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Effects of state dependent correlations on nucleon density and momentum distributions
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The proton momentum and density distributions of closed shell nuclei are calculated with a model treating
short-range correlations up to first order in the cluster expansion. The validity of the model is verified by
comparing the results obtained using purely scalar correlations with those produced by finite nuclei Fermi
hypernetted chain calculations. State dependent correlations are used to calculate momentum and density
distributions of 2C, 0, “°Ca, and *®Ca, and the effects of their tensor components are studied.
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[. INTRODUCTION [12]. The truncation of the expansion simplifies the calcula-
tions and it is done in a way to conserve the normalization of

The high precision data produced by modern electrorihe density distribution. More recently, these simplified mod-
scattering experiments have imposed severe constraints @t have been used to investigate also the nucleon momen-
the validity of the models and the theories aiming to describdum distributiong 13—13. . _
the nuclear properties. Since the beginning of the 1980s, The aim of the present work is twofold: first we would
elastic Scattering experimer‘[ﬂs], measuring Charge distribu- like to discuss the Va||d|ty of these nuclear models, and sec-
tionsy and knockout experimen[g]’ measuring Spectrai ond we would like to investigate the effects of the state de-
functions, have pointed out the difficulties of the mean-fieldPendent part of the correlation on density and momentum
model in the description of the ground state of atomic nucleidistributions.

The effects not considered in the mean-field model have For these purposes we extend the model developed in Ref.
been generically named correlations. One usually distink16] to calculate both density and momentum distributions
guishes between short- and long-range correlations. Thér doubly closed shell nuclei and we compare our results
former ones are those acting at short interparticle distance&ith those of finite nuclei FHNC calculation&0]. After this
modifying the mean-field single-particle wave functions totest, using a nuclear matter correlation functidv], we
take care of the hard core part of the nuclear potential. Thétudy the effects produced by the state dependent terms of
long-range correlations are instead acting on the full systerfe correlation on the proton density and the momentum dis-
and are produced by collective phenomena like sound wavegbutions of the*?C, 1°0, “°Ca, and*®Ca nuclei.
or surface vibrations.

The correlated basis functiofCBF) theory, based on Il. THE MODEL
Jastrow’s approacf], is particularly suitable for the study
of the short-range correlations, since these correlations are The basic quantity of interest for our calculations is the
explicitly included in the definition of the many-body wave one-body density matrixOBDM) defined as
function. Unfortunately the technical complexity of this
theory has limited its application to few-body systems and to A W P 3
infinite nuclear mattef4—6]. At present there are only few P(T1.11)= K/f d°rp d7rg -+~ d7ra
examples of CBF calculations in nuclei heavier thée.

The CBF theory has been used in variational Monte Carlo XWT(ry,ro,rg, . FAW(r .5, ... fp),
calculations of the'®0 nucleuq 7]. Only recently the Fermi 1)
hypernetted chain theofFHNC) has been extended to de-
scribe the ground-state properties of medium-heavy doubl . .
closed shell nuclej8—10]. Unfortunately these calculations iivhere\lf is the nuclear ground-state wave function akd

are still limited to the use of central interactions and scalar:m"q,)' In Eq. (1) asum on the spin and ISoSpin compo-
correlations. nents of all the particles, particle 1 included, is understood.

Because of these difficulties, the study of short-range cor- In our model the protons and the neutrons are separately
relations in medium-heavy nuclei has been done using simt_reated, therefore:
plified models. Nuclear models considering short-range cor-
relations have been used to analyze elastic electron scattering p(ry,ry)=pP(ry,ry)+p"(ry,ry), 2
data already at the end of the 19604]. These models are
based on cluster expansion like the CBF theory, but thewhere the proton and neutron OBDM'’s are obtained insert-

retain only those terms containing a single correlation lineing in Eq. (1) the operators selecting the protons
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FIG. 2. Set of diagrams considered in our model. This set of
diagrams corresponds to that of Fig. 1. In this figure the dashed
lines indicate the dynamical correlatiohs[Eq. (8)].

A usual choice of the expression of the correlation opera-

1 v 1 v 1 v tor is based upon an extension of the original Jastrow ansatz
to a state dependent form:

FIG. 1. Set of diagrams considered in our model. The oriented

lines represent the uncorrelated OBOMg. (10)] and the dotted A M
lines represent the correlation functioms [Eq. (12)]. F(1,...A)=S H ( fn(rij)oinj ), (8
j>i=1 \n=1
1
Q()=3[1+7(D)], (3 wherer;;=|r;—r,|, and we have indicated wit8 a symme-
trizer operator, withV the maximum number of the correla-
and the neutrons-1Q(1). tion channels and witlﬁ)i’} the operators characterizing the

The density distribution is the diagonal part of the OBDM various channels. In the present work we use correlations

(ry=r;) while the momentum distribution is its Fourier with six active channels defined asOilj:l, Oi2j

transform: =o(i)-0(j), Of=i)-7j), Of=o(i)-o(j)=(i)-=(j),
07 =S;, Of=S;(i)- 7(j), whereS; is the tensor opera-

1 _ } .
n(k)=KJ’ d3r1J d3rip(ry,rpe =, (4 tor

:Q[O'(i)'rij][o'(j)'rij] _

The OBDM is normalized as

o(i)-o(j). (€)

L ("ij)2
3 3,7 ! =
f dry fd r1p(r1,1y) 8ry=ry) =A ® The OBDM is calculated with cluster expansion tech-
nigues applied to finite systeni38]. We express the corre-
and therefore lation function as
j d3k n(k)=(2m)%. (6) A M
F(L,... A):1+Sj>i1_[=1 2 ha(rip)Of |, (10)

Our model is based upon the Jastrow ansatz on the

nuclear wave functiop3: and perform the expansion in terms'of.

(1, ... A)=F(,... AD(, ... A), 7) The denominator in Eq.1) cancels all the unlinked dia-
grams of the numerator, i.e., all the diagrams which do not

whereF is anA-body correlation operator, anl is a Slater have a direct link, either statistical or dynamical one, with
determinant built on a basis of single-particep) wave the pointsr andr’.
functions generated by a one-body Hamiltonian. The basic hypothesis of the model enters now, because of

In the present work we shall use a spherical mean-fieldll the infinite set of linked diagrams obtained within the
potential with a spin-orbit interaction, therefore the quantumcluster expansion, we retain only those containing correla-
numbers characterizing the s.p. wave functions are the prirtions lines up to the second order in the correlation function
cipal quantum numben, the orbital angular momentuln  h,,. The set of diagrams considered is shown in Fig. 1. This
the total angular momentury its third componenm, and is the lowest order set of correlated diagrams conserving the
the third isospin componeibt normalization of the OBDM, Eq(5).
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It is possible to describe this limited set of diagrams in terms of the correlation furfgtiom this new representation the

set of diagrams to be calculated is shown in Fig. 2.
The OBDM calculated with the diagrams of Fig. 2 can be expressed as

ph(ry,r)=po(ry,r)+A(ry,ry)—B(ry,ry)—C(rq,r))+D(rq,ry)

=P8(r1,"i)+Po(r1,ri)Jd3r2 H(rl,ri,rz)Po(rzyrz)—fd3f2P0("17r2) H(ry,r1.r2)po(ra,ry)

—fd3r2f d3r3po(r1,72)po(r2.r1)po(ra,rs) H(ra,ry,rs)

"‘J' d3r2f d3rapo(r1,72)po(r2.r3)po(ra.ry) H(ra,rp,ra), (1)
|
where, as in Eq(1), the sum on spin and isospin components s s , )
is understood. J’ d rlJ' d°ry A(ry,ry) 6(ry—ry)
In the above expression we have used the uncorrelated
OBDM defined in terms of the s.p. wave functions as , , ,
P =fd3rlf B Cryor}) 8(ri—r), (15
po(rl,u):%t bhim(7) Brijm(T2)- (12
In the diagrams of Fig. 2 they(ry,r,) is represented by an f dsrlf d®] B(rq,ry) 8(ry—rj)
oriented line. The dashed lines represent the dynamical cor-
relations expressed in Eq(11l) by the -coefficients 3 3 , ,
H(ry.r,,r3) defined as = | dry | d°ry D(ry,ry) &(rg—ry) (16
6 6
H(ry,ra,ra)= ( pzl fp(r13)053> Q(1)<q§1 fq(rza)O?s) ) and therefore
(13
with Q(1) defined by Eq(3). 3 3.1 p , o
It is easy to see that the set of considered diagrams con- d°ry [ d¥ry pi(ry,ry) o(ri—ry)
serves the density normalization. Because of the property of
the uncorrelated density :f dsrlf d3r1 pR(ry.r)) 8(ri—r)=2z. (17

f d®; po(ri.r))po(ri .r)=po(ri.re, (14

In the evaluation of the spin and isospin traces of the
where we have also summed on the spin and isospin coord¢orrelation kernels of Eq(13), we found it convenient to
nates of the particlg, we obtain the following relations separate the various terms with respect to their isospin de-

among the diagrams of Fig. 2: pendence and we obtain four terms:

H(ry,r,r2)=[f191+3f202+ 6505+ (f102+ f201 — 2f20,+ 2f505) 0(1) - 0(2) + (f195+ f591 + 205+ 59
—2f505)S12]1Q(1)
+[f391+3f4092+6f605+ (f392+ 491~ 2f492+2f605) 0(1) - 0(2) + (f395+ f691 + f495
+f692—2f605)S12] 7 1) - (2)Q(1)
+[f193+3F20,+6f596+ (f194+ 203~ 2294+ 2f506) 0(1) - 0(2)
+(f196+ f503+ f206+ f504— 2f506) S12]Q(1) 7(1) - 7(2)
+[f393+3f494+6f606+ (394 + fag3— 2494+ 2f606) 0(1) - 0(2) + (f3096+ F693+ faQ6+ f6Ta
—2f606)S12] (1) - 1(2)Q(1) (1) - 7(2).

(18
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TABLE I. Isospin traces of Eq(18) for each diagram considered.

A C
<Q(1)> 5t1,p 5t1,p5t2,p
(7(1)- 7(2)Q(1)) O11p(2612p—1) Ot1,p0t2p(2613p— 1)
(Q(1)7(1)- «(2)) St1p(2612p—1) Ot1,p0t2p(2613p— 1)
<7(1)7(2)Q(1)T(1)7(2)> (2512,p7 511,p)2 5tl,p512,p(574513,p)
B D
<Q(1)> 5t1,p5t2,p 5t1,p5t2,p6t3,p
<7(1) T(Z)Q(l» 5t1,p(2_ 5t2,p) 5tl,p‘st3,p(2_ 5t2,p)
<Q(1)7(1) 7'(2» 5t2,p(2_ 5t1,p) ‘Stl,p‘StS,p(z_ 5t2,p)
(7(1)- (2)Q(1)7(1)- #(2)) 56t1p0t2p~ 2011p— 2012p Ot1,p0t3p(56t2p—4)

In the above expression to simplify, the writing, we used the sympdbr the correlation functions depending fram and
r,, andg, for those depending from; andr,. Clearly, in the case,=r; we havef,=g,.

The calculation continues inserting the above expression ifl8gand evaluating the spin and isospin traces. The traces
of the isospin dependent part of each term are given in Table I. We have explicitly verified that the spin traces of all the terms
depending from the tensor operator are zero. This is due to the definition of the tensor operatdy, ®qthe spherical
symmetry of the problem, and to the saturation of the spin of all the single-particle wave functions.

In order to express the final result we used the quap@h?z't(rl,rz) defined by the relation

po(r1Fa)= 2 2 pe 2 (ry,ra)xii(L)xs2(2)x1 (1) xi(2), (19)

t=p,n sls2

where we have indicated with the spin and isospin wave functions. Together with the above definition we define as well
pB(rl,rz)=§S: PS’S't(rlyrz)a (20

po(r1)=po(ry,ry). (21)

Using the quantities defined above we express the four terms compdsireg. (11), as
A(ry,r1)=pg(ry,r 1)f d3r o[ pB(ro)GL(ry,r1,r2) +po(ra)G2(ry,rq,r2)1+4pg(ry,r 1)f d3rpB(r2)G3(r,r1,15) (22
B(rlyri):fdsrz[slgsz P PP(r 1, 1) pd S P (r,11) GA(ry,r,ro)+2ph(ry,r)pB(ra,ry) G5(ry,ri,ry)
+ E 2p5"P(11,12) g™t (ra.r7) GB(ry,r,r2) +4pB(re,r2)pp(ra.ry) G7(ry,ry.rp)

+2 252011 1) pSESIP(r, rl) GB(ry,ry, o) +4pD(re,ro)pB(ra,r) GO(ry,riry)t, (23)

C(rl,rp:fd?'rzfdsrssl PaEP(r,r2)pg S P(ro,r1) {pB(ra)GA(ra,r2,r3) +po(ra)[G2(ro,rp,r3)
+4G3(r21r2|r3)]}1 (24)
D(rq,r 1)—f d3r2f d3r3<s S Pcs)l'sz'p(rl,rz)Psaslp(rs ry {PSZSSp("z r3)G4a(ry,ry, r3)+2p5253“(r2,r3)[GG(r2,r2,r3)
+G8(ry,rp,r3) I} + 2 Pe2P(r 1,1 5) a2 (15,1 ) 2{pB(r,r3)G5(ro,r5,r3) +2p0(r2,F3)[G7(ry,r2,r3)

+GI(rp,ry,ra) 1} . (25
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The explicit expression of the tern@ containing the corre- In Fig. 4 we compare the momentum and density distri-
lation functions are given in the Appendix. butions calculated within the FHNC theofy10] (dashed
The calculation of the momentum and density distribu-lines) and those obtained with the present model lines).
tions of doubly magic nuclei has been done by exploiting theThe agreement between the two calculations is quite good,
spherical symmetry of the problem to perform an analyticaindependently from the correlation function used.
integration on the angular variables. For this purpose we Confident of the validity of our model we use the nuclear
have expressed the s.p. wave functions in spherical coordinatter state dependent correlation function of R&¥] to
nates and we have performed a multipole expansion of thealculate momentum and density distributionsfc, 10,
functionsG containing the correlations. In the Appendix we “°Ca, and*®Ca.
present the basic points of the calculation and we give the We show in Fig. 5 the various terms of the correlation as
final expressions used to evaluate the diagramB, C, and  a function of the interparticle distance. The dominant term of
D. The details of the calculation are presented in RES). the correlation is the scalar channel. The tensor tefigh is
extremely small and the tensor-isospin terfg)(is peaked at
an interparticle distance of about 1 fm.
In Figs. 6 and 7 we show the proton density and momen-
In our calculations the s.p. wave functions have been gertum distributions for the four nuclei considered calculated by
erated by a spherical Woods-Saxon well of the form: switching on and off the various channels of the correlation
function. The dotted lines represent the uncorrelated results.
The results of the calculations performed with the correlation

lll. RESULTS

V(r)= % containing all the six channels are shown by the full lines.
1+¢€ The dashed lines have been obtained using correlations with
7 \21 d —V,, or_1|y the scalar channel active, while the dash-dotted lines
m) Tdr m) I- o+ Veou, (26)  with correlations without the two tensor channels.

The results of Fig. 6 show the same behavior for each
nucleus considered. In the nuclear interior, the correlated
wherem_. is the pion mass. density distributions are smaller than the uncorrelated ones.

For each nucleus considered, we have taken from the litwe notice that the curves obtained with purely scalar corre-
erature[20] the parameters of the potenti@ee Table I\ lations are the more distant ones from the uncorrelated re-
These parameters have been fixed to reproduce the s.p. en-
ergies around the Fermi surface and the root mean squared
charge radii. 12 T .

We tested the validity of our model by comparing our
results with those of FHNC calculations performed with the
same inputs. We used two kinds of correlation functions. A
first one has a Gaussian functional dependence from the in- _
terparticle distance. The second one has been obtained in =
Ref. [10] by solving the variational equations for the mean
value of the Hamiltonian up to the second ord€uler cor-
relations.

The correlations used for th&C and “8Ca nuclei are

(a)

shown in Fig. 3. The dashed lines represent the Gaussian 3.0
correlations, while the full lines show the Euler correlations.
These correlations have been fixed in R&0] by minimiz-
ing the nuclear binding energies for the Afnan and Tang S3
interaction[21]. The Euler correlations show an overshoot-
ing of the asymptotic value in the region between 1 and 2 fm. i
TABLE Il. Coefficients of the Woods-Saxon potential E&6). £ .
Vo Vis R a T
2c p 62.00 3.20 2.86 0.57 1
n 6000 315 286 057 oo . . ®
160 p 52.50 7.00 3.20 0.53 0.0 10 2.0 3.0
n 52.50 6.54 3.20 0.53 r {fm]
4ca p 57.50 11.11 4.10 0.53
n 55.00 8.50 4.10 0.53 FIG. 3. Correlation functions used in tHéC and “®Ca calcula-
“8ca p 59.50 8.55 4.36 0.53 tion of Fig. 4. The dashed lines show the Gaussian correlations and
n 50.00 7.74 4.36 0.53 the full lines the correlations obtained with a Euler minimization

procedure.
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FIG. 4. Comparison between densftypper panelsand momentum distributiorigower panel$ calculated with our moddbashed lines
and with a full FHNC calculatio10]. We have added a factor 1.2 to the densities calculated with the Euler correlations and we have
multiplied the Euler momentum distributions by a factor 10.

sults. The inclusion of the other correlation channels reduceproduced by the sum of the effects of the scalar and tensor
these differences. components. The other central channels are responsible for
The momentum distribution@=ig. 7) show a well-known the increase of the tail of the distribution at higher momen-
behavior. Correlated and uncorrelated results are practicalljum values.
the same up to momentum values of about 1.8—2.0%m
but they clearly separate at higher values. The uncorrelated
distributions descend very rapidly while the correlated distri-
butions are an order of magnitude larger. We have developed a nuclear model to describe density
In Fig. 7 we observe that the full lines and dashed linesand momentum distributions of doubly closed shell nuclei
obtained with correlations containing only the scalar term.explicitly considering the short-range correlations.
are well separated in the high momentum region. On the This model is based upon the cluster expansion of the
contrary, the full and dash-dotted lines, the last ones obtaine@BF theory, but it retains only the set of lowest order dia-
using correlations without the tensor channels differ only in agrams which allows for the conservation of the number of
small momentum region around 2.0 frh This fact leads us particles.
to think that the effects of the tensor correlations are well The model has been tested against the results obtained by
localized in momentum space. finite nuclei FHNC calculations performed with the same
To better investigate this issue we have performed calcumnputs. The agreement between our results and those of the
lations of the momentum distributions using correlationsmore elaborate theory is very good.
with only the tensor channels active. The result for t#e We have calculated momentum and density distributions
nucleus is presented in Fig.(8otted ling and is compared of four doubly closed shell nuclei with state dependent cor-
with the momentum distribution calculated with the full cor- relations taken from nuclear matter FHNC calculations.
relation (full line) and with that obtained with central and  We found that the major effects of the correlations in both
tensor terms onlydashed ling density and momentum distributions are produced by the
We observe that the filling of the dip around 2 frhis  scalar part of the correlations. The effect of the correlation

IV. CONCLUSIONS
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12 r . field model. This could mean that some effects of the short-
range correlations we would like to describe have already
1.0 been averaged out by this procedure. The correlation func-
tion used has been obtained by a minimization procedure
08 1 done in nuclear matter. We show in Fig. 3 that finite nuclei
T ost 7 4 FHNC minimizations seems to prefer correlation functions
------------ b with an overshooting in the region between 1 and 2 fm, but
04 | o 2 - this is not the characteristic shown by the scalar term of the
----------------- fs nuclear matter correlation function.
0z ) TTmTmmm fs 1 Because of these theoretical limitations, we believe that at
00 . , the present stage the comparison of the results of our model
0.10 : : with experimental data is not very meaningful. The validity
of our work lies in the evaluation of the relative effects pro-
0.06 £ =~- . 4 duced by the various correlation channels.
0.02 "'7‘,1\ .
) e R e ACKNOWLEDGMENTS
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-0.06 |- -
(b)
%0 70 20 3.0 APPENDIX
r[fm] In this appendix we present the expressions of the equa-

tions used to calculate the diagrams of Fig. 1.
FIG. 5. State dependent correlation terms as a function of the The functionsG of Eqgs.(22) are defined as
interparticle distancgl?7]. See Eq(8) for the meaning of the vari-
ous lines.
Gl=(f1+f3)(g1+03) +3(f2+4)(92+94)
functions used in these calculations is a general lowering of

the density distributions in the interior region and an increas- +6(f5+16)(9s T o). (AL)
ing of the momentum distribution at high momentum values.
The effect of the state dependent terms of the correlation e _ _ _
on the density distribution is of opposite sign with respect to G2=(f1=15)(917093) +3(f2~14)(92-04)
the effect of the scalar term only. The results obtained with +6(fs—f6)(ds—0s), (A2)

the complete correlation are closer to the uncorrelated results
than those obtained with the scalar term only. The situation
is reversed in the momentum distribution case. G3=1303+ 31494+ 6fcGs. (A3)

The tensor correlation term produces effects which seem
to be rather localized in momentum space. In the momentum

distributions, the presence of the tensor correlations is No- G4 (f,+f,)(g,+gs) + E(f2+f4)_fl_f3 (g2+94)
ticeable in a small momentum region around the point where 2
the uncorrelated distributions separate from the correlated 1
ones. +(fo+11)| 5(92+094)— 01— )
Before concluding we would like to make two comments 272 9278478170
about the limitations of the model with respect to FHNC +4(fs+fg)(gs+gs) (Ad)

calculations. A first limitation is of practical type. Contrary
to what happens in the FHNC case, the numerical effort to
perform our calculations grows rapidly with the number of G5=(f,—fotfaef n
single-particle states. This makes the calculation of the (1= fot s~ 1a)(92104)

208 momentum distribution extremely heavy from the nu- +(fo+4)(91— 92+ 93— 0a) +2(f5+ f5) (g5t Te),
merical point of view. The second limitation has a theoretical

aspect common to all the models of the same kind. In the (AS)
FHNC theory the correlation function and the s.p. basis are

related through the nuclear Hamiltonian by the variational G6=(f,—f —a) +(fa— ) (50—

principle. In our model they are two different input param- (117 13)(93=94) + (T2 14)(504~ Gs)

eters in principle arbitrary. +4(fs—fg) s, (AB)

We have performed our calculations using reasonable s.p.
bases and reasonable correlations. The s.p. bases have been
taken from literature where their parameters have been fixedG7=(f,—f;)gs+ (f1—2f,—f3+2f,) g4+ 2(f5—f6)Qs,
in order to reproduce some nuclear properties within a mean- (A7)
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FIG. 6. Proton density distributions calculated with the correlation function of Fig. 5. The dotted lines show the uncorrelated results. The
full lines have been obtained with the full correlations. The results of the calculations performed without the two tensor components of the
correlations are shown by the dash-dotted lines, while the dashed lines show the results obtained with only the scalar term of the correlation

(fo).

G8=(f3—14)(91—93) +(5f4,—f3)(92—04)

1
PB(raro)=7—21 RR;(r)RR;(r2)(2) +1)Pi(costyy),
+4f6(95— o), (A8) nli

(A11)

Go=f —a,)+f 05— Oat 20,) + 2f Y where P, is the Legendre polynomial ané,, is the angle
3(92—04) +f4(91— 20293+ 29,) 6(Js g(6A)9) betweenr; andr.

The contribution of the other terms has been calculated
ufsing expressioniAll) of the s.p. wave functions and per-
%rming a multipole expansion of each correlation function
f, andg, of the G functions:

To describe the closed shell nuclei we have used a set
s.p. wave functions of the form

Shiim(11) =R (1) 2, (1u2125Jm)Y, Q)X xi(D)- (urira =3 fE(r P cosy, (L2
(A10)

In the above equatiofl; indicates the angular coordinates, wherea=1,. .. ,6.

| andj the orbital and total angular momentum, respectively, The contribution of the diagran®,B,C, andD has been

Rnij(r) the radial part of the wave functiol, , the spherical ~ calculated expanding in multipole each term composing ex-

harmonic, and| »1/2s|jm) the Clebsch-Gordan coefficient. pressions froni22) to (25). Each of these terms contains the
In this basis the uncorrelated proton OBDM, the first termproduct between the correlation functiohysandg, . In dia-

of Eq. (1)) is gramA we found terms of the form:
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FIG. 7. Proton momentum distributions. The meaning of the various lines is the same as in Fig. 5.
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, a By’
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(A13)

In diagramB we calculate terms of the form

log o n(k)
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4.0

FIG. 8. Proton momentum distribution dfC.
The full line corresponds to the full calculatigtine
same as in Fig. )7 The dotted line has been ob-
tained using only the two tensor components of the
correlation and the dashed line with the scalar plus
tensor components.
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1 . .
f dsrzpo(flirz)Po(rz r)fa(r129s(rio)=-— pp 21 (2j1+1)(2j,+1)
1 l 1
na.l2.02

ols 15\2(1, 15 142
o 0 olo o o

f dr,r Rn | ](rz)R;zzjlz,jz(rz)ff‘;(rl,rz)gﬁ(ri,rz) P\ (cos1y) (A14)

t t '
XR 1 (TORS 1, (1) > (205+1)

3.lails

and

> | dPropgt i (r e, r ) p (1o 1 ) o(F12)Gp(rar2)

S1.52

= > V@ D@L+ 1))+ D)(2i+ DRE | (TRE | (1)

477”1 l1.01
n2.l2.j2
- 1+(_1)|1+|2+|5
><I lEI | (=1)'s™ ef(2|5+1)(2I6+1)><f drzr Rn i ]( 2)R s ](rz)f (rq, rz)gF(rl,rz)
314,156

j2 01 s\ [l Is la|(l2 T la|(l1 6 |3) i 12 Is|fl2 1a ls P, (CoB1r)
172 -12 o/lo o o0/lo o o/lo 0 0/|i, j. w2fll5 Iy g e
In diagram<C andD the functions describing the correlations depend only on two radial coordinates, therefore we can perform

the multipole expansion of their product. So we shall define

Nap(raa) =fo(raa)fa(raa). (A15)

In diagramC we obtain terms of the form

2| drad®rapgPry,r) pgr P (r2, 1) o) hag(r 22
1052

= S @I DRE 5 (FORE (r) drarBRE R (02 [ drBabrahg e o) P oo,

nyulqis
N2
(A16)
while diagramD we calculate terms of the form
st d3r2d3r3p3152p(r1,rz)pg(rz,r3)p3251p(r3,ri)haﬁ(rzg)
192
1 I 1 14)? ,
:En%n (2Ja+D)(2jo+ DRE 1, (FORE L, (TD Py, (cosﬂme o 0 ol BUury  (A1D
ny.lo,jon3
and
E fdgrzdsrspolszp(rlyrz)% ("2 rs)p 3slp(r3,ri)haﬁ(r23)
$1.52.83
1 , 1+(_1)I1+I2+I4 j2 jl |4 2 ’
=am na,, G D@IFDRL ) IRE ) (TDP(Cot) X —————{ ) )y o] B
ny,lz.ioN3

(A18)
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where we have defined

_ * 2 t * 2pt @
B(rl,ri)—fo drzrzRglv,l,jl(rz)an,,zyjz(rz)fo drar3Rn, 1., (Ta)RE 1 i (T P(ra,rs). (A19)
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