6 and 7 we show the proton density and mome
tum distributions for the four nuclei considered calculated
switching on and off the various channels of the correlati
function. The dotted lines represent the uncorrelated resu
The results of the calculations performed with the correlat
containing all the six channels are shown by the full line
The dashed lines have been obtained using correlations
only the scalar channel active, while the dash-dotted lin
with correlations without the two tensor channels.

The results of Fig. 6 show the same behavior for ea
nucleus considered. In the nuclear interior, the correla
density distributions are smaller than the uncorrelated on
We notice that the curves obtained with purely scalar cor
lations are the more distant ones from the uncorrelated

FIG. 3. Correlation functions used in the12C and 48Ca calcula-
tion of Fig. 4. The dashed lines show the Gaussian correlations
the full lines the correlations obtained with a Euler minimizatio
procedure.
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FIG. 4. Comparison between density~upper panels! and momentum distributions~lower panels! calculated with our model~dashed lines!
and with a full FHNC calculation@10#. We have added a factor 1.2 to the densities calculated with the Euler correlations and w
multiplied the Euler momentum distributions by a factor 10.
c

a

at
tri

es
m
th
in
n

e

lc
n

r-
d

sor
for
n-

sity
lei

the
ia-
of

d by
e
f the

ns
or-

th
the
ion
sults. The inclusion of the other correlation channels redu
these differences.

The momentum distributions~Fig. 7! show a well-known
behavior. Correlated and uncorrelated results are practic
the same up to momentum values of about 1.8–2.0 fm21,
but they clearly separate at higher values. The uncorrel
distributions descend very rapidly while the correlated dis
butions are an order of magnitude larger.

In Fig. 7 we observe that the full lines and dashed lin
obtained with correlations containing only the scalar ter
are well separated in the high momentum region. On
contrary, the full and dash-dotted lines, the last ones obta
using correlations without the tensor channels differ only i
small momentum region around 2.0 fm21. This fact leads us
to think that the effects of the tensor correlations are w
localized in momentum space.

To better investigate this issue we have performed ca
lations of the momentum distributions using correlatio
with only the tensor channels active. The result for the12C
nucleus is presented in Fig. 8~dotted line! and is compared
with the momentum distribution calculated with the full co
relation ~full line! and with that obtained with central an
tensor terms only~dashed line!.

We observe that the filling of the dip around 2 fm21 is
es

lly

ed
-

,
,
e
ed
a

ll

u-
s

produced by the sum of the effects of the scalar and ten
components. The other central channels are responsible
the increase of the tail of the distribution at higher mome
tum values.

IV. CONCLUSIONS

We have developed a nuclear model to describe den
and momentum distributions of doubly closed shell nuc
explicitly considering the short-range correlations.

This model is based upon the cluster expansion of
CBF theory, but it retains only the set of lowest order d
grams which allows for the conservation of the number
particles.

The model has been tested against the results obtaine
finite nuclei FHNC calculations performed with the sam
inputs. The agreement between our results and those o
more elaborate theory is very good.

We have calculated momentum and density distributio
of four doubly closed shell nuclei with state dependent c
relations taken from nuclear matter FHNC calculations.

We found that the major effects of the correlations in bo
density and momentum distributions are produced by
scalar part of the correlations. The effect of the correlat
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functions used in these calculations is a general lowering o
the density distributions in the interior region and an increas
ing of the momentum distribution at high momentum values

The effect of the state dependent terms of the correlatio
on the density distribution is of opposite sign with respect to
the effect of the scalar term only. The results obtained wit
the complete correlation are closer to the uncorrelated resu
than those obtained with the scalar term only. The situatio
is reversed in the momentum distribution case.

The tensor correlation term produces effects which see
to be rather localized in momentum space. In the momentu
distributions, the presence of the tensor correlations is no
ticeable in a small momentum region around the point wher
the uncorrelated distributions separate from the correlate
ones.

Before concluding we would like to make two comments
about the limitations of the model with respect to FHNC
calculations. A first limitation is of practical type. Contrary
to what happens in the FHNC case, the numerical effort t
perform our calculations grows rapidly with the number of
single-particle states. This makes the calculation of th
208Pb momentum distribution extremely heavy from the nu
merical point of view. The second limitation has a theoretica
aspect common to all the models of the same kind. In th
FHNC theory the correlation function and the s.p. basis ar
related through the nuclear Hamiltonian by the variationa
principle. In our model they are two different input param-
eters in principle arbitrary.

We have performed our calculations using reasonable s.
bases and reasonable correlations. The s.p. bases have b
taken from literature where their parameters have been fixe
in order to reproduce some nuclear properties within a mea

FIG. 5. State dependent correlation terms as a function of th
interparticle distance@17#. See Eq.~8! for the meaning of the vari-
ous lines.
f
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field model. This could mean that some effects of the sh
range correlations we would like to describe have alrea
been averaged out by this procedure. The correlation fu
tion used has been obtained by a minimization proced
done in nuclear matter. We show in Fig. 3 that finite nuc
FHNC minimizations seems to prefer correlation functio
with an overshooting in the region between 1 and 2 fm,
this is not the characteristic shown by the scalar term of
nuclear matter correlation function.

Because of these theoretical limitations, we believe tha
the present stage the comparison of the results of our m
with experimental data is not very meaningful. The valid
of our work lies in the evaluation of the relative effects pr
duced by the various correlation channels.
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APPENDIX

In this appendix we present the expressions of the eq
tions used to calculate the diagrams of Fig. 1.

The functionsG of Eqs.~22! are defined as

G15~ f 11 f 3!~g11g3!13~ f 21 f 4!~g21g4!

16~ f 51 f 6!~g51g6!, ~A1!

G25~ f 12 f 3!~g12g3!13~ f 22 f 4!~g22g4!

16~ f 52 f 6!~g52g6!, ~A2!

G35 f 3g313 f 4g416 f 6g6 , ~A3!

G45~ f 11 f 3!~g11g3!1S 12 ~ f 21 f 4!2 f 12 f 3D ~g21g4!

1~ f 21 f 4!S 12 ~g21g4!2g12g3D
14~ f 51 f 6!~g51g6!, ~A4!

G55~ f 12 f 21 f 32 f 4!~g21g4!

1~ f 21 f 4!~g12g21g32g4!12~ f 51 f 6!~g51g6!,

~A5!

G65~ f 12 f 3!~g32g4!1~ f 22 f 4!~5g42g3!

14~ f 52 f 6!g6 , ~A6!

G75~ f 22 f 4!g31~ f 122 f 22 f 312 f 4!g412~ f 52 f 6!g6 ,
~A7!

e
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FIG. 6. Proton density distributions calculated with the correlation function of Fig. 5. The dotted lines show the uncorrelated res
full lines have been obtained with the full correlations. The results of the calculations performed without the two tensor componen
correlations are shown by the dash-dotted lines, while the dashed lines show the results obtained with only the scalar term of the c
( f 1).
t

s,
ly

t.
rm

ted
r-
on

ex-
e

G85~ f 32 f 4!~g12g3!1~5 f 42 f 3!~g22g4!

14 f 6~g52g6!, ~A8!

G95 f 3~g22g4!1 f 4~g122g22g312g4!12 f 6~g52g6!.
~A9!

To describe the closed shell nuclei we have used a se
s.p. wave functions of the form

fnl jm
t ~r i !5Rnl j

t ~r i !(
m,s

^ lm1/2su jm&Ylm~V i !xs~ i !x t~ i !.

~A10!

In the above equationV i indicates the angular coordinate
l and j the orbital and total angular momentum, respective
Rnl j (r ) the radial part of the wave function,Ylm the spherical
harmonic, and̂ lm1/2su jm& the Clebsch-Gordan coefficien

In this basis the uncorrelated proton OBDM, the first te
of Eq. ~11! is
of

,

r0
p~r1 ,r2!5

1

4p(
nl j

Rnl j
p ~r 1!Rnl j

p ~r 2!~2 j11!Pl~cosu12!,

~A11!

wherePl is the Legendre polynomial andu12 is the angle
betweenr1 and r2.

The contribution of the other terms has been calcula
using expression~A11! of the s.p. wave functions and pe
forming a multipole expansion of each correlation functi
f n andgn of theG functions:

f a~r1 ,r2!5(
L

f L
a~r 1 ,r 2!PL~cosu12!, ~A12!

wherea51, . . . ,6.
The contribution of the diagramsA,B,C, andD has been

calculated expanding in multipole each term composing
pressions from~22! to ~25!. Each of these terms contains th
product between the correlation functionsf n andgn . In dia-
gramA we found terms of the form:
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r0
t1~r1 ,r18!E d3r 2r0

t2~r 2! f a~r 12!gb~r 182!5 (
n1 ,l1 , j 1

~2 j 111!Rn1 ,l1 , j 1

t1 ~r 1!Rn1 ,l1 , j 1

t1 ~r 18!

3 (
l2 ,l3

2l 311

2l 211 S l 1 l 3 l 2

0 0 0D
2

Pl3
~cosu118!E

0

`

dr2r 2
2r0

t2~r 2! f l2
a ~r 1 ,r 2!gl2

b ~r 18 ,r 2!.

~A13!

In diagramB we calculate terms of the form

FIG. 7. Proton momentum distributions. The meaning of the various lines is the same as in Fig. 5.

FIG. 8. Proton momentum distribution of12C.
The full line corresponds to the full calculation~the
same as in Fig. 7!. The dotted line has been ob
tained using only the two tensor components of t
correlation and the dashed line with the scalar p
tensor components.
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E d3r 2r0
t1~r1 ,r2!r0

t2~r2 ,r18! f a~r 12!gb~r 182!5
1

4p (
n1 ,l1 , j 1
n2 ,l2 , j 2

~2 j 111!~2 j 211!

3Rn1 ,l1 , j 1

t1 ~r 1!Rn2 ,l2 , j 2

t2 ~r 18! (
l3 ,l4 ,l5

~2l 511!S l 1 l 5 l 3

0 0 0D
2S l 2 l 5 l 4

0 0 0D
2

3E
0

`

dr2r 2
2Rn1 ,l1 , j 1

t1 ~r 2!Rn2 ,l2 , j 2

t2 ~r 2! f l3
a ~r 1 ,r 2!gl4

b ~r 18 ,r 2! Pl5
~cosu118! ~A14!

and

(
s1 ,s2

E d3r 2r0
s1s2t1~r1 ,r2!r0

s2s1t2~r2 ,r18! f a~r 12!gb~r 182!

52
1

4p (
n1 ,l1 , j 1
n2 ,l2 , j 2

A~2l 111!~2l 211!~2 j 111!~2 j 211!Rn1 ,l1 , j 1

t1 ~r 1!Rn2 ,l2 , j 2

t2 ~r 18!

3 (
l3 ,l4 ,l5 ,l6

~21! l52 l6
11~21! l11 l21 l5

2
~2l 511!~2l 611!3E

0

`

dr2r 2
2Rn1 ,l1 , j 1

t1 ~r 2!Rn2 ,l2 , j 2

t2 ~r 2! f l3
a ~r 1 ,r 2!gl4

b ~r 18 ,r 2!

3 S j 2 j 1 l 5

1/2 21/2 0D S l 3 l 5 l 4

0 0 0D S l 2 l 6 l 4

0 0 0D S l 1 l 6 l 3

0 0 0D H l 1 l 2 l 5

j 2 j 1 1/2J H l 2 l 4 l 6

l 3 l 1 l 5
J Pl6

~cosu118!

In diagramsC andD the functions describing the correlations depend only on two radial coordinates, therefore we can p
the multipole expansion of their product. So we shall define

hab~r 23!5 f a~r 23! f b~r 23!. ~A15!

In diagramC we obtain terms of the form

(
s1 ,s2

E d3r 2d
3r 2r0

s1s2p~r1 ,r2!r0
s2s1p~r2 ,r18!r0

t ~r 3!hab~r 23!

5 (
n1 ,l1 , j 1

n2

~2 j 111!Rn1 ,l1 , j 1
p ~r 1!Rn2 ,l1 , j 1

p ~r 18!E
0

`

dr2r 2
2Rn1 ,l1 , j 1

p ~r 2!Rn2 ,l1 , j 1
p ~r 2!E

0

`

dr3r 3
2r0

t ~r 3!h0
ab~r 2 ,r 3!Pl1

~cosu118!,

~A16!

while diagramD we calculate terms of the form

(
s1 ,s2

E d3r 2d
3r 3r0

s1s2p~r1 ,r2!r0
t ~r2 ,r3!r0

s2s1p~r3 ,r18!hab~r 23!

5
1

4p (
n1 ,l1 , j 1
n2 ,l2 , j 2n3

~2 j 111!~2 j 211!Rn1 ,l1 , j 1
p ~r 1!Rn3 ,l1 , j 1

p ~r 18!Pl1
~cosu118!3(

l4
S l 1 l 2 l 4

0 0 0D
2

B~r 1 ,r 18! ~A17!

and

(
s1 ,s2 ,s3

E d3r 2d
3r 3r0

s1s2p~r1 ,r2!r0
s2s3t~r2 ,r3!r0

s3s1p~r3 ,r18!hab~r 23!

5
1

4p (
n1 ,l1 , j 1
n2 ,l2 , j 2n3

~2 j 111!~2 j 211!Rn1 ,l1 , j 1
p ~r 1!Rn3 ,l1 , j 1

p ~r 18!Pl1
~cosu118!(

l4

11~21! l11 l21 l4

2 S j 2 j 1 l 4

1/2 21/2 0D
2

B~r 1 ,r 18!

~A18!



55 683EFFECTS OF STATE DEPENDENT CORRELATIONS ON . . .
where we have defined

B~r 1 ,r 18!5E
0

`

dr2r 2
2Rn1 ,l1 , j 1

p ~r 2!Rn2 ,l2 , j 2
t ~r 2!E

0

`

dr3r 3
2Rn2 ,l2 , j 2

t ~r 3!Rn3 ,l1 , j 1
p ~r 3!hl4

ab~r 2 ,r 3!. ~A19!
ys

co

l
J

y

s

n

s.
@1# J. M. Cavedonet al., Phys. Rev. Lett.49, 978 ~1982!.
@2# E. N. M. Quintet al., Phys. Rev. Lett.57, 186 ~1986!; E. N.

M. Quint et al., ibid. 58, 1088~1987!.
@3# R. Jastrow, Phys. Rev.98, 1479~1955!.
@4# V. R. P. Pandharipande and R. B. Wiringa, Rev. Mod. Ph

51, 821 ~1979!; S. Rosati, inFrom Nuclei to Particles, Pro-
ceedings of the International School of Physics ‘‘Enri
Fermi,’’ Course LXXIX, edited by A. Molinari ~North-
Holland, Amsterdam, 1982!.

@5# J. W. Clark, Prog. Part. Nucl. Phys.2, 89 ~1979!.
@6# V. R. Pandharipande,Proceedings of Carge`se Summer Schoo

1989, Cargèse 1989, edited by J. Tran Tranh Van and
Negele~Plenum Press, New York, 1990!.

@7# S. C. Pieper, R. B. Wiringa, and V. R. Pandharipande, Ph
Rev. C46, 1741~1992!.

@8# G. Co’, A. Fabrocini, S. Fantoni, and I. E. Lagaris, Nucl. Phy
A549, 439 ~1992!.

@9# G. Co’, A. Fabrocini, and S. Fantoni, Nucl. Phys.A568, 73
~1994!.

@10# F. Arias de Saavedra, G. Co’, A. Fabrocini, and S. Fanto
Nucl. Phys.A605, 359 ~1996!.

@11# F. C. Khanna, Phys. Rev. Lett.20, 871 ~1968!; W. J. Gerace,
and D. A. Sparrow, Phys. Lett.30B, 71 ~1969!; C. Ciofi degli
.

.

s.

.

i,

Atti, and N. M. Kabachnik, Phys. Rev. C1, 809 ~1971!.
@12# M. Gaudin, J. Gillespie, and G. Ripka, Nucl. Phys.A176, 237

~1971!.
@13# O. Bohigas and S. Stringari, Phys. Lett.95B, 9 ~1980!; M. Dal

Rı̀, S. Stringari, and O. Bohigas, Nucl. Phys.A376, 81 ~1982!;
F. Dellagiacoma, G. Orlandini, and M. Traini,ibid. A393, 95
~1983!; S. Stringari, M. Traini, and O. Bohigas,ibid. A516, 33
~1990!.

@14# O. Benhar, C. Ciofi degli Atti, S. Liuti, and G. Salme`, Phys.
Lett. B 177, 135 ~1986!.

@15# M. V. Stoitsov, A. N. Antonov, and S. S. Dimitrova, Phy
Rev. C47, R455 ~1993!; 48, 74 ~1993!; Z. Phys. A345, 359
~1993!.

@16# G. Co’, Nuovo Cimento A108, 623 ~1995!.
@17# R. B. Wiringa, V. Fiks, and A. Fabrocini, Phys. Rev. C38,

1010 ~1988!; A. Fabrocini~private communication!.
@18# S. Fantoni and S. Rosati, Nucl. Phys.A328, 478 ~1979!.
@19# M. M. Renis, Tesi di Laurea, Universita` di Lecce, 1995.
@20# G. Co’ and S. Krewald, Phys. Lett.127B, 145 ~1984!; G. Co’,

A. M. Lallena, and T. W. Donnelly, Nucl. Phys.A469, 684
~1987!; J. E. Amaro and A. M. Lallena,ibid. A537585~1992!.

@21# I. R. Afnan and Y. C. Tang, Phys. Rev.175, 1337~1968!.


